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Abstract

We explore the differences between the causal and noncausal vector autore-

gressive (VAR) models in capturing the real activity-stock return-relationship.

Unlike the conventional linear VAR model, the noncausal VAR model is ca-

pable of accommodating various nonlinear characteristics of the data. In

quarterly U.S. data, we find strong evidence in favor of noncausality, and

the best causal and noncausal VAR models imply quite different dynamics.

In particular, the linear VAR model appears to underestimate the impor-

tance of the stock return shock for the real activity, and the real activity

shock for the stock return.
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1 Introduction

To what extent can stock price movements be attributed to market fundamen-

tals, and vice versa? Standard asset pricing models imply a close relation between

stock returns and (expected future) real activity. In the same vein, real activity

movements should be related to stock prices inasmuch as they contain information

about future economic developments. However, the presence of certain stylized

features of observed asset prices, such as excess volatility and the predictability

of stock returns, suggest that a substantial fraction of stock price variation arises

from (non-fundamental) factors other than the real activity.

Much of the previous research on the interlinkages between stock markets and

the real economy is confined to linear vector autoregressive (VAR) models, on

which long-run restrictions are imposed to identify shocks arising from the stock

market and the real economy, often called ’non-fundamental’ and ’fundamental’

shocks, respectively. Binswanger (2004a,b), and Groenewold (2004), among others,

employed this structural VAR (SVAR) approach, which, in our view, suffers from

three shortcomings. First, at least implicitly Gaussian errors have been assumed in

this line of research although there is mounting evidence in favor of nonlinear and

non-Gaussian dependencies, such as volatility clustering and regime switches, in

macroeconomic and financial time series. Previously reached conclusions may thus

be misleading due to overlooking nonlinearities and deviations from normality.

Second, the commonly employed bivariate VAR model is likely to lack relevant

variables, but it may be difficult to find an adequate linear specification, and, in

addition, it is not clear how the shocks should be identified in a higher-dimensional

model. Finally, as pointed out by Faust and Leeper (1997) and discussed in more

detail in Section 3, identification of structural shocks by long-run restrictions is

prone to a number of econometric problems.

In order to alleviate potential misspecification, we propose the noncausal VAR

model of Lanne and Saikkonen (2013) as a non-Gaussian nonlinear alternative

to the causal linear SVAR model. Our main goal is to compare the conclusions
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concerning the dynamic relationship between stock return and real activity implied

by the conventional SVAR and noncausal VAR models. Noncausal models have not

yet been much employed in empirical economic and financial research, but they are

steadily gaining ground (see, for instance, the financial applications in Gourieroux

and Zakoïan (2013), Lof (2013), Karapanagiotidis (2014), Hencic and Gourieroux

(2015), and Lof and Nyberg (2015)).

The noncausal VAR model has at least two advantages over the traditional

linear causal VAR model. First, it may provide a parsimonious representation of

the data. The distinguishing property of the noncausal VAR model is the explicit

dependence of the current value on future values of the time series. This, in turn,

implies the predictability of future values of the error term by past values of the

time series. Intuitively, these predictable errors may be thought of as containing

effects of variables that are excluded from the model and have predictive power for

the included variables. Hence, the bivariate noncausal VAR model containing only

the variables of interest may well be adequate, whereas a causal VAR model would

have to be augmented with potentially a large number of variables to capture all

relevant effects.

Second, the noncausal VAR model is capable of accommodating nonlinearities.

As discussed in Lanne and Saikkonen (2013), it has a causal nonlinear represen-

tation albeit, in general, it cannot be given in closed form. Thus, in addition to

robustness with respect to omitted variables, the noncausal VAR model has the

benefit of capturing various nonlinear features. These features include, for ex-

ample, financial market bubbles, mild conditional heteroskedasticity, and regime

switches as brought up by Gourieroux and Zakoïan (2013), and Lanne and Saikko-

nen (2013), Lof (2013), respectively. Results based on a noncausal VAR model

are thus expected to be robust with respect to various kinds of nonlinearities. Al-

though the conventional causal VAR model could be augmented with a generalized

autoregressive conditional heteroskedasticity (GARCH) component, this would in-

crease the number of parameters considerably and be difficult to take into account
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in structural analysis.

Nonlinearity and the predictability of errors complicate structural analysis in

the noncausal VAR model. In particular, identification of structural shocks is not

possible by long-run restrictions that have typically been entertained in the pre-

vious related literature. Instead, we employ the generalized methods put forth

by Gallant, Rossi and Tauchen (1993) and Koop, Pesaran and Potter (1996) to

compute generalized impulse response functions and forecast error variance de-

compositions. On the positive side, we hence avoid the problems associated with

identification by long-run restrictions alluded to above. However, impulse responses

implied by nonlinear models, including the noncausal VAR model, depend on the

history and the size and sign of the shock, which brings about certain complica-

tions. On the other hand, the model facilitates studying the relative importance of

shocks separately, for example, in business cycle expansions and recessions as well

as bear and bull stock markets. Differences across such regimes have often been

examined in the previous financial literature.

We consider bivariate causal and noncausal VAR models for the quarterly

growth rates of the real U.S. Gross Domestic Product (GDP) and the real stock

return from 1953:Q1 to 2012:Q4. Strong evidence in favor of noncausality is found,

which indicates inadequacy of the bivariate linear VAR model for studying the in-

terlinkages of stock market and real activity. Specifically, both the stock return and

GDP growth appear strongly dependent on the future GDP growth rate. Compared

to the causal VAR model, the generalized forecast error decompositions emphasize

the relative importance of stock market shocks for the real activity. On the other

hand, the real activity seems to have a greater impact on the stock returns than

the linear SVAR model suggests. In other words, controlling for omitted factors

(like time-varying discount factors, interest rates and other potentially informa-

tive variables) and various nonlinearities via allowing for noncausality appears to

emphasize the role of economic fundamentals in determining stock prices, in line

with standard asset pricing models.
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The structure of the paper is as follows. In Section 2, we briefly review how the

bidirectional linkages between real activity and stock returns have been empirically

examined with linear Gaussian VAR models in the previous literature. The non-

causal VAR model and the related econometric methods are discussed in Section

3. The empirical results are reported in Section 4. Finally, Section 5 concludes.

2 Review of Previous Research

The literature on the linkages between real economic activity and stock market

returns is quite voluminous. The bulk of the previous studies are confined to linear

regression models for studying the predictability of the real activity by lagged stock

returns, and vice versa (i.e., Granger causal relationships between stock returns

and real activity).1

Fama (1990) and Schwert (1990) also regressed stock returns on leads of real

activity variables and found them to have predictive power. Their idea was to

use those leads as proxies of expected business conditions to capture the extra in-

formation that agents may have about future macroeconomic developments when

predicting stock returns. In a similar setup, Campbell and Diebold (2009) replaced

the leads of real activity variables by survey expectations of future business con-

ditions. They found the expected business conditions to predict the excess stock

return, undermining the predictive power of the conventional financial predictors

(dividend yield, default premium and term premium).

Linear single-equation models are appealing because of their simplicity, but

they have little to say about more structural issues. In particular, they do not

facilitate identifying the economic shocks that are driving stock prices or real

activity. Structural analysis can be conducted in an identified structural VAR

1Nonlinear regression models have been entertained only in a few previous papers. Domian

and Louton (1999) found evidence of a threshold-type asymmetry in the stock return-real activity

linkage in a (single-equation) threshold autoregressive model, while Henry et al. (2004) found

allowing for regime switches related to business cycles important in a panel regression model.
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model containing the stock return and a real activity variable (typically the real

GDP growth). Much of the previous literature is based on the bivariate VAR(p)

model,

yt = A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut (1)

or

A (L)yt = ut,

where yt = [xt rt]
′ with xt a real activity variable and rt the real stock return,

and ut is an independently and identically distributed error term with mean zero

and finite positive definite covariance matrix, invariably assumed Gaussian in this

literature. A (L) = I2 − A1L− · · · − ApL
p is a pth order polynomial in the lag

operator L (i.e. Lkyt = yt−k), and A1 . . . ,Ap are 2×2 coefficient matrices. Because

yt depends only on its past values, model (1) is termed causal. Note that if ut is

assumed normally distributed, the bivariate VAR model (1) reduces to the two

separate predictive linear regression models discussed above.

In structural analysis, the real activity and stock market shocks have typically

been identified by means of long-run restrictions. Specifically, it has been assumed

that the erros ut are linear combinations of the economic shocks εt, i.e., ut = Bεt,

where B is a full-rank 2 × 2 matrix, and one of them (the stock market shock)

is restricted to have no impact on the level of real activity in the long run. In

the literature, the stock market shock is also referred to as the non-fundamental

shock, while the unrestricted shock is typically called fundamental. Notice that

this identification requires the real activity variable xt to be a stationary (I(0))

variable obtained by differencing a variable integrated of order one (I(1)).

The long-run restriction is explicitly imposed on and the impulse response func-

tions are computed from the infinite-order vector moving average representation

of model (1),

yt = A(L)−1
ut =

∞
∑

k=0

Ψkut−k, (2)

which exists if the lag polynomial A(L) is invertible. Substituting ut = Bεt, we
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obtain

yt =

∞
∑

k=0

ΨkBεt =

∞
∑

k=0

Ckεt, (3)

and the long-run identification restriction discussed above just sets the (1,2) ele-

ment of the long-run impact matrix
∑

∞

k=0
Ck equal to zero, i.e.,

∞
∑

k=0

ck,12 = 0. (4)

This type of long-run restriction in a bivariate VAR model is often attributed to

Blanchard and Quah (1989), who employed it in studying U.S. output growth and

unemployment, and showed that it is sufficient for exact identification (see also

Shapiro and Watson, 1988).

The impulse response function (IRF) of shock i (i = 1, 2), tracing out its impact

on variable j (j = 1, 2) in periods h = 0, 1, ..., is obtained by collecting the (i, j)

elements ch,ij of the matrices Ch, h = 0, 1, .... A more convenient measure of the

relative importance of each shock at forecast horizon h is provided by the forecast

error variance decomposition (FEVD)

∑h

l=0
c2l,ij

∑h

l=0
c2l,1j +

∑h

l=0
c2l,2j

, (5)

which can be interpreted as the portion of the h-period forecast error variance of

variable j accounted for by shock i.

The setup above has been applied in several studies. Binswanger (2004a,b)

and Groenewold (2004) included the growth rate of the gross domestic product

(or, alternatively, industrial production) and a stock return in the bivariate VAR

model. Groenewold (2004) considered quarterly Australian data from 1959:Q4 to

1999:Q1, and found that while both shocks mattered for both stock price and

real activity, the stock market shock only had a short-lived impact on the latter.

In quarterly U.S. data from 1953:Q1 to 2002:Q4, Binswanger (2004a) found a

break in the relative importance of the shocks for the stock price, with the stock

market shock dominating in the past few decades. He also considered a VAR model

augmented with a third variable, measuring either (real) dividends, earnings or an
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interest rate, and found only a slight increase in the relative importance of the

real activity shock. Binswanger (2004b) reconfirmed this finding in quarterly U.S.,

Japanese, and aggregate European data (comprising France, Germany, Italy, and

the U.K.) data from 1960:Q1 to 1999:Q4.

Velinov and Chen’s (2014) recent study differs from the basic setup in that they

allowed for Markov switching in the error term of model (2), which facilitates test-

ing the long-run identification restriction. In an international dataset comprising

six of the G7 countries (France, Germany, Italy, Japan, the U.K., and the U.S.)

from 1960:Q1 to 2013:Q3, they found that in only one (Italy) could the identifica-

tion restriction be rejected at the 5% level of significance. With the exception of

the U.S., the stock market shock was found to dominate the determination of the

real stock price. In the same vein, Lütkepohl and Velinov (2015) found support for

similar long-run identification restrictions in a trivariate SVAR model (containing

also an interest rate) for quarterly U.S. data from 1947:Q1 to 2012:Q3.

As pointed out in the Introduction, identification of structural VAR models by

long-run restrictions has been criticized quite forcefully by Faust and Leeper (1997)

(see also Taylor (2004), and Gospodinov (2010)). Faust and Leeper’s (1997) main

point is that it is difficult to estimate the long-run behavior of time series from a

short span data, and, hence, there is great uncertainty concerning the estimate of
∑

∞

k=0
Ck in (3), upon which the long-run restriction is imposed. This uncertainty,

in turn shows up as uncertainty in the impulse response function and forecast error

variance decompositions of the identified shocks, which can be quite imprecise. In

addition, they point out that because of aggregation effects, the structural shocks

actually are likely to be combinations of multiple economic shocks.

3 Structural Methods for Noncausal VAR Model

As discussed in the Introduction, while relatively straightforward to apply, the

conventional causal structural VAR approach described in Section 2 has a number

of problems in the context of real activity and stock returns. In particular, the
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bivariate VAR model typically considered is likely to miss relevant variables and

nonlinearities.2 In this section, we show how the noncausal VAR framework can

solve these problems.

Below in Section 3.1, we discuss the noncausal model and review in more detail

its potential benefits in modeling the dynamics of real activity and stock return.

In order to avoid the problems related to long-run identification restrictions, we

propose to use the generalized forecast error variance decomposition, whose com-

putation in the noncausal VAR model is discussed in Section 3.2. Generalized

methods are a natural choice since the noncausal VAR model is nonlinear.

3.1 Model

The particular noncausal VAR specification employed in this study is that of Lanne

and Saikkonen (2013)3, where the stochastic process yt = [xt rt]
′

is assumed to

be generated by

Π (L)Φ
(

L−1
)

yt = ut. (6)

The error term ut (2× 1) is an independently and identically distributed non-

Gaussian error term with zero mean and finite positive definite covariance matrix,

and Π (L) = In − Π1L − · · · − ΠrL
r and Φ (L−1) = In − Φ1L

−1 − · · · − ΦsL
−s

are 2 × 2 matrix polynomials in the lag operator L (Lkyt = yt−k, k = 0,±1, . . .).

Moreover, the determinants of the matrix polynomials Π (z) and Φ(z) are assumed

2Higher-dimensional VAR models have been entertained in a few previous studies. Lee (1998)

and Binswanger (2004a) included variables such as dividends, earnings and real interest rate

as the third variable in a trivariate SVAR model identified with long-run restrictions analogous

to (4). In contrast, Lee (1992) estimated a recursively identified four-variable SVAR model for

the stock return, real interest rate, growth rate of industrial production and inflation. James,

Koreisha and Partch (1985) investigated the relations among the stock return, real activity,

money supply, and inflation in a vector autoregressive moving average (VARMA) model, but

they did not impose any explicit identification restrictions.
3Gourieroux and Jasiak (2014) also consider this specification, while Davis and Song (2012)

propose a different formulation that does not facilitate separating the lead and lag (or “causal”

and “noncausal”) polynomials.
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to have their zeros outside the unit disc, so that

detΠ (z) 6= 0, |z| ≤ 1, and det Φ (z) 6= 0, |z| ≤ 1,

which guarantees the stationarity of yt.

We refer to the noncausal VAR model (6) as the VAR(r, s) model, where r and

s denote the orders of the lag-polynomials. If Π1 = · · · = Πr = 0 (i.e., r = 0),

the model is called purely noncausal because then the time series yt depends only

on its future values. If Φ1 = · · · = Φs = 0 (i.e., s = 0), the model reduces to the

conventional causal VAR(r) model with dependence only on the past values of yt.

The reason for assuming the distribution of the error term ut non-Gaussian

is identification. It is only under this assumption that the different pth-order

VAR(r, s) models (with r + s = p) are discernible, which follows from the well-

known fact that noncausality is not identified by second-order properties (see,

e.g., Breidt et al. (1991)). In this paper, we specifically assume that ut follows

a multivariate t-distribution with λ degrees of freedom.4 This assumption is well

in line with the heavy-tailed distributions of the residuals often encountered in

macroeconomic and financial time series applications, and our empirical results in

Section 4 lend support to its adequacy in the bivariate model for the U.S. real

activity and stock return. Following Lanne and Saikkonen (2013), in the empiri-

cal analysis, we take as a starting point the causal Gaussian VAR(p) model that

is deemed adequate in that it produces serially uncorrelated residuals. Then, the

VAR(r, s) model among the models with r + s = p is selected that maximizes the

log-likelihood function, and its adequacy is checked by diagnostic tests of remain-

ing autocorrelation and conditional heteroskedasticity in the residuals, as well as

quantile-quantile plots of the residuals.

As shown by Lanne and Saikkonen (2013), under stationarity, the VAR(r, s)

process yt has a two-sided infinite-order vector moving average (VMA) represen-

4The log-likelihood function for model (6) in the case of the t -distribution is given in Lanne

and Saikkonen (2013). They also show that under regularity conditions, the maximum likelihood

estimator is consistent and asymptotically normally distributed.
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tation (cf. the corresponding moving average representation of the causal model

(2) with dependence on past errors only). To gain further insight, the VAR(r, s)

model (6) can be rewritten as

yt = a1yt−1 + · · ·+ anryt−2r +

∞
∑

k=−r

Nkut+k, (7)

where the parameters a1, . . . , anr and the sequence Nk are functions of the coeffi-

cient matrices of the lag polynomials in (6) (for details, see Nyberg and Saikkonen

(2014)). Expression (7) shows how the VAR(r, s) model implies dependence of yt

on its past values and future error terms. This shows that unlike the causal VAR

model, in the noncausal VAR model (s ≥ 1), future errors are predictable by past

values of yt. In the purely noncausal case (r = 0, s ≥ 1), the past values of yt

vanish completely from the right hand side of (7), and yt only depends on future

errors.

As pointed out by Lanne and Saikkonen (2013), the predictability of the error

term suggests that the errors incorporate factors excluded from the model and

predictable by the real activity and stock return included in the model. In other

words, the noncausal VAR model is capable of capturing effects of omitted vari-

ables, and the empirical results should thus to some extent be robust with respect

to such omissions. Lof’s (2013) recent simulation results provide confirming ev-

idence in favor of this conjecture. This is a highly relevant feature because the

bivariate model is likely to be inadequate to address our question of interest (see,

e.g., Lee (1998) and Binswanger (2004a,b) for a discussion on this point), yet it

may be difficult to find the correct causal specification. In particular, the mere

number of variables required to that end might render conventional SVAR analy-

sis infeasible in practice. The availability of all relevant data may also be an issue;

for instance, among potential relevant variables, dividends and earnings are not

directly observable at the quarterly frequency, and are thus prone to interpolation

errors that may affect the results.5

5A closely related issue is the heterogeneity of the beliefs held by investors that can give rise

to dependence on future errors if overlooked by the econometrician modeling the data (see Kasa
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In addition to robustness with respect to omitted variables, the noncausal VAR

model has the benefit of capturing nonlinear effects and thus yielding results ro-

bust with respect to nonlinearities. As discussed by Lanne and Saikkonen (2013),

the linear noncausal VAR process (6) has a causal nonlinear representation (whose

error term is not predictable) although, in general, it cannot be given in closed

form.6 Presumably many different kinds of nonlinearities relevant to macroeco-

nomic and financial data are covered. Lof’s (2013) simulation results suggest that

noncausality gets easily mixed up with logistic smooth transition (LSTAR) type

nonlinearity,7 while Gourieroux and Zakoïan (2013) suggest noncausal autoregres-

sions for modeling financial market bubbles.

Particularly relevant to our empirical application is the ability of the noncausal

VAR model to capture mild conditional heteroskedasticity prevalent in quarterly fi-

nancial and macroeconomic data (see Lanne and Saikkonen (2013)). Although the

conventional causal VAR model could be augmented with a generalized autore-

gressive conditional heteroskedasticity (GARCH) component, this would increase

the number of parameters considerably and be difficult to take into account in

structural analysis. Conversely, taking GARCH effects into account requires no

additional effort in the noncausal VAR framework. The presence of conditional

heteroskedasticity can also be made use of in selecting the correct noncausal spec-

ification because we can expect to find autocorrelation in the squared residuals of

an estimated VAR(r, s) model with incorrect orders r and s.

et al. (2014) for a formal presentation, where often documented properties of stock returns, such

as excess volatility and predictability are attributed to unmodeled heterogenous beliefs). Yet

another phenomenon giving rise to noncausality are news shocks that affect the agents’ behavior,

but cannot be observed by the econometrician, and, hence, are omitted from the empirical model

(for a recent survey, see Beaudry and Portier (2014)).
6For a special univariate case, where a a closed-form nonlinear representation exists, see

Gourieroux and Zakoïan (2013).
7This suggests that the noncausal VAR model should also be robust against other types of

regime-switching models, such as Markov-switching models commonly employed in economics

and finance although, to the best of our knowledge, this issue has not been explicitly studied.
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3.2 Generalized impulse response analysis

For the linear causal SVAR model, computing the impulse response function is

straightforward as discussed in Section 2. For nonlinear models, including the non-

causal vector autoregression, simulation methods are called for, and the generalized

impulse response function (GIRF) put forth by Gallant et al. (1993), and Koop et

al. (1996) offers a viable alternative way of conducting structural analysis. The ba-

sic idea in both papers is the same: The GIRF is defined as the difference between

two conditional expectations (forecast paths), one of which contains the effect of

the examined shock, while the other one (the benchmark path) does not involve

the shock.

The major difference between the two approaches is related to the treatment

of the shock. While Gallant et al. (1993) impose the shock directly on yt, the

GIRF of Koop et al. (1996) traces out the effect of a disturbance to the error

term of the model. We employ the former approach, i.e., we add a shock to each

component of yt in turn. The reason for this is that we are interested in the effects

of unanticipated shocks, and, therefore, tracing out the effects of a disturbance

to the predictable error term of the noncausal VAR model would not yield the

desired impulse response function. An alternative would be to trace out the effects

of a shock on the error term of the nonlinear causal representation of the model

that is unpredictable, but the causal representation is not known, and even if it

were known, its error term would not necessarily enter it in an additive manner,

as required by Koop et al. (cf. their equation (1)).

In the bivariate noncausal VAR model, we define the GIRF of shock δit, i = 1, 2,

to the ith element of yt at horizon l as

GI(l, δit,ωt−1) = E(yt+l|δit,ωt−1)− E(yt+l|ωt−1), l = 0, 1, 2, . . . , (8)

where ωt−1 and δit are the history and the shock to the ith equation that we

condition on when computing the conditional expectations, respectively. Notice

that the GIRF depends on the sign and size of the shock as well as the history

(the state) of the process at time t. The conditional expectation E(yt+l|δit,ωt−1)
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is taken conditional on a fixed history ωt−1 and a fixed value of the ith shock at

time t, while integrating out all other contemporaneous and future shocks. The

GIRF, interpreted as the time profile of the effect of the shock δit hitting at time

t, is hence obtained as the difference between two conditional expectations: one

conditioned on the shock and history ωt−1 and another conditioned only on the

same history ωt−1. For the noncausal VAR(r, s) model with s ≥ 1, the computation

of the conditional expectations in (8) calls for a simulation-based method, such as

that recently proposed by Nyberg and Saikkonen (2014) that we employ in this

paper.

As suggested by Koop et al. (1996), the shocks δit (i = 1, 2) can be sampled

(bootstrapped) from among the innovations (prediction errors) of the estimated

model because they are unpredictable and can, thus, be interpreted as unantici-

pated shocks. In most models, the residuals are the innovations, but the residuals

of the noncausal VAR model explicitly depend on future values of yt (reflecting

the fact that the error term of the noncausal VAR model is predictable), and hence

cannot be considered innovations. Therefore, one-step prediction errors computed

by the methods of Nyberg and Saikkonen (2014) are used instead.

A general overview of the dynamic effects of the shocks is given by the GIRF

conditioned on all histories and shocks. This GIRF is characteristic of the data

at hand, and solves the problem of selecting the size and sign of the shocks to

each equation. In addition, GIRFs can be computed over different subsets of histo-

ries and shocks to answer specific research questions (see Koop et al. (1996), and

Lanne (2015) specifically in the case of univariate noncausal AR models). In Sec-

tion 4 below, we are, in particular, interested in finding the business cycle-specific

GIRFs computed separately over the histories and shocks related to business cycle

expansions and recessions. Similarly, we also separately report results related to

histories of bear and bull stock markets. It is worth pointing out that such com-

putations are particularly straightforward in the noncausal VAR model compared

to regime-switching models, as the problem of increasing complexity due to taking
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the possibility of future regime changes into account is sidestepped (see Karamé

(2012) for a discussion on this in the context of a Markov-switching structural

VAR model). This is a manifestation of the ability of the noncausal model to

accommodate nonlinearities discussed in Section 3.1.

The GIRF can be presented graphically, as shown in Gallant et al. (1993),

Koop et al. (1996) and Teräsvirta et al. (2010, Section 15.2). However, instead of

the GIRF, in line with the previous literature, we report a measure of the relative

importance of the real activity and stock market shocks for the future evolution

of GDP growth and stock return. To that end, we employ the generalized forecast

error variance decomposition (GFEVD) recently proposed for nonlinear models by

Lanne and Nyberg (2014) that is analogous to the FEVD of the linear causal VAR

model in (5). For shock i (i = 1, 2), variable j (j = 1, 2), horizon h (h = 0, 1, 2, . . .)

and history ωt−1, the GFEVD is obtained as a function of the GIRFs in (8) as

λij,ωt−1
(h) =

∑h

l=0
GI(l, δit,ωt−1)

2
j

∑h

l=0
GI(l, δ1t,ωt−1)

2
j +

∑h

l=0
GI(l, δ2t,ωt−1)

2
j

. (9)

The denominator measures the aggregate cumulative effect of both shocks, while

the numerator is the cumulative effect of the ith shock. By construction, (9) lies

between 0 and 1, measuring the relative contribution of the ith shock in relation

to the total impact of the two shocks after h periods on the jth variable in yt, and

these contributions sum to unity. In the same way as the GIRF, the GFEVD can

be conditioned on any subset of histories and shocks of interest, and in Section 4,

we separately report results for business cycle expansions and recessions, and bull

and bear market periods, in addition to the GFEVD based on all data. See details

on computing the GFEVD (9) in the Appendix.

The GIRFs and GFEVDs can also be computed for a linear VAR model, and in

order to assess the importance of long-run identification restrictions in the causal

VAR model, we also report such GFEVDs in Section 4.3. In that case, the compu-

tations are actually greatly simplified by the fact that the GIRFs do not depend

on the history ωt−1, and they can be obtained with explicit formulae (see, e.g.,

Pesaran and Shin, 1998) and plugged into (9) to compute the GFEVDs.
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4 Empirical Results

4.1 Dataset

Our empirical analysis concentrates on quarterly U.S. real GDP growth and stock

return series from 1953:Q1 to 2012:Q4. The quarterly returns are obtained by

summing up the monthly continuously compounded value-weighted returns in

each quarter. The return series is compiled by the Center of Research in Secu-

rity Prices (CRSP), and adjusted for monthly U.S. consumer price inflation. The

quarterly real GDP growth rate is obtained as the logarithmic difference of the real

GDP (vintage November 2013). The CRSP returns are downloaded from Kenneth

French’s website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html), while the source of the rest of the data is the FRED databank of the

Federal Reserve Bank St. Louis.

In line with the previous literature, we concentrate on the (generalized) forecast

error variance decomposition in gauging the relative importance of GDP growth

and stock return. As pointed out in Section 3.2, the GFEVD is history- and shock-

dependent in the noncausal VAR model. We thus also report the GFEVDs specific

to business cycle recession and expansion as well as bear and bull stock market

histories. In bull market periods, stock prices tend to rise, whereas in bear market

periods they tend to fall, and it is interesting to see whether this shows up in the

relative importance of the two shocks.

To identify recessions and expansions, in accordance with much of past research,

we use the official U.S. business cycle recession and expansion periods determined

by the National Bureau of Economic Research (NBER). The U.S. stock market

turning points are taken from Pagan and Sossounov (2003) and Nyberg (2013).

In both cases, the turning points have been determined on a monthly basis. To

aggregate them to the quarterly level, we follow the rule that a recession (bear

market) starts in a given quarter if the monthly peak turning point occurs in the

first or second month of that quarter. The endpoints of the quarterly recession
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(bear market) periods are determined in an analogous way: a quarter is classified

as a recession (bear market) quarter if a trough occurs in the second or third month

of the quarter. The quarters not classified as recession (bear market) quarters, are

expansion (bull market) quarters. The business cycle and stock market periods

overlap, but they are not identical: 77% of the expansion quarters are also bull

market quarters, and 59% of the recession quarters are also bear market quarters.

4.2 Model selection

We start the empirical analysis by selecting the appropriate VAR(r, s) specifica-

tion for the bivariate vector yt consisting of the U.S. real GDP growth and stock

return. An issue of particular interest is the presence of noncausality, in which

case the preferred model is nonlinear and the methods discussed in Section 3 are

needed in gauging the relative importance of the two GDP growth and stock return

shocks and in selecting the model, we follow the procedure suggested by Lanne and

Saikkonen (2013) discussed in Section 3.1.

Among the Gaussian linear VAR models, the Akaike and Bayesian informa-

tion criteria recommend the second-order model. The p-values of the Ljung–Box

and McLeod–Li tests for remaining residual autocorrelation and conditional het-

eroskedasticity, respectively, are reported in the second column of Table 1. The

residuals of the VAR(2) model seem serially uncorrelated, and there is only slight

evidence in favor of remaining conditional heteroskedasticity at the 10% level.

However, the quantile-quantile (Q-Q) plots (not shown) as well as normality tests

of the residuals indicate that the assumption of Gaussian errors is not reason-

able. In particular, the p-values of the Jarque-Bera and Lütkepohl’s (2006, Section

4.5) normality test are virtually zero. The residuals appear to be leptokurtic, sug-

gesting a non-Gaussian error distribution with fat tails, such as a multivariate

t-distribution. Thus, we proceed by estimating all second-order VAR(r, s)-t mod-

els with t-distributed errors.

The results of the VAR(r, s)-t models are also summarized in Table 1, and
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they lend support to non-Gaussianity and noncausality, questioning the adequacy

of the conventional linear Gaussian VAR model. Of the second-order models, the

purely noncausal VAR(0,2)-t model maximizes the likelihood function. According

to the residual diagnostics, there is neither autocorrelation nor conditional het-

eroskedasticity remaining in the residuals of this model, and it is also the only

specification passing the diagnostic tests at the 10% level.8 Moreover, the Q-Q

plots of the residuals in Figure 1 attest to the adequacy of the multivariate t-

distribution for the errors. While the fit of the t-distribution for the residuals of

the equation for GDP growth is excellent, the distribution of the residuals of the

equation for the stock return appears to be slightly skewed to the right. All in all,

the VAR(0,2)-t model thus seems the preferred second-order VAR specification. As

a final diagnostic check, we estimated VAR(1,2)-t and VAR(0,3)-t models (i.e., we

augmented the preferred VAR(0,2)-t specification by one lag or lead) and tested for

the significance of the additional parameters by the likelihood ratio test. The null

hypothesis of the additional coefficient matrix equalling zero could not be rejected

at conventional significance levels, which lends additional support to the selected

model.

Details on the estimated VAR(0,2)-t model are presented in Table 2. The es-

timate of the degree-of-freedom parameter λ of the t-distribution is quite small,

indicating indeed a fat-tailed error distribution. Furthermore, the fact that a purely

noncausal model is selected, means that GDP growth and stock return depend on

their future expected values, but not on their past realized values. This can be

seen by taking the conditional expectation of both sides of (6) (with r = 0 and

s = 2) with respect to the information set {yt,yt−1, . . .}:

yt = Φ1Et(yt+1) + Φ2Et(yt+2) + Et(ut).

Interestingly the future leads of the GDP growth are found statistically sig-

8These tests are not exactly valid in the case of the noncausal VAR model as they do not

take estimation error correctly into account, and, hence, the p-values should only be taken as

convenient summary measures of autocorrelation remaining in the residuals and their squares

(see Lanne and Saikkonen (2011)).
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nificant predictors of the stock return (at the 1% significance level). The GDP

growth rate is also highly dependent on its own future values, whereas the leads of

the stock return are not statistically significant predictors of either variable.9 This

is in accordance with the results of Fama (1990) and Schwert (1990), who found

leads of future real activity to have useful predictive power for U.S. stock returns.

Binswanger (2000) also provided similar evidence in the subsample period preced-

ing the early 1980s, but a breakdown in this relationship thereafter. However, his

latest observations were from the year 1997.

The strong evidence in favor of non-Gaussianity and noncausality advises against

basing structural analysis on the causal SVAR model identified by long-run restric-

tions. This conclusion is reinforced by the good fit of the noncausal VAR model,

and we thus proceed the structural analysis based on the VAR(0,2)-t model.

4.3 Forecast error variance decomposition analysis

We computed generalized forecast error variance decompositions in order to study

the relative importance of the shocks to the GDP growth and the real stock return.

For simplicity, we call these two shocks the real activity (RA) and stock market

(SM) shocks. For comparison, we also report the forecast error decomposition

based on the Gaussian VAR(2) model and the long-run identification restrictions

entertained in the previous literature. The differences in the results highlight the

facts that the latter model is misspecified, and, in fact, different shocks are being

considered. Indeed, recall that the long-run restrictions are supposed to be iden-

tifying the fundamental (F) and non-fundamental (NF) shocks that are not likely

to exactly match the RA and SM shocks of our generalized setup.

As discussed in Section 3.2, in the noncausal VAR model the relevant unan-

9We also compared the out-of-sample forecasting performance of the VAR(0,2)-t model with

that of the causal VAR(2)-N and VAR(2,0)-t models, which can be seen as a robustness check

against overfitting. The differences are minor and statistically insignificant although the non-

causal model turned out slightly superior, especially at one and two-quarter forecast horizons

(details of the results are available upon request).
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ticipated shock is the one-step forecast error that is unpredictable by past values

of GDP growth and stock return, and these shocks are computed first from the

VAR(0,2)-t model presented in Table 2.

The FEVDs of the SVAR(2) model and the GFEVDs of the VAR(0,2)-t model

in Table 3 are based on all the histories. It is immediately noticed that the relative

importance of the shocks hardly depends on the the horizon in the case of either

model, which is quite a common finding also in the previous literature (see, e.g.,

Binswanger (2004a,b), and Velinov and Chen (2014)), and results from the fact

that the (generalized) impulse responses decay to zero very quickly. The non-

fundamental (NF) and the stock market (SM) shocks seem to dominate the FEVD

of the stock return, accounting for about 65% of its variation in both the causal

Gaussian and noncausal models. Thus, in both cases, the general conclusion is

more or less the same. The rather minor role played by the real activity challenges

the view that fundamentals determine stock prices. This result is in line with

Binswangers’s (2004a,b) results for the post mid-1980s period, while Chen and

Velinov (2014) found the fundamental and non-fundamental shocks approximately

equally important in the U.S. data from 1960 to 2013.

When looking at the figures for the GDP growth, large differences between

the two models are seen. According to the causal model, the fundamental shock

clearly dominates, accounting for more than three quarters of the forecast error

variance, while the corresponding proportion for the real activity shock in the

noncausal model is only 40–44%. One possible explanation to this finding lies in

the news view literature of business cycle fluctuations, according to which news

about future events affects the real activity (see, e.g., Beaudry and Portier (2014)).

A shock to the stock return can be thought of as news concerning the future that

has immediate real economic effects. Taken at face value, this empirical finding

thus emphasizes the importance of news for the real activity and business cycle

fluctuations.10

10The FEVD of the causal VAR(2,0)-t model identified by the long-run restriction yields es-

sentially the same conclusions as the Gaussian SVAR(2) model. In fact, the importance of the
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Due to the nonlinearity of the noncausal VAR model, the generalized forecast

error variance decompositions need not be constant in time. In Figures 2 and 3,

we depict the relative importance of the real activity shock to GDP growth and

stock returns four quarters ahead (h = 4) with 68% level confidence bands (see

the details on computing the confidence bands in the Appendix). The time-varying

GFEVDs, and their eight-quarter moving averages exhibit some fluctuations, but

no clear development patterns can be detected. In particular, there is no clear

change around the beginning of the 1980s, in contrast to Binswanger’s (2004a,b)

findings based on linear SVAR models.

In Table 4, we report the business cycle-specific GFEVDs implied by the non-

causal VAR model. The relative contribution of the real activity shock to the stock

return is clearly greater in both expansion and recession periods than implied by

the noncausal VAR model based on all the histories in Table 3. Bearing in mind the

capability of the noncausal model to accommodate missing variables, this outcome

is in accordance with Lee’s (1998) finding that the relative importance of funda-

mentals for the stock return increases with the number of (relevant) variables in

the VAR model.

As far as the GDP growth is concerned, the relative importance of the real

activity and stock market shocks does not seem to depend on the business cycle.

However, the real activity shock seems to have a markedly greater relative im-

portance in expansion and recession periods than implied by the GFEVDs based

on all histories (a rise of up to ten percentage points). Nevertheless, the relative

importance of the real activity shock still remains much smaller than that of the

fundamental shock in the linear SVAR model.

The differences between Tables 3 and 4 are likely to be a consequence of the

fact that the different GFEVDs are now based on different shocks: in computing

the GFEVDs in Table 3, the shocks are bootstrapped from among all the shocks,

while those in the left and right panels of Table 4 are based on shocks related to

non-fundamental shock to the stock return was found even slightly smaller than in the Gaussian

model reported in Table 3.
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only expansion and recession periods, respectively. In a way, the results in Table

4 thus respect the structure of the data more accurately, as each GFEVD is based

on shocks typical to one phase of the business cycle only. Both shocks tend to be

negative in recession periods, while the shocks related to expansions are more often

positive. In recessions, both shocks also have higher variance. Because there really

are differences in the shocks across the business cycle phases, we should probably

rely on the business cycle specific results.

In Table 5, we report the GFEVDs in bull and bear stock market periods. The

results are, in general, quite similar in both periods. It thus seems that the relative

importance of the two shocks does not seem to depend strongly on whether stock

prices are going up or down, despite the fact that shocks have different properties

in bull and bear markets. In particular, in the bear market periods, both shocks

tend to be negative, and also have greater variance than when stock prices are

going up (bull market). Nevertheless, compared to the GFEVDs for all histories

in Table 3, the relative importance of the real activity shock for both variables

seems somewhat greater when the phase of the stock market is taken into account.

This is in line with the findings concerning the business cycle phase specific results

in Table 4, and presumably follows similarly from the fact that these figures are

based on a better match of histories and shocks.

Finally, we also computed the GFEVDs in the linear VAR model in order to as-

sess the relative importance of noncausality and long-run identification restrictions

for the results.11 Compared to the FEVDs of fundamental and nonfundamental

shocks in Table 3, the GFEVDs of the RA and SM shocks turned out to be quite

different. Quite remarkably, the stock market shock was virtually irrelevant for the

GDP growth, which also differs from the conclusions based on the noncausal VAR

model. This suggests that for the real activity, both the long-run identification

restrictions and noncausality matter. In contrast, for the stock return, both the

SM and RA shocks seemed almost equally important. Hence, as far as the stock

11To save space, the detailed results are not reported, but they are available upon request.
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return is concerned, these results are quite well in line with those based on the

noncausal VAR model, suggesting that noncausality only plays a minor role, while

the differences mostly stem from the long-run identification restrictions.

In sum, our main findings from the noncausal models are twofold. First, the

(correctly specified) noncausal VAR model strongly emphasizes the relative impor-

tance of the stock market shock for the real activity. In particular, it is far more

important than the non-fundamental shock in the linear structural VAR model

identified by long-run restrictions. This effect seems to arise from noncausality

rather than the long-run identification restrictions since according to the general-

ized forecast error variance decomposition of the causal model, the stock market

shock plays hardly any role in real activity dynamics. Second, the noncausal VAR

model suggests a greater role for the real activity in stock return dynamics than

the linear SVAR model. This conclusion is shared with the generalized forecast

error variance decomposition of the causal model, which suggests that the dis-

crepancy can be attributed to the long-run identification restrictions rather than

noncausality.

5 Conclusions

There is a large literature on the relationship between stock returns and real activ-

ity. Much of the previous research is confined to structural analysis in the bivariate

linear VAR framework, concentrating on the relative importance of ’fundamental’

and ’non-fundamental’ shocks identified via long-run restrictions. The relative im-

portance of the shocks is typically measured by means of the forecast error variance

decomposition. In this study, we have examined the robustness of this methodol-

ogy vis-à-vis an alternative identification scheme and nonlinearity. Because of the

well-known problems related to long-run identification in SVAR models, we have

considered the generalized forecast error variance decomposition, replacing the

’fundamental’ and ’non-fundamental’ shocks by shocks to stock return and real

activity. As a versatile nonlinear model, we have considered the noncausal VAR
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model of Lanne and Saikkonen (2013), which has been shown to be capable of ac-

commodating many kinds of nonlinearities. In addition, it has the benefit of being

able to capture effects of missing variables, which may be an issue in the small

model typically considered.

Our empirical results concern the postwar quarterly U.S. real activity and stock

return data. A noncausal specification was clearly selected among the adequate bi-

variate VAR models, suggesting omitted nonlinearities or missing variables in the

commonly employed linear specification. The generalized forecast error variance

decompositions based on the noncausal VAR model indicated greater relative im-

portance of shocks to the real activity on the stock return than implied by the

linear SVAR model. In the same vein, the linear model appeared to underestimate

the importance of the shock to the stock return on the real activity. When in-

terpreting these results, it should be kept in mind that there is not necessarily a

one-to-one correspondence between the shocks to real activity and stock return,

and the fundamental and non-fundamental shocks, respectively. The generalized

forecast error variance decompositions in the causal and noncausal VAR models

turned out quite similar for the stock return, indicating the importance of the long-

run identification restriction as the driver of the results. For the GDP growth, in

contrast, these decompositions were quite different, pointing at the dominating

role of noncausality.

All in all, it seems that the conclusions on the dynamics of stock return and real

activity do depend on identification and taking nonlinearities into account. Besides

real activity and stock returns, the same SVAR methodology has been applied to

dividends, earnings and interest rates (see, e.g., Lee (1992, 1995, 1998)) and stock

returns and inflation (see Hess and Lee (1999)). In future work, it would be inter-

esting to study the robustness of these conclusions with respect to identification

and nonlinearities using the methods put forth in this paper.
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Appendix: Details on Computing GFEVD (9) in

Noncausal VAR Model

In this Appendix, we give practical details on how to compute the GFEVD (9)

in the case of the noncausal VAR model. The step-by-step procedure given below

closely follows Lanne and Nyberg (2014) with the important modifications im-

plied by the noncausal VAR model. As discussed in Section 3.2, we recommend

computing the GFEVD as the average of λij,ωt−1
(h) over all the histories, and

shocks obtained by bootstrapping from the one-step-ahead forecast errors of the

selected noncausal model. This yields the GFEVD characteristic of the data at

hand, solving the problem of selecting the size of shocks to each equation in yt.

The GFEVDs (9) for the bivariate (K = 2) noncausal model are computed by

the following steps:

1. Select an appropriate noncausal VAR model (i.e. select r and s in the VAR(r, s)

model (6)).

2. Construct (one-step-ahead) forecasts using the selected noncausal model for

different histories ωt−1 and compute forecast errors in the usual way. Notice

that the history ωt−1 consists of the information (i.e. the lags of yt) used to

compute the forecasts (i.e. the conditional expectation given in (8) without

the effect of the shock). Details on computing forecasts in the noncausal VAR

model can be obtained from Nyberg and Saikkonen (2014).

3. Draw N vectors of shocks (δ1t, δ2t, . . . , δKt)
′

from the set of forecast errors

obtained in Step 2.

4. Pick a history ωt−1 from among the set of histories which are of interest in

the analysis (for example, all histories or business cycle-specific histories, as

analyzed in Section 4.3).

5. Pick a shock vector, and compute GI(·) (see (8)) for each δit, i = 1, . . . , K.

In (8), the benchmark conditional expectations (without the shock) are al-

ready computed in Step 2. For the first sequence of conditional expectations,
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following Gallant et al. (1993) and as discussed in Section 3.2, we insert the

shock δit directly to the value of yt−1 (included in the history ωt−1).

6. Plug the GIs computed in Step 5 into (9) to obtain λij,ωt−1
(h)(h = 0, 1, 2, . . .)

for the particular history and shock.

7. Repeat Steps 5 and 6 for all N vectors of shocks.

8. Repeat Steps 4–7 for all the histories of interest.

9. Finally, compute the average of λij,ωt−1
(h), (h = 0, 1, 2, . . .) over all the his-

tories and shocks.

Based on the procedure above, we can also compute the confidence bands of the

GFEVD components. This can be done in various ways. We recommend computing

all the history-specific averages of λij,ωt−1
(h) over the shocks (i.e. Steps 5–8 above).

This yields an empirical distribution of GFEVDs, where we can easily compute

the pointwise confidence bands for the selected confidence levels. For example, in

Figures 2 and 3 we depict the 68% confidence bands of the GFEVD components.
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Tables and Figures

Table 1: Diagnostic checks of the second-order causal and noncausal VAR models.

Model

VAR(2)-N VAR(2,0)-t VAR(1,1)-t VAR(0,2)-t

Log-likelihood -593.055 -586.619 -584.745 -584.601

Ljung-Box(4), GDP growth 0.369 0.486 0.888 0.921

Ljung-Box(4), Stock return 0.874 0.814 0.105 0.189

McLeod-Li(4), GDP growth 0.298 0.229 0.004 0.179

McLeod-Li(4), Stock return 0.081 0.090 0.718 0.306

Notes: VAR(p)-N and VAR(r, s)-t denote the Gaussian pth order VAR model, and the noncausal

VAR model with r lags and s leads and a t-distributed error term, respectively. The p-values of the

Ljung-Box and McLeod-Li tests for error autocorrelation and conditional heteroskedasticity with

four lags are reported for both equations.
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Table 2: Estimation results of the VAR(0,2) model.

0.311 -0.001

Φ1 (0.063) (0.006)

2.260 0.048

(0.606) (0.061)

0.117 -0.007

Φ2 (0.067) (0.006)

1.973 -0.006

(0.663) (0.058)

0.051 -0.029

Σ (0.007) (0.037)

-0.029 5.056

(0.037) (0.724)

λ 5.527

(1.642)

Notes: Parameter estimates of the bivariate VAR(0,2) model for the real GDP growth (xt) and

the real stock return (rt) (i.e., yt = [xt rt]
′

). The figures in the parentheses are standard

errors.
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Table 3: Forecast error variance decompositions of the selected SVAR and non-

causal VAR models for different forecast horizons h (quarters).

SVAR(2)-N VAR(0,2)-t

GDP growth Stock return GDP growth Stock return

h F NF F NF RA SM RA SM

0 0.76 0.24 0.34 0.66 0.44 0.56 0.30 0.70

1 0.78 0.22 0.34 0.66 0.41 0.59 0.36 0.64

2 0.77 0.23 0.35 0.65 0.40 0.60 0.36 0.64

3 0.77 0.23 0.35 0.65 0.40 0.60 0.36 0.64

4 0.77 0.23 0.35 0.65 0.40 0.60 0.36 0.64

8 0.77 0.23 0.35 0.65 0.40 0.60 0.36 0.64

12 0.77 0.23 0.35 0.65 0.40 0.60 0.36 0.64

Notes: For the VAR(0,2)-t model, the GFEVD (9) is reported. F and NF denote the

fundamental and non-fundamental shocks, respectively, in the linear VAR model iden-

tified by the long-run identification restrictions discussed in Section 2, whereas RA

and SM denote the real activity and stock market shocks, respectively. The GFEVD is

based on 100 shocks bootstrapped from among the one-step-ahead forecast errors of the

VAR(0,2)-t model presented in Table 2. For each pair of shocks, the GIRFs (8) used in

the construction of the GFEVD are computed for each of the 238 histories (i.e. all the

histories), yielding, in total, 23 800 GIRFs, over which the GFEVD (9) is averaged. The

conditional expectations in the GIRFs (8) are based on 100 000 simulated realizations

of the model. See details on computing the GFEVD (9) in the Appendix.
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Table 4: GFEVDs of the noncausal model for business cycle-specific histories.

Expansion Recession

GDP growth Stock return GDP growth Stock return

h RA SM RA SM RA SM RA SM

0 0.50 0.50 0.47 0.53 0.50 0.50 0.44 0.56

1 0.49 0.51 0.48 0.52 0.49 0.51 0.47 0.53

2 0.48 0.52 0.48 0.52 0.49 0.51 0.47 0.53

3 0.48 0.52 0.48 0.52 0.49 0.51 0.46 0.54

4 0.48 0.52 0.48 0.52 0.49 0.51 0.46 0.54

8 0.48 0.52 0.48 0.52 0.49 0.51 0.46 0.54

12 0.48 0.52 0.48 0.52 0.49 0.51 0.46 0.54

Notes: Different histories (ωt−1) are classified as expansions and recessions based on

the official U.S. business cycle turning points determined by the NBER (see Section

4.1). Similarly as in Table 3, the real activity (RA) and stock market (SM) shocks are

denoted by RA and SM, respectively. See also other notes to Table 3.
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Table 5: GFEVDs of the noncausal model for bear and bull stock market-specific

histories.

Bull Bear

GDP growth Stock return GDP growth Stock return

h RA SM RA SM RA SM RA SM

0 0.50 0.50 0.44 0.56 0.48 0.52 0.44 0.56

1 0.48 0.52 0.47 0.53 0.46 0.54 0.47 0.53

2 0.48 0.52 0.47 0.53 0.46 0.54 0.47 0.53

3 0.48 0.52 0.47 0.53 0.46 0.54 0.47 0.53

4 0.48 0.52 0.47 0.53 0.46 0.54 0.46 0.54

8 0.48 0.52 0.46 0.54 0.46 0.54 0.46 0.54

12 0.47 0.53 0.46 0.54 0.46 0.54 0.46 0.54

Notes: Different histories (ωt−1) are classified as bull and bear stock market periods

based on the turning points determined by Pagan and Sossounov (2003) and Nyberg

(2013) (see Section 4.1). See also the notes to Table 3.
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Figure 1: Quantile-quantile plots of the residuals of the VAR(0,2)-t model. The

residuals of the GDP growth (stock return) in the upper (lower) panel.
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Figure 2: Relative importance of the real activity shock to GDP growth (1953-

2012). The time-varying GFEVDs (the black line is their 8-quarter moving average)

are averages over different shocks for each history with 68% confidence intervals

depicted with dashed lines.
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Figure 3: Relative importance of the real activity shock to stock return (1953-

2012). The time-varying GFEVDs (the black line is their 8-quarter moving average)

are averages over different shocks for each history with 68% confidence intervals

depicted with dashed lines.
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