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Abstract

We propose a sequential Monte Carlo (SMC) method augmented with an importance
sampling step for estimation of DSGE models. In addition to being theoretically
well motivated, the new method facilitates the assessment of estimation accuracy.
Furthermore, in order to alleviate the problem of multimodal posterior distributions
due to poor identification of DSGE models when uninformative prior distributions
are assumed, we recommend imposing data-driven identification constraints and
devise a procedure for finding them. An empirical application to the Smets-Wouters
(2007) model demonstrates the properties of the estimation method, and shows how
the problem of multimodal posterior distributions caused by parameter redundancy
is eliminated by identification constraints. Out-of-sample forecast comparisons as
well as Bayes factors lend support to the constrained model.
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1 Introduction

Advances in Bayesian simulation methods have recently facilitated the estimation of rel-

atively large-scale dynamic stochastic general equilibrium (DSGE) models. Because the

commonly employed random walk Metopolis-Hastings (RWMH) algorithm has a num-

ber of shortcomings in this context, alternative algorithms have recently started to gain

ground (see, for example, Creal (2007), Chib and Ramamurthy (2010), and Herbst and

Schorfheide (2014)).

Besides the well-known problem of potentially very slow convergence to the posterior

distribution, the RWMH algorithm is ill-suited for handling multimodality typically aris-

ing in poorly identified DSGE models, when diffuse priors are assumed (see, e.g., Koop et

al. (2013)). Because of the latter property, relatively tight prior distributions have had to

be assumed in the previous literature. An unfortunate consequence of very informative

priors is that the resulting posterior distributions may not have much to say about how

well the structural model fits the data. In other words, in that case, the priors are likely

to be driving the results, precluding us from learning about the parameters of the model

from the data.

Herbst and Schorfheide (2014) have recently addressed these issues and employed an

adaptive sequential Monte Carlo (SMC) algorithm to estimate the Smets and Wouters

(2007) model (SW model hereafter) based on uninformative priors. They also used simu-

lations to assess the accuracy of the SMC algorithm compared to the RWMH algorithm,

and not surprisingly, found the former much more accurate. However, their approximation

of the asymptotic variances of the parameter estimates, used to measure the approxima-

tion error of the estimates, is based on running the SMC algorithm multiple times, which

is computationally very costly in the case of a complex high-dimensional DSGE model.

Therefore, they computed the numerical standard errors from only 20 runs, and they are

thus likely to be very inaccurate.

In this paper, we propose to augment the SMC algorithm with a nonsequential Im-

portance Sampling (IS) step, which has the advantage that numerical standard errors can

be readily calculated without burdensome simulations. Moreover, convergence results for

nonsequential IS are available, while the asymptotic properties of the adaptive SMC al-
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gorithm are not necessarily known. Hence, in addition to being computationally feasible

in assessing the accuracy of the estimates, our procedure is theoretically well motivated.

In order to alleviate the multimodality problem discussed above, we propose to impose

so-called data-driven identifiabilty constraints and devise a procedure of finding them.

This idea of such constraints was put forth by Frühwirth-Schnatter (2001), and to the

best of our knowledge, it has not been applied to DSGE models. They may lead to

a superior model, and their validity can be checked by comparing the restricted and

unrestricted models, say, by Bayes factors. For instance, when estimating the SW model,

Herbst and Schorfheide (2014) found two modes, implying different wage dynamics, and

by data-driven identification constraints we are able to discard one of them.

We estimate the SW model on the same data set as Smets and Wouters (2007) and with

diffuse priors that are slightly different from those assumed by Herbst and Schorfheide

(2014). Our augmented SMC method yields very accurate estimates similiar to those of

Herbst and Schorfheide (2014) based on both the RWMH and SMC methods and diffuse

priors, but very different from those of Smets and Wouters (2007) based on tight prior

distributions. We also estimate the model with the tight priors assumed by Smets and

Wouters (2007), and find accurate posterior estimates very close to theirs. Comparison

of the estimates based on the informative and uninformative priors reveals that the re-

sults of Smets and Wouters (2007) are indeed strongly driven by their informative prior

distributions.

Closer inspection of the posterior densities of the parameters of the SW model suggests

redundancy in the parametrization of the SW model. In particular, restricting the ARMA

wage markup shock to a white noise process (and the standard deviation of the price mark-

up shock, σp, to a relatively small value σp < 0.19) leads to an improved model, and we

are able to conclude that the persistence of wages is driven by the endogenous instead of

exogenous dynamics. In other words, by imposing these constraints accepted by the data,

we can rule out one of the two modes discussed above, whose relative importance Herbst

and Schorfheide (2014) found difficult to assess. Moreover, imposing the data-driven

identification constraints improves estimation accuracy, and also out-of-sample forecast

comparisons lend strong support to the restricted model.

In the next section, we discuss the SMC algorithm and explain, how any such algorthim

2



can be augmented with an IS step. The estimation results of the SW model are reported

in Subsection 2.2, where they are also compared to the corresponding results in Smets

and Wouters (2007), and Herbst and Schorfheide (2014). The data-driven identification

constraints and the procedure for finding them, as well as the related empirical results

are the topic of Section 3. Forecasting with DSGE models and computing log predictive

densities that can be used to rank competing models, are discussed in Section 4, while in

Subsection 4.1, we report the results of forecast comparison. Finally, Section 5 concludes.

2 Sequential Monte Carlo Estimation

The likelihood function of any DSGE model is a complicated nonlinear function of the

vector of its structural parameters θ, and, hence, potentially badly behaved. This compli-

cates the estimation of the posterior distribution of the parameters and, if not properly

handled, makes commonly used approaches such as the RWMH algorithm ill-suited for

this purpose. One solution is to assume tight prior distributions, but as discussed in the

Introduction, this may be problematic for a number of reasons. Therefore, it might be

advisable to employ less informative priors, but this, of course calls for an appropriate

estimation method.

Recently Herbst and Schorfheide (2014) have proposed using a Sequential Monte Carlo

(SMC) algorithm (particle filter) for estimating DSGE models under noninformative priors

(see also Creal (2007) for estimating DSGE models by SMC methods). The particle filter

is a recursive algorithm that approximates an evolving distribution of interest by a system

of simulated particles and their weights. This system is carried forward over time using

multiple resampling and importance sampling (IS) steps. By virtue of their construction,

these methods have been found to perform well for badly behaved posterior distributions

(for further evidence on this, see, for example, Del Moral, Doucet and Jasra (2006), Jasra,

Stephens and Holmes (2007), and Durham and Geweke (2014)).

While SMC methods are well suited for estimating DSGE models, they also involve

at least two problems to which we propose a solution in this paper. First, to obtain a

sequence of good importance densities the algorithm must in practice be tuned online

using the current population of particles, and the properties of the estimates calculated
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from the output of such adaptive samplers are not necessarily known (see Durham and

Geweke (2014) for a detailed discussion). In particular, there are only very few results

stating their convergence to the associated posterior quantities.

Another, and from the practical point of view potentially more seriour problem is re-

lated to to the assessment of the accuracy of estimates, which is dificult for SMC methods

because of the complexity of the asymptotic variances. One solution, applied by Herbst

and Schorfheide (2014), among others, is to estimate the asymptotic variance from mul-

tiple runs of the SMC algorithm. While the time cost of this approach may be relatively

small for simple univariate models, whose likelihoods can be readily calculated in parallel

using graphics processing units (GPUs), it can be unreasonably high for complex high

dimensional models such as the SW model. For this reason, numerical standard errors,

needed to assess the quality of the posterior estimates, have been based on a relatively

small number of runs and are thus likely to be very inaccurate (for instance, Herbst and

Schorfheide (2014) only run the algorithm 20 times).

2.1 Importance Sampling Step

As discussed in the Introduction, in order to solve the two problems of the SMC approach

applied to DSGE models, we propose to conclude the SMC run by nonsequential IS, for

which convergence results are available and numerical standard errors can be readily cal-

culated. The idea is to approximate the posterior distibution by a mixture of Student-t

distributions. This approximation is then efficiently used as the importance sampling den-

sity. The proposed procedure closely resembles that of Hoogerheide, Opschoor, and van

Dijk (2012), and it delivers the efficient mixture components by minimizing the Kullback-

Leibler divergence from the target posterior, which is approximated by the simulated

particles. As IS algorithms are highly parallelizable, the time cost of the proposed proce-

dure is marginal compared to a single SMC run. It is important to notice that we propose

to use nonsequential IS as a complement to SMC methods mainly because assessing the

numerical accuracy of SMC estimates is challenging. Indeed, it is our experience that

adaptive SMC algorithms are able to deliver reliable approximations of even very patho-

logical posterior distributions also in cases where no formal asymptotic convergence result
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is available.

Any SMC algorithm can be augmented by an importance sampling step. For a de-

scription of the SMC algorithm as applied to a DSGE model, including the SW model, we

refer the interested reader to the Appendix, or, e.g., Herbst and Schorfheide (2014). Here

we only explain how to construct a mixture of Student-t distributions approximation to

the target posterior distribution πn (θ) (for data up to any period n ∈ {1, . . . , T}), from

its particle approximation {θin}
N
i=1. This mixture density is then used to calculate the

Importance Sampling (IS) estimates of the posterior quantities of interest. The proposed

procedure closely resembles that of Hoogerheide et al. (2012), and we refer to their paper

for a more detailed discussion (see also Cappé et al. (2008)).

The posterior distribution of the parameters of interest θ is approximated by a mixture

of J multivariate t distributions:

f (θ |ψ ) =
J∑
j=1

αjtk (θ |µj, Vj; νj ) , (1)

where tk (θ |µj, Vj; νj ) is the density function of the k -variate t distribution with mode µj,

(positive definite) scale matrix Vj, and degrees of freedom νj, ψ = (µ′1, . . . , µ
′
J , vech (V1)′ ,

. . . , vech (VJ)′ , ν1, . . . , νJ , α1, . . . , αJ)′, and the mixing probabilities αj sum to unity.

To obtain an efficient importance sampling density that enables us to accurately ap-

proximate the posterior, we minimize the Kullback–Leibler divergence
∫
πn (θ) log πn(θ)

f(θ|ψ )
dθ

between the target posterior distribution πn (θ) and f (θ |ψ ) in (1) with respect to ψ. Be-

cause the elements of vector ψ do not enter the posterior density πn (θ), this is equivalent

to maximizing ∫
[log f (θ |ψ )]πn (θ) dθ = E [log f (θ |ψ )] , (2)

where E denotes the expectation with respect to the posterior distribution πn (θ). A

simulation-consistent estimate of expression (2) is given by

1

N

N∑
i=1

log f
(
θi |ψ

)
, (3)

where the particle approximation {θi}Ni=1 is taken as a sample from the posterior distri-

bution πn (θ). Following Hoogerheide et al. (2012), we use the Expectation Maximization
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(EM) algorithm to maximize (3) with respect to the parameters of the mixture distribu-

tion ψ in (1). Once the importance sampling density has been obtained, it can be used to

estimate any posterior quantity of interest, and the associated numerical standard errors.

Hoogerheide et al. (2012) maximize a weighted variant of (3) in their bottom-up proce-

dure, which iteratively adds components to the mixture (1), starting with one multivariate

t distribution. Conversely, we start with a reasonably large number of distributions and

remove the (nearly) singular ones (i.e., those with (nearly) singular covariance matrices

and very small probability weights). This can be done because the particle approximation

{θi}Ni=1 provides a very accurate description of the posterior distribution. In other words,

in our case it is sufficient to represent the information in {θi}Ni=1 in terms of the mixture

distribution in (1).

It is worth noting that the EM algorithm may be sensitive to the starting values of

ψ. To solve the problem, we partition the particle approximation {θi}Ni=1 into J clusters

by an agglomerative hierarchical clustering algorihtm (see, for example, Everitt et al.

(2011)), and then use the sample mean and covariance matrix of the particles in the j th

cluster as initial values for µj and Vj (j ∈ 1, . . . , J).1 A good initial value for the mixing

probability αj can be obtained by dividing the number of points in the j th cluster by N.

This procedure tends to be quick and very reliable.

2.2 Estimation Results

We estimate the SW model on the same quarterly data set as Smets and Wouters (2007)

using an SMC algorithm augmented with a nonsequential IS step, and compare the results

to the RWMH estimates of Smets and Wouters (2007), and the RWMH and SMC estimates

of Herbst and Schorfheide (2014). The SMC algorithm is described in the Appendix.

While Smets and Wouters (2007) assumed tight prior distributions, in estimation by

SMC methods less informative priors are entertained. In particular, for the parameters

that are defined on the unit interval, we consider logit transformations and assume univari-

1Prior to clustering, the particle approximation
{
θi
}N
i=1

is normalized and orthogonalized such that

the elements of θ have zero means and unit variances, and are uncorrelated. The distance between two

normalized and orthogonalized particles is measures by the Euclidean distance between them. Moreover,

the distance between two clusters is measured by Ward’s measure.
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ate normal prior distributions for the transformed parameters. We operate on transformed

parameters in order to enhance the performance of the sampler. In contrast, Herbst and

Schthorfheide (2014) operate on the original parameters and assume uniform prior distri-

butions for the parameters on the unit interval. In line with Smets and Wouters (2007),

we assume inverse-gamma prior distributions for the standard errors of the innovations

of the structural shocks. However, we set the prior hyperparameters such that the prior

means and variances equal 0.5 and 1, respectively, instead of the values 0.1 and 4 that

they considered. The differences between the priors are clearly visible in the density plots

depicted in Figure 1. More than 90% of the probability mass of the prior distribution of

Smets and Wouters (2007) lies below 0.2, which suggests rather small standard errors for

the innovations. It is also worth noting that this prior distribution has a relatively large

variance, 4, because of its very long but thin right tail. Our prior has a smaller variance,

1, but it is considerably less leptokurtic than theirs. As far as the other parameters of the

model are concerned, we follow Herbst and Schthorfheide (2014) in scaling the associated

prior variances of Smets and Wouters (2007) by a factor of three. Our diffuse priors are

described in detail in Table 1.

In Table 2, we report the estimation results based on our procedure with diffuse priors.

The posterior means, their standard deviations and the 5th and 95th percentiles of the

posterior densities of all parameters lie very close to those that Herbst and Schorfheide

(2014) obtained by both the RWMH and SMC methods assuming their diffuse priors,

but different from those of Smets and Wouters (2007) based on tight prior distributions.

The numerical standard errors of the posterior means of the parameters reported in the

rightmost column of Table 2 are remarkably small, indicating very accurate estimation.

They are also much smaller than those reported by Herbst and Schorfheide (2014), which

may reflect the poor quality of their asymptotic variance estimates based on only 20

simulations rather than the superiority of our estimation procedure augmented with the

IS step. In any case, our results suggest that concluding the SMC run by nonsequential

IS is worthwhile as far as assessing the accuracy of posterior estimates is concerned. It

is, however, important to note that all the SMC and IS estimates are very close to each

other.

For comparison, in Table 3 we report the results obtained by our procedure augmented
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with the importance sampling step assuming the informative priors of Smets and Wouters

(2007). The posterior estimates are very close to those in Smets and Wouters (2007), and

their numerical standard errors are also very small, indicating great estimation accuracy.

By comparing the results of Table 3 to those in Table 2, we can see that the marginal

posteriors of Smets and Wouters (2007) are strongly driven by their informative prior

distributions.

3 Identification

Especially in models that are known to be poorly identified, such as the SW model, the

Monte Carlo (MC) output of the posterior distribution should be systematically analyzed

for the information concerning the identification of the parameters of the underlying struc-

tural model. To this end, we recommend first visually inspecting the marginal posterior

distributions of the parameters for bad behavior (such as multimodality or fat or long

tails). Once the badly behaved parameters have been singled out, the next step is to

analyze the bivariate posterior density plots of all pairs of these parameters. In our ex-

perience, an efficient estimation algorithm produces dense areas in the density plots that

may reveal to what extent the associated structural parameters are identified. As will

be seen, this information can then be useful in deriving so-called data-driven identifiabil-

ity constraints on the parameters of the DSGE model (see Frühwirth-Schnatter (2001)).

Because these constraints respect the geometry of the data-driven posterior distribution,

they help us to learn about the parameters from the data, and are likely to improve the

quality of probabilistic forecasts. Moreover, they may be useful in alleviating the multi-

modality problem often encountered in estimating DSGE models, and they are also likely

to improve estimation accuracy. After estimating the restricted model, the procedure may

be repeated until the data suggests no further identification constraints.2

Inspection of the marginal posterior densities of the parameters reveals six badly be-

2For example, in the case of a multimodal posterior density, we may be able to rule out some of the

modes (subspaces) by comparing different restricted and unrestricted models using, say, Bayes Factors.

This procedure is demonstrated below.

8



haved parameters that govern wage (ξw, ιw, ρw, µw) and price (µp, σp) stickiness.3 Also

Herbst and Schorfheide (2014) found multimodal features in the posterior distributions of

these parameters. The bivariate density plots of all combinations of the marginal poste-

riors of these parameters are next inspected to find out about the identification of these

parameters. As an example, Figure 2 depicts the density plot of the ARMA parameters

ρw and µw of the wage mark-up shock εwt = ρwε
w
t−1 +ηwt −µwηwt−1, where ηwt ∼ N (0, σ2

w). It

indicates weak identification of these parameters. In particular, they take almost equal val-

ues with high probability, giving rise to potential for redundant parameterization. Given

the properties of the ARMA model, with ρw ≈ µw, the wage mark-up shock might be

better described as a white noise process (with ρw and µw restricted to zero). In addition,

we consider two alternative constraints, namely, ρw = 0, and µw = 0 separately.4

It is worth noting that all three contraints on ρw and µw produce well-behaved uni-

modal marginal posteriors for the parameters of the model with the exception of µp and

σp in the process of the price mark-up shock. Their bivariate posterior density plot for

the unrestricted model in Figure 3 reveals two separate modes. The dominating mode

(µp ≈ 0.85, σp ≈ 0.14) lies close to the one in Smets and Wouters (2007), while the other

mode (with a greater value of σp) suggests that the moving average part of the price mark-

up shock is almost noninvertible (µp has about 23% of its probability mass very close to

unity). In order to restrict attention only to the neighbourhood of the dominating mode,

we may place different constraints on µp or σp. For instance, imposing σp < 0.19 results

in a well-behaved joint posterior distribution for µp and σp (see Figure 4).

The posterior means and standard deviations of the parameters of the restricted model

(with ρw = µw = 0 and σp < 0.19) are presented in Table 4. Imposing the constraint

clearly improves estimation accuracy; all the numerical standard errors are smaller than

those of the unrestricted SW model in Table 2, in some cases even substantially so. None of

the plots of marginal posterior distributions (not shown) suggests remaining bad behavior,

and hence there seems to be no need for further data-driven identification constraints. In

particular, no signs of the multimodality problem discussed above can be seen. Of the

3The results are not shown to save space, but they are available upon request.
4Detailed estimation results of these restricted models are not presented to save space, but they are

available upon request.
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two modes found by Herbst and Schorfheide (2014), the one implying the endogenous

dynamics (related to ξw and ιw) as the driver of the persistence of wages (their Mode

2) remains the only mode by construction since the parameter ρw and µw related to the

exogenous wage dynamics are constrained to zero. However, in the model with µw = 0,

the posterior mean of ρw is only 0.13 (with standard error 0.06), which also lends support

to the endogenous dynamics as the driver of the persistence of wages. In Section 4 below,

we provide further evidence in favor of the restricted SW model specification.

4 Forecasting

There is by now a large literature on forecasting with DSGE models (for a recent survey,

see Del Negro and Schorfheide (2013)). While forecasting is not the main focus of this

paper, we present a number of density forecasting results in order to provide further

information on model fit and the usefulness of the data-driven identification constraints

imposed on the SW model in Section 3.

Following Adolfson, Lindé, and Villani (2007), and Geweke and Amisano (2011, 2012),

among many others, we tackle the problem of assessing the quality of the probabilistic

forecasts for a random vector Yn, given its realized value yn using scoring rules. Scoring

rules are carefully reviewed in Gneiting and Raftery (2007), and we refer to their paper for

a more detailed discussion on the topic. In the following, we briefly describe the scoring

rule used in this paper.

Let pn denote a forecaster’s predictive distribution. A scoring rule S (yn, pn) can be

considered a reward that the forecaster seeks to maximize. It is said to be strictly proper if

the expected score under the distribution of Yn, qn, is maximized by the choice pn = qn. It

is further termed local if it depends on the density of the forecaster’s predictive distribution

pn only through its realized value yn. The logarithmic score S (yn, pn) = log pn (yn) is

known to be the only scoring rule with these desirable properties, and, therefore, we use

it to assess the quality of the probabilistic forecasts (see also Parry, Dawid, and Lauritzen

(2012) for a discussion on the so-called order-m proper local scoring rules). In particular,
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we rank the competing models by the sum of the h-step-ahead log predictive densities

LSh =
T∑

n=S+1

log p
(
yn
∣∣y1:(n−h)

)
, (4)

where h ≥ 1 is the forecasting horizon, S+1 is the starting date of the forecast evaluation

period, p (yn+h |y1:n ) is the h-step-ahead predictive likelihood evaluated at the observed

yn+h, and y1:n = (y′1, . . . ,y
′
n).

The close connection of LSh to the marginal likelihood, when h = 1 facilitates the

interpretation of the forecasting results (see, for example, Kass and Raftery (1995)). To

see the connection, write (4) for h = 1 as

LS1 =
T∑

n=S+1

log p
(
yn
∣∣y1:(n−1)

)
= log p

(
y(S+1):T |y1:S

)
,

where

p
(
y(S+1):T |y1:S

)
=

∫
p (y1:T |θ ) p (θ) dθ∫
p (y1:S |θ ) p (θ) dθ

=

∫
p
(
y(S+1):T |y1:S, θ

)
p (θ |y1:S ) dθ. (5)

It is easy to see that quantity (5) has the same interpretation as the marginal likelihood,

if y1:S is interpreted as a training sample, that is, if p (θ |y1:S ) is taken as the prior

distribution of θ (see, for example, Adolfson et al. (2007), and Geweke and Amisano

(2010) for a detailed discussion).

To rank the competing forecasting models by LSh, we need to evaluate the h-step-

ahead predictive likelihoods p (yn+h |y1:n ) for each model. Following Warne, Coenen, and

Christoffel (2013), we calculate these quantities using the importance sampling estimator

p (yn+h |y1:n ) ≈ 1

N

N∑
i=1

p (yn+h |y1:n, θ
i )πn (θi)

f (θ |ψ )
, (6)

where, under Gaussianity, the conditional likelihood p (yn+h |y1:n, θ ) is given by

p (yn+h |y1:n, θ ) =

∣∣Σn+h|n
∣∣−1/2

(2π)p/2
exp

{
−1

2
ε′n+h|nΣ−1

n+h|n εn+h|n

}
,
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εn+h|n = yn+h−yn+h|n is the h-step-ahead forecast error, and Σn+h|n is the h-step-ahead

mean squared error of the forecast. The h-period-ahead forecasts yn+h|n with Σn+h|n are

calculated in a standard fashion from the filter estimates of the state variable and the

associated state variable covariance matrix, both based on the data y1:n (see, for example,

Hamilton (1994, 385)).

The importance densities f (θ |ψ ) can be obtained by the procedure described in Sec-

tion 2.1. However, if we are not interested in the numerical standard errors of the esti-

mates of p (yn+h |y1:n ) (not typically reported), we may also evaluate (6) using the SMC

approximation of the posterior distribution of the parameters by setting f (θi) = πn (θi).

At least for the SW model, the SMC and IS approximations of the posterior density of

the parameters lie very close to each other. Thus, it may be reasonable to save computing

time by estimating (6) using πn (θ) as an importance distribution.

4.1 Forecast Comparison

In order to gauge density forecasting performance, in particular the benefits of allowing

for diffuse prior distributions with and without data-driven indentification constraints, we

compute pseudo out-of-sample forecasts from a number of models for the period 1970:1 to

2004:4. The forecasts are computed recursively, using an expanding data window starting

at 1966:1. We consider the forecast horizons of one, four, eight, and twelve quarters. As

discussed in Subsection 4, we rank the models using the LSh criterion (4). Recall that

for h = 1, LSh is very closely connected to the log of the marginal likelihoods (see the

discussion preceding (5)), and, hence, they can be interpreted using Bayes factors (see,

for example, Kass and Raftery (1995) for a detailed discussion on the Bayes factor).

The results are presented in Table 5. At all forecast horizons, the model estimated

under the informative priors of Smets and Wouters (2007) performs the worst, while the

diffuse priors with the three identification constraints considered in Section 3 is the clear

winner. It is worth pointing out that among the identification constraints, the restriction

ρw = 0 gets the least support, while the restriction µw = 0 leads to the second-best

outcome at three out of the four forecast horizons considered. These findings thus lend

further support to the identification constraints imposed in Section 3.
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Twice the logarithmic Bayes factor of the model with the diffuse priors against the

model estimated under the informative priors of Smets and Wouters (2007) is 62, pro-

viding very strong evidence in favor of the model with diffuse priors. According to this

measure of model fit, there is also strong evidence in favor of the data-driven indentifica-

tion constraints, with twice the logarithmic Bayes factor of the model with ρw = µw = 0

and σp < 0.19 against the unrestricted model with the diffuse priors around 6.6.

All in all, the forecast results provide supporting evidence in favor of the SW model

estimated using the diffuse priors. Moreover, the data-driven identification constraints

are seen to considerably improve forecast accuracy over and above the model with the

diffuse priors alone.

5 Conclusion

In this paper, we have revisited the problem of estimating Bayesian DSGE models under

diffuse prior distributions. In most of the previous literature, tight prior distributions have

been assumed, and it is only the introduction of sequential Monte Carlo methods that

has made it possible to entertain diffuse priors. The main problem with very informative

priors is their tendency to drive the empirical results, which inhibits learning about the

parameters of the model from the data. Diffuse priors, on the other hand, tend to yield

multimodal posterior distributions, which can be handled by means of sequential Monte

Carlo methods.

We propose augmenting any sequential Monte Carlo algorithm with an importance

sampling step, which facilitates efficient assessment of estimation accuracy, and whose

asymptotic properties are well known. We also recommend examining the posterior dis-

tributions of the parameters of a DSGE model for data-driven identification constraints

that can be imposed to avoid redundancies and improve fit. The validity of such con-

straints can readily be checked by Bayes factors and out-of-sample forecast comparisons.

In empirical analysis of the Smets and Wouters (2007) model on the same data set that

they considered, we find that their results are strongly driven by their informative prior

distributions. Assuming diffuse priors, we obtain results similar to those of Herbst and

Schorfheide (2014) and are able to show that our estimates are very accurate. Inspection
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of the posterior distributions gives rise to identification constraints that are strongly

supported by the data. In particular, we are able to restrict the wage markup shock

to a white noise process. Under this constraint, we can conclude that the persistence of

wages is driven by the endogenous dynamics.

The out-of-sample forecast results are encouraging. While we have in this paper

concentrated on estimation and used forecast comparisons mostly as a device in model

selection, in future work it might be interesting to examine more systematically the useful-

ness of data-driven identification constraints in forecasting. In particular, comparisons to

wider set of competing models, including the so-called DSGE-VAR models found superior

to DSGE models (see Del Negro and Schorfheide (2013)) would be of interest.

Appendix

In this appendix, we describe the SMC procedure employed in the text. We start by

introducing the likelihood function and then explain the particle filter.

As discussed in Section 2, we focus on dynamic stochastic general equilibrium (DSGE)

models, whose dynamics are adequately captured by the first-order approximation around

the non-stochastic steady state. The solution of such a DSGE model can be written as

a system of state and observation equations, whose likelihood function can be evaluated

using the Kalman filter. Defining a T × p vector y, obtained by combining the p × 1

observation vectors {yn}n∈T for T = {1, . . . , T}, the likelihood function can be expressed

as

p (y |θ ) =
T∏
n=1

∣∣Σn|n−1

∣∣−1/2

(2π)p/2
exp

{
−1

2
ε′n|n−1 Σ−1

n|n−1 εn|n−1

}
, (A.1)

where εn|n−1 = yn−Cxn|n−1 is the Gaussian forecast error based on the best forecast

xn|n−1 of the state variable xn, C is a selection matrix of ones and zeros, and Σn|n−1 is

the associated mean squared error. The quantities xn|n−1 and Σn|n−1 are complicated

nonlinear functions of the model parameters θ, and are calculated using the Kalman

filter. For Bayesian analysis of DSGE models, (A.1) is combined with a prior distribution

denoted by p (θ).
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Following Chopin (2004), we describe the particle filter as an iterative method that

produces an evolving particle system. At time t ∈ L = {1, . . . , L} (L ≤ T ), a particle

system is defined as a collection of random variables
{
θjt , w

j
t

}
j∈N in a space of interest

Θt×R+, andN = {1, . . . , N}. The variables θjt and wjt are referred to as particles and their

importance weights, respectively. The system
{
θjt , w

j
t

}
j∈N targets a given distribution πt,

in the sense that
N∑
j=1

wjtϕ
(
θjt
)
→ Eπt (ϕ) , (A.2)

almost surely as N → ∞, for any πt-integrable function ϕ. The target distributions πt

considered in this paper are defined on a common space Θt = Θ. For example, for L = T

(i.e., t ∈ T ), πt is the posterior density of θ given data up to time t : πt (θ) = π (θ |y1:t ),

where y1:t = (y′1, . . . ,y
′
t). However, following Durham and Geweke (2014), we introduce

data in batches. In this case, L ≤ T and πt (θ) is the posterior density of θ given data up

to the most recent observation in the tth batch. In particular, let the integers τt (t ∈ L)

refer to the dates of these observations, such that τ0 = 0 < τ1 < · · · < τL = T . Then,

from (A.1), the kernel of the posterior πt (θ) can be expressed as

π (θ |y1:τt ) ∝ p (θ)
τt∏
n=1

∣∣Σn|n−1

∣∣−1/2

(2π)p/2

× exp

{
−1

2
ε′n|n−1 Σ−1

n|n−1 εn|n−1

}
(t ∈ {1, . . . , L}) . (A.3)

It is worth noting that Herbst and Schorfheide (2014) use a sequence of artificial

intermediate distributions [πT (θ)]φk for φ0 = 0 < φ1 < · · · < φK = 1, to obtain the

posterior πT (θ) directly. Their approach may be inefficient in our case, since the whole

sequence of distributions πt (θ) is required for the calculation of LSh in (4).

Next, we briefly describe the algorithm used to move the system
{
θjt , w

j
t

}
j∈N forward

in time. For a more elaborate discussion on particle filters, we refer to Chopin (2004)

and Del Moral, Doucet, and Jasra (2006). The evolution of the particle system comprises

three iterative operations, namely, correction, selection, and mutation, in Chopin’s (2004)

terminology, and the particle filter consists in repeating these three steps until t = L (i.e.,

τL = T ). The algorithm is first initialized by drawing N particles
{
θj0
}
j∈N from the prior

distribution p (θ). Then, for all t ∈ {1, . . . , L}, the following steps are repeated until t = L

(i.e., τL = T ).
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1. Correction: The correction step involves calculating weights that reflect the density

of the particles in the current iteration. These weights wjt can be calculated using

the importance weight function given by wt (θ) = πt (θ) /πt−1 (θ). From (A.3), the

kernel of the weight function can be expressed as

w̃t (θ) =
τt∏

n=τt−1+1

∣∣Σn|n−1

∣∣−1/2

(2π)p/2
exp

{
−1

2
ε′n|n−1 Σ−1

n|n−1 εn|n−1

}
, (A.4)

where the quantities xn|n−1 and Σn|n−1 (n ∈ {1, . . . , τt}) are obtained by the Kalman

filter for each θjt−1 (j ∈ N ). The weights are then normalized according to wjt =

w̃jt/
∑N

i=1 w̃
i
t.

2. Selection: The normalized weights from the correction step,
{
wjt
}
j∈N , are then used

to produce a particle approximation
{
θ̂jt−1, 1

}
j∈N

of πt (θ). In particular,
{
θ̂jt−1

}
j∈N

are simulated from the collection
{
θjt−1, w

j
t

}
j∈N using residual resampling.5

3. Mutation: The simulated particles
{
θ̂jt−1

}
j∈N

are mutated according to θjt ∼ p(θ̂jt−1|
y1:τt , ϑt) (j ∈ N ), where the p.d.f. admits πt (θ) as an invariant density. The vector

ϑt contains the parameters of the p.d.f. p(·), involving the distinct elements of

the covariance matrix of the Metropolis-Hastings (MH) proposal distribution. The

elements of ϑt are obtained online from the current population of particles.

This algorithm is discussed in Remark 1 of Del Moral, Doucet and Jasra (2006), and

in Durham and Geweke (2014). The convergence results for the particle system produced

by the algorithm are established in Del Moral, Doucet and Jasra (2006), where they

assume that the sequences {τt}t∈L and {ϑt}t∈L are known. It is important to notice

that the particles are mutated after the selection step. One advantage of mutating after

resampling is that the accuracy of the particle approximation
{
θjt , 1

}
j∈N of πt (θ), used

in forecasting, can be readily improved by increasing the number of Markov Chain Monte

Carlo (MCMC) iterations, M, in the mutation phase, where M is a positive integer.

In applications, the integers τt in (A.3) must be set in such a way that the importance

distributions πt−1 (θ) approximate the target posteriors πt (θ) reasonable well for all t ∈
{1, . . . , L} (see the discussion preceding (A.4)). Otherwise, the particle approximation

5We use residual resampling, since it outperforms multinomial resampling in terms of precision of the

particle approximation (see, for example, Chopin (2004)).
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may be degenerate (see Del Moral, Doucet and Jasra (2006)). Obviously, when τt = t

(i.e., τ1 = 1, . . . , τL = T ), i.e., resampling is performed T times, the successive posterior

distributions are as close to each other as possible, resulting in potentially good importance

distributions. However, this approach is not usually ideal in terms of precision of the

particle approximation, because resampling increases the variance of the estimates and

reduces the number of distinct particles (see Chopin (2004) and Del Moral, Doucet and

Jasra (2012)). Therefore, resampling should be used only when necessary for preventing

degeneracy of the particles. Hence, we use the following (adaptive) recursive procedure

of Durham and Geweke (2014) to produce τ1, . . . , τL. At each cycle t ∈ {1, . . . , L},
conditional on the previous cycles, the posterior density kernel π (θ |y1:τt ) ∝ γ (θ |y1:τt )

is obtained by introducing new data one observation at time into γ
(
θ
∣∣y1:τt−1

)
, until a

stopping criterion, based on, say, the effective sample size (ESS) is met. Degeneracy of the

particles is usually monitored by the ESS: 1 ≤
{∑N

i=1

(
wt
(
θit−1

))2
}−1

≤ N (cf. (A.4)).

As the ESS takes small values for a degenerate particle approximation, we introduce new

data one observation at a time until the ESS drops below a particular threshold, such as

N/2. The convergence results presented in Del Moral, Doucet and Jasra (2012), suggest

that (A.2) holds almost surely also for the particle system generated by this adaptive

algorithm.

As for the mutation step, the sampling is performed by the randomized block Metropolis-

Hastings (MH) method of Chib and Ramamurthy (2010), where at each MCMC iteration

m ∈ {1, . . . ,M}, the parameters θjt (j ∈ N , t ∈ 1, . . . , L) are first randomly clustered into

an arbitrary number of blocks, and then simulated one block at a time using an MH step,

carried out using a Gaussian random walk proposal distribution for each block of θjt .
6

The covariance matrices of the proposal distributions are constructed from the associated

6We follow the procedure of Chib and Ramamurthy (2010) to obtain the random blocks

θj,N1 , θj,N2 , . . . , θj,Nbj , in the ith iteration. The algorithm is started by randomly permuting θj,N1 , . . . , θj,Nm ,

where m is the number of the estimated parameters. The shuffled parameters are denoted by

θj,Nρ(1), . . . , θ
j,N
ρ(m), where ρ (1) , . . . , ρ (m) is a permutation of the integers 1, 2, . . . ,m. Then, the blocks

θj,N1 , θj,N2 , . . . , θj,Nbj are obtained recursively as follows. The first block θj,N1 is initialized at θj,Nρ(1). Each

parameter θj,Nρ(l) in turn for l = 2, 3, . . . ,m, is included in the first block with probability (tuning param-

eter) pθ, and used to start a new block with probability (1− pθ). The procedure is repeated until each

reshuffled error term is included in one of the blocks.
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elements of the sample covariance matrix of the current population of the particles, Vt,m.

The matrix Vt,m is further multiplied by an adaptive tuning parameter 0.1 ≤ ct,m ≤ 1,

whose role is to keep the MH acceptance rate at 0.25 (see Durham and Geweke (2014), and

Herbst and Schorfheide (2014)). In particular, ct,m is set at ct,m−1 +0.01 if the acceptance

rate is greater than 0.25, and at ct,m−1− 0.01 otherwise. This procedure is repeated inde-

pendently for each particle θjt until the particles are clearly distinct. Following Durham

and Geweke (2014), we use the relative numerical efficiency (RNE) as a measure of particle

divergence (see Geweke (2005,276)). We calculate RNEs from predictive likelihoods, and

stop mutating particles when the RNE exeeds a given threshold. The maximum number

of MCMC iterations Mmax is set at 50.

In order to assess the quality of the probabilistic forecasts h periods ahead of the

structural models of interest, we need p (yn+h |y1:n ) in (6) for all n ∈ S+1, . . . , T , while the

SMC algorithm described above produces a sequence of distributions πt (θ) = π (θ |y1:τt )

for t ∈ L, where the integers τ1, . . . , τL−1 (τL = T ) are computed online to optimize the

performance of the sampler. To that end, given the sequence of the estimated posteriors

πt (θ) (t ∈ 1, . . . , L−1), we propose to simulate the posteriors πn (θ) (n ∈ τt+1, . . . , τt+1−1)

by the sequential importance resampling algorithm of Rubin (1988). In particular, using

πt (θ) as the importance density, we obtain the following importance weight functions:

wn (θ) ∝ w̃n (θ)

=
n∏

l=τt+1

∣∣Σl|l−1

∣∣−1/2

(2π)p/2
exp

{
−1

2
ε′l|l−1 Σ−1

l|l−1 εl|l−1

}
, (n ∈ τt + 1, . . . , τt+1 − 1)

for each t ∈ 1, . . . , L − 1 (see the discussion preceding (A.4)). We then simulate the

posterior distributions πn (θ) from the particle approximation
{
θjt
}
j∈N of πt (θ), using

these weights wn (θj). The resulting posterior estimates of πn (θ) for n ∈ S+1, . . . , T , can

also be used to sample the joint predictive distributions p (Yn+1, . . . ,Yn+h), as described

in Adolfson, Lindé, and Villani (2007). In this so-called sampling the future algorithm,

for each of the N draws from the posterior distribution of the parameters πn (θ), M future

paths of Yn+1, . . . ,Yn+h are simulated. This sample of N ×M draws from the posterior

predictive distribution, can then be used to calculate the posterior quantities of interest,

such as point forecasts.
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Figure 1: Priors for σi (i ∈{a, b, g, I, r, p, w}); solid line: the SW prior, dashed line: our

diffuse prior.
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Figure 2: Joint posterior density of ρw and ζw under the diffuse priors in the unconstrained

model.
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Figure 3: Joint posterior density of µp and σp under the diffuse priors in the unconstrained

model.
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Figure 4: Joint posterior density of µp and σp under the diffuse priors in the model with

ρw and µw constrained to zero.
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Table 1: Diffuse prior distributions.

Parameter Transformation Distribution Mean SD
σa - Invgamma 0.50 1.00
σb - Invgamma 0.5 1.00
σg - Invgamma 0.50 1.00
σl - Invgamma 0.50 1.00
σr - Invgamma 0.50 1.00
σρ - Invgamma 0.50 1.00
σw - Invgamma 0.50 1.00
ρa Logit Normal 0.00 1.70
ρb Logit Normal 0.00 1.70
ρg Logit Normal 0.00 1.70
ρl Logit Normal 0.00 1.70
ρr Logit Normal 0.00 1.70
ρρ Logit Normal 0.00 1.70
ρw Logit Normal 0.00 1.70
µρ Logit Normal 0.00 1.70
µw Logit Normal 0.00 1.70
ϕ - Normal 4.00 4.50
σc - Normal 1.50 1.11
h(λ) Logit Normal 0.00 1.70
ξw Logit Normal 0.00 1.70
σl - Normal 2.00 2.25
ξp Logit Normal 0.00 1.70
ιw Logit Normal 0.00 1.70
ιp Logit Normal 0.00 1.70
ψ Logit Normal 0.00 1.70
φ - Normal 1.25 0.36
rπ - Normal 1.50 0.75
ρ Logit Normal 0.00 1.70
ry - Normal 0.12 0.15
r∆y - Normal 0.12 0.15
π - Gamma 0.62 0.30

100(β−1 − 1) - Gamma 0.25 0.30
l - Normal 0.00 6.00
γ - Normal 0.40 0.30
ρga Logit Normal 0.00 1.70
α - Normal 0.30 0.15
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Table 2: Augmented SMC estimation results of the unrestricted SW model with the
diffuse prior distributions.

Parameter Mean [0.05, 0.95] Post.SD SD(mean)
σa 0.45 [ 0.40 , 0.49 ] 0.03 0.0006
σb 0.25 [ 0.21 , 0.29 ] 0.02 0.0004
σg 0.54 [ 0.49 , 0.60 ] 0.03 0.0006
σl 0.47 [ 0.39 , 0.55 ] 0.05 0.0008
σr 0.24 [ 0.21 , 0.26 ] 0.01 0.0002
σρ 0.15 [ 0.11 , 0.25 ] 0.04 0.0009
σw 0.26 [ 0.22 , 0.30 ] 0.02 0.0004
ρa 0.97 [ 0.95 , 0.98 ] 0.01 0.0002
ρb 0.16 [ 0.04 , 0.33 ] 0.09 0.0015
ρg 0.98 [ 0.97 , 0.99 ] 0.01 0.0001
ρl 0.70 [ 0.59 , 0.80 ] 0.06 0.0011
ρr 0.06 [ 0.02 , 0.15 ] 0.04 0.0007
ρρ 0.91 [ 0.84 , 0.98 ] 0.04 0.0007
ρw 0.64 [ 0.18 , 0.98 ] 0.28 0.0062
µρ 0.82 [ 0.61 , 0.99 ] 0.12 0.0020
µw 0.58 [ 0.08 , 0.96 ] 0.31 0.0071
ϕ 8.48 [ 4.81 , 13.08 ] 2.47 0.0536
σc 1.70 [ 1.35 , 2.09 ] 0.22 0.0044
h(λ) 0.70 [ 0.62 , 0.78 ] 0.05 0.0011
ξw 0.94 [ 0.83 , 0.99 ] 0.05 0.0009
σl 3.22 [ 1.49 , 5.52 ] 1.24 0.0297
ξp 0.72 [ 0.62 , 0.81 ] 0.06 0.0010
ιw 0.75 [ 0.43 , 0.96 ] 0.16 0.0024
ιp 0.13 [ 0.02 , 0.29 ] 0.09 0.0015
ψ 0.75 [ 0.50 , 0.95 ] 0.14 0.0021
φ 1.79 [ 1.58 , 2.02 ] 0.13 0.0024
rπ 2.75 [ 2.12 , 3.46 ] 0.41 0.0065
ρ 0.88 [ 0.84 , 0.92 ] 0.02 0.0004
ry 0.15 [ 0.08 , 0.22 ] 0.04 0.0007
r∆y 0.27 [ 0.21 , 0.33 ] 0.04 0.0007
π 1.11 [ 0.85 , 1.39 ] 0.17 0.0034
100(β−1 − 1) 0.08 [ 0.01 , 0.22 ] 0.07 0.0010
l -0.94 [ -3.26 , 1.32 ] 1.39 0.0249
γ 0.42 [ 0.39 , 0.44 ] 0.02 0.0003
ρga 0.46 [ 0.28 , 0.64 ] 0.11 0.0022
α 0.18 [ 0.15 , 0.22 ] 0.02 0.0004

The estimates are obtained by the SMC procedure augmented with the im-
portance sampling step. The columns labeled Mean, [0.05, 0-95], Post.SD,
and SD(mean) contain the mean, the 5th and 95th percentiles and stan-
dard deviation of the posterior distribution, and the numerical standard
error of the mean of the respective parameter, respectively.
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Table 3: Augmented SMC estimation results of the unrestricted SW model with informa-
tive prior.

Parameter Mean [0.05, 0.95] Post.SD SD(mean)
σa 0.46 [ 0.42 , 0.51 ] 0.03 0.0002
σb 0.24 [ 0.20 , 0.28 ] 0.02 0.0001
σg 0.53 [ 0.48 , 0.58 ] 0.03 0.0002
σl 0.45 [ 0.38 , 0.54 ] 0.05 0.0003
σr 0.25 [ 0.22 , 0.27 ] 0.02 0.0001
σρ 0.14 [ 0.11 , 0.17 ] 0.02 0.0001
σw 0.24 [ 0.21 , 0.28 ] 0.02 0.0002
ρa 0.96 [ 0.94 , 0.98 ] 0.01 0.0001
ρb 0.22 [ 0.09 , 0.37 ] 0.09 0.0005
ρg 0.98 [ 0.96 , 0.99 ] 0.01 0.0001
ρl 0.71 [ 0.61 , 0.81 ] 0.06 0.0006
ρr 0.15 [ 0.05 , 0.26 ] 0.06 0.0004
ρρ 0.89 [ 0.80 , 0.96 ] 0.05 0.0004
ρw 0.97 [ 0.94 , 0.99 ] 0.02 0.0001
µρ 0.71 [ 0.52 , 0.84 ] 0.10 0.0008
µw 0.84 [ 0.72 , 0.92 ] 0.06 0.0004
ϕ 5.71 [ 4.07 , 7.51 ] 1.04 0.0082
σc 1.40 [ 1.19 , 1.64 ] 0.14 0.0009
h(λ) 0.71 [ 0.64 , 0.78 ] 0.04 0.0002
ξw 0.70 [ 0.59 , 0.81 ] 0.07 0.0005
σl 1.85 [ 0.98 , 2.84 ] 0.57 0.0028
ξp 0.65 [ 0.56 , 0.74 ] 0.05 0.0003
ιw 0.58 [ 0.36 , 0.78 ] 0.13 0.0006
ιp 0.25 [ 0.11 , 0.40 ] 0.09 0.0005
ψ 0.53 [ 0.34 , 0.71 ] 0.11 0.0006
φ 1.61 [ 1.48 , 1.74 ] 0.08 0.0007
rπ 2.05 [ 1.77 , 2.34 ] 0.18 0.0009
ρ 0.81 [ 0.77 , 0.85 ] 0.02 0.0002
ry 0.09 [ 0.05 , 0.13 ] 0.02 0.0001
r∆y 0.22 [ 0.18 , 0.27 ] 0.03 0.0001
π 0.81 [ 0.64 , 0.99 ] 0.11 0.0005
100(β−1 − 1) 0.17 [ 0.08 , 0.27 ] 0.06 0.0004
l 0.46 [ -1.37 , 2.29 ] 1.11 0.0058
γ 0.43 [ 0.41 , 0.46 ] 0.01 0.0001
ρga 0.52 [ 0.37 , 0.67 ] 0.09 0.0006
α 0.19 [ 0.16 , 0.22 ] 0.02 0.0001

See notes to Table 2.
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Table 4: Augmented SMC estimation results of the restricted SW model with the diffuse
prior distributions.

Parameter Mean [0.05, 0.95] Post.SD SD(mean)
σa 0.44 [ 0.40 , 0.49 ] 0.03 0.0002
σb 0.25 [ 0.20 , 0.29 ] 0.03 0.0002
σg 0.55 [ 0.49 , 0.60 ] 0.03 0.0002
σl 0.47 [ 0.39 , 0.55 ] 0.05 0.0004
σr 0.24 [ 0.21 , 0.26 ] 0.01 0.0001
σρ 0.13 [ 0.10 , 0.16 ] 0.02 0.0002
σw 0.30 [ 0.27 , 0.33 ] 0.02 0.0001
ρa 0.97 [ 0.95 , 0.98 ] 0.01 0.0001
ρb 0.16 [ 0.04 , 0.33 ] 0.09 0.0011
ρg 0.98 [ 0.96 , 0.99 ] 0.01 0.0001
ρl 0.71 [ 0.60 , 0.80 ] 0.06 0.0006
ρr 0.06 [ 0.02 , 0.14 ] 0.04 0.0004
ρρ 0.94 [ 0.87 , 0.99 ] 0.04 0.0003
µρ 0.84 [ 0.69 , 0.94 ] 0.08 0.0006
ϕ 7.78 [ 4.37 , 12.22 ] 2.37 0.0209
σc 0.94 [ 0.55 , 1.35 ] 0.24 0.0021
h(λ) 0.84 [ 0.79 , 0.88 ] 0.03 0.0003
ξw 0.97 [ 0.96 , 0.99 ] 0.01 0.0001
σl 3.41 [ 1.66 , 5.74 ] 1.24 0.0114
ξp 0.72 [ 0.64 , 0.79 ] 0.05 0.0004
ιw 0.86 [ 0.72 , 0.97 ] 0.08 0.0010
ιp 0.10 [ 0.02 , 0.24 ] 0.07 0.0006
ψ 0.79 [ 0.56 , 0.96 ] 0.13 0.0014
φ 1.82 [ 1.61 , 2.05 ] 0.13 0.0020
rπ 2.72 [ 2.09 , 3.44 ] 0.41 0.0031
ρ 0.88 [ 0.85 , 0.91 ] 0.02 0.0002
ry 0.14 [ 0.08 , 0.22 ] 0.04 0.0004
r∆y 0.27 [ 0.21 , 0.33 ] 0.04 0.0003
π 1.15 [ 0.88 , 1.42 ] 0.16 0.0016
100(β−1 − 1) 0.09 [ 0.01 , 0.24 ] 0.07 0.0010
l -1.27 [ -3.62 , 0.98 ] 1.39 0.0120
γ 0.41 [ 0.38 , 0.44 ] 0.02 0.0002
ρga 0.45 [ 0.27 , 0.63 ] 0.11 0.0016
α 0.18 [ 0.15 , 0.22 ] 0.02 0.0002

See notes to Table 2. Estimation is based on the following constraints:
ρw = µw = 0 and σp < 0.19.

29



Table 5: Density forecasting results.

Prior Constraints h = 1 h = 4 h = 8 h = 12
Informative - -783.9 -1089.1 -1179.8 -1193.2
Diffuse - -752.9 -1050.4 -1157.9 -1175.2
Diffuse ρw = µw = 0 -752.8 -1045.5 -1154.7 -1177.5
Diffuse ρw = 0 -756.3 -1047.7 -1158.2 -1179.8
Diffuse µw = 0 -750.6 -1046.2 -1152.4 -1174.1
Diffuse ρw = µw = 0, σp < 0.19 -749.6 -1042.3 -1150.8 -1173.2

The figures are sums of h-step-ahead log predictive densities.
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