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Abstract

We consider large N,T panel data models with fixed effects, common factors al-
lowing cross-section dependence, and persistent data and shocks, which are assumed
fractionally integrated. In a basic setup, the main interest is on the fractional param-
eter of the idiosyncratic component, which is estimated in first differences after factor
removal by projection on the cross-section average. The pooled conditional-sum-of-
squares estimate is

√
NT consistent but the normal asymptotic distribution might not

be centered, requiring the time series dimension to grow faster than the cross-section
size for correction. Generalizing the basic setup to include covariates and heterogeneous
parameters, we propose individual and common-correlation estimates for the slope pa-
rameters, while error memory parameters are estimated from regression residuals. The
two parameter estimates are

√
T consistent and asymptotically normal and mutually

uncorrelated, irrespective of possible cointegration among idiosyncratic components. A
study of small-sample performance and an empirical application to realized volatility
persistence are included.
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4, Building 2628, 8210 Aarhus V, DENMARK. ergemen@econ.au.dk.
‡Corresponding Author. Department of Economics, Universidad Carlos III de Madrid, Calle Madrid,

126, 28903 Getafe (Madrid), SPAIN. Carlos.Velasco@uc3m.es.

1



1. Introduction

In macroeconomics and finance, variables are generally presented in the form of panels

describing dynamic characteristics of different units such as countries or assets. Some of

these macroeconomic panels include GDP, interest, inflation and unemployment rates while

in finance, it is standard to use a panel data approach in portfolio performance evaluations.

Panel data analyses lead to more robust inference under correct specification since they allow

for cross sections to be interacting with each other while also accounting for individual cross-

section characteristics. Recent research in panel data theory has mainly focused on dealing

with unobserved fixed effects and cross-section dependence in stationary weakly dependent

panels, for instance, Pesaran (2006) proposes estimation of a general panel data model where

all variables are I(0). The research on nonstationary panel data theory is also abundant.

However, those papers which both contain nonstationarity and allow for fixed effects and

cross-section dependence are limited to the the unit-root case. For example, Kapetanios

et al. (2011) extend the study by Pesaran (2006) to panels where observables and factors

are integrated I (1) processes while regression errors are I (0) . Furthermore, Bai and Ng

(2004) and Bai (2010) propose unit-root testing procedures when idiosyncratic shocks and

the common factor are both I(1). Similarly, Moon and Perron (2004) propose the use of

dynamic factors for unit-root testing for panels with cross-section dependence.

In the same way that many economic time series, such as aggregate output, real exchange

rates, equity volatility, asset and stock market realized volatility, have been shown to ex-

hibit long-range dependence of non-integer orders, panel data models should also be able

to accommodate such behaviour. However, the study of panel data models with fractional

integration characteristics has been completely neglected until very recently, and only a few

papers study fractional panels. Hassler et al. (2011) propose a test for the memory parameter

under a fractionally integrated panel setup with multiple time series. Robinson and Velasco

(2015) propose several estimation techniques for a type-II (i.e. time truncated) fractionally

integrated panel data model with fixed effects.

In this paper, we consider panel data models where we allow for fractionally integrated

long-range dependence in both idiosyncratic shocks and a set of common factors. In these

models persistence is described by a memory or fractional integration parameter, constituting

an alternative to dynamic autoregressive (AR) panel data models. The setup we consider

requires that both the number of cross section units, N, and the length of the time series, T,

grow in the asymptotics, departing from the case of multivariate time series (with N fixed) or

short panels (with T fixed). Our setup differs from Hassler et al. (2011) and Robinson and
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Velasco (2015) in that (a) we model cross-section dependence employing an unobservable

common factor structure that can be serially correlated and display long-range dependence,

which makes the model more general by introducing cross-section dependence without further

structural impositions on the idiosyncratic shocks; (b) our model including covariates allows

for, but does not require, fractional cointegration identifying long-run relationships between

the unobservable idiosyncratic components of the observed time series.

Using a type-II fractionally integrated panel data model with fixed effects and cross-

section dependence modelled through a common factor dependence, we allow for long-range

persistence through this factor and the integrated idiosyncratic shock. We analyze two mod-

els in turn. The basic model assumes a common set of parameters for the dynamics of the

idiosyncratic component of all cross-sectional units in absence of covariates. We deal with

the fixed effects and the unobservable common factor through first differencing and projec-

tion on the cross-section average of the differenced data as a proxy for the common factor,

respectively. Then, estimation of the memory parameter is based on a pooled conditional

sum of squares (CSS) criterion function of the projection residuals which produces estimates

asymptotically equivalent to Gaussian ML estimates. We require to impose conditions on

the rate of growth of N and T to control for the projection error and for an initial condition

bias induced by first differencing of the type-II fractionally integrated error terms, so that

our pooled estimate can achieve the
√
NT convergence rate. We nevertheless discuss bias

correction methods that relax the restriction that T should grow substantially faster than N

in the joint asymptotics, which would not affect the estimation of the heterogeneous model.

Once we include covariates in the second model, we can extend the study to cointegrating

relationships since we allow the covariates to exhibit long-range persistence as well. The

general model with covariates that we present in Section 4 can be seen as an extended version

of the setup of Robinson and Hidalgo (1997) and Robinson and Hualde (2003) to panel data

models and of Pesaran (2006) to nonstationary systems with possible cointegration among

idiosyncratic components of observed variables, where endogeneity of covariates is driven

by the common factor structure independent of those idiosyncratic components. However

observed time series can display the same memory level due to dependence on a persistent

common factor thereby leading to spurious regressions, the error term in the regression

equation could be less integrated than the idiosyncratic shocks of covariates, leading to an

unobservable cointegrating relationship which can only be disclosed by previously projecting

out the factor structure.

To estimate possibly heterogeneous slope and memory parameters, we use a CSS criterion,

where individual time series are now projected on (fractionally) differenced cross-section
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averages of the dependent variable and regressors, leading to GLS type of estimates for the

slope parameter. We show that both individual slope and fractional integration parameter

estimates are
√
T consistent, and asymptotically normally distributed. The slope estimates

have an asymptotic Gaussian distribution irrespective of the possible cointegration among

idiosyncratic components of the observables, which are assumed independent of the regression

errors, though observables are not.

We explore the performance of our estimation method via Monte Carlo experiments,

which indicate that our estimation method has good small-sample properties. Last but not

least, we present an application on industry-level realized volatilities using the general model.

We analyze how each industry realized volatility is related to a composite market realized

volatility measure. We identify several cointegrating relationships between industry and

market realized volatilities, which may have direct implications for policy and investment

decisions.

Next section details the first model and necessary assumptions. Section 3 explains the

estimation strategy, and discusses the asymptotic behaviour of the first model. Section 4

details the general model where covariates and heterogeneity in the parameters are intro-

duced, and details the projection method. Section 5 presents Monte Carlo studies for both

models. Section 6 contains an application on the systematic macroeconomic risk, employing

industry-level realized volatility analysis. Finally, Section 7 concludes the paper.

Throughout the paper, we use the notation (N, T )j to denote joint cross-section and time-

series asymptotics, →p to denote convergence in probability and →d to denote convergence

in distribution. All mathematical proofs and technical lemmas are collected in the appendix.

2. The Basic Model

In this section, we detail a type-II fractionally integrated panel data model with fixed effects

and cross-section dependence and list our assumptions. We consider that the observable yit

satisfy

λt (L; θ0) (yit − αi − γift) = εit, (1)

for t = 0, 1, . . . , T, i = 1, . . . , N, where εit ∼ iid(0, σ2) are idiosyncratic shocks; θ0 ∈ Θ ⊂
Rp+1 is a (p+ 1)× 1 parameter vector; L is the lag operator and for any θ ∈ Θ and for each
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t ≥ 0,

λt (L; θ) =
t∑

j=0

λj (θ)Lj (2)

truncates λ (L; θ) = λ∞ (L; θ). We assume that λ (L; θ) has this particular structure,

λ (L; θ) = ∆δψ (L; ξ) ,

where δ is a scalar, ξ is a p× 1 vector, θ = (δ, ξ′)′. Here ∆ = 1− L, so that the fractional

filter ∆δ has the expansion

∆δ =
∞∑
j=0

πj(δ)L
j, πj(δ) =

Γ(j − δ)
Γ(j + 1)Γ(−δ)

,

and denote the truncated version as ∆δ
t =

∑t−1
j=0 πj(δ)L

j, with Γ (−δ) = (−1)δ∞ for δ =

0, 1, . . . , Γ (0) /Γ (0) = 1; ψ (L; ξ) is a known function such that for complex-valued x,

|ψ (x; ξ)| 6= 0, |x| ≤ 1 and in the expansion

ψ (L; ξ) =
∞∑
j=0

ψj (ξ)Lj,

the coefficients ψj (ξ) satisfy

ψ0 (ξ) = 1, |ψj (ξ)| = O (exp (−c (ξ) j)) , (3)

where c (ξ) is a positive-valued function of ξ. Note that

λj (θ) =

j∑
k=0

πj−k (δ)ψk (ξ) , j ≥ 0, (4)

behaves asymptotically as πj(δ),

λj (θ) = ψ (1; ξ) πj(δ) +O
(
j−δ−2

)
, as j →∞,

see Robinson and Velasco (2015), where

πj(δ) =
1

Γ(−δ)
j−δ−1(1 +O(j−1)) as j →∞,
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so the value of δ0 determines the asymptotic stationarity (δ0 < 1/2) or nonstationarity

(δ0 ≥ 1/2) of yit − αi − γift and ψ(L; ξ) describes short memory dynamics.

The αi are unobservable fixed effects, γi unobservable factor loadings and ft is the unob-

servable common factor that is assumed to be an I(%) process, where we treat % as a nuisance

parameter. This way the model incorporates heterogeneity through αi as well as γi and also

introduces account cross-section dependence by means of the factor structure, γift, which

was not considered in Robinson and Velasco (2015). When we write (1) as

yit = αi + γift + λ−1
t (L; θ0) εit = αi + γift + λ−1 (L; θ0) {εit1 (t ≥ 0)} ,

where 1 (·) is the indicator function, the memory of the observed yit is max {δ0, %} , where ft

could be the major source of persistence in data. The model could be complemented with

the presence of incidental trends and other exogenous or endogenous observable regressor

series, see Section 4.

The model can be reorganized in terms of the variable ∆δ0
t yit for i = 1, . . . , N, and

t = 1, . . . , T and when ψ (L; ξ0) = 1− ξ0L corresponds to a finite AR(1) polynomial as

∆δ0
t yit = (1− ξ0) ∆δ0

t αi + ξ0∆δ0
t yit−1 + γi (1− ξ0L) ∆δ0

t ft + εit,

which is then easily comparable to a standard dynamic AR(1) panel data model with cross-

section dependence, e.g. that of Han and Phillips (2010),

yit = (1− ρ)αi + ρyit−1 + γift + εit.

In both models, error terms are iid, and there are fixed effects (so long as δ0 6= 1, ξ0 6= 1

and ρ 6= 1). However, autoregressive panel data models can only cover a limited range of

persistence levels, just I (0) or I (1) series depending on whether |ρ| < 1 or ρ = 1. On the

other hand, the fractional model (1) covers a wide range of persistence levels depending on

the values of δ0 and %, including the unit root case and beyond. In addition, (1) accounts

for persistence in cross-section dependence depending on the degree of integration of ∆δ0
t ft.

We are interested in conducting inference on θ, in particular on δ. For the analysis in

this paper we require that both N and T increase simultaneously due to presence of the

unobserved common factor and the initial condition term in the fractional difference operator,

unlike in Robinson and Velasco (2015), who only require T to grow in the asymptotics, while

N could be constant or diverging simultaneously with T . In the first part of the paper we

assume a common vector parameter, including a common integration parameter δ, for all
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cross-section units i = 1, . . . , N. While the fractional integration parameter may as well be

allowed to be heterogeneous, our approach is geared towards getting a pooled estimate for

the entire panel exploiting potential efficiency gains. Further, this pooling has to control for

potential distortions due to common factor elimination, that, as well as fixed effects removal,

lead to some bias in the asymptotic distribution of parameter estimates, cf. Robinson and

Velasco (2015).

We use the following assumptions throughout the paper:

Assumption A.

A.1. The idiosyncratic shocks, εit, i = 1, 2, . . . , N, t = 0, 1, 2, . . . , T are independently and

identically distributed both across i and t with zero mean and variance σ2, and have a finite

fourth-order moment, and δ0 ∈ (0, 3/2).

A.2. The I(%) common factor is ft = ∆−%t zft , % < 3/2, where zft = ϕf (L) vft−k with ϕf (s) =∑∞
k=0 ϕ

f
ks
k,
∑∞

k=0 k|ϕ
f
k | <∞, ϕf (s) 6= 0 for |s| ≤ 1, and vft ∼ iid(0, σ2

f ), E|v
f
t |4 <∞.

A.3. εit and ft are independent of the factor loadings γi, and are independent of each other

for all i and t.

A.4. Factor loadings γi are independently and identically distributed across i, supiE|γi| <
∞, and γ̄ = N−1

∑N
i=1 γi 6= 0.

A.5. For ξ ∈ Ξ, ψ (x; ξ) is differentiable in ξ and, for all ξ 6= ξ0, |ψ (x; ξ)| 6= |ψ (x; ξ0)| on

a subset of {x : |x| = 1} of positive Lebesgue measure, and (3) holds for all ξ ∈ Ξ with c (ξ)

satisfying

inf
Ξ
c (ξ) = c∗ > 0. (5)

Assumption A.1 implies that the idiosyncratic errors λ−1 (L; θ) εit, are fractionally inte-

grated with asymptotically stationary increments, δ0 < 3/2, which will be exploited by our

projection technique. The homoskedasticity assumption on idiosyncratic shocks, εit, is not

restrictive since yit are still heteroskedastic as αi and γi vary in each cross section.

By Assumption A.2, the common factor ft is a zero mean fractionally integrated I(%)

linear process, with the I (0) increments possibly displaying short-range serial dependence

but with positive and smooth spectral density at all frequencies. The zero mean assumption

is not restrictive since we are allowing for fixed effects αi which are not restricted in any

way. Although there is no developed theory for fractionally integrated factor models in the
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literature, restrictions similar to Assumption A.2 have been used under different setups in

e.g. Hualde and Robinson (2011) and Nielsen (2014). Under Assumption A.2, the range

of persistence for the common factor covers unit root and beyond, making the model a

powerful tool for several practical problems. Although we treat % as a nuisance parameter, in

empirical applications this parameter could be estimated based on the cross-section average

of the observed series using semiparametric estimates, e.g. with a local Whittle approach.

Assumption A.3 and A.4 are standard identifying conditions in one-factor models as also

used in e.g. Pesaran (2006) and Bai (2009). In particular, the condition on γ̄ is related to

Assumption 5(b) of Pesaran (2006) and used to guarantee that our projection to remove

factors works in finite samples.

Assumption A.5 ensures that ψ (L; ξ) is smooth for ξ ∈ Ξ, and the weights ψj lead to short-

memory dynamics as is also assumed by Robinson and Velasco (2015), where the parameter

space Ξ can depend on stationarity and invertibility restrictions on ψ (L; ξ) .

3. Parameter Estimation

Bai (2009) and Pesaran (2006), among many others, study the estimation of panel data

models with cross-section dependence. Bai (2009) estimates the slope parameter in an in-

teractive fixed effects model where the regressors and the common factor are stationary and

idiosyncratic shocks exhibit no long-range dependence. Likewise, Pesaran (2006) estimates

the slope parameter in a multifactor panel data model where covariates are I(0). In this

section we focus on the estimation of the parameter vector θ that describes the idiosyncratic

dynamics of data, including the degree of integration.

In our estimation strategy, we first project out the unobserved common structure using

sample averages of first-differenced data as proxies, where the fixed effects are readily removed

by differencing. We then use a pooled conditional-sum-of-squares (CSS) estimation on first

differences based on the remaining errors after projection.

First-differencing (1) to remove αi, we get

∆yit = γi∆ft + ∆λ−1
t (L; θ0) εit, i = 1, . . . , N, t = 1, 2, . . . , T,

where we denote by θ0 the true parameter vector, and then ∆yit is projected on the cross-

section average ∆ȳt = N−1
∑N

i=1 ∆yit as (non-scaled) proxies for ∆ft with the projection
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coefficient φ̂i given by

φ̂i =

∑T
t=1 ∆ȳt∆yit∑T
t=1(∆ȳt)2

,

which we assume can be computed for every i with
∑T

t=1(∆ȳt)
2 > 0. Then we compute the

residuals

εit(θ) = λt−1

(
L; θ(−1)

) (
∆yit − φ̂i∆ȳt

)
, i = 1, . . . , N, t = 1, . . . , T.

where θ(−1) = (δ − 1, ξ′)′ adapts to the previous differencing initial step.

Then we denote by θ̂ the estimate of the unknown true parameter vector θ0,

θ̂ = arg min
θ∈Θ

LN,T (θ),

where we assume Θ is compact and LN,T is the CSS of the projection residuals after fractional

differencing

LN,T (θ) =
1

NT

N∑
i=1

T∑
t=1

εit(θ)
2,

which is the relevant part of the concentrated (out of σ2) Gaussian likelihood for εit(θ).

Note that after the first-differencing transformation to remove αi, there is a mismatch

between the sample available (t = 1, 2, . . . , T ) and the length of the filter λt−1

(
L; θ(−1)

)
that

can be applied to it, with the filter ∆λ−1
t (L; θ0) that generates the data, since for instance

λt−1

(
L; θ(−1)

)
∆λ−1

t (L; θ0) εit = λt (L; θ)λ−1
t (L; θ0) εit − λt

(
θ(−1)

)
εi0,

because λt
(
L; θ(−1)

)
∆ = λt (L; θ) , t = 0, 1, . . . . Even when θ = θ0, all residuals involve εi0,

i.e. the initial condition, which is reflected in a bias term of θ̂ as in Robinson and Velasco

(2015).

The estimates are only implicitly defined and entail optimization over Θ = D× Ξ, where

Ξ is a compact subset of Rp and D= [δ, δ], with 0 < δ < δ < 3/2. We aim to cover

a wide range of values of δ ∈ D with our asymptotics, c.f. Nielsen (2014) and Hualde

and Robinson (2011), but there are interactions with other model parameters that might

require to restrict the set D reflecting some a priori knowledge on the true value of δ or to

introduce further assumptions on N and T. In particular, and departing from Robinson and

Velasco (2015), it is essential to consider the interplay of % and δ0, i.e. the memories of the

unobservable common factor and of the idiosyncratic shocks, respectively, since projection
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on cross-section averages of first differenced data is assuming that ∆ft is (asymptotically)

stationary, but possibly with more persistence than the idiosyncratic components.

Then, for the asymptotic analysis of the estimate of θ, we further introduce the following

assumptions.

Assumption B. The lower bound δ of the set D satisfies

max {%, δ0} − 1/2 < δ ≤ δ0. (6)

Assumption B indicates that if the set D is quite informative on the lower possible value

of δ0 and this is not far from %, the CSS estimate is consistent irrespective of the relationship

between N and T, as we show in our first result.

Theorem 1. Under Assumptions A and B, θ0 ∈ Θ, and as (N, T )j →∞,

θ̂ →p θ0.

Although the sufficient condition in Assumption B may seem restrictive, the lower bound

could be adapted accordingly to meet the distance requirement from % and δ0 using informa-

tion on the whereabouts of these parameters. This assumption may be relaxed at the cost

of restricting the relative rates of growth of N and T in the asymptotics. In the technical

appendix, we provide more general conditions that are implied by Assumption B to prove

this result.

A similar result of consistency for CSS estimates is provided by Hualde and Robinson

(2011) and Nielsen (2014) for fractional time series models and in Robinson and Velasco

(2015) for fractional panels without common factors. Note that the theorem only imposes

that both N and T grow jointly, but there is no restriction on their rate of growth when (6)

holds. This contrasts with the results in Robinson and Velasco (2015), where only T was

required to grow and N could be fixed or increasing in the asymptotics. An increasing T

therein is required to control for the initial condition contribution due to first differencing

for fixed effects elimination, as is needed here, but projection on cross-section averages for

factor removal further requires that both N and T grow.

Next, we establish the asymptotic distribution of the parameter estimates, for which

we assume that ψ (L; ξ) is twice continuously differentiable for all ξ ∈ Ξ with ψ̇t(L; ξ) =

(d/dξ)ψt(L; ξ) where it is assumed that
∣∣∣ψ̇t(L; ξ)

∣∣∣ = O (exp(−c(ξ)j)) . In establishing the
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asymptotic behaviour, the most delicate part is formulating the asymptotic bias. The initial

condition (IC) bias of (NT )1/2
(
θ̂ − θ0

)
is proportional to T−1∇T (θ0), where

∇T (θ0) = −
T∑
t=1

τt(θ0) {τ̇t(θ0)− χt(ξ0)}

where τt (θ) = λt
(
θ(−1)

)
= λt (L; θ) 1 =

∑t
j=0 λj (θ), τ̇t(θ) = (∂/∂θ)τt(θ) and χt is defined

by

χ (L; ξ) =
∂

∂θ
log λ (L; θ) = (log ∆, (∂/∂ξ′) logψ (L; ξ))

′
=
∞∑
j=1

χj (ξ)Lj.

The term ∇T (θ0), depending only on the unknown θ0 and T , also found in Robinson and Ve-

lasco (2015), appears because of the data-index mismatch that arises due to time truncation

for negative values and first differencing.

Introduce the (p+ 1)× (p+ 1) matrix

B (ξ) =
∞∑
j=1

χj (ξ)χ′j (ξ) =

[
π2/6 −

∑∞
j=1 χ

′
2j (ξ) /j

−
∑∞

j=1 χ2j (ξ) /j
∑∞

j=1 χ2j (ξ)χ′2j (ξ)

]
,

and assumeB (ξ0) is non-singular. For the asymptotic distribution analysis we further require

the following conditions.

Assumption C.

C.1. As (N, T )j →∞,
N

T
log2 T +

T

N3
→ 0.

C.2. max {1/4, %− 1/2, %/2− 1/12} < δ0 ≤ min {5/4, 5/2− %} .

The next result shows that the fractional integration parameter estimate is asymptotically

normal and efficient at the
√
NT convergence rate.

Theorem 2. Under Assumptions A, B and C, θ0 ∈ Int(Θ), as (N, T )j →∞,

(NT )1/2
(
θ̂ − θ0 − T−1B−1 (ξ0)∇T (θ0)

)
→d N

(
0, B−1 (ξ0)

)
,

where ∇T (θ0) = O(T 1−2δ0 log T1{δ0 <
1
2
}+ log2 T1{δ0 = 1

2
}+ 1{δ0 >

1
2
}).
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Corollary 1. Under Assumptions of Theorem 2,

(NT )1/2
(
θ̂ − θ0

)
→d N

(
0, B−1 (ξ0)

)
for δ0 >

1
2
, and this also holds when δ0 ∈

(
1
3
, 1

2

)
if additionally, as (N, T )j →∞, NT 1−4δ0 log2 T →

0, and when δ0 = 1
2

if NT−1 log4 T → 0 .

These results parallel Theorem 5.3 in Robinson and Velasco (2015) additionally using

Assumption C to control for the projection errors and requiring N to grow with T to remove

the cross-sectionally averaged error terms, while the range of allowed values of δ0 is limited

in the same way. Assumption C.1 basically requires that T grows faster than N, but slower

than N3, so that different projection errors are not dominating to achieve the
√
NT rate of

convergence. This last restriction is milder than the related conditions that impose TN−2 →
0 for slope estimation, e.g. Pesaran (2006), but we also need T to grow faster than N to

control the initial condition bias.

Condition C.2 is only a sufficient condition basically requiring that the overall memory,

% + δ0, be not too large so that common factor projection with first-differenced data works

well, especially if N grows relatively fast with respect to T, and that % is not much larger

than δ0, so the common factor distortion can be controlled for. We relax these sufficient

conditions in the technical appendix to prove our results.

The asymptotic centered normality of the uncorrected estimates further requires that

δ0 >
1
3

in view of Assumption C.1, so it is interesting for statistical inference purposes to

explore a bias correction. Let θ̃ be the fractional integration parameter estimate with IC

bias correction constructed by plugging in the uncorrected estimate θ̂,

θ̃ = θ̂ − T−1B−1
(
ξ̂
)
∇T (θ̂).

The next result shows that the bias-corrected estimate is asymptotically centered and efficient

at the
√
NT convergence rate.

Corollary 2. Under Assumptions of Theorem 2,

(NT )1/2
(
θ̃ − θ0

)
→d N

(
0, B−1 (ξ0)

)
.

Bias correction cannot relax the lower bound restriction on the true fractional integration

parameter δ0, but eliminates some further restrictions on N and T though still requires

12



Assumption C.1 which implies the restrictions of Theorem 5.2 of Robinson and Velasco

(2015) for a similar result in the absence of factors.

3.2 Estimation of a Heterogeneous Model

Although a panel data approach allows for efficient inference under a homogeneous setup,

it may be restrictive from an empirical perspective. Most of the time, the applied econome-

trician is interested in understanding how each cross-section unit behaves while accounting

for dependence between these units. We therefore consider the heterogeneous version of (1)

with the same prescribed properties as

λt (L; θi0) (yit − αi − γift) = εit,

where θi0 may change for each cross-section unit. This type of heterogeneous modelling is

well motivated in country-specific analyses of economic unions and asset-specific analyses

of portfolios where cross-section correlations are permitted and generally the interest is in

obtaining inference for a certain unit rather than for the panel.

Under the heterogeneous setup, just like in the homogeneous case, the common factor

structure is asymptotically replaced by the cross-section averages of the first-differenced

data under the sufficient conditions given in Assumption C. The asymptotic behaviour of

the heterogeneous estimates can be easily derived from the results obtained in Theorems 1

and 2 taking N = 1 as follows. Now, denote

θ̂i = arg min
θ∈Θi

L∗i,T (θ),

with Θi defined as before, Di =
[
δi, δi

]
⊂ (0, 3/2), and

L∗i,T (θ) =
1

T
εi(θ)εi(θ)

′,

where εi = (εi1, . . . , εiT ) , and

εit(θi) = λt−1

(
L; θ

(−1)
i

)(
∆yit − φ̂i∆ȳt

)
.

We have the following results replacing δ0, δ and δ̄ in Assumptions A.1, A.5, B and C.2

with δi0, δi and δ̄i, respectively. We denote these conditions as Ai, Bi and Ci, and assume

them to hold for all i.

13



Theorem 3. Under Assumptions Ai and Bi, θi0 ∈ Θi, and as (N, T )j →∞,

θ̂i →p θi0,

and under Assumptions Ai, Bi and Ci, θi0 ∈ Int(Θi), as (N, T )j →∞,

T 1/2
(
θ̂i − θi0

)
→d N

(
0, B−1 (ξi0)

)
.

An increasing N is still needed here, as in the homogeneous setting, since the projection

errors arising due to factor removal require that N →∞. However the asymptotic theory is

made easier due to the convergence rate being just
√
T now, with which the initial-condition

(IC) bias asymptotically vanishes for all values of δi0 ∈ D, without any restriction on the

relative rate of growth of N and T.

4. The Model with Covariates

In order to be able to fully understand how panel variables that exhibit long-range depen-

dence behave, it is essential to not only allow for fractionally integrated shocks but also

include covariates that may be persistent, possibly including cointegrated systems with en-

dogenous regressors. In this section, we propose a heterogeneous panel data model with

fixed effects and cross-section dependence where shocks that hit both the dependent variable

and covariates may be persistent, and covariates are allowed to be endogenous through this

unobserved common factor.

For i = 1, . . . , N and t = 0, 1, . . . , T, the model that generate the observed series yit and

Xit is given by

yit = αi + β′i0Xit + γ′ift + λ−1
t (L; θi0) εit, (7)

Xit = µi + Γ′ift + eit

where Xit is k × 1, unobserved ft is m × 1 with k,m fixed, and γi, Γi are vectors of factor

loadings. The variates αi and µi are covariate-specific fixed effects, and ft ∼ I(%) and

eit ∼ I (ϑi) with elements satisfying Assumption A.2 where % and ϑi are nuisance parameters,

and the constant parameters θi0 and βi0 are the objects of interest. We later use a random

coefficient model for βi0 to study the properties of a mean-group type estimate for the average
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value of βi0.

In the factor models of Pesaran (2006) and Bai (2009) the possible endogenous covariates

are I(0), so they can only address cases in which there is no long-range dependence in the

panel. Kapetanios et al. (2011) study a model where factors and regressors are I (1) processes

while errors are stationary I (0) series. Our approach, on the other hand, is specifically

geared towards general nonstationary behaviour in panels and addresses estimation of both

cointegrating and non-cointegrating relationships among idiosyncratic terms. We do not

explicitly include the presence of observable common factors and time trends in the equations

for yit and Xit, but these could be incorporated and treated easily by our estimation methods

as we later discuss.

We introduce the following regularity conditions that generalize Assumption A to model

the system in (7).

Assumption D

D.1. The idiosyncratic shocks, εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T are independently

distributed across i and identically and independently distributed across t with zero mean

and variance σ2
i , and have a finite fourth-order moment, and δi0 ∈ (0, 3/2).

D.2. The common factor satisfies ft = ∆−%t zft , % < 3/2, where zft = Φf
k (L) vft−k with Φf (s) =∑∞

k=0 Φf
ks
k,
∑∞

k=0 k
∥∥∥Φf

k

∥∥∥ < ∞, det
(
Φf (s)

)
6= 0 for |s| ≤ 1 and vft ∼ iid(0,Ωf ), Ωf > 0,

E
∥∥∥vft ∥∥∥4

<∞, and the idiosyncratic shocks eit are independent in i and satisfy eit = ∆−ϑit zeit,

supiϑi < 3/2, where zeit = Φe
ik (L) veit−k with Φe

i (s) =
∑∞

k=0 Φe
iks

k, supi
∑∞

k=0 k ‖Φe
ik‖ < ∞,

det(Φe
i (s)) 6= 0 for |s| ≤ 1 and veit ∼ iid(0,Ωie), Ωie > 0, supi,tE ‖veit‖

4 <∞.

D.3. The covariate-specific idiosyncratic shocks, eit, the idiosyncratic error terms, εit, and

the unobservable common factor, ft, are all pairwise independent and independent of γi and

Γi, which are also independent in i.

D.4. Rank(CN) = m ≤ k + 1, where the matrix CN is

CN =

(
β′0Γ

′
N + γ′N

Γ′N

)

with γN = N−1
∑N

i=1 γi, ΓN = N−1
∑N

i=1 Γi, β′0Γ
′
N = N−1

∑N
i=1 β

′
i0Γ′i.

Assumption D.1 relaxes the identical distribution condition across i in Assumption A.1,
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in particular allowing for each equation error to have different persistence and variance.

Assumption D.2 states that the factor series and the regressor idiosyncratic terms are multi-

variate integrated nonsingular linear processes of orders % and ϑi, respectively, where the I (0)

innovations of ft are not collinear. We assume that all components of these vectors are of the

same integration order to simplify conditions and presentation, though some heterogeneity

could be allowed at the cost of making notation much more complex.

Assumption D.3 is a standard condition and does not restrict covariates to be exogenous,

because as long as Γi 6= 0 and γi 6= 0, endogeneity will be present. Furthermore, this could be

relaxed by assuming E(X ⊗ ε) = 0 and finite higher order moments, but this would require

more involved derivations and no further insights.

Assumption D.4 introduces a rank condition that simplifies derivations and requires that

k+1 ≥ m. It is possible that some of our results hold if this condition is dropped, but at the

cost of introducing more technical assumptions and derivations, see e.g. Pesaran (2006) and

Kapetanios et al. (2011). This condition facilitates the identification of the m factors using

the k + 1 cross section averages of the observables and still allows for cointegration among

idiosyncratic elements of each unit.

Under the given set of assumptions, we perform the estimation in first differences to

remove fixed effects. For i = 1, . . . , N and t = 1, . . . , T, the first-differences model, including

only asymptotically stationary variables, is

∆yit = β′i0∆Xit + γ′i∆ft + ∆λ−1
t (L; θ0) εit, (8)

∆Xit = Γ′i∆ft + ∆eit.

The estimation we propose for each βi0 is in essence a GLS estimation after prewhitening

by means of fractional δ∗ differencing, where δ∗ is a sufficiently large differencing parameter

chosen by the econometrician that could be a noninteger (thus extending Bai and Ng (2004)’s

method based on first differencing), because if we write

∆δ∗−1
t−1 ∆yit = β′i0∆δ∗−1

t−1 ∆Xit + γ′i∆
δ∗−1
t−1 ∆ft + ∆δ∗−1

t−1 ∆λ−1
t (L; θ0) εit,

the idiosyncratic error term is approximately ∆δ∗−δi0
t ψ (L; ξ0) εit ≈ I (0) when δ∗ ≈ δi0.

Adapting Pesaran (2006), we remove the factor structure by projecting the transformed

model on the fractionally differenced cross-section averages, possibly using a different δ∗ for

each equation in order to match the corresponding persistence level. The general intuition

is that to control strong persistence, enough differencing is needed in absence of knowledge
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on the true value of δi0, e.g. setting δ∗ = 1 and working with first differences as in Section 3.

This policy requires that all variables in (8) are (asymptotically) stationary and bears the

implicit assumption that variables have persistence around the unit root, while allowing δi0

to be smaller, implying a cointegration relationship between the idiosyncratic terms of yit,

λ−1
t (L; θ0) εit ∼ I (δi0) , and of Xit, eit ∼ I (ϑi) , when ϑi > δi0. In case of the presence of

incidental linear trends, it would be possible to work with second differences of data, which

would remove exactly them at the cost of introducing slightly modified initial conditions for

the fractional differences of observed data.

Denote yi = (yi1, . . . , yiT ), Xi = (Xi1, . . . , XiT ), F = (f1, . . . , fT ), Ei = (ei1, . . . , eiT ) and

εi = (εi1, . . . , εiT ). We can write down the model in first differences as

∆yi = β′i0∆Xi + γ′i∆F + ∆λ−1
t (L; θ0) εi

∆Xi = Γ′i∆F + ∆Ei.

Then, the projection matrix can be denoted by

W̄T = W̄T (δ∗) = IT − H̄(δ∗)(H̄(δ∗)′H̄(δ∗))−H̄(δ∗)′

H̄(δ∗) =

(
ȳ(δ∗)

X̄(δ∗)

)′

where (·)− denotes generalized inverse, W̄T is the T ×T projection matrix, and H̄(δ∗) is the

T × (k + 1) matrix of fractionally differenced cross-section averages with

ȳ(δ∗) :=
1

N

N∑
j=1

Yj(δ∗), Yj = Yj(δ∗) = ∆δ∗−1∆yj

X̄(δ∗) :=
1

N

N∑
j=1

Xj(δ∗), Xj = Xj(δ∗) = ∆δ∗−1∆Xj.

Denote F = F (δ∗) = ∆δ∗−1(∆F)′ and introduce the infeasible projection matrix on

unobserved factors

Wf = IT −F(F ′F)−F ′.

Adapting Pesaran (2006), under the rank conditions in Assumptions D.2 and D.4, as (N, T )j →
∞, we have that

W̄TF ≈ WfF = 0.
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That is, both projections can be used interchangeably for factor removal in the asymptotics as

long as the rank condition holds. Along this line, the possibility of including observed factors

in the covariates as in Pesaran (2006) should also be noted just by enlarging H̄(δ∗) with an

appropriately fractionally differenced version of such factors. Introducing such observed

factors would not alter any of the results since they would also be entirely removed by

projection, and, similarly a constant could be added to project out the contribution of the

differences of individual linear trends.

The (preliminary) estimate of βi0 for some fixed δ∗ is given by

β̂i(δ
∗) :=

(
XiW̄TX ′i

)−1XiW̄TY ′i,

where the following identification condition is satisfied.

Assumption D.5. XiW̄TX ′i and XiWfX ′i are full rank for all i = 1, . . . , N.

Note that choosing δ∗ ≥ 1, so that ϑi + δi0 − 2δ∗ < 1 for all possible values of ϑi and

δi0, guarantees that all detrended variables are asymptotically stationary and that sample

moments converge to population limits as (N, T )j →∞. This, together with the identifying

conditions in Assumption D lead to the consistency of β̂i(δ
∗), as we show in the next theorem.

This does not require further restrictions on the rate on which both N and T diverge, just

that δ∗ is not smaller than one. This approach is similar to the choice of working with first

differences in Bai and Ng (2004) when trying to estimate the common factors from I (1)

nonstationary data by principal components although using δ∗ provides greater flexibility

extending Bai and Ng (2004)’s method based on first differencing.

Theorem 4. Under Assumption D, δ∗ ≥ 1, as (N, T )j →∞,

β̂i(δ
∗)→p βi0.

We next analyze the asymptotic distribution of β̂i(δ
∗) when δ∗ is large enough so that

aggregate memory of the idiosyncratic regression error term and regressor component is as

small as desired. Define for δ∗ ≥ 1,

Σie (j) =
∞∑
k=0

Φe
ik (δ∗ − ϑi) ΩieΦ

e
ij+k (δ∗ − ϑi)′ , j = 0, 1, . . . ,
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Σie (j) = Σie (−j)′ , j < 0, where the weights Φe
ik (δ∗ − ϑi) =

∑k
j=0 Φe

ik−jπj (δ∗ − ϑi) incor-

porate the prewhitening effect, and for ϑi + δi0 − 2δ∗ < 1/2 (which can be guaranteed by

taking δ∗ > 5/4), define

Σi0 =
∞∑

j=−∞

Σie (j) ζi0 (j) ,

where ζi0 (j) =
∑∞

k=0 λ
−1
k (δi0 − δ∗, ξi0)λ−1

k+|j|(δi0 − δ∗, ξi0), j = 0,±1, . . . .

Setting δ∗ = 1 could be enough to obtain asymptotically normal estimates of βi0 if we

further restrict the aggregate memory as in the next condition. Set

ϑmax = max
i
ϑi, δmax = max

i
δi0.

Assumption E. δ∗ > 5/4, or δ∗ ≥ 1 and ϑmax + δmax− 2δ∗ < 1/2, max{δmax, ϑmax} < 11/8

and max {%+ δmax, %+ ϑmax} < 11/4.

This condition could be dispensed with if we allow N to grow faster than T in the asymp-

totics, while the condition T/N2 → 0 as used by Pesaran (2006) for weakly dependent series

is also needed in our analysis. There is no requirement on the distribution of values of δi

across individuals.

Let

Υβi = σ2
iΣ
−1
ie (0) Σi0Σ

−1
ie (0) .

Theorem 5. Under Assumptions D and E, and if T/N2 → 0 as (N, T )j →∞, then

√
T
(
β̂i(δ

∗)− βi0
)
→d N (0,Υβi).

Note that when δ∗ = δi0 and ψ (L; ξ) = 1, Υβi = σ2
iΣ
−1
ie (0) , so the theorem shows in

this case the estimate β̂i(δ
∗) is effectively an efficient GLS estimate and the asymptotic

variance of β̂i(δ
∗) simplifies in the usual way, not depending on the dynamics of the error

term. The rate of convergence is
√
T for the range of allowed memory parameters (or if δ∗

is large enough as described in Assumption 5), irrespective of possible cointegration among

idiosyncratic terms, as the GLS estimate is designed in terms of approximately independent

regressor and error time series after factor removal. Consistent estimates of the asymptotic

variance of β̂i(δ
∗) could be designed adapting the methods of Robinson and Hidalgo (1997)

and Robinson (2005) in terms of projected observations to eliminate factors and an estimate

of δi0 or the residual series.
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4.2. Estimation of Dynamic Parameters

We now turn to individual long and short memory parameter estimation. In the treatment

of the basic model, we proved consistency of the parameter estimates for the heterogeneous

case in subsection 3.2. Similarly, denote

θ̂i = arg min
θ∈Θ

L∗i,T (θ),

with Θ defined as before, D =
[
δ, δ
]
⊂ (0, 3/2), and

L∗i,T (θ) =
1

T
εi(θ)εi(θ)

′,

where

εi(θ) = λ (L; δi − δ∗, ξ)
(
ỹi(δ

∗)− β̂i(δ∗)′X̃i(δ
∗)
)

and the vectors of observations ỹi = YiW̄T and X̃i = XiW̄T and the least squares coefficients

β̂i(δ
∗) are obtained after projection of Yi and Xi on both ȳ(δ∗) and X̄(δ∗) for a given δ∗. The

next assumption requires that δ is not very small compared to the other memory parameters,

implying that they can not be very different if we require that δi0 belong to the set D so

that they are also bounded from above.

Assumption F. max {δmax, ϑmax, %} − δ < 1/2 and max{δmax, ϑmax} < 5/4.

Note that when δi0 ∈ D the conditions in Assumption F also imply ϑi− δi0 < 1/2 because

ϑi ≤ ϑmax and δ ≤ δi0, and also imply % − δi0 < 1/2. The next theorem presents the

consistency and asymptotic normality of the dynamics parameter estimates.

Theorem 6. Under the assumptions of Theorem 5 and Assumption F, θi0 ∈ Int(Θ) as

(N, T )j →∞,
T 1/2

(
θ̂i − θi0

)
→d N

(
0, B−1 (ξi0)

)
.

Here Assumption F basically implies the sufficient conditions for Assumption B in terms of

the lower bound δ, while taking δ∗ ≥ 1 mirrors the approach of working with first differenced

data as in Theorem 1. Note that Theorem 5 guarantees the
√
T consistency of β̂i(δ

∗), which

might be stronger than needed for the consistency of θ̂i, but simplifies the proof. The

asymptotic distribution of the dynamic parameter estimate is normal analogously to the

result in Corollary 2, without the burden of the initial condition bias of Theorem 2 since the

rate of consistency for each θ̂i is just
√
T .
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We finally show the efficiency of the feasible GLS slope estimate β̃i(θ̂i) obtained by plug-

ging in an estimate of the vector θi0, where θ̂i is
√
T consistent for θi0, with δ∗ and δi0

satisfying the restrictions in Assumption E. Note that this requires δi0 ≥ 1 in a general set

up where factors and the idiosyncratic component of regressors can have orders of integration

arbitrarily close to 3/2. For that, define the following generalized prewhitened series,

Ŷj = Ŷj(θ̂i) = λt−1

(
L; θ̂

(−1)
i

)
∆yj

X̂j = X̂j(θ̂i) = λt−1

(
L; θ̂

(−1)
i

)
∆Xj

for j = 1, . . . , N, and their cross-section averages, ŷ(θ̂i) and X̂(θ̂i), and the corresponding

projection matrix ŴT based on Ĥ(θ̂i) =
(
ŷ(θ̂i)

′ X̂(θ̂i)
′
)
. Then the GLS estimate is

β̃i(θ̂i) :=
(
X̂iŴT X̂ ′i

)−1

X̂iŴT Ŷ ′i,

where the matrix X̂iŴT X̂ ′i is assumed full rank.

Let

Σ̄ie =
∞∑
k=0

Φ̄e
ikΩieΦ̄

e′
ik,

be the asymptotic variance matrix of the idiosyncratic component of the prewhitened re-

gressors X̂ 0
i = X̂i(θi0) where the weights Φ̄e

ik =
∑k

j=0 Φe
ik−jλj (δi0 − ϑi, ξi0) incorporate the

prewhitening effect.

Theorem 7. Under the assumptions of Theorem 5 with δ∗ = δi0 and θ̂i − θi0 = Op

(
T−1/2

)
,

√
T
(
β̃i(θ̂i)− βi

)
→d N (0, σ2

i Σ̄
−1
ie ).

Consistent estimation of σ2
i can be conducted directly from the sample variance of resid-

uals εi(θ̂i), while estimation of Σ̄ie would require the sample second moment matrix of the

projected and prewhitened series regressors, i.e. X̂iŴT X̂ ′i . Further iterations to estimate θ

can also be envisaged using the efficient β̃i(θ̂i) instead of the preliminary β̂i(δ
∗).

4.3. Estimation of Mean Effects

Given the panel data structure, in many cases there is an interest in estimating the average

effect across all cross section units. The simplest estimate capturing average effects is the
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common correlation mean group estimate that averages all individual coefficients, possibly

with a common δ∗,

β̂CCMG(δ∗) =
1

N

N∑
i=1

β̂i(δ
∗).

Other possibilities such as the common correlation pooled estimate,

β̂CCP (δ∗) :=

(
N∑
i=1

XiW̄TX ′i

)−1 N∑
i=1

XiW̄TY ′i,

can be more in the spirit of the joint estimation of the memory parameter presented in

Section 2. For the asymptotic analysis of the mean group estimate we consider a simple

linear random coefficients model

βi0 = β0 + wi, wi ∼ iid (0,Ωw) ,

where wi is independent of all the other variables in the model. The asymptotic analysis of

the pooled estimate requires further regularity conditions so it is left for future research.

Theorem 8. Under Assumptions D and E, and
(
T−1XiW̄TX ′i

)−1
having finite second order

moments for all i=1, . . ., N, as (N, T )j →∞,

√
N
(
β̂CCMG(δ∗)− β0

)
→d N (0,Ωw).

This theorem extends previous results in Pesaran (2006) and Kapetanios et al. (2011)

for I (0) and I (1) variables under similar conditions to D.5 based on original data, where

now the rate of convergence is
√
N, and no restrictions are required in the rate of growth

of N and T. Consistent estimates of the asymptotic variance can be proposed as in Pesaran

(2006), since, asymptotically, variability only depends on the heterogeneity of the βi0,

Ω̂w =
1

N

N∑
i=1

(
β̂i(δ

∗)− β̂CCMG(δ∗)
)(

β̂i(δ
∗)− β̂CCMG(δ∗)

)′
.

Similarly, the average effect can be estimated based on β̃i(θ̂i) as

β̃CCMG(θ̂) =
1

N

N∑
i=1

β̃i(θ̂i), θ̂ =
(
θ̂1, . . . , θ̂N

)
,
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which is also asymptotically normally distributed and the asymptotic variance-covariance

matrix can be estimated by

Ω̃w =
1

N

N∑
i=1

(
β̃i(θ̂i)− β̃CCMG(θ̂)

)(
β̃i(θ̂i)− β̃CCMG(θ̂)

)′
.

5. Monte Carlo Simulations

In this section we carry out a Monte Carlo experiment to study the small-sample performance

of the slope and memory estimates in the simplest case where there are not short memory

dynamics, ξ = 0, and persistence depends only on the value of δ0. We draw the idiosyncratic

shocks εi,t as standard normal and the factor loadings γi from U(−0.5, 1) not to restrict the

sign. We then generate serially correlated common factors ft based on the iid shocks drawn

as standard normals and then fractionally integrated to the order %. The individual effects

αi are left unspecified since they are removed via first differencing in the estimation, and

projections are based on the first-differenced data. We focus on different cross-section and

time-series sizes, N and T, as well as different values of δ0. Simulations are based on 1,000

replications.

5.1 Simulations for the Basic Model

In this first subsection we investigate the finite-sample properties of our estimate of δ0 under

the basic setup without covariates. In this case, we set N = 10, 20 and T = 50, 100 for

values of δ0 = 0.3, 0.6, 0.9, 1, 1.1, 1.4 thus covering a heavily biased stationary case, a slightly

nonstationary case, near-unit-root cases and finally a quite nonstationary case, respectively.

We report total biases containing initial-condition and projection biases as well as carry

out bias correction based on estimated memory values to obtain projection biases for % =

0.4, 1. As is clear in Table 1, when the factors are less persistent (% = 0.4), the estimate is

heavily biased for the stationary case of δ0 = 0.3 while it gets considerably smaller around

the unit-root case. Noticeably, the bias becomes negative when δ0 ≥ 0.6 for several (N, T )

combinations. Better results in terms of bias are obtained with increasing T. Expectedly,

when the factors have a unit root, the estimate of δ contains a larger bias in the stationary

(δ0 = 0.3) and in the moderately nonstationary (δ0 = 0.6) cases because the idiosyncratic

shocks are dominated by a more persistent common factor. Biases for other memory values

are also exacerbated due to factor persistence increase except for the very high persistent
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case δ0 = 1.4. Bias correction works reasonably well when % = 0.4 although benefits are

limited for % = 1. While there is a monotonically decreasing pattern for increasing δ0 in

terms of bias both for the total bias and bias-corrected cases, magnitudes of biases increase

when δ0 leaves the neighbourhood of unity.

Table 1 also reports the root mean square errors (RMSE), which indicate that performance

increases with increasing δ0, T and NT. Standard errors are dominated by bias in terms of

contribution to RMSE. Table 2 shows the empirical coverage of 95% confidence intervals of

δ0 based on the asymptotics of our estimate. For % = 0.4, 1, the true fractional parameter is

poorly covered when δ0 ≤ 0.6. Bias correction in these cases improves the results reasonably.

For near-unit-root cases, the estimate achieves the most accurate coverage, especially by

comparison with intervals based on estimates of δ0 = 1.4 and δ0 ≤ 0.6.

5.2 Simulations for the General Model

Based on the general model, we conduct a finite-sample study to check the accuracy of

both slope and fractional parameter estimates. We draw the shocks and factor loadings

and generate the common factor the same way we followed under the basic setup, while the

idiosyncratic component of covariates follows a pure fractional process of memory ϑ. We

investigate the performance for (N, T ) = (10, 50) and (N, T ) = (20, 100) for the parameter

values δ0 = 0.5, 0.75, 1; ϑ = 0.75, 1, 1.25, and % = 0.4, 1, covering both cointegration (e.g.

ϑ = 1.25 and δ = 1) and non-cointegration cases (e.g. ϑ = 1 and δ = 1). For projection of

estimated factors based on prewhitened cross section averages, we take δ∗ = 1.

Tables 3 and 4 present biases and RMSE’s for both slope and fractional parameter es-

timates for (N, T ) = (10, 50), (20, 100), respectively. Biases of both common correlation

pooled (CCP) and mean group (CCMG) estimates are very reasonable with biases of pooled

estimates generally dominating those of MG estimates, particularly when % = 1. Biases

of slope estimates become negative with their magnitudes increasing with NT for the two

smallest values of ϑ. The pooled estimate of the fractional parameter suffers from large

biases when δ0 is small relative to ϑ or % due to the idiosyncratic shocks in the regression

equation being dominated by other sources of persistence. As expected, biases in fractional

parameter estimates decrease with δ0 in all cases.

In terms of performance, slope estimates behave quite well both in cointegration and non-

cointegration cases implying that cointegration is not necessary for the estimation of slope

in practice. However, for several cases standard errors of fractional parameter estimates
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are rather large, which can be explained by persistence distortions from the common factor

and covariate shocks. Nevertheless, performances of both slope and fractional parameter

estimates are clearly improving with δ0 when ϑ = 0.75, 1 and in all cases with NT. Efficiency

gains of GLS type of estimates using δ̂ are very small, if any, for the MG estimate for all

values of δ0, but for δ0 < δ∗ = 1 the CCP estimate behaviour can deteriorate substantially,

so overdifferencing in the prewhitening step seems a safe recommendation in practice.

6. Fractional Panel Analysis of Realized Volatilities

The capital asset pricing model (CAPM) and its variations have long been used in finance to

determine a theoretically appropriate required rate of return in a diversified portfolio, where

estimating beta is essential as it measures the sensitivity of expected excess stock returns

to expected excess market returns. While CAPM and other such models prove useful in an

I(0) environment, they fail to provide valid inference for variables that exhibit fractional

long-range dependence such as volatility.

In this application, we assess the sensitivity of industry realized volatilities to a market

realized volatility measure. In particular, we estimate the betas for volatility under our

general setup, which permits possible cointegrating relationships. Such relationships may

have direct policy and investment implications since they enable to see which industries are

susceptible to a potential market risk upheaval. Bearing in mind an economy as a portfolio of

industries, we use our general model to get an idea about the systematic risk in an economy.

In order to calculate monthly realized volatility measures, we use daily average-value-

weighted returns data spanning the time period 2000-2011 (T=144 months) from Kenneth

French’s Data Library for 30 industries in the U.S. economy. As for the composite market

returns, we use a weighted average of daily returns of NYSE, NASDAQ and AMEX since the

companies considered in industry returns trade in one of these markets. Using the composite

index returns of NYSE, NASDAQ and AMEX, i.e. rm,t, we calculate

RVMt =

(
Nt∑
s∈t

r2
m,s

)1/2

, t = 1, 2, . . . , T,

where Nt is the number of trading (typically 22) days in a month. Next, for each industry,
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we calculate

RV Ii,t =

(
Nt∑
s∈t

e2
i,s

)1/2

, t = 1, 2, . . . , T,

where ei,s = ri,s−rm,s, cf. Chauvet et al. (2012). Along this line, while jump-robust measures

such as bipower variation could also be used, our main focus is to show that our general

model is suited to address the empirical problem described herein.

Figure 1 shows the behaviour of monthly industry realized volatilities and justifies a

heterogeneous approach. Figure 2 shows the realized volatility in the composite average

of NYSE, NASDAQ and AMEX, where especially closer to the spike there is a trending

behaviour also shared by some of the industries as seen in Figure 1.

Observing that the volatility of volatility is time-varying, we scale each industry as well as

the market realized volatility by their corresponding standard deviations. Then we estimate

RV Ii,t = αi + β0
i0RVMt + βi0Xi,t + γ′ift + ∆−δit+1vi,t,

where RVMt, the I(ϑ) market realized volatility, is the observable common factor that is

treated as a covariate; each Xi,t is the average effect of I(0) industry-specific factors: book-

to-market ratio and market capitalization, which are also covariates; ft are I(%) unobservable

common factors that are projected out as described in earlier sections so that possible coin-

tegrating relationships can be disclosed between RV Ii,t and RVMt.

We obtain fractional integration degrees of market and industry realized volatilities resort-

ing to local Whittle estimation, Robinson (1995), with bandwidth choices of m = T 0.6, T 0.7

corresponding to m = 20, 32, respectively, and refrain from adding more Fourier frequencies

to avoid higher-frequency contamination. Table 5 collectively presents the local Whittle es-

timates of fractional integration values of the 30 U.S. industry realized volatilities as well as

those of the composite market. For both bandwidth choices, the industry realized volatilities

display heterogeneity lying above the nonstationarity bound. The market realized volatility

is also nonstationary being integrated of an order around 0.6. The unobserved common

factor has integration orders of % = 0.71, 0.66 for m = 20, 32, respectively, which we estimate

based on the cross-section averages of the industry realized volatilities.

We use our general model to jointly estimate the fractional order of residuals (δi) and

slope coefficients (β0
i0 and βi0) based on the projections of first-differenced data (δ∗ = 1) in

order to be able to confirm and identify cointegrating relationships. Fama-French factors are
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known to be I(0) in finance, rendering cointegration possible only between the market and

industry realized volatilities. Table 6 presents the fractional order of residuals, from which

the cointegrating relationships are confirmed based on the results presented in Table 5.

The main criterion for cointegration in this setup is δi < ϑi since the equality of realized

volatility integration orders between industries and the market cannot be rejected in all but

very few cases. Based on these two requirements together, cointegrating relationships are

confirmed between the market realized volatility and the realized volatilities of all industries

but Financial Services, Business Equipment and Telecommunications for m = 20. With the

bandwidth of m = 32, more pronounced cointegrating relationships with the market realized

volatility are indicated for the realized volatilities of all industries except Financial Services.

Estimates of the cointegrating parameters and their robust standard errors calculated from

Theorem 5 asymptotic covariance are reported in Table 7, from which it is obvious that

the market realized volatility has a positive and significant effect on all industry realized

volatilities with heterogeneous magnitudes while the average effect of industry characteris-

tics (captured by Fama-French factors) display differences in behaviour across industries.

Although for several industries slope parameters are estimated under non-cointegrating re-

lationships, the finite-sample study in the previous section indicates that these estimates are

still reliable.

This empirical study reveals that our general model can be used to assess the relationship

between market and industry realized volatilities. In fact, other types of such nonstation-

arity assessment can be performed using our general model. Further studies may focus on

estimating cointegrating vectors in-between industries to exactly identify the industries that

could be safe to invest in during crises periods as well as to be able to foresee a potential

crisis through the real sector.

7. Final Comments

We have considered large N, T panel data models with fixed effects and cross-section depen-

dence where the idiosyncratic shocks and common factors are allowed to exhibit long-range

dependence. Our methodology for memory estimation consists in conditional-sum-of-squares

estimation on the first differences of defactored variables, where projections are carried out

on the sample means of differenced data. While Monte Carlo experiments indicate satis-

factory results, our methodology can be extended in the following directions: (a) Different

estimation techniques, such as fixed effects and GMM, can be used under our setup as
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in Robinson and Velasco (2015); (b) The idiosyncratic shocks may be allowed to feature

spatial dependence providing further insights in empirical analyses; (c) The independence

assumption between the idiosyncratic shocks in the general model can be relaxed to allow

for nonfactor endogeneity thereby leading to a cointegrated system analysis in the classical

sense as in Ergemen (2015) who considers a less flexible modelization due to the lack of

allowance of multiple covariates; (d) Panel unit-root testing can be readily performed using

our methodology, but it could also be interesting to develop tests that can detect breaks in

the general model parameters.

8. Technical Appendix

We prove our results under more general conditions that are implied by Assumptions B
and C allowing for some trade off between the choice of δ and the asymptotic relationship
between N and T . The weaker counterpart of Assumption B is as follows.

Assumption B∗.

B∗.1. δ0 − 1 < δ/2 and %− 1 < δ/2.

B∗.2. If %− δ > 1
2
, as (N, T )j →∞,

T 2(%−δ)−1N−2 → 0

B∗.3. If δ0 − δ ≥ 1
2
, as (N, T )j →∞,

N−1T 2(δ0−2δ)−1 → 0

N−1
(
1 + T 2(δ0+%−1)−4δ

) (
log T + T 2(%−1)+2(δ0−1)−1

)
→ 0.

8.1 Proof of Theorem 1

The projection parameter from the projection of ∆yit on its cross-section averages, ∆ȳt, can
be written as

φ̂i =

∑T
t=1 ∆ȳt∆yit∑T
t=1(∆ȳt)2

=
γi
γ̄

+ ηi (9)

where

ηi =

∑T
t=1 ∆ȳt∆λ

−1
t (L; θ0) (εit − γi

γ̄
ε̄t)∑T

t=1 (∆ȳt)
2

is the projection error. The conditional sum of squares then can be written as

LN,T (θ) =
1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ)

(
εit − φ̂iε̄t

)
− τt(θ)(εi0 − φ̂iε̄0)− ηiγ̄λt−1 (L; θ) ft

)2

(10)
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where

λ0
t (L; θ) = λt (L; θ)λ−1

t (L; θ0) =
t∑

j=1

λ0
j (θ)Lj.

and in (10) the first term is the (corrected) usual idiosyncratic component, the second term
is the initial condition term, and the third term is the projection error component.

Following Hualde and Robinson (2011) we give the proof for the most general case where
possibly δ ≤ δ0 − 1/2. Additionally, the common factor in our model is I(%) by Assumption
A.2. While δ may take arbitrary values from [δ, δ] ⊆ (0, 3/2), ensuring uniform convergence
of LN,T (θ) requires the study of cases depending on δ0 − δ, while controlling the distance
%− δ. We analyze these separately in the following.

In analyzing the idiosyncratic component and the initial condition component, we closely
follow Hualde and Robinson (2011). For ε > 0, define Qε = {θ : |δ − δ0| < ε} , Qε =
{θ : θ /∈ Qε, δ ∈ D} . For small enough ε,

Pr(θ̂ ∈ Qε) ≤ Pr

(
inf

Θ∈Qε
SN,T (θ) ≤ 0

)
where SN,T (θ) = LN,T (θ) − LN,T (θ0). In the rest of the proof, we will show that LN,T (θ),
and thus SN,T (θ), converges in probability to a well-behaved function when δ0− δ < 1/2 and
diverges when δ0 − δ ≥ 1/2. In order to analyze the asymptotic behaviour of SN,T (δ) in the
neighborhood of δ = δ0 − 1/2, a special treatment is required. For arbitrarily small ζ > 0,
such that ζ < δ0 − 1/2 − δ, let us define the disjoint sets Θ1 = {θ : δ ≤ δ ≤ δ0 − 1/2− ζ} ,
Θ2 = {θ : δ0 − 1/2− ζ < δ < δ0 − 1/2} , Θ3 = {θ : δ0 − 1/2 ≤ δ ≤ δ0 − 1/2 + ζ} and
Θ4 = {θ : δ0 − 1/2 + ζ < δ ≤ δ} , so Θ = ∪4

k=1Θk. Then we will show

Pr

(
inf

θ∈Qε∩Θk

SN,T (δ) ≤ 0

)
→ 0 as (N, T )j →∞, k = 1, . . . , 4. (11)

We write LN,T (θ) in (10) as

1

NT

N∑
i=1

T∑
t=1

{(
λ0
t (L; θ) (εit − φ̂iε̄t)

)2

+ τ 2
t (θ)(εi0 − φ̂iε̄0)2 + η2

i γ̄
2(λt−1 (L; θ) ft)

2

− ηiγ̄ (λt−1 (L; θ) ft)λ
0
t (L; θ)

(
εit − φ̂iε̄t

)
+ ηiγ̄ (λt−1 (L; θ) ft) ∗ τt(θ)(εi0 − φ̂iε̄0)

− λ0
t (L; θ)

(
εit − φ̂iε̄t

)
∗ τt(θ)(εi0 − φ̂iε̄0)

}
.

The projection error component in the conditional sum of squares,

sup
θ∈Θ

∣∣∣∣∣γ̄2 1

N

N∑
i=1

η2
i

1

T

T∑
t=1

(λt−1 (L; θ) ft)
2

∣∣∣∣∣ , (12)
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is Op(T
2%+2δ0−6 + T−1 log T +N−1T 4δ0−6 +N−2) +Op(T

4%+2(δ0−δ)−7 + T 2(%−δ−1) log T
+N−1T 2(%−δ)+4δ0−7 + T 2(%−δ)−1N−2) = op (1) uniformly in θ ∈ Θ by γ̄2 →p E [γi]

2 , Lemmas
1 and 2(a) and Assumption B∗.2 since %− δ < 1, 2% + δ0 − δ < 7/2 and % + 2δ0 − δ < 7/2,
are implied by Assumption B∗.1.

Similarly,

sup
θ∈Θ

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

τ 2
t (θ)(εi0 − φ̂iε̄0)2

∣∣∣∣∣ = op(1), (13)

because

1

NT

N∑
i=1

T∑
t=1

τ 2
t (θ)(εi0 − φ̂iε̄0)2 =

1

T

T∑
t=1

τ 2
t (θ)

1

N

N∑
i=1

(
ε2
i0 − 2φ̂iεi0ε̄0 + φ̂2

i ε̄
2
0

)
= Op

(
T−2δ + T−1

)
Op (1) = op(1),

uniformly in θ ∈ Θ with δ > 0, using 1
N

∑N
i=1 ε

2
i0 + 1

N

∑N
i=1 φ̂

2
i = Op (1) , ε̄0 = Op

(
N−1/2

)
and Cauchy-Schwarz inequality, see Lemma 1, and therefore we find for the cross term
corresponding to the sum of squares in (12) and (13)

sup
θ∈Θ

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

ηiγ̄λt−1 (L; θ) ft ∗ τt(θ)(εi0 − φ̂iε̄0)

∣∣∣∣∣ = op (1)

uniformly in δ by (12), (13) and Cauchy-Schwarz inequality.

The other cross terms involving usual fractional residuals λ0
t (L; θ)

(
εit − φ̂iε̄t

)
are also

uniformly op (1) for θ ∈ Θ1 using Cauchy-Schwarz inequality and that this part of the
conditional sum of squares converges uniformly in this set. Lemmas 3 and 4 show that these
cross terms are also uniformly op (1) for θ ∈ Θ1 ∪ Θ2 ∪ Θ3 under the assumptions of the

theorem. Then to show (11) we only need to analyze the terms in (λ0
t (L; θ) (εit− φ̂iε̄t))2 for

Θk, k = 1, . . . , 4 as in Hualde and Robinson (2011).

Proof for k = 4. We show that

sup
θ∈Θ4

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

[
(λ0

t (L; θ) (εit − φ̂iε̄t))2 − σ2

∞∑
j=0

λ0
j (θ)2

]∣∣∣∣∣ = op(1), (14)

analyzing the idiosyncratic term, εit, and the cross-section averaged term, φ̂iε̄t, separately.
For the idiosyncratic term, we first show following Hualde and Robinson (2011),

1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ) εit

)2
=

1

NT

N∑
i=1

T∑
t=1

(
t∑

j=0

λ0
j (θ) ε̄it−j

)2

→p σ2

∞∑
j=0

λ0
j (θ)2 ,
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uniformly in δ by Assumption 1 as (N, T )j → ∞ since −1/2 + ζ < δ − δ0 for some ζ > 0.
Since the limit is uniquely minimized at θ = θ0 as it is positive for all θ 6= θ0, (11) holds for
k = 4 if (14) holds and the contribution of cross-section averaged term, φ̂iε̄t, is negligible.

To check (14) we show

sup
θ∈Θ4

∣∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

( t∑
j=0

λ0
j (θ) εit−j

)2

− E

(
t∑

j=0

λ0
j (θ) εit−j

)2
∣∣∣∣∣∣ = op(1),

where the term in absolute value is

1

T

T∑
j=0

λ0
j (θ)2 1

N

N∑
i=1

T−j∑
l=0

(ε2
il − σ2)

+
2

T

T−1∑
j=0

λ0
j (θ)λ0

k (θ)
1

N

N∑
i=1

T−j∑
l=k−j+1

εilεil−(k−j) = (a) + (b). (15)

Then,

E sup
Θ4

|(a)| ≤ 1

N

N∑
i=1

(
1

T

T∑
j=0

sup
Θ4

λ0
j (θ)2E

∣∣∣∣∣
T−j∑
l=0

(ε2
il − σ2)

∣∣∣∣∣
)
.

Uniformly in j, V ar(N−1
∑N

i=1

∑T−j
l=0 ε

2
il) = O(N−1T ), so using −1/2 + ζ < δ − δ0,

sup
Θ4

|(a)| = Op

(
N−1/2T−1/2

∞∑
j=1

j−2ζ−1

)
= Op(N

−1/2T−1/2).

By summation by parts, the term (b) is equal to

2λ0
T−1 (θ)

T

T−1∑
j=0

1

N

N∑
i=1

T∑
k=j+1

T−j∑
l=k−j+1

λ0
j (θ) εilεil−(k−j)

− 2

T

T−1∑
j=0

λ0
j (θ)

T∑
k=j+1

[
λ0
k+1 (θ)− λ0

k (θ)
] 1

N

N∑
i=1

k∑
r=j+1

T−j∑
l=r−j+1

εilεil−(r−j)

= (b1) + (b2) .

Then, using that V ar
(
N−1

∑N
i=1

∑T
k=j+1

∑T−j
l=k−j+1

{
εilεil−(k−j)

})
= O (N−1T 2) uniformly

in i and j,

E sup
Θ4

|(b1)| ≤ T−ζ−3/2

T∑
j=1

j−ζ−1/2V ar

(
T∑

k=j+1

T−j∑
l=k−j+1

{
εilεil−(k−j)

})1/2

≤ N−1/2T−2ζ ,
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while

E sup
Θ4

|(b2)| ≤ T−1

T∑
j=1

j−ζ−1/2

T∑
k=j+1

k−ζ−3/2V ar

(
1

N

N∑
i=1

k∑
r=j+1

T−j∑
l=r−j+1

{
εilεil−(r−j)

})1/2

≤ N−1/2T−1/2

T∑
j=1

j−ζ−1/2

T∑
k=j+1

k−ζ−3/2 (k − j)1/2 ≤ KN−1/2T−2ζ ,

and therefore (b) = Op(N
−1/2T−2ζ) = op(1).

Next, we deal with the terms carrying ε̄t in the LHS of (14). We write

1

NT

N∑
i=1

T∑
t=1

φ̂2
i

(
λ0
t (L; θ) ε̄t

)2
=

1

N

N∑
i=1

φ̂2
i

1

T

T∑
t=1

(
λ0
t (L; θ) ε̄t

)2
. (16)

The average in i is Op (1) by Lemma 1, while the sum in t in the lhs (16) satisfies for θ∗ with
first component θ∗(1) = ζ − 1

2
,

1

T

T∑
t=1

(
λ0
t (L; θ) ε̄t

)2
= Op

(
σ2

N

∞∑
j=0

λ0
j (θ∗)2

)
= Op

(
N−1

)
= op (1)

as N →∞, uniformly in θ ∈ Θ4 as T →∞, and (16) is at most Op(N
−1) = op(1) uniformly

in θ ∈ Θ4.

Finally, the cross-term due to the square on the lhs of (14) is asymptotically negligible by
Cauchy-Schwarz inequality. So we have proved (14), and therefore we have proved (11) for
k = 4.

Proof for k = 3, 2. The uniform convergence for the idiosyncratic component for the proof
of (11) follows as in Hualde and Robinson (2011), since the average in i = 1, . . . , N adds no
additional complication as in the case k = 4. The treatment for the cross-section averaged
term and the cross-product term follows from the same steps as the idiosyncratic term as
well as the results we derived for k = 4 using 1

N

∑N
i=1 φ̂

2
i = Op (1) and that ε̄t has variance

σ2/N.

Proof for k = 1. Noting that

L∗N,T (θ) :=
1

N

N∑
i=1

1

T

T∑
t=1

(
λ0
t (L; θ) (εit − φiε̄t)

)2 ≥ 1

N

N∑
i=1

1

T 2

(
T∑
t=1

λ0
t (L; θ) (εit − φiε̄t)

)2

,

we write

Pr

(
inf
Θ1

L∗N,T (θ) > K

)
≥ Pr

T 2ζ inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> K
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since δ − δ0 ≤ −1/2− ζ.

For arbitrarily small ε > 0, we show

Pr

T 2ζ inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> K


≥ Pr

inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> ε

→ 1 as (N, T )j →∞.

Define h
(1)
i,T (δ) = T−δ0+δ−1/2λ0

t (L; θ) εit−j = T−1/2
∑T

j=1

λ0j (θ)

T δ0−δ
εit−j and

h
(2)
T (δ) = T−δ0+δ−1/2λ0

t (L; θ) ε̄t−j = T−1/2
∑T

j=1

λ0j (θ)

T δ0−δ
ε̄t−j. By the weak convergence results

in Marinucci and Robinson (2000), for each i = 1, . . . , N,

h
(1)
i,T (δ)⇒ λ0

∞ (1; θ)

∫ 1

0

(1− s)δ0−δ

Γ(δ0 − δ + 1)
δBi(s)

as (N, T )j → ∞, where Bi(s) is a scalar Brownian motion, i = 0, . . . , N, and by ⇒ we
mean convergence in the space of continuous functions in Θ1 with uniform metric. Tightness
and finite dimensional convergence follows from the fractional invariance property presented

in Theorem 1 in Hosoya (2005) as well as supiT E
[
h

(1)
i,T (δ)2

]
< ∞. Similarly, N1/2h

(2)
T (δ) is

weakly converging to B0(s). Then, as (N, T )j → ∞, following the discussions for double-

index processes in Phillips and Moon (1999) and 1
N

∑N
i=1 φ

2
i = Op (1) ,

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

→p λ0
∞ (1; θ)2 Var

(∫ 1

0

(1− s)δ0−δ

Γ(δ0 − δ + 1)
δB(s)

)
=

σ2λ0
∞ (1; θ)2

(2(δ0 − δ) + 1) Γ2(δ0 − δ + 1)
,

uniformly in θ ∈ Θ1, where

inf
Θ1

λ0
∞ (1; θ)2 Var

(∫ 1

0

(1− s)δ0−δ

Γ(δ0 − δ + 1)
δB(s)

)
=

σ2

(2(δ0 − δ) + 1) Γ2(δ0 − δ + 1)
> 0,

so that

Pr

inf
Θ1

1

N

N∑
i=1

(
1

T δ0−δ+1/2

T∑
t=1

λ0
t (L; θ) (εit−j − φiε̄t−j)

)2

> ε

→ 1 as (N, T )j →∞

and (11) follows for i = 1 as ε is arbitrarily small. �
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8.2 Other Proofs in Section 3

We use the following more general conditions that are implied by Assumption C in our
proofs.

Assumption C∗.

C∗.1. As (N, T )j →∞,
N

T
log2 T +

T

N3
→ 0.

C∗.2. As (N, T )j →∞,

N
(
T 4(%+δ0)−11 log2 T + T 8δ0−11

)
log2 T → 0

N
(
T 2(%−2δ0)−1 + T %−2δ0−1

)
log2 T → 0

C∗.3. As (N, T )j →∞,
N−1T 2(%−2δ0) log2 T → 0.

Proof of Theorem 2. We first analyze the first derivative of LN,T (θ) evaluated at θ = θ0,

∂

∂θ
LN,T (θ)|θ=θ0 =

2

NT

N∑
i=1

T∑
t=1

{
−ηiγ̄λt−1 (L; θ0) ft − τt(θ0)

(
εi0 − φ̂iε̄0

)
+ εit − φ̂iε̄t

}
×
{
−ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft − τ̇t(θ0)

(
εi0 − φ̂iε̄0

)
+ χt (L; ξ0)

(
εit − φ̂iε̄t

)}
,

where χt (L; ξ0) εit = χt−1 (L; ξ0) εit + χt (ξ0) εi0.
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In open form with the (NT )1/2 normalization,

√
NT

∂

∂θ
LN,T (θ)|θ=θ0 =

2√
NT

N∑
i=1

T∑
t=1

η2
i γ̄

2λt−1 (L; θ0) ft ∗ χt−1 (L; ξ0)λt−1 (L; θ0) ft (17)

+
2√
NT

N∑
i=1

T∑
t=1

τt(θ0)τ̇t(θ0)(εi0 − φ̂iε̄0)2 (18)

+
2√
NT

N∑
i=1

T∑
t=1

ηiγ̄λt−1 (L; θ0) ft ∗ τ̇t(θ0)(εi0 − φ̂iε̄0) (19)

− 2√
NT

N∑
i=1

T∑
t=1

ηiγ̄λt−1 (L; θ0) ft ∗ χt (L; ξ0)
(
εit − φ̂iε̄t

)
(20)

+
2√
NT

N∑
i=1

T∑
t=1

ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft ∗ τt(θ0)(εi0 − φ̂iε̄0)(21)

− 2√
NT

N∑
i=1

T∑
t=1

τt(θ0)(εi0 − φ̂iε̄0) ∗ χt (L; ξ0)
(
εit − φ̂iε̄t

)
(22)

− 2√
NT

N∑
i=1

T∑
t=1

ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft ∗ (εit − φ̂iε̄t) (23)

− 2√
NT

N∑
i=1

T∑
t=1

τ̇t(θ0)(εi0 − φ̂iε̄0)(εit − φ̂iε̄t) (24)

+
2√
NT

N∑
i=1

T∑
t=1

(εit − φ̂iε̄t) ∗ χt (L; ξ0)
(
εit − φ̂iε̄t

)
. (25)

The term (17) is asymptotically negligible, since with Lemmas 1 and 2 and % − δ0 <
1
2
,

we find that

2γ̄2
√
N√
T

1

N

N∑
i=1

η2
i

T∑
t=1

λt−1 (L; θ0) ftχt−1 (L; ξ0)λt−1 (L; θ0) ft

= Op(N
1/2T−1/2)Op(T

2%+2δ0−6 +N−1T 4δ0−6 + T−1 log T +N−2)Op (T ) ,

which is op (1) under Assumption C∗.

In (18), we can directly take the expectation of the main term to get the bias term
stemming from the initial condition,

2√
NT

N∑
i=1

T∑
t=1

τt(θ0)τ̇t(θ0)E
[
ε2
i0

]
= 2σ2

(
N

T

)1/2 T∑
t=1

τt(θ0)τ̇t(θ0),

which is O
(
N1/2

(
T−1/2 + T 1/2−2δ0 log2 T

))
, with variance

2

NT

N∑
i=1

V ar
[
ε2
i0

]( T∑
t=1

τt(θ0)τ̇t(θ0)

)2

= O
(
T−1 + T 1−4δ0 log4 T

)
= o (1)
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since δ0 > 1/4, as (N, T )j →∞, while

2√
NT

N∑
i=1

T∑
t=1

τt(θ0)τ̇t(θ0)φ̂2
i ε̄0

2 =
2√
NT

Nε̄2
0

1

N

N∑
i=1

φ̂2
i

T∑
t=1

τt(θ0)τ̇t(θ0)

= Op

(
(TN)−1/2 (1 + T 1−2δ0 log2 T

))
= op (1)

because δ0 > 1/4, and by Cauchy-Schwarz inequality the cross term is of order

Op

(
N1/2

((
T−1/2 + T 1/2−2δ0 log2 T

)))1/2
Op

(
(TN)−1/2 (1 + T 1−2δ0 log2 T

))1/2

= Op

((
T−1 + T−2δ0 log2 T + T 1−4δ0 log2 T

))1/2
= op (1)

if δ0 > 1/4.

We show that (19) is op (1) considering the contribution of

2√
NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ0) ftτ̇t(θ0)εi0

whose absolute value is bounded by Lemmas 1 and 2(c), using that %− δ0 <
1
2
,

2
√
NT

(
1

N

N∑
i=1

ε2
i0

1

N

N∑
i=1

η2
i

)1/2 ∣∣∣∣∣ 1

T

T∑
t=1i

λt−1 (L; θ0) ftτ̇t(θ0)

∣∣∣∣∣
= Op

(
(NT )1/2 (T 2(%+δ0−3) + T−1 log T +N−1T 4δ0−6 +N−2

)1/2
T−1

)
+Op

(
(NT )1/2 (T 2(%+δ0−3) + T−1 log T +N−1T 4δ0−6 +N−2

)1/2 {
T %−2δ0−1/2 + T−δ0/2−1/2

}
log T

)
= Op

(
N1/2

(
T 2(%+δ0−3) + T−1 log T +N−2

)1/2
T %−2δ0 log T

)
+Op

(
N1/2T %+δ0−3T−δ0/2 log T

)
+ op (1)

which is op (1) by Assumptions C∗.1-2.

For (20), we consider the contribution of

2√
NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ0) ft ∗ χt (L; ξ0) εit

whose absolute value is bounded by

2
√
NT

 1

N

N∑
i=1

η2
i

1

N

N∑
i=1

(
1

T

T∑
t=1

λt−1 (L; θ0) ft ∗ χt (L; ξ0) εit

)2
1/2

= Op

(
(NT )

(
T 2%+2δ0−6 + T−1 log T +N−1T 4δ0−6 +N−2

)
T−1

)1/2

= Op

(
N
(
T 2%+2δ0−6 + T−1 log T +N−1T 4%−6 log T +N−2

))1/2
= op (1)
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by using Assumptions C∗.1-2, because, uniformly in i, using %− δ0 <
1
2
,

E

( 1

T

T∑
t=1

λt−1 (L; θ0) ft ∗ χt (L; ξ0) εit

)2


=
1

T 2

T∑
t=1

T∑
r=1

E [λt−1 (L; θ0) ft ∗ χt (L; ξ0) εit ∗ λr−1 (L; θ0) fr ∗ χr (L; ξ0) εir]

=
1

T 2

T∑
t=1

T∑
r=1

E [λt−1 (L; θ0) ft ∗ λr−1 (L; θ0) fr]E [χt (L; ξ0) εit ∗ χr (L; ξ0) εir]

= O

(
1

T 2

T∑
t=1

t∑
r=1

|t− r|2(%−δ0)−2 log t

)
= O

(
T−1 + T 2(%−δ0−1) log T

)
= O

(
T−1

)
.

Then the term (20) is op (1) because the factor depending on φ̂iχt (L; ξ0) ε̄t could be dealt
with similarly using Cauchy-Schwarz inequality and Lemma 1.

The proof that the term (21) is op (1) could be dealt with exactly as when bounding (19),
while the proof that the term (23) is op (1) could be dealt with in a similar but easier way
than (20).

The leading term of (24), depending on εi0εit,

2√
NT

N∑
i=1

T∑
t=1

τ̇t(θ0)(εi0 − φ̂iε̄0)(εit − φ̂iε̄t),

has zero mean and variance proportional to

1

T

T∑
t=1

τ̇t(θ0)2 = O
(
T−1 + T−2δ0

)
= o (1)

so it is negligible and the same can be concluded for the other terms depending on φ̂i.

The behaviour of the main term in (22) is given in Lemma 5 and that of (25) in Lemma 6
and, combining the plims of (18) and (22), we obtain the definition of ∇T (δ) .

Then collecting the results for all terms (17) to (25) we have found that

√
NT

∂

∂θ
LN,T (θ)|θ=θ0 →d

(
N

T

)1/2 T∑
t=1

{τt(θ0)τ̇t(θ0)− τt(θ0)χt(θ0)}+N (0, 4B (ξ0)) .
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Finally we analyze the second derivative of LN,t (θ) evaluated at θ = θ0,
(∂2/∂θ∂θ′)LN,T (θ)|θ=θ0 , which equals

2

NT

N∑
i=1

T∑
t=1

{
−ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft − τ̇t(θ0)

(
εi0 − φ̂iε̄0

)
+ χt (L; ξ0)

(
εit − φ̂iε̄t

)}
×
{
−ηiγ̄χt−1 (L; ξ0)λt−1 (L; θ0) ft − τ̇t(θ0)

(
εi0 − φ̂iε̄0

)
+ χt (L; ξ0)

(
εit − φ̂iε̄t

)}′
+

2

NT

N∑
i=1

T∑
t=1

{
−ηiγ̄λt−1 (L; θ0) ft − τt(θ0)

(
εi0 − φ̂iε̄0

)
+ εit − φ̂iε̄t

}
×
{
−ηiγ̄b0

t (L)λt−1 (L; θ0) ft − τ̈t(θ0)
(
εi0 − φ̂iε̄0

)
+ b0

t (L)
(
εit − φ̂iε̄t

)}
,

where b0
t (L) = χ̇t (L; ξ0) + χt (L; ξ0)χt (L; ξ0)′ , χ̇t (L; ξ) = (∂/∂θ′)χt (L; ξ) and

τ̈t(θ) = (∂2/∂θ∂θ′) τt (θ) . Using the same techniques as in the proof of Theorem 1, as N
and T get larger, only the term on χt (L; ξ0) εitχt (L; ξ0)′ εit in the first element of the rhs
contributes to the probability limit, see the proof of Theorem 5.2 in Robinson and Velasco
(2015). In the second part of the expression, all terms are asymptotically negligible by using
the same arguments as in the convergence in distribution of the score, obtaining as N →∞
and T →∞,

∂2

∂θ∂θ′
LN,T (θ)|θ=θ0 →p 2σ2B (ξ0) .

Lemma 7 shows the convergence of the Hessian LN,T (θ) evaluated at θ̂ to that evaluated
at θ0, and the proof is then complete. �

Proof of Corollary 1. The result is a direct consequence of Theorem 2.

Proof of Corollary 2. Follows from Theorem 2 as the proofs of Theorems 5.1 and 5.2 in
Robinson and Velasco (2015).

Proof of Theorem 3. These are simple consequences of the results from Theorems 1 and
2, taking N = 1, where the rate of convergence is just

√
T now so that the asymptotic IC

bias is removed for any δi0 ∈ D. �

8.3 Proofs for Section 6

Proofs of Theorems 4 and 5. For δ∗ ≥ 1, write β̂i(δ
∗)− βi0 = Mi + Ui, where

Mi =
(
XiW̄TX ′i

)−1XiW̄TF ′γi
Ui =

(
XiW̄TX ′i

)−1XiW̄T (∆δ∗−1∆λ−1 (L; θi0) εi))
′

so that Mi is the projection component, and Ui is the usual regression-error component also
carrying an initial condition term because

∆δ∗−1
t−1 (∆λ−1

t (L; θ0) εi) = λ−1
t (L; δi0 − δ∗, ξ0) εi − πt(δ∗ − 1)εi0
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with εi = (εi1, . . . , εiT ).

The asymptotic inference for β̂i(δ
∗) is derived from U1,i,

U1,i =
(
∆δ∗−ϑiEi∆

δ∗−ϑiE′i
)−1

∆δ∗−ϑiEi

(
λ−1 (L; δi0 − δ∗, ξ0) εi − πt(δ∗ − 1)εi0

)′
where, noting that WfXi = ∆δ∗−ϑiEi, we can write Ui = U1,i +U2,i with U2,i being the error
from approximating Wf by W̄T . We later show that both Mi and U2,i, are negligible.

For the consistency proof of Theorem 4, we note that δ∗ ≥ 1 implies ϑi + δi0 − 2δ∗ < 1
and that under Assumption D,

T−1∆δ∗−ϑiEi∆
δ∗−ϑiE′i →p Σie (0) > 0

T−1∆δ∗−ϑiEi

(
λ−1 (L; δi0 − δ∗, ξ0) εi − πt(δ∗i − 1)εi0

)′ →p 0,

as (N, T )j →∞, exploiting the independence of Ei and εi.

The asymptotic distributions in Theorem 5, correspond to those of T 1/2U1,i, using a mar-
tingale CLT when δ∗ = δi0 and ψ (L, ξ0) ≡ 1, and using Theorem 1 in Robinson and Hidalgo
(1997) when δ∗ 6= δi0, whose conditions for the OLS estimate are implied by Assumption D.

We now show that Mi and U2,i are negligible. Write

H̄′ = F ′C̄ + XiV̄

where, Π∗T = (π1 (δ∗ − 1) , . . . , πT (δ∗ − 1)) ,

V̄ =

(
∆δ∗λ−1 (L; θ0) ε−Π∗T ε0 + β′∆δ∗−ϑ0e

∆δ∗−ϑ0e.

)

Since
Xi
(
IT − H̄(H̄′H̄)−H̄′

)
F ′γi = XiF ′γi −XiH̄(H̄′H̄)−H̄′F ′γi,

reasoning as in Pesaran (2006) we need to analyze the terms depending on V̄ in

XiH̄ =
XiF ′C̄
T

+
XiV̄
T

,

H̄′H̄ =
C̄′FF ′C̄

T
+

C̄′FV̄

T
+

V̄′F ′C̄
T

+
V̄ ¯′V

T
,

H̄′F ′ =
C̄′FF ′

T
+

V̄′F ′

T
,

where
FF ′

T
→p Σf > 0

as T →∞ with Σf = Σf (δ∗ − %) =
∑∞

k=0 Φf
k (δ∗ − %) ΩfΦ

f
k (δ∗ − %)′ , where the weights

Φf
k (δ∗ − %) are square summable with δ∗ ≥ 1 and incorporate also the fractional differencing

effect, Φf
k (δ∗ − %) =

∑k
j=0 Φf

k−jπj (δ∗ − %) , so that Σf is positive definite by Assumption D.2.
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To show that all the error terms in the projection are negligible we first consider the case
δ∗ > 5/4 so that ϑmax − δ∗ < 1/4 and %− δ∗ < 1/4.

(a). Write T−1V̄ ¯′V as

1

T

T∑
t=1

v̄′tv̄t =
1

T

T∑
t=1

{(
∆δ∗
t λ
−1
t (L; θ0) εt

)2

+
(
πt(δ∗ − 1)ε0

)2

+
(
β′∆δ∗−ϑ0

t et

)2

+
(

∆δ∗−ϑ0
t et

)2

+ 2∆δ∗
t λ
−1
t (L; θ0) εtπt(δ∗ − 1)ε0

+2∆δ∗λ−1
t (L; θ0) εt∆

δ∗−ϑ0
t et + 2πt(δ∗ − 1)ε0∆δ∗−ϑ0

t et

}
whose expectation is O (N−1) , and its variance is proportional to O ((TN)−1) . Thus,

1

T

T∑
t=1

v̄′tv̄t = Op

(
1

N
+

1√
NT

)
.

(b). The term T−1V̄′F ′ = T−1
∑T

t=1 v̄tft = Op

(
(NT )−1/2

)
since it has zero expectation

and using the independence of εit and ft, its variance is

V ar

(
1

T

T∑
t=1

v̄tft

)
=

1

T 2

T∑
t=1

T∑
t′=1

E (v̄′tv̄t)E (f ′tft′)

whose norm is O (N−1) times

O

 T−2
∑T

t=1

∑T
t′=1

{
|t− t′|2(max{δmax−δ∗,ϑmax−δ∗})−1

+ + |t− t′|max{δmax−δ∗,ϑmax−δ∗}−1
+

}
×
{
|t− t′|2(%−δ∗)−1

+ + |t− t′|%−δ
∗−1

+

} 
= O

(
T−1

)
.

(c). Lastly, T−1
∑T

t=1 ∆δ∗−ϑ0
t etε̄t = Op

(
(NT )−1/2

)
because it has zero expectation and using

the independence of eit and εit, its variance is proportional to O (N−1) times

O

 T−2
∑T

t=1

∑T
t′=1

{
|t− t′|2(max{δmax−δ∗,ϑmax−δ∗})−1

+ + |t− t′|max{δmax−δ∗,ϑmax−δ∗}−1
+

}
×
{
|t− t′|2(ϑmax−δ∗)−1

+ + |t− t′|ϑmax−δ
∗−1

+

}  ,

which is O (T−1).

Thus, for δ∗ > 5/4, the projection error is

Mi = Op

(
1

N
+

1√
NT

)
= op (1)
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as (N, T )j →∞, and T 1/2Mi = Op

(
T 1/2N−1 +N−1/2

)
= op (1) if T 1/2N−1 → 0 as (N, T )j →

∞.

Alternatively, if we just take δ∗ = 1 :

(a). Write

1

T

T∑
t=1

v̄′tv̄t =
1

T

T∑
t=1

{(
∆λ−1

t (L; θ0) εt

)2

+
(
β′∆1−ϑ0

t et

)2

+
(

∆1−ϑ0
t et

)2

+2∆λ−1
t (L; θ0) εt∆

1−ϑ0
t et

}
whose expectation is O (N−1) times

O
(
1 + T 2(δmax−1)−1 + T 2(ϑmax−1)−1 + T δmax−3

)
= O (1)

and its variance is proportional to O (N−2) times

O
(
T−1 + T 4(δmax−1)−2 + T 2(ϑmax+δmax−2)−2 + T 4(ϑmax−1)−2

)
.

Then

1

T

T∑
t=1

v̄′tv̄t = Op

(
1

N
+

1

N

{
T−1/2 + T 2δmax−3 + T 2ϑmax−3 + T ϑmax+δmax−3

})
= Op

(
N−1

)
.

(b). The term T−1FV̄ = T−1
∑T

t=1 v̄tft has zero expectation and

V ar

(
1

T

T∑
t=1

v̄tft

)
= O

(
N−1T−2

T∑
t=1

T∑
t′=1

|t− t′|2(max{δmax−1,ϑmax−1})−1
+ |t− t′|2(%−1)−1

+

)

so that T−1
∑T

t=1 v̄tft = Op

(
(NT )−1/2 +N−1/2

{
T δmax+%−3 + T ϑmax+%−3

})
.

(c). Lastly, T−1
∑T

t=1 ∆1−ϑ0etv̄t has zero expectation and using the independence of eit and
εit, variance is proportional to O (N−1) times

1

T 2

T∑
t=1

T∑
t′=1

{∣∣t− t′∣∣2(max{δmax−1,ϑmax−1})−1

+
+
∣∣t− t′∣∣max{δmax−2,ϑmax−2}

+

}{∣∣t− t′∣∣2(ϑmax−1)−1

+
+
∣∣t− t′∣∣ϑmax−2

+

}
= O

(
1

T 2

T∑
t=1

T∑
t′=1

{∣∣t− t′∣∣2(δmax+ϑmax−2)−2

+
+
∣∣t− t′∣∣4(ϑmax−1)−2

+

}
+ T−1

)
= O

(
T−1 + T 2(δmax+ϑmax−3) + T 4(ϑmax−1)−2

)
so that

1

T

T∑
t=1

∆1−ϑ0etεt = Op

(
N−1/2

{
T−1/2 + T δmax+ϑmax−3 + T 2ϑmax−3

})
.
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Thus the entire projection error is

Mi = Op

(
N−1 +N−1/2

{
T−1/2 + T δmax+ϑmax−3 + T 2ϑmax−3 + T %+δmax−3 + T %+ϑmax−3

})
= op (1)

as (N, T )j →∞, and

T 1/2Mi = Op

(
T 1/2N−1 +N−1/2

{
1 + T δmax+ϑmax−5/2 + T 2ϑmax−5/2 + T %+δmax−5/2 + T %+ϑmax−5/2

})
.

Therefore, if ϑmax < 11/8 and % + δmax, % + ϑmax, δmax + ϑmax < 11/4, T 1/2Mi = op (1) as
(N, T )j →∞ when δ∗ = 1 since T 1/2N−1 = o (1) and N1/2 = o

(
T−1/4

)
.

The proof that the approximation term U2,i is negligible is similar and is omitted. �

Proof of Theorem 6. We first show the consistency of the parameter estimates. We can
rewrite the projected variables entering in the concentrated log-likelihood as

ỹi (δ
∗) = ∆δ∗−1∆yi − Υ̂′iyH̄

= ∆δ∗−1∆yi −∆δ∗−1∆yiH̄
′ (H̄H̄′

)−
H̄

which, after filtering each component of ỹi (δ
∗) by λt−1 (L; θ) ∆−δ

∗
= λt−1 (L; δ − δ∗, ξ)

adapted to the prefiltering by ∆δ∗ implicit in H̄ yields,

λ (L; δ − δ∗, ξ) ỹi (δ
∗) = ψ (L; ξ) ∆δ−1∆yi − Υ̂′iyH̄(θ)

where Υ̂iy =
(
H̄H̄′

)−1
H̄∆δ∗−1∆y′i and H̄(θ) = λ (L; δ − δ∗, ξ) H̄(δ∗) = ψ (L; ξ) ∆δ−δ∗H̄(δ∗),

and likewise,
λ (L; δ − δ∗, ξ) X̃i (δ

∗) = ψ (L; ξ) ∆δ−1∆Xi − Υ̂′ixH̄(θ).

Next, write for the components of the residuals

λ (L; δ − δ∗, ξ) ỹi (δ
∗) = Py,i (θ) +Ry,i (θ)

where

Py,i (θ) = λ (L; δ − 1, ξ) ∆yi −∆δ∗−1∆yiF ′ (FF ′)−1
F(θ)

Ry,i (θ) = ∆δ∗−1∆yi

{
F ′ (FF ′)−1

F(θ)− H̄′
(
H̄H̄′

)−
H̄(θ)

}
with F(θ) = λ (L; δ − δ∗, ξ)F = ψ (L; ξ) ∆δF, and similarly λ (L; δ − δ∗, ξ) X̃i (δ

∗) = Px,i (θ)+
Rx,i (θ) for Px,i and Rx,i defined replacing yi by xi.

Then, truncating the filters appropriately for each element and
λ0 (L; θ) = λ (L; θ)λ−1 (L; θi0) ,

Py,i (θ) = λ0 (L; θ) εi + β′i0ψ (L; ξ) ∆δ−ϑiEi − ςT (θ)εi0

−
[
λ−1 (L; δi0 − δ∗, ξ0) εi + β′i0∆δ∗−ϑiEi −Π∗T εi0

]
F ′ (FF ′)−F(θ),
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with ςT (θ) = (τ1 (θ) , . . . , τT (θ)) and

Px,i (θ) = ψ (L; ξ) ∆δ−ϑiEi −∆δ∗−ϑiEiF ′ (FF ′)−F(θ).

Also,

Ry,i (θ) =
[
λ−1 (L; δi0 − δ∗) εi + β′i0∆δ∗−ϑiEi + (β′i0Γ

′
i + γ′i)F −Π∗T εi0

]
×
[
F ′ (FF ′)−1

F(θ)− H̄′
(
H̄H̄′

)−
H̄(θ)

]
,

and Rx,i can be written similarly.

Therefore

λ (L; δ − δ∗, ξ)
{

ỹi (δ
∗)− β̂i(δ∗)′X̃i (δ

∗)
}

= Py,i (θ) +Ry,i (θ)− β̂i(δ∗)′ (Px,i (θ) +Rx,i (θ))

= λ0 (L; θ) εi − ςT (θ)εi0 − λ−1 (L; δi0 − δ∗, ξ0) εiWf (θ)−Π∗T εi0Wf (θ)

−
(
βi0 − β̂i (δ∗)

)′ [
ψ (L; ξ) ∆δ−ϑiEi −∆δ∗−ϑiEiWf (θ)

]
+

[((
βi0 − β̂i (δ∗)

)′
Γ′i + γ′i

)
F +

(
βi0 − β̂i (δ∗)

)′
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗) εi −Π∗T εi0

]
× (Wf (θ)−Wh(θ))

where

Wf (θ) := F ′ (FF ′)−F(θ)

Wh(θ) := H̄′
(
H̄H̄′

)−
H̄(θ),

and the residuals εi(θ) in the CSS L∗i,T (θ) = T−1εi(θ)εi(θ)
′ can be written as

εi(θ) = ε
(1)
i (θ) + ε

(2)
i (θ) + ε

(3)
i (θ),

with

ε
(1)
i (θ) = λ0 (L; θ) εi − ςT (θ)εi0 − λ−1 (L; δi0 − δ∗, ξ0) εiWf (θ)−Π∗T εi0Wf (θ)

ε
(2)
i (θ) = −

(
βi0 − β̂i (δ∗)

)′ [
ψ (L; ξ) ∆δ−ϑiEi −∆δ∗−ϑiEiWf (θ)

]
ε

(3)
i (θ) =

[((
βi0 − β̂i (δ∗)

)′
Γ′i + γ′i

)
F +

(
βi0 − β̂i (δ∗)

)′
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗) εi −Π∗T εi0

]
× (Wf (θ)−Wh(θ)) .

Now we study the contribution of each (cross-) product ε
(j)
i (θ)ε

(k)
i (θ)′, j, k = 1, 2, 3, to L∗i,T .

(a). Write can write the term T−1ε
(1)
i (θ)ε

(1)
i (θ)′ as

1

T

(
λ0 (L; θ) εi − ςT (θ)εi0

) (
λ0 (L; θ) εi − ςT (θ)εi0

)′
+

1

T

(
λ−1 (L; δi0 − δ∗, ξ0) εiWf (θ)−Π∗T εi0Wf (θ)

) (
λ−1 (L; δi0 − δ∗, ξ0) εiWf (θ)−Π∗T εi0Wf (θ)

)′
− 2

T

(
λ0 (L; θ) εi − ςT (θ)εi0

) (
λ−1 (L; δi0 − δ∗, ξ0) εiWf (θ)−Π∗T εi0Wf (θ)

)′
.

43



The first term converges uniformly in θ and is minimized for θ = θi0 as in the proof of
Theorem 1. To show that the second term is negligible, it suffices to check the squared terms
only. First, take

1

T
λ−1 (L; δi0 − δ∗, ξ0) εiWf (θ)Wf (θ)

′λ−1 (L; δi0 − δ∗, ξ0) ε′i (26)

=
1

T
λ−1 (L; δi0 − δ∗, ξ0) εiF ′ (FF ′)−1

F(θ)F(θ)′ (FF ′)−1Fλ−1 (L; δi0 − δ∗, ξ0) ε′i

where

FF ′

T
→p Σf > 0,

sup
θ∈Θ

∣∣∣∣F(θ)F(θ)′

T

∣∣∣∣ = Op

(
1 + T 2(%−δ)−1

)
= Op (1)

since %− δ ≤ 1/2. Then, because

λ−1 (L; δi0 − δ∗, ξi0) εiF ′

T
= Op

(
T−1/2 + T δ0+%−2δ∗−1

)
= op(1),

we obtain that (26) is op (1) uniformly for θ ∈ Θ.

Next,
Π∗TF ′

T
= Op

(
T−1/2

)
= op(1)

implies that

sup
θ∈Θ

∣∣∣∣ 1

T
Π∗TWf (θ)Wf (θ)′Π∗′T ε

2
i0

∣∣∣∣ = op(1),

and all the other cross terms can be bounded uniformly in θ by the Cauchy-Schwarz inequal-
ity.

(b). Next, write T−1ε
(2)
i (θ)ε

(2)
i (θ)′ as

1

T

(
βi0 − β̂i(δ∗)

)′ [
ψ (L; ξ) ∆δ−ϑiEi −∆δ∗−ϑiEiWf (θ)

] [
ψ (L; ξ) ∆δ−ϑiEi −∆δ∗−ϑiEiWf (θ)

]′ (
βi0 − β̂i(δ∗)

)
.

First,

sup
θ∈Θ

∣∣∣∣ 1

T

(
βi0 − β̂i(δ∗)

)′
ψ (L; ξ) ∆δ−ϑiEiψ (L; ξ) ∆δ−ϑiE′i

(
βi0 − β̂i(δ∗)

)∣∣∣∣ = op(1)

because βi0 − β̂i(δ∗) = Op

(
T−1/2

)
by Theorem 5 and with ϑi − δ < 1,

sup
θ∈Θ

∣∣∣∣ 1

T 2
ψ (L; ξ) ∆δ−ϑiEiψ (L; ξ) ∆δ−ϑiE′i

∣∣∣∣ = O
(
T−1 + T 2(ϑi−δ−1)

)
= op(1).

Next,

sup
θ∈Θ

∣∣∣∣ 1

T

(
βi0 − β̂i(δ∗)

)′
∆δ∗−ϑiEiWf (θ)Wf (θ)′∆δ∗−ϑiE′i

(
βi0 − β̂i(δ∗)

)∣∣∣∣ = op(1)
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since
∆δ∗−ϑiEiF ′

T
= Op

(
T−1/2 + T ϑi+%−2δ∗−1

)
= op(1),

and the cross-term is negligible by Cauchy-Schwarz inequality under the same conditions.

(c). Finally, write T−1ε
(3)
i (θ)ε

(3)
i (θ)′

1

T

[((
βi0 − β̂i(δ∗)

)′
Γ′i + γ′i

)
F +

(
βi0 − β̂i (δ∗)

)′
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗) εi −Π∗T εi0

]
× (Wf (θ)−Wh (θ)) (Wf (θ)−Wh (θ))′

×
[((

βi0 − β̂i (δ∗)
)′

Γ′i + γ′i

)
F +

(
βi0 − β̂i (δ∗)

)′
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗) εi −Π∗T εi0

]′
.

First,

sup
θ∈Θ

∣∣∣∣ 1

T

((
βi0 − β̂i (δ∗)

)′
Γ′i + γ′i

)
F (Wf (θ)− (θ)Wh) (Wf (θ)−Wh (θ))′F ′

((
βi0 − β̂i (δ∗)

)′
Γ′i + γ′i

)′∣∣∣∣
is op(1) because

FWhW
′
hF ′ = FH̄′

(
H̄H̄′

)−
H̄(θ)H̄(θ)′

(
H̄H̄′

)−
H̄F ′

for which it can be easily shown following the projection details above that

FH̄′ =
FF ′

T
C̄′ +Op

(
1

N
+

1√
NT

)
H̄H̄′

T
= C̄

FF ′

T
C̄′ +Op

(
1

N
+

1√
NT

)
sup
θ∈Θ

∣∣∣∣H̄(θ)H̄(θ)′

T

∣∣∣∣ = C̄
F(θ)F(θ)′

T
C̄′ +Op

(
1

N
+

1√
NT

+
T 2(ϑmax−δ)−1

√
N

+
T ϑmax+%−2d−1

√
N

)
where the projection errors are op(1) if ϑmax − δ < 1/2, and ϑmax + %− 2δ − 1 < 0 which is
implied by ϑmax − δ < 1/2 and %− δ < 1/2.

The other squared terms contain the initial memory value δ∗ ≥ 1 which make them sta-
tionary. Thus it can be shown in a similar way to the analysis above that they are op(1),
and the proof of consistency is then complete.
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Proof of asymptotic normality. The
√
T -normalized score evaluated at the true value,

√
T
∂

∂θ
L∗i,T (θ)

∣∣∣∣
θ=θi0

=
2√
T

{ (
εi − ςT (θi0)εi0 − λ−1 (L; δi0 − δ∗, ξi0) εiWf (θi0) + Π∗T εi0Wf (θi0)

)
−
(
βi0 − β̂i (δ∗)

)′ [
ψ (L; ξi0) ∆δi0−ϑiEi −∆δ∗−ϑiEiWf (θi0)

]
+

[((
βi0 − β̂i (δ∗)

)′
Γ′i + γ′i

)
F +

(
βi0 − β̂i (δ∗)

)′
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗, ξi0) εi −Π∗T εi0

]
× (Wf (θi0)−Wh(θi0))}

×
{(

χ (L; ξi0) εi − ς̇T (θi0)εi0 − λ−1 (L; δi0 − δ∗, ξi0) εiẆf (θi0) + Π∗T εi0Ẇf (θi0)
)

−
(
βi0 − β̂i (δ∗)

)′ [
χ (L; ξi0)ψ (L; ξi0) ∆δi0−ϑiEi −∆δ∗−ϑiEiẆf (θi0)

]
+

[((
βi0 − β̂i (δ∗)

)′
Γ′i + γ′i

)
F +

(
βi0 − β̂i (δ∗)

)
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗, ξi0) εi −Π∗T εi0

]
×
(
Ẇf (θi0)− Ẇh (θi0)

)}′
,

where

Ẇf (θi0) : = F ′ (FF ′)− Ḟ(θi0),

Ẇh (θi0) : = H̄′
(
H̄H̄′

)− ˙̄H(θi0)

and Ḟ(θ) = (∂/∂θ) F(θ), ˙̄H(θ) = (∂/∂θ) H̄(θ). Taking N = 1, the treatment for

2√
T

[εi − ςT (θi0)εi0] [χ (L; ξi0) εi − ς̇T (θi0)εi0]

has been shown in the proof of Theorem 2, where the term leads to the asymptotic normal
distribution with an initial condition bias, that does not appear now because normalization
is only by T 1/2. In what follows, we only check that the dominating terms are negligible
since terms containing the estimation effect and/or δ∗ have smaller sizes.

(a) First consider

2√
T

[εi − ςT (θi0)εi0]
[
λ−1 (L; δi0 − δ∗, ξi0) εiẆf (θi0)−Π∗T εi0Ẇf (θi0)

]′
. (27)

Then,

1√
T
εiẆf (θi0)′ λ−1 (L; δi0 − δ∗, ξi0) ε′i =

1√
T
εiḞ(θi0)′ (FF ′)−1Fλ−1 (L; δi0 − δ∗, ξi0) ε′i = op (1)

because ρ− δi0 < 1/2 so that T−1FF ′ →p Σf > 0,

εiḞ(θi0)′

T
= Op

(
T−1/2 + T %−δi0−1 log T

)
Fλ−1 (L; δi0 − δ∗, ξi0) ε′i

T
= Op

(
T−1/2 + T %+δi0−2δ∗−1

)
.
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Using the methods of the proof of Lemma 2(c), it can be shown that, using ρ− δi0 < 1/2,

1

T

T∑
t=1

πt (δ∗ − 1)χt (L; ξi0)λt (L; θi0) ft = Op

(
T−1 log T

)
1

T

T∑
t=1

τt (θi0) ∆δ∗ft = Op

(
T−1 + T−1/2−δi0/2

)
because δ∗ ≥ 1 and Assumption E, and therefore following the same steps,

2√
T
ςT (θi0)Ẇf (θi0) Π∗′T ε

2
i0 = Op

(
T−1/2

(
T−1 + T−1/2−δi0/2

)
log T

)
= op(1),

and we can conclude that (27) is op (1) .

(b) To show that

2√
T

[εi − ςT (θi0)εi0]

((
βi0 − β̂i (δ∗)

)′ [
χ (L; ξi0)ψ (L; ξi0) ∆δi0−ϑiEi −∆δ∗−ϑiEiẆf (θi0)

])′
= op (1)

if ϑi − δi0 < 1/2 it suffices to check that

2√
T
εiχ (L; ξi0)ψ (L; ξi0) ∆δi0−ϑiE′i

(
βi0 − β̂i(δ∗)

)
= Op

(
T−1/2 + T ϑi−δi0−1 log T

)
,

which is op(1) because ϑi − δi0 < 1/2 and the remaining terms have smaller orders.

(c) The term dealing with the projection approximation,

2√
T

[εi − ςT (θi0)εi0]

{[((
βi0 − β̂i(δ∗)

)′
Γ′i + γ′i

)
F +

(
βi0 − β̂i(δ∗)

)′
∆δ∗−ϑiEi + λ−1 (L; δi0 − δ∗, ξi0) εi −Π∗T εi0

]
×
(
Ẇf (θi0)− Ẇh (θi0)

)}′
,

can be shown to be op(1) following the same steps described earlier since, for instance,

1√
T
εi

(
Ẇf (θi0)− Ẇh (θi0)

)′
F ′ = op (1) .

All other cross terms have a similar structure, and showing their orders to be op(1) is
analogous to what has been discussed so far, so the result follows. Then the convergence of
the Hessian can be studied as in Theorem 2 but in a simpler way and the proof is complete.
�

Proof of Theorem 7. Using the result obtained in Corollary 2, and noting that this result
satisfies the requirement, θi − θi0 = Op(T

−κ), κ > 0, for Theorem 1 of Robinson and Hualde
(2003) along with the other conditions therein, it also holds that

√
T
(
β̂i(θi)− βi0

)
=
(
T−1XiW̄TX ′i

)−1
T−1/2XiW̄T ε

′
i + op (1) +Op

(
N−1
√
T
)
,
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where the latter Op(·) term stems from the projection and is removed if
√
T/N → 0 as

(N, T )j →∞. �

Proof of Theorem 8. The properties of the mean group estimate follow as in Pesaran
(2006) under the rank condition and the random coefficients model, we omit the details. �

9. Lemmas

Lemma 1. Under Assumptions A, as (N, T )j →∞,

1

N

N∑
i=1

η2
i = Op(T

2%+2δ0−6 + T−1 log T +N−1T 4δ0−6 +N−2)

1

N

N∑
i=1

φ̂2
i = Op(1).

Proof of Lemma 1. We only prove the first statement, since the second one is an easy
consequence of the first one, (9) and γ̄2 →p (E[γi])

2 > 0 and E[γ2
i ] <∞. Write

1

N

N∑
i=1

η2
i =

1
NT 2

∑T
t=1

∑T
t′=1 ∆ȳt∆ȳt′

∑N
i=1 λt

(
L; θ

(−1)
0

)
(εit − γi

γ̄
ε̄t)λt′

(
L; θ

(−1)
0

)
(εit′ − γi

γ̄
ε̄t′)(

1
T

∑T
t=1(∆ȳt)2

)2 .

The denominator converges to a positive constant term because

1

T

T∑
t=1

(∆ȳt)
2 = γ̄2 1

T

T∑
t=1

(∆ft)
2 +

1

T

T∑
t=1

(λt

(
L; θ

(−1)
0

)
ε̄t)

2 + 2γ̄
1

T

T∑
t=1

∆ftλt

(
L; θ

(−1)
0

)
ε̄t

and by Assumptions A.3 and 4, satisfies as (N, T )j →∞,

1

T

T∑
t=1

(∆ȳt)
2 →p E(γi)

2σ2
∆ft , σ2

∆ft = lim
T→∞

1

T

T∑
t=1

E
[
(∆ft)

2
]
,

since % < 2/3 and the second and third term are negligible due to cross section averaging.

In the numerator, it suffices to focus on the dominating term εit of the error term εit− γi
γ̄
ε̄t,
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since ε̄t = Op(N
−1/2) and γ̄ →p E(γi) 6= 0 by Assumption A.4. Then,

1

NT 2

T∑
t=1

T∑
t′=1

∆ȳt∆ȳt′
N∑
i=1

λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′ (28)

=
1

NT 2

T∑
t=1

T∑
t′=1

∆ft∆ft′
N∑
i=1

λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′

+
1

NT 2

T∑
t=1

T∑
t′=1

λt

(
L; θ

(−1)
0

)
ε̄tλt′

(
L; θ

(−1)
0

)
ε̄t′

N∑
i=1

λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′

+
2

NT 2

T∑
t=1

T∑
t′=1

∆ftλt′
(
L; θ

(−1)
0

)
ε̄t′

N∑
i=1

λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′ .

The expectation of the first term in (28), which is positive, is, using the independence of
ft and εit and Assumption A.3,

1

T 2

T∑
t=1

T∑
t′=1

E (∆ft∆ft′)E
(
λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′
)
.

The expectations above for all t 6= t′ are, cf. Lemma 8,

E (∆ft∆ft′) = O
(
|t− t′|2(%−1)−1

+ + |t− t′|%−2
+

)
E
(
λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′
)

= O
(
|t− t′|2(δ0−1)−1

+ + |t− t′|δ0−2
+

)
where |a|+ = max {|a| , 1}and bounded for t = t′ because max{%, δ0} < 2/3, so that ∆ft and

λt

(
L; θ

(−1)
0

)
εit are asymptotically stationary. Then, this term is

Op

(
1

T 2

T∑
t=1

t∑
t′=1

|t− t′|2%+2δ0−6
+ + |t− t′|%+δ0−4

+

)
= Op

(
T 2%+2δ0−6 + T−1 log T

)
.

The expectation of the second term in (28), which is also positive, is

1

T 2

T∑
t=1

T∑
t′=1

E
[
λt

(
L; θ

(−1)
0

)
ε̄tλt′

(
L; θ

(−1)
0

)
ε̄t′λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′
]

=
1

N2T 2

T∑
t=1

T∑
t′=1

N∑
j=1

N∑
k=1

E
[
λt

(
L; θ

(−1)
0

)
εjtλt′

(
L; θ

(−1)
0

)
εkt′λt

(
L; θ

(−1)
0

)
εitλt′

(
L; θ

(−1)
0

)
εit′
]

=
1

N2T 2

T∑
t=1

T∑
t′=1

N∑
j=1

N∑
k=1

t∑
a=1

t′∑
b=1

t∑
c=1

t′∑
d=1

τ 0
a τ

0
b τ

0
c τ

0
δE [εjt−aεkt′−bεit−cεit′−d] ,
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where τ 0
a = τa (θ0) = λa

(
θ

(−1)
0

)
and the expectation can be written using the indicator

function 1 {·} as

= E [εjt−aεkt′−b]E [εit−cεit′−d] 1 {t− a = t′ − b} 1 {t− c = t′ − d} 1 {j = k}
+E [εjt−aεit′−d]E [εkt′−bεit−c] 1 {t− a = t′ − d} 1 {t′ − b = t− c} 1 {j = i = k}
+E [εjt−aεit−c]E [εkt′−bεit′−d] 1 {t− a = t− c} 1 {t′ − b = t′ − d} 1 {j = i = k}
+κ4 [εit] % {t− a = t′ − b = t− c = t′ − d} 1 {j = k = i} .

This leads to four different types of contributions, the first type being

σ4

NT 2

T∑
t=1

T∑
t′=1

t∧t′∑
a=1

t∧t′∑
c=1

τ 0
a τ

0
a+|t−t′|τ

0
c τ

0
c+|t−t′|

= O

(
1

NT 2

T∑
t=1

t∑
t′=1

|t− t′|4(δ0−1)−2
+ + |t− t′|2δ0−4

+

)
= O

(
N−1

(
T−1 + T 4(δ0−1)−2

))
,

proceeding as in Lemma 8. The second type is

σ4

N2T 2

T∑
t=1

T∑
t′=1

t∧t′∑
a=1

t∧t′∑
c=1

τ 0
a τ

0
a+|t−t′|τ

0
c τ

0
c+|t−t′| = O

(
N−2

(
T−1 + T 4(δ0−1)−2

))
and the third one is, using that (τ 0

a )
2

= π2
a (1− δ0) ∼ a2δ0−4 and δ0 < 3/2,

σ4

N2T 2

T∑
t=1

T∑
t′=1

t∑
a=1

t′∑
b=1

(
τ 0
a

)2 (
τ 0
b

)2
= O

(
N−2

)
.

The final fourth type involving fourth order cumulants is

κ4

N2T 2

T∑
t=1

T∑
t′=1

t∧t′∑
a=1

(
τ 0
a τ

0
a+|t−t′|

)2
= O

(
1

NT 2

T∑
t=1

T∑
t′=1

|t− t′|2δ0−4
+

)
= O

(
N−1T−1

)
.

The third term in (28) can be bounded using Cauchy-Schwarz inequality and the Lemma
follows. �

Lemma 2. Under Assumptions A and B, as T →∞,

(a) sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

(λt−1 (L; θ) ft)
2

∣∣∣∣∣ = Op

(
1 + T 2(%−δ)−1

)
(b)

1

T

T∑
t=1

λt−1 (L; θ0) ft ∗ χt−1 (L; ξ0)λt−1 (L; θ0) ft = Op

(
1 + T 2(%−δ0)−1 log T

)
(c)

1

T

T∑
t=1

τ̇t−1(θ0)λt−1 (L; θ0) ft = Op

(
T−1 +

{
T 2(%−2δ0)−1 + T−δ0−1 + T 2(%−δ0−1)−δ0

}1/2
log T

)
.
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Proof of Lemma 2. To prove (a) note that by the triangle inequality,

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

(λt−1 (L; θ))2

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

{
(λt−1 (L; θ) ft)

2 − E
[
(λt−1 (L; θ) ft)

2
]}∣∣∣∣∣ (29)

+ sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

E
[
(λt−1 (L; θ) ft)

2
]∣∣∣∣∣ .

Under Assumption 2, we have

λt−1 (L; θ) ft = ψ (L; ξ) ∆δ−%
t−1zt =

t−1∑
j=0

λj(δ − %; ξ)zt−j =
∞∑
j=0

cjvt−j,

where cj = cj(δ− %, ξ) =
∑j

k=0 ϕ
f
kλj−k(δ− %, ξ) ∼ cj%−δ−1 as j →∞ under Assumption A.2.

First, notice that uniformly in θ ∈ Θ

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

E
[
(λt−1 (L; θ) ft)

2
]∣∣∣∣∣ = sup

θ∈Θ

∣∣∣∣∣σ2
v

T

T∑
t=1

t∑
j=0

c2
j

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣KT
T∑
t=1

(
1 + t2(%−δ)−1

)∣∣∣∣∣ = O(1+T 2(%−δ)−1),

while the first term on the lhs of (29) is

1

T

T−1∑
j=1

c2
j

T−j∑
l=1

(v2
l − σ2

v) +
2

T

T−2∑
j=0

T−1∑
k=j+1

cjck

T−j∑
l=k−j+1

vlvl−(k−j) = (a) + (b),

say. Then, with γv (j) = E [v0vj] ,

E sup
Θ
|(a)| ≤ 1

T

T−1∑
j=0

sup
Θ
c2
jE

∣∣∣∣∣
T−j∑
l=1

(v2
l − γv (j))

∣∣∣∣∣ .
Uniformly in j, V ar(

∑T−j
l=1 v

2
l ) = O(T ), so

sup
Θ
|(a)| = Op

(
T−1/2

T−1∑
j=1

j2(%−δ)−2

)
= Op(T

−1/2 + T 2(%−δ)−3/2).

Next, using summation by parts, we can express (b) as

2cT−1

T

T−2∑
j=0

cj

T−1∑
k=j+1

T−j∑
l=k−j+1

{
vlvl−(k−j) − γv (j − k)

}
+

2

T

T−2∑
j=0

cj

T−2∑
k=j+1

(ck+1 − ck)
k∑

r=j+1

T−j∑
l=r−j+1

{
vlvl−(r−j) − γv (j − r)

}
= (b1) + (b2).
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Uniformly in j,

V ar

(
T−1∑
k=j+1

T−j∑
l=k−j+1

vlvl−(k−j)

)
= O(T 2),

so,

E sup
Θ
|(b1)| ≤ KT−1T %−δ−1

T∑
j=0

j%−δ−1

{
V ar

(
T−1∑
k=j+1

T−j∑
l=k−j+1

vlvl−(k−j)

)}1/2

= O(T 2(%−δ)−1 + T %−δ−1)

where K is some arbitrarily large positive constant. Similarly,

E sup
Θ
|(b2)| ≤ KT−1

T∑
j=0

j%−δ−1

T∑
k=j+1

k%−δ−2

{
V ar

(
k∑

r=j+1

T−j∑
l=r−j+1

vlvl−(r−j)

)}1/2

= O(T 2(%−δ)−1 + T %−δ−1 + 1) = O(T 2(%−δ)−1 + T %−δ−1 + 1)

since

V ar

(
k∑

r=j+1

T−j∑
l=r−j+1

vlvl−(r−j)

)
≤ K(k − j)(T − j).

The proof of (b) is similar but simpler than that of (a) and is omitted.

To prove (c) note that T−1
∑T

t=1 λt−1 (L; θ0) ftτ̇t(θ0) has zero mean and variance

1

T 2

T∑
t=1

T∑
r=1

τ̇t(θ0)τ̇r(θ0)E [λt−1 (L; θ0) ftλr−1 (L; θ0) fr] . (30)

When 0 ≤ %− δ0 ≤ 1, |E [λt−1 (L; θ0) ft ∗ λr−1 (L; θ0) fr]| ≤ K|t− r|2(%−δ0)−1
+ and using that

|τ̇t(θ0)| ≤ Kt−δ0 log t, (30) is

O

(
1

T 2

T∑
t=1

t∑
r=1

(tr)−δ0 log t log r|t− r|2(%−δ0)−1
+

)

= O

(
1

T 2

T∑
t=1

t−δ0 log2 t
{
t−δ0

(
t2(%−δ0) + 1

)
+
(
t1−δ0 + 1

)
t2(%−δ0)−1

})
= O

(
T−2

)
+O

(
T−1−δ0

{
T−δ0

(
T 2(%−δ0) + 1

)
+
(
T 1−δ0 + 1

)
T 2(%−δ0)−1

})
log2 T

= O
(
T−2

)
+O

({
T−1−2δ0

(
T 2(%−δ0) + 1

)
+
(
T 1−δ0 + 1

)
T 2(%−δ0−1)−δ0

})
log2 T

= O
(
T−2

)
+O

({
T 2(%−2δ0)−1 + T 2(%−2δ0−1)+1 + T 2(%−δ0−1)−δ0

})
log2 T

= O
(
T−2

)
+O

({
T 2(%−2δ0)−1 + T 2(%−δ0−1)−δ0

}
log2 T

)
.
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When % − δ0 < 0, |E [λt−1 (L; θ0) ft ∗ λr−1 (L; θ0) fr]| ≤ K|t − r|%−δ0−1
+ r%−δ0 , t > r, see

Lemma 8, so (30) is

O

(
1

T 2

T∑
t=1

t∑
r=1

(tr)−δ0 log t log r|t− r|%−δ0−1
+ r%−δ0

)

= O

(
1

T 2

T∑
t=1

t−δ0 log2 t

)
= O

(
T−2 + T−δ0−1 log2 T

)
,

and the result follows. �

Lemma 3. Under the assumptions of Theorem 1, as (N, T )j →∞,

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ γ̄NT
N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ)

(
εit − φ̂iε̄t

)∣∣∣∣∣ = op (1) .

Proof of Lemma 3. For θ ∈ Θ1 ∪Θ2 ∪Θ3, since γ̄ →p E [γi] = Op (1) as N →∞, we only
need to consider

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ)

(
εit − φ̂iε̄t

)
=

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ) εit −

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0
t (L; θ) φ̂iε̄t,

where the first term is equal to

1

NT

N∑
i=1

T∑
t=1

ηiλt−1 (L; θ) ft ∗ λ0t (L; θ) εit

=
1

T−1
∑
t (∆ȳt)

2

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

∆ȳrλ
−1
r

(
L; θ

(−1)
0

)(
εir −

γi

γ̄
ε̄r

)
∗ λt−1 (L; θ) ft ∗ λ0t (L; θ) εit

=
1

T−1
∑
t (∆ȳt)

2

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

(
γ̄∆fr + λ−1

r

(
L; θ

(−1)
0

)
ε̄r
)
λ−1
r

(
L; θ

(−1)
0

)(
εir −

γi

γ̄
ε̄r

)
∗ λt−1 (L; θ) ft ∗ λ0t (L; θ) εit.

Next γ̄−1 = Op (1) as N → ∞ and 1
T−1

∑
t(∆ȳt)

2 = Op (1) as T → ∞, cf. proof of Lemma 1,

while

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

(
γ̄∆fr + λ−1

r

(
L; θ

(−1)
0

)
ε̄r
)
λ−1
r

(
L; θ

(−1)
0

)(
εir −

γi

γ̄
ε̄r

)
λt−1 (L; θ) ftλ

0
t (L; θ) εit (31)

=
γ̄

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

∆frλ
−1
r

(
L; θ

(−1)
0

)
εirλt−1 (L; θ) ftλ

0
t (L; θ) εit

+
1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

λ−1
r

(
L; θ

(−1)
0

)
ε̄rλ
−1
r

(
L; θ

(−1)
0

)
εirλt−1 (L; θ) ftλ

0
t (L; θ) εit

−
1

NT 2γ̄

N∑
i=1

γi

T∑
t=1

T∑
r=1

γ̄∆frλ
−1
r

(
L; θ

(−1)
0

)
ε̄rλt−1 (L; θ) ftλ

0
t (L; θ) εit

−
1

NT 2γ̄

N∑
i=1

γi

T∑
t=1

T∑
r=1

λ−1
r

(
L; θ

(−1)
0

)
ε̄rλ
−1
r

(
L; θ

(−1)
0

)
ε̄rλt−1 (L; θ) ftλ

0
t (L; θ) εit.
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The first term on the rhs of (31) can be written as γ̄ times

1

NT

N∑
i=1

T∑
t=1

t∑
j=0

t∑
k=0

λj (δ − %, ξ)λ0
k (θ) zt−jεit−k

1

T

T∑
r=1

∆frλ
−1
r

(
L; θ

(−1)
0

)
εir

which using Lemma 8 and |a|+ = max{|a|, 1} has expectation

1

NT 2

N∑
i=1

T∑
t=1

T∑
r=1

E [∆frλt−1 (L; θ) ft]E
[
λ−1
r

(
L; θ

(−1)
0

)
εirλ

0
t (L; θ) εit

]

= O

 1
T 2

∑T
t=1

∑T
r=1

(
|t− r|2(%−1)−δ

+ + |t− r|%−1−δ
+ + |t− r|%−2

+

)
×
(
|t− r|2(δ0−1)−δ

+ + |t− r|δ0−1−δ
+ + |t− r|δ0−2

+

) 
= o (1)

uniformly in θ ∈ Θ1∪Θ2∪Θ3, since all exponents in |t−r|+ are negative under Assumptions
A and B∗.1, so that we can write its centered version as

1

NT

N∑
i=1

T∑
t=1

t∑
j=0

t∑
k=0

λj (δ − %, ξ)λ0
k (θ)Ai,t−j,t−k

=
1

NT

N∑
i=1

T∑
t=1

t∑
j=0

λj (δ − %, ξ)λ0
j (θ)Ai,t−j,t−j

+
1

NT

N∑
i=1

T∑
t=1

t∑
j=0

∑
k 6=j

λj (δ − %, ξ)λ0
k (θ)Ai,t−j,t−k

= (a) + (b) , say, where

Ai,t−j,t−k = zt−jεit−k
1

T

T∑
r=1

∆1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir−

1

T

T∑
r=1

E
[
zt−jεit−k∆

1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir

]
.

Then

E sup
δ
| (a) | ≤ 1

T

T∑
j=0

sup
δ

∣∣λj (δ − %, ξ)λ0
j (θ)

∣∣E ∣∣∣∣∣ 1

N

N∑
i=1

T−j∑
`=1

Ai,`,`

∣∣∣∣∣ ,
where

V ar

[
1

N

N∑
i=1

T−j∑
`=1

Ai,`,`

]
= O

(
N−1

)
V ar

[
T−j∑
`=1

Ai,`,`

]
with

V ar

[
T−j∑
`=1

Ai,`,`

]
=

T−j∑
`=1

V ar [Ai,`,`] +

T−j∑
`=1

∑
`′ 6=`

Cov [Ai,`,`, Ai,`′,`′ ] .
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Now V ar [Ai,`,`] is

1

T 2

T∑
r=1

T∑
r′=1

 E
[
z2`∆1−%

r zr∆
1−%
r′ zr′ε

2
i`λ
−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
−E

[
z`εi`∆

1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`εi`∆

1−%
r′ zr′λ

−1
r′

(
L; θ

(−1)
0

)
εir′

] 
=

1

T 2

T∑
r=1

T∑
r′=1

 E
[
z2`∆1−%zr∆1−%zr′

]
E
[
ε2i`λ

−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
−E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`∆

1−%
r zr

]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
E
[
z`∆

1−%
r′ zr′

] 
=

1

T 2

T∑
r=1

T∑
r′=1


(
E
[
z2`
]
E
[
∆1−%zr∆1−%zr′

]
+ 2E

[
z`∆

1−%zr
]
E
[
z`∆

1−%zr′
])

×
(
E
[
ε2i`
]
E
[
λ−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
+ 2E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′

])
−E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`∆

1−%zr
]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′

]
E
[
z`∆

1−%zr′
]


and

∑T−j
`=1 V ar [Ai,`,`] is, using Lemma 8,

O

 1

T 2

T−j∑
`=1

T∑
r=1

T∑
r′=1


(
|r − r′|2(%−1)−1

+ + |r − r′|%−2
+ + |r − `|%−2|r′ − `|%−2

)
×
(
|r − r′|2(δ0−1)−1

+ + |r − r′|δ0−2
+ + |r − `|δ0−2|r′ − `|δ0−2

) 


= O
(
log T + T 2(%−1)+2(δ0−1)−1

)
,

while using a similar argument

Coε [Ai,`,`, Ai,`′,`′ ]

=
1

T 2

T∑
r=1

T∑
r′=1

 E
[
z`z`′∆

1−%
r zr∆

1−%
r′ zr′εi`εi`′λ

−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′
]

−E
[
z`εi`∆

1−%
r zrλ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
z`′εi`′∆

1−%
r′ zr′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
] 

=
1

T 2

T∑
r=1

T∑
r′=1

{
E [z`z`′∆

1−%zr∆
1−%zr′ ]E

[
εi`εi`′∆

1−δ0
r+1 εir∆

1−δ0
r+1 εir′

]
−E

[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E [z`∆

1−%
r zr]E

[
εi`′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]
E
[
z`′∆

1−%
r′ zr′

] }

=
1

T 2

T∑
r=1

T∑
r′=1



(E [z`z`′ ]E [∆1−%zr∆
1−%zr′ ] + E [z`∆

1−%zr]E [z`′∆
1−%zr′ ] + E [z`′∆

1−%zr]E [z`∆
1−%zr′ ])

×


E [εi`εi`′ ]E

[
λ−1
r

(
L; θ

(−1)
0

)
εirλ

−1
r′

(
L; θ

(−1)
0

)
εir′
]

+E
[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
εi`′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]

+E
[
εi`′λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E
[
εi`λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]


−E
[
εi`λ

−1
r

(
L; θ

(−1)
0

)
εir

]
E [z`∆

1−%zr]E
[
εi`′λ

−1
r′

(
L; θ

(−1)
0

)
εir′
]
E [z`′∆

1−%zr′ ]


and using Lemma 8

∑T−j
`=1

∑
`′ 6=`Coε [Ai,`,`, Ai,`′,`′ ] is

O

 1

T 2

T−j∑
`=1

T−j∑
`′=1

T∑
r=1

T∑
r′=1


(

|`− `′|−2
(
|r − r′|2(%−1)−1

+ + |r − r′|%−2
+

)
+|r − `|%−2|r′ − `′|%−2 + |r′ − `|%−2|r − `′|%−2

)
×
(

|`− `′|−2
(
|r − r′|2(δ0−1)−1 + |r − r′|δ0−2

+

)
+|r − `|δ0−2|r′ − `′|δ0−2 + |r − `′|δ0−2|r′ − `|δ0−2

)



= O
(
log T + T 2(%−1)+2(δ0−1)−1

)
.
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Then, using
∣∣λj (δ − %, ξ)λ0

j (θ)
∣∣ ≤ Cj%+δ0−2δ−2,

E sup
δ
| (a) | ≤ 1

T

T∑
j=0

sup
δ

∣∣λj (δ − %, ξ)λ0
j (θ)

∣∣E ∣∣∣∣∣ 1

N

N∑
i=1

T−j∑
`=1

Ai,`,`

∣∣∣∣∣
= O

(
N−1

(
log T + T 2(%−1)+2(δ0−1)−1

)(
T−2 + sup

δ
T 2(%−1)+2(δ0−1)−4δ

))1/2

= o (1) +O
(
N−1T 4(%−1)+4(δ0−1)−1−4δ

)1/2
= o (1)

since δ0 − 1 < δ/2 and %− 1 < δ/2, using Assumption B∗.1.

For (b) a similar result is obtained using summation by parts as in the proof of the bound
for (b2) in Lemma 1. First, we can express (b) = (b1) + (b2) with

(b1) =
2λ0

T (θ)

NT

T−1∑
j=0

λj (δ − %, ξ)
T∑

k=j+1

T−j∑
`=k−j+1

N∑
i=1

Ai,`,`−(k−j)

(b2) =
2

NT

T−1∑
j=0

λj (δ − %, ξ)
T−1∑
k=j+1

(λ0
k+1 (θ)− λ0

k (θ))
k∑

r=j+1

T−j∑
`=r−j+1

N∑
i=1

Ai,`,`−(r−j),

so that we find that that E supδ |(b1)| is bounded by

KT−1T δ0−δ−1

T∑
j=1

j%−d−1TN−1/2
(
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ KN−1/2T δ0−δ−1
(
1 + T %−δ

) (
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ K
{
N−1

(
T 2(δ0−1)−2δ + T 2(δ0+%−1)−4δ

) (
log T + T 2(%−1)+2(δ0−1)−1

)}1/2

which is o (1) by using Assumptions B∗.1-3 while E supδ |(b2)| is bounded by

KT−1N−1/2

T−1∑
j=0

j%−δ−1

T−1∑
k=j+1

kδ0−δ−2T
(
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ KT−1N−1/2

T−1∑
j=0

jδ0+%−2δ−2T
(
log T + T 2(%−1)+2(δ0−1)−1

)1/2

≤ KN−1/2
(
1 + T %+δ0−2δ−1

) (
log T + T 2(%−1)+2(δ0−1)−1

)1/2
,

which is o (1) under Assumptions B∗.1-3.

The bounds for the other terms on the rhs of (31) follow in a similar form, noting that
the presence of cross section averages introduce a further N−1/2 factor in the probability
bounds. �
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Lemma 4. Under the assumptions of Theorem 1, as (N, T )j →∞,

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ)

(
εit − φ̂iε̄t

)
τt(θ)(εi0 − φ̂iε̄0)

∣∣∣∣∣ = op (1) .

Proof of Lemma 4. Opening the double product λ0
t (L; θ)

(
εit − φ̂iε̄t

)
(εi0− φ̂iε̄0) into four

different terms, we study them in turn. First note that the expectation of

1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)εi0 (32)

is
σ2

T

T∑
t=1

τt(θ)λ
0
t (θ) = O

(
T−1 + T−2δ

)
= o (1)

uniformly in δ, so we can show that the term (32) is negligible by showing that

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

t∑
j=0

λ0
j (θ) τt(θ)

{
εit−jεi0 − σ2 (t = j)

}∣∣∣∣∣ = op (1) .

The term inside the absolute value is

1

T

T∑
t=1

λ0
t (θ) τt(θ)

1

N

N∑
i=1

{
ε2
i0 − σ2

}
+

1

T

T∑
t=1

t−1∑
j=0

λ0
j (θ) τt(θ)

1

N

N∑
i=1

εit−jεi0

where the first term is O
(
N−1/2

(
T−1 + T−2δ

))
= op (1) , uniformly in δ, while the second

can be written using summation by parts as

1

T

T∑
j=0

T∑
k=j+1

λ0
j (θ) τk(δ)

1

N

N∑
i=1

εik−jεi0

=
τT (δ)

T

T∑
j=0

λ0
j (θ)

1

N

N∑
i=1

T∑
k=j+1

εik−jεi0

− 1

NT

N∑
i=1

T∑
j=0

λ0
j (θ)

T∑
k=j+1

{τk+1(δ)− τk(δ)}
1

N

N∑
i=1

k∑
r=j+1

εir−jεi0

= (b1) + (b2) .

Then,

E sup
δ
|b1| ≤ KT−δ−1

T∑
j=0

jδ0−δ−1N−1/2 (T − j)1/2

≤ KT−δ−1
(
1 + T δ0−δ−1

)
N−1/2T 1/2 ≤ KN−1/2

(
T−δ−1/2 + T δ0−2δ−1/2

)
= o (1) ,
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by Assumption B∗, because Var
[
N−1

∑N
i=1

∑T
k=j+1 εik−jεi0

]
≤ KN−1/2 (T − j)1/2 . Next,

E sup
δ
|b1| ≤ KT−1

T∑
j=0

jδ0−δ−1

T∑
k=j+1

k−δ−1N−1/2 (k − j)1/2

≤ KT−1

T∑
j=0

jδ0−δ−1T−δ+1/2N−1/2

≤ KN−1/2
(
T−1 + T δ0−δ−1

)
T−δ+1/2 ≤ KN−1/2

(
T−δ−1/2 + T δ0−2δ−1/2

)
= o (1) .

The second term is

− 1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) φ̂iε̄tτt(θ)εi0 = − 1

T

T∑
t=1

λ0
t (L; θ) ε̄tτt(θ)

1

N

N∑
i=1

φ̂iεi0 = op (1)

because we can show that

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

T

T∑
t=1

λ0
t (L; θ) ε̄tτt(θ)

∣∣∣∣∣ = op (1)

using the same method as for bounding (32) , while

1

N

N∑
i=1

φ̂iεi0 =
1

N

N∑
i=1

γi
γ̄
εi0 +

1

N

N∑
i=1

ηiεi0

= Op

(
N−1/2

)
+Op(T

2%+2δ0−6 + T−1 +N−1T 4δ0−6 +N−2)1/2 = op (1)

by Lemma 1 and Cauchy-Schwarz inequality.

The third term,

− 1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)φ̂iε̄0 = − ε̄0

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)

(
γi
γ̄

+ ηi

)
is negligible because, on the one hand

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ ε̄0

γ̄NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)γi

∣∣∣∣∣ = op (1)

because ε̄0 = Op

(
N−1/2

)
, γ̄−1 = Op (1) and the average can be bounded as (32) since γi is

independent of εit, which is zero mean, and on the other hand under Assumption B∗,∣∣∣∣∣ ε̄0

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) εitτt(θ)ηi

∣∣∣∣∣ ≤ |ε̄0|

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ) εit

)2
τ 2
t (θ)

∣∣∣∣∣
1/2 ∣∣∣∣∣ 1

N

N∑
i=1

η2
i

∣∣∣∣∣
1/2

= op (1)
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because we can show that

sup
θ∈Θ1∪Θ2∪Θ3

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(
λ0
t (L; θ) εit

)2
τ 2
t (θ)

∣∣∣∣∣ = Op

(
1 + T 2(δ0−2δ)−1

)
(1 + op (1))

using again the same methods, |ε̄0| = Op

(
N−1/2

)
and

∣∣∣ 1
N

∑N
i=1 η

2
i

∣∣∣ = Op(T
2%+2δ0−6 + T−1 +

N−1T 4δ0−6 +N−2) by Lemma 1.

Finally, the last term,

1

NT

N∑
i=1

T∑
t=1

λ0
t (L; θ) φ̂2

i ε̄tτt(θ)ε̄0 = ε̄0
1

T

T∑
t=1

λ0
t (L; θ) ε̄tτt(θ)

1

N

N∑
i=1

φ̂2
i

= Op

(
N−1/2

)
op (1)Op (1) = op (1) ,

is also negligible, proceeding as before. �

Lemma 5. Under the conditions of Theorem 2,

− 2√
NT

N∑
i=1

T∑
t=1

τt(θ0) (εi0 − φiε̄0)∗χt (L; ξ0) (εit − φiε̄t) = −2σ2

(
N

T

)1/2 T∑
t=1

τt(θ0)χt (ξ0)+op (1) .

Proof of Lemma 5. The main term on the left hand side converges to its expectation

− 2√
NT

N∑
i=1

T∑
t=1

E [τt(θ0)εi0 ∗ χt (L; ξ0) εit] = −2σ2

(
N

T

)1/2 T∑
t=1

τt(θ0)χt (ξ0)

since its variance is

1

NT

N∑
i=1

T∑
t=1

T∑
r=1

τt(θ0)τr(θ0)Cov [εi0 ∗ χt (L; ξ0) εit, εi0 ∗ χr (L; ξ0) εir]

=
1

T

T∑
t=1

τt(θ0)2

[
σ4

(
t∑

j=0

j−2 + t−2

)
+ {κ4}

]

+
1

T

T∑
t=1

t∑
r=1

τt(θ0)τr(θ0)

[
σ4

(
t∑

j=0

j−1 (t− r + j)−1 + t−1r−1

)
+ κ4t

−21 {t = r}

]

= O
(
T−1 + T−2δ0

)
+O

(
T−1

T∑
t=1

t∑
r=1

(rt)−δ0
(
|t− r|−1 log t+ (tr)−1))

= O
(
T−1 + T−2δ0

)
+O

(
T−1

T∑
t=1

t−δ0
(
t−δ0 log2 t+ t−1 log t

))
= O

(
T−1 log4 T + T−2δ0 log2 T

)
= o (1)
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while for the other three terms, we can check in turn that

− 2√
NT

N∑
i=1

T∑
t=1

τt(θ0)εi0φ̂iχt (L; ξ0) ε̄t = Op

(
1√
NT

N∑
i=1

εi0φ̂i

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t

)

= Op

(
(T/N)−1/2 1

N

N∑
i=1

εi0φ̂i

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t

)
= Op

(
(T/N)−1/2N−1/2

{
1 + T 1/2−δ0 log1/2 T

})
which is Op

(
T−1/2 + T−δ0 log1/2 T

)
= op (1) because

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t = Op

N−1/2

{
T∑
t=1

τt(θ0)2 log t

}1/2


= Op

(
N−1/2

{
1 + T 1/2−δ0 log1/2 T

})
,

while∣∣∣∣∣ 2√
NT

N∑
i=1

T∑
t=1

τt(θ0)φ̂iε̄0χt (L; ξ0) εit

∣∣∣∣∣ ≤
∣∣∣∣∣ 2

N

N∑
i=1

φ̂iT
−1/2

T∑
t=1

τt(θ0)χt (L; ξ0) εit

∣∣∣∣∣
= Op

(
T−1/2

{
1 + T 1/2−δ0 log1/2 T

})
= op (1) ,

using 1
N

∑N
i=1 φ̂i = Op (1) and the same argument as for N = 1, and finally

2√
NT

N∑
i=1

T∑
t=1

τt(θ0)ε̄0φ̂
2
iχt (L; ξ0) ε̄t =

√
Nε̄0

1

N

N∑
i=1

φ̂2
iT
−1/2

T∑
t=1

τt(θ0)χt (L; ξ0) ε̄t

= Op

N−1/2T−1/2

{
T∑
t=1

τt(θ0)2 log t

}1/2


= Op

(
N−1/2

{
T−1/2 + T−δ0 log1/2 T

})
= op (1) ,

and the proof is completed. �

Lemma 6. Under the conditions of Theorem 2,

2√
NT

N∑
i=1

T∑
t=1

{
(εit − φ̂iε̄t)

[
χt (L; ξ0) εit − φ̂iχt (L; ξ0) ε̄t

]}
→d N (0, 4B (ξ0)) .

Proof of Lemma 6. The left hand side can be written as

2√
NT

N∑
i=1

T∑
t=1

{
εit ∗ χt (L; ξ0) εit − εitφ̂iχt (L; ξ0) ε̄t − φ̂iε̄tχt (L; ξ0) εit + φ̂2

i ε̄t ∗ χt (L; ξ0) ε̄t

}
(33)
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where Proposition 2 in Robinson and Velasco (2015) shows the asymptotic N (0, 4B (ξ0))
distribution of the first term as (N, T )j → ∞, and we now show that the remainder terms
are negligible. Then the second term on (33) can be written as

2√
NT

1

N

N∑
i=1

N∑
j=1

T∑
t=1

εit

{
γi
γ̄

+ ηi

}
χt (L; ξ0) εjt,

where 2 (NT )−1/2N−1
∑N

i=1

∑N
j=1

∑T
t=1 εitγiχt (L; ξ0) εjt has zero expectation and variance

proportional to

1

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

N∑
i′=1

N∑
j′=1

T∑
t′=1

E [εitγiχt (L; ξ0) εjtεi′t′γi′χt′ (L; ξ0) εj′t′ ]

=
1

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

N∑
i′=1

N∑
j′=1

T∑
t′=1

E [γiγi′ ]E [εitχt (L; ξ0) εjtεi′t′χt′ (L; ξ0) εj′t′ ]

=
1

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

E
[
γ2
i

]
E
[
ε2
it

]
E
[
{χt (L; ξ0) εjt}2] = O

(
N−1

)
= o (1)

so this term is op (1) as N → ∞. Then the other term depending on ηi is also negligible as
using C-S inequality∣∣∣∣∣ 2√
NT

1

N

N∑
i=1

N∑
j=1

T∑
t=1

εitηiχt (L; ξ0) εjt

∣∣∣∣∣ ≤ 2√
NT

 1

N

N∑
i=1

η2
i

1

N

N∑
i=1

(
N∑
j=1

T∑
t=1

εitχt (L; ξ0) εjt

)2
1/2

= Op

(
(NT )−1/2 (T 2%+2δ0−6 + T−1)1/2 (NT )1/2

)
= Op

(
(T 2%+2δ0−6 + T−1)1/2

)
= op (1)

because

E

( N∑
j=1

T∑
t=1

εitχt (L; ξ0) εjt

)2
 =

N∑
j=1

N∑
j′=1

T∑
t=1

T∑
t′=1

E [εitεit′χt (L; ξ0) εjtχt′ (L; ξ0) εj′t′ ]

=
N∑
j=1

T∑
t=1

E
[
ε2
it

]
E
[
{χt (L; ξ0) εjt}2] = O (NT ) .

The third term in (33) is also op (1) since it can be written as

2√
NT

N∑
i=1

T∑
t=1

χt (L; ξ0) εitφ̂iε̄t =
2√
NT

N∑
i=1

T∑
t=1

{
γi
γ̄

+ ηi

}
χt (L; ξ0) εitε̄t
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where 2 (NT )−1/2∑N
i=1

∑T
t=1 γiχt (L; ξ0) εitε̄t has zero expectation and variance

2

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

N∑
i′=1

N∑
j′=1

T∑
t′=1

E [γiγi′ ]E [χt (L; ξ0) εitεjtχt (L; ξ0) εi′t′εj′t′ ]

=
2

NT

1

N2

N∑
i=1

N∑
j=1

T∑
t=1

E
[
γ2
i

]
E
[
ε2
jt

]
E
[
{χt (L; ξ0) εit}2] = O

(
N−1

)
while∣∣∣∣∣ 2√

NT

N∑
i=1

T∑
t=1

ηiχt (L; ξ0) εitε̄t

∣∣∣∣∣ ≤ 2N√
NT

 1

N

N∑
i=1

η2
i

1

N

N∑
i=1

(
T∑
t=1

χt (L; ξ0) εitε̄t

)2
1/2

= Op

(
N1/2T−1/2(T 2%+2δ0−6 + T−1)1/2

(
N−1T

)1/2
)

= Op

(
(T 2%+2δ0−6 + T−1)1/2

)
= op (1)

because

E

( T∑
t=1

εitε̄t

)2
 =

1

N2

T∑
t=1

T∑
t′=1

N∑
j=1

N∑
j′=1

E [χt (L; ξ0) εitεjtχt′ (L; ξ0) εit′εj′t′ ]

=
1

N2

T∑
t=1

N∑
j=1

E
[
ε2
jt

]
E
[
{χt (L; ξ0) εit}2] = O

(
TN−1

)
.

Finally, the fourth term in (33) is also negligible, since

2√
NT

N∑
i=1

T∑
t=1

φ̂2
i ε̄tχt (L; ξ0) ε̄t =

2√
NT

1

N

N∑
i=1

φ̂2
i

1

N

N∑
a=1

N∑
b=1

T∑
t=1

εatχt (L; ξ0) εbt

= Op

(
(NT )−1/2 T 1/2

)
= Op

(
N−1/2

)
= op (1) ,

since N−1
∑N

i=1 φ̂
2
i = Op (1) and N−1

∑N
a=1

∑N
b=1

∑T
t=1 εatχt (L; ξ0) εbt is Op

(
T 1/2

)
because it

has zero expectation and variance

1

N2

N∑
a=1

N∑
b=1

N∑
a′=1

N∑
b′=1

T∑
t=1

T∑
t′=1

E [εatεa′t′χt (L; ξ0) εbtχt′ (L; ξ0) εb′t′ ]

=
1

N2

N∑
a=1

N∑
b=1

T∑
t=1

E
[
ε2
at

]
E
[
{χt (L; ξ0) εbt}2] = O (T ) . �

Lemma 7. Under the assumptions of Theorem 2 and for θ →p θ0,

L̈N,T (θ)→p L̈N,T (θ0).
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Proof of Lemma 7. This follows as Theorem 2 of Hualde and Robinson (2011), using the
same techniques as in the proof of Theorem 1 to bound uniformly the initial condition and
projection terms in a neighborhood of θ0. �

Lemma 8. Under Assumptions A and B∗.1, for θ ∈ Θ, as T →∞,

E [∆frλt−1 (L; θ) ft] = O

 |t− r|2(%−1)−δ
+

+|t− r|%−1−δ
+ r%−11 {%− 1 < 0} 1 {r < t}

+|t− r|%−2
+ t%−δ1 {%− δ < 0} 1 {t < r}


= O

(
|t− r|2(%−1)−δ

+ + |t− r|%−1−δ
+ + |t− r|%−2

+

)
E
[
λ−1
t−1

(
L; θ

(−1)
0

)
εirλ

0
t−1 (L; θ) εit

]
= O

 |t− r|2(δ0−1)−δ
+

+|t− r|δ0−1−δ
+ rδ0−11 {δ0 − 1 < 0} 1 {r < t}

+|t− r|δ0−2
+ tδ0−δ1 {δ0 − δ < 0} 1 {t < r}


= O

(
|t− r|2(δ0−1)−δ

+ + |t− r|δ0−1−δ
+ + |t− r|δ0−2

+

)
,

where |a|+ = max{|a|, 1} and

E
[
∆1−%zrzt

]
= O

(
|t− r|%−2

+

)
E
[
λ−1
t−1

(
L; θ

(−1)
0

)
εirεit

]
= O

(
|t− r|δ0−2

+

)
.

Proof of Lemma 8. We only prove the statement for E [∆frλt−1 (L; θ) ft], since the rest
follow similarly. Under Assumption A.2, if t > r

E [∆frλt−1 (L; θ) ft] = E
[
∆1−%
r zrλt−1 (L; δ − %, ξ) zt

]
= σ2

v

r∑
j=0

dj (1− %) cj+t−r (δ − %) ,

where dj (a) =
∑j

k=0 ϕ
f
kπj−k(a) ∼ cj−a−1 and cj (a) = cj (a, ξ) =

∑j
k=0 ϕ

f
kλj−k(a, ξ) ∼ cj−a−1

as j →∞, dj (0) = ϕfj and
∑∞

j=0 dj (a) =
∑∞

j=0 cj (a) = 0 if a > 0, ξ ∈ Ξ, so that the absolute
value of the last expression is bounded by, % ≥ 1,

K
r∑
j=0

|dj(1− %)| (j + t− r)%−δ−1 ≤ K (t− r)%−δ−1
t−r∑
j=0

|dj(1− %)|+K
r∑

j=t−r+1

j2%−δ−3

≤ K (t− r)%−δ−1 (t− r)%−1 +K (t− r)2(%−1)−δ

= O
(

(t− r)2(%−1)−δ
)

since % − 1 < δ, % < 3/2 and 2(% − 1) − δ < 0 by Assumption B∗.1, and dj(1 − %) ∼ cj%−2,
% > 1, while dj(0) is summable.
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If % < 1, then using summation by parts E [∆frλt−1 (L; θ) ft] is equal to

σ2
v

r−1∑
j=0

{cj+t−r+1 (δ − %)− cj+t−r (δ − %)}
j∑

k=0

dk (1− %) + ct (δ − %)
r∑

k=0

dk (1− %)

= O

(
(t− r)%−δ−2

t−r∑
j=0

j%−1 +
r−1∑
j=t−r

j2%−3−δ + t%−δ−1r%−1

)
= O

(
(t− r)2(%−1)−δ + (t− r)%−δ−1r%−1

)
,

using that cj+t−r+1 (δ − %)− cj+t−r (δ − %) = cj+t−r+1 (δ − %+ 1) .

If r > t

E [∆frλt−1 (L; θ) ft] = σ2
v

t∑
j=0

dj+r−t (1− %) cj (δ − %) ,

so that the absolute of the last expression is bounded by, % ≥ δ,

K
t∑

j=0

(j + r − t)%−2 |cj(δ − %)| ≤ K (r − t)%−2
r−t∑
j=0

|cj(δ − %)|+K
t∑

j=r−t+1

j2%−δ−3

≤ K (r − t)%−2 (r − t)%−δ +K (r − t)2(%−1)−δ

= O
(

(r − t)2(%−1)−δ
)
.

since %− 1 < δ and % < 3/2 and cj(δ − %) ∼ cj%−1−δ, % > δ.

If % < δ, then using summation by parts E [∆frλt−1 (L; θ) ft] is equal to

σ2
v

t−1∑
j=0

{cj+r−t+1 (1− %)− cj+r−t (1− %)}
j∑

k=0

dk (δ − %) + cr (1− %)
t∑

k=0

dk (δ − %)

= O

(
(r − t)%−3

r−t∑
j=0

j%−δ +
t−1∑
j=r−t

j2%−3−δ + r%−2t%−δ

)
= O

(
(r − t)2(%−1)−δ + (r − t)%−2t%−δ

)
.

Similarly, if r = t

E [∆ftλt−1 (L; θ) ft] = σ2
v

t∑
j=0

cj (1− %) dj (δ − %) = O (1) ,

as the absolute value of the last expression is bounded by
∑r

j=0 j
2(%−1)−δ−1 ≤ K, since

2(%− 1)− δ < 0 by Assumption B∗.1. �
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Table 1: Empirical bias and RMSE of δ̂ and δ̃

Uncorrected estimates, δ̂ Bias-corrected estimates, δ̃ = δ̂ − T−1∇(δ̂)

(N, T): (10, 50) (10, 100) (20, 50) (20, 100) (10, 50) (10, 100) (20, 50) (20, 100)

% = 0.4 :
δ0 = 0.3 Bias 0.1672 0.1458 0.1787 0.1493 0.0066 0.0355 0.0322 0.0433

RMSE 0.1761 0.1521 0.1838 0.1532 0.1104 0.0830 0.0869 0.0727
δ0 = 0.6 Bias 0.0485 0.0368 0.0536 0.0380 -0.0011 0.0076 0.0066 0.0094

RMSE 0.0657 0.0484 0.0627 0.0438 0.0596 0.0388 0.0435 0.0279
δ0 = 0.9 Bias -0.0019 -0.0024 0.0042 0.0018 -0.0078 -0.0054 -0.0009 -0.0009

RMSE 0.0406 0.0286 0.0289 0.0192 0.0444 0.0301 0.0306 0.0199
δ0 = 1.0 Bias -0.0120 -0.0096 -0.0049 -0.0042 -0.0126 -0.0099 -0.0052 -0.0043

RMSE 0.0422 0.0302 0.0287 0.0196 0.0441 0.0309 0.0299 0.0201
δ0 = 1.1 Bias -0.0209 -0.0159 -0.0125 -0.0092 -0.0182 -0.0144 -0.0095 -0.0075

RMSE 0.0459 0.0332 0.0311 0.0216 0.0459 0.0329 0.0308 0.0212
δ0 = 1.4 Bias -0.0549 -0.0400 -0.0402 -0.0291 -0.0474 -0.0361 -0.0326 -0.0252

RMSE 0.0721 0.0528 0.0530 0.0380 0.0668 0.0499 0.0476 0.0351

% = 1 :
δ0 = 0.3 Bias 0.3595 0.3718 0.3285 0.3346 0.3039 0.3435 0.2649 0.2995

RMSE 0.3755 0.3856 0.3412 0.3474 0.3380 0.3649 0.2941 0.3209
δ0 = 0.6 Bias 0.1603 0.1652 0.1315 0.1309 0.1357 0.1526 0.1029 0.1153

RMSE 0.1809 0.1833 0.1469 0.1461 0.1677 0.1755 0.1288 0.1357
δ0 = 0.9 Bias 0.0435 0.0478 0.0277 0.0299 0.0404 0.0463 0.0240 0.0281

RMSE 0.0704 0.0663 0.0479 0.0440 0.0710 0.0662 0.0478 0.0434
δ0 = 1.0 Bias 0.0213 0.0273 0.0102 0.0149 0.0220 0.0277 0.0105 0.0152

RMSE 0.0540 0.0471 0.0359 0.0302 0.0559 0.0480 0.0373 0.0308
δ0 = 1.1 Bias 0.0048 0.0128 -0.0023 0.0050 0.0082 0.0147 0.0010 0.0068

RMSE 0.0462 0.0358 0.0317 0.0234 0.0480 0.0370 0.0326 0.0242
δ0 = 1.4 Bias -0.0316 -0.0146 -0.0270 -0.0121 -0.0240 -0.0106 -0.0194 -0.0081

RMSE 0.0547 0.0338 0.0416 0.0245 0.0509 0.0323 0.0372 0.0228
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Table 2: Empirical coverage of 95% CI based on δ̂ and δ̃

Uncorrected estimates, δ̂ Bias-corrected estimates, δ̃ = δ̂ − T−1∇(δ̂)

(N, T): (10, 50) (10, 100) (20, 50) (20, 100) (10, 50) (10, 100) (20, 50) (20, 100)

% = 0.4 :
δ0 = 0.3 3.90 0.60 0.10 0.00 48.30 42.90 41.70 33.00
δ0 = 0.6 68.00 66.00 46.00 43.20 76.90 79.80 75.20 77.30
δ0 = 0.9 91.80 92.00 91.50 92.90 89.90 90.50 90.40 91.90
δ0 = 1.0 91.10 90.80 92.30 93.10 89.90 89.90 90.90 92.50
δ0 = 1.1 87.70 86.40 89.60 89.90 87.90 87.20 89.70 90.30
δ0 = 1.4 63.40 62.70 61.00 68.30 68.90 66.90 70.00 72.10

% = 1 :
δ0 = 0.3 0.00 0.00 0.00 0.00 5.90 1.40 4.70 0.70
δ0 = 0.6 13.90 5.90 9.20 11.10 25.90 11.40 23.90 28.70
δ0 = 0.9 70.60 55.30 73.70 61.40 70.60 55.50 74.70 77.70
δ0 = 1.0 81.90 72.70 85.70 78.80 80.50 72.20 84.90 78.10
δ0 = 1.1 87.50 83.90 89.80 87.40 85.80 82.50 89.10 86.20
δ0 = 1.4 79.50 86.30 75.60 84.30 83.40 87.60 82.40 87.60
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Table 3: Preliminary and Joint Estimation Bias and RMSE’s with N = 10 and T = 50 (δ∗ = 1)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

δ0 = 0.5 δ0 = 0.75 δ0 = 1 δ0 = 0.5 δ0 = 0.75 δ0 = 1 δ0 = 0.5 δ0 = 0.75 δ0 = 1

% = 0.4 :

Bias of β̂ β̂MG(δ∗) 0.0016 0.0005 0.0023 -0.0026 -0.0058 -0.0046 -0.0086 -0.0159 -0.0179

β̂CC(δ∗) 0.0012 0.0012 0.0012 0.0012 0.0012 0.0114 0.0005 0.0006 0.0009

β̂MG(δ̂) 0.0007 0.0006 0.0006 0.0008 0.0008 0.0009 0.0005 0.0006 0.0010

β̂CC(δ̂) 0.0149 0.0054 0.0014 0.0089 0.0044 0.0016 0.0028 0.0018 0.0011

RMSE of β̂ β̂MG(δ∗) 0.0621 0.0567 0.0529 0.0611 0.0573 0.0552 0.0538 0.0536 0.0555

β̂CC(δ∗) 0.0621 0.0569 0.0531 0.0609 0.0571 0.0551 0.0518 0.0501 0.0518

β̂MG(δ̂) 0.0621 0.0567 0.0529 0.0611 0.0570 0.0550 0.0531 0.0512 0.0525

β̂CC(δ̂) 0.0589 0.0559 0.0531 0.0454 0.0520 0.0550 0.0293 0.0403 0.0517

Bias of δ̂ δ̂(β̂CC(δ∗)) 0.0854 0.0218 -0.0089 0.1133 0.0302 -0.0083 0.1635 0.0488 -0.0082

δ̂(β̂CC(δ̂)) 0.0840 0.0211 -0.0089 0.1100 0.0288 -0.0083 0.1573 0.0462 -0.0083

RMSE of δ̂ δ̂(β̂CC(δ∗)) 0.0968 0.0458 0.0402 0.1245 0.0512 0.0399 0.1762 0.0673 0.0406

δ̂(β̂CC(δ̂)) 0.0956 0.0456 0.0403 0.1217 0.0506 0.0401 0.1711 0.0660 0.0410
% = 1 :

Bias of β̂ β̂MG(δ∗) -0.0029 -0.0019 0.0017 -0.0039 -0.0052 -0.0024 -0.0070 -0.0131 -0.0140

β̂CC(δ∗) 0.0006 0.0006 0.0008 0.0006 0.0007 0.0011 0.0001 0.0002 0.0007

β̂MG(δ̂) 0.0001 0.0001 0.0001 0.0002 0.0002 0.0005 0.0001 0.0002 0.0006

β̂CC(δ̂) 0.0436 0.0145 0.0012 0.0327 0.0127 0.0015 0.0146 0.0067 0.0012

RMSE of β̂ β̂MG(δ∗) 0.0624 0.0573 0.0537 0.0617 0.0580 0.0559 0.0545 0.0539 0.0555

β̂CC(δ∗) 0.0626 0.0577 0.0541 0.0618 0.0581 0.0563 0.0533 0.0517 0.0534

β̂MG(δ̂) 0.0624 0.0573 0.0537 0.0616 0.0577 0.0559 0.0540 0.0523 0.0537

β̂CC(δ̂) 0.1033 0.0678 0.0539 0.0873 0.0648 0.0562 0.0577 0.0516 0.0533

Bias of δ̂ δ̂(β̂CC(δ∗)) 0.1735 0.0609 0.0030 0.1870 0.0661 0.0033 0.2196 0.0816 0.0049

δ̂(β̂CC(δ̂)) 0.1724 0.0600 0.0031 0.1868 0.0651 0.0033 0.2179 0.0800 0.0049

RMSE of δ̂ δ̂(β̂CC(δ∗)) 0.1903 0.0821 0.0427 0.2017 0.0862 0.0430 0.2327 0.1003 0.0451

δ̂(β̂CC(δ̂)) 0.1891 0.0816 0.0429 0.2010 0.0855 0.0433 0.2309 0.0991 0.0454
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Table 4: Preliminary and Joint Estimation Bias and RMSE’s with N = 20 and T = 100 (δ∗ = 1)

ϑ = 0.75 ϑ = 1 ϑ = 1.25

δ0 = 0.5 δ0 = 0.75 δ0 = 1 δ0 = 0.5 δ0 = 0.75 δ0 = 1 δ0 = 0.5 δ0 = 0.75 δ0 = 1

% = 0.4 :

Bias of β̂ β̂MG(δ∗) -0.0022 -0.0013 -0.0009 0.0004 0.0015 0.0016 0.0058 0.0074 0.0080

β̂CC(δ∗) -0.0011 -0.0013 -0.0014 -0.0011 -0.0014 -0.0017 -0.0006 -0.0011 -0.0017

β̂MG(δ̂) -0.0011 -0.0013 -0.0014 -0.0010 -0.0013 -0.0017 -0.0006 -0.0010 -0.0016

β̂CC(δ̂) 0.0136 0.0026 -0.0013 0.0076 0.0018 -0.0017 0.0022 0.0005 -0.0016

RMSE of β̂ β̂MG(δ∗) 0.0295 0.0270 0.0254 0.0290 0.0271 0.0265 0.0256 0.0251 0.0262

β̂CC(δ∗) 0.0299 0.0274 0.0258 0.0296 0.0276 0.0269 0.0251 0.0241 0.0252

β̂MG(δ̂) 0.0294 0.0270 0.0254 0.0290 0.0271 0.0265 0.0250 0.0240 0.0250

β̂CC(δ̂) 0.0341 0.0279 0.0258 0.0239 0.0258 0.0269 0.0131 0.0189 0.0252

Bias of δ̂ δ̂(β̂CC(δ∗)) 0.0681 0.0174 -0.0028 0.0984 0.0257 -0.0012 0.1640 0.0490 0.0019

δ̂(β̂CC(δ̂)) 0.0679 0.0173 -0.0028 0.0975 0.0253 -0.0012 0.1616 0.0482 0.0019

RMSE of δ̂ δ̂(β̂CC(δ∗)) 0.0723 0.0259 0.0189 0.1046 0.0329 0.0187 0.1739 0.0573 0.0195

δ̂(β̂CC(δ̂)) 0.0721 0.0259 0.0189 0.1038 0.0327 0.0187 0.1720 0.0568 0.0195
% = 1 :

Bias of β̂ β̂MG(δ∗) -0.0031 -0.0026 -0.0027 0.0001 0.0008 0.0003 0.0068 0.0082 0.0082

β̂CC(δ∗) -0.0013 -0.0015 -0.0015 -0.0013 -0.0016 -0.0019 -0.0009 -0.0013 -0.0018

β̂MG(δ̂) -0.0013 -0.0015 -0.0016 -0.0012 -0.0015 -0.0018 -0.0008 -0.0012 -0.0018

β̂CC(δ̂) 0.0588 0.0155 -0.0015 0.0423 0.0130 -0.0018 0.0159 0.0062 -0.0017

RMSE of β̂ β̂MG(δ∗) 0.0297 0.0273 0.0258 0.0293 0.0274 0.0267 0.0263 0.0258 0.0267

β̂CC(δ∗) 0.0302 0.0277 0.0261 0.0300 0.0280 0.0273 0.0258 0.0248 0.0259

β̂MG(δ̂) 0.0296 0.0272 0.0257 0.0293 0.0274 0.0268 0.0255 0.0245 0.0255

β̂CC(δ̂) 0.0927 0.0403 0.0260 0.0713 0.0371 0.0272 0.0362 0.0264 0.0258

Bias of δ̂ δ̂(β̂CC(δ∗)) 0.1383 0.0406 0.0017 0.1545 0.0468 0.0032 0.2019 0.0680 0.0074

δ̂(β̂CC(δ̂)) 0.1390 0.0404 0.0017 0.1570 0.0466 0.0032 0.2028 0.0676 0.0074

RMSE of δ̂ δ̂(β̂CC(δ∗)) 0.1479 0.0494 0.0194 0.1628 0.0548 0.0198 0.2103 0.0765 0.0224

δ̂(β̂CC(δ̂)) 0.1482 0.0491 0.0195 0.1646 0.0546 0.0198 0.2107 0.0761 0.0224
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Figure 1: Monthly Realized Volatilities across Industries

Figure 2: Monthly Realized Volatility in the Composite Market
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Table 5: Estimated Integration Orders of Industry Realized Volatilities

m = 20 :

Food Bvrgs Tobac Games Books Hshld Clths Hlth Chems Txtls Market

0.51 0.77 0.71 0.75 0.84 0.51 0.70 0.72 0.68 0.69 0.59

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal Oil Util

0.73 0.71 0.73 0.86 0.74 0.70 0.47 0.71 0.56 0.52

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Finan Other

0.83 0.66 0.85 0.78 0.61 0.52 0.67 0.56 0.98 0.77

m = 32 :

Food Bvrgs Tobac Games Books Hshld Clths Hlth Chems Txtls Market

0.66 0.78 0.63 0.57 0.63 0.46 0.60 0.71 0.67 0.59 0.64

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal Oil Util

0.74 0.72 0.64 0.69 0.56 0.55 0.54 0.63 0.58 0.58

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Finan Other

0.79 0.75 0.78 0.60 0.57 0.62 0.77 0.57 0.90 0.78

Note: This table reports the local Whittle estimation results of the individual integration orders of

industry and market realized volatilities with bandwidth choices of m = 20, 32. Estimates are rounded

to two digits after zero. Standard errors of the estimates are 0.112 and 0.088 respectively for

m = 20, 32.

Table 6: Residual Integration Order Estimates (δ̂i) of Industry Realized Volatilities

Food Bvrgs Tobac Games Books Hshld Clths Hlth Chems Txtls

0.50 0.54 0.49 0.48 0.59 0.54 0.30 0.50 0.42 0.40

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal Oil Util

0.48 0.50 0.30 0.50 0.30 0.29 0.45 0.48 0.50 0.37

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Finan Other

0.51 0.58 0.65 0.43 0.42 0.28 0.65 0.54 0.53 0.43

Note: This table reports the estimation results of the integration order of individual industry real-

ized volatility residuals. Estimations are performed based on our general model where the projections

are carried out with δ∗ = 1. Values are rounded to two digits after zero. Standard error of these

estimates is 0.065.
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Table 7: Estimated Slope Parameters across Industry Realized Volatilities

Food Bvrgs Tobac Games Books Hshld Clths Hlth

β̂0
i 0.5422 0.4002 0.3376 0.6896 0.6503 0.2707 0.7446 0.4289

(0.1097) (0.1379) (0.1452) (0.0762) (0.0769) (0.1234) (0.0607) (0.1199)

β̂i 1.8145 1.4060 -0.1814 0.1361 0.4119 -0.2088 2.4219 -0.6377
(0.0856) (0.1006) (0.1328) (0.0559) (0.1144) (0.0864) (0.0602) (0.0830)

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal

β̂0
i 0.7346 0.8571 0.9094 0.6970 0.8332 0.6176 0.8373 0.7691

(0.0821) (0.0633) (0.0413) (0.0758) (0.0523) (0.0814) (0.0854) (0.0807)

β̂i -0.4109 0.1789 -0.4298 -0.3442 -0.3635 1.7414 -0.5087 0.3626
(0.1266) (0.0782) (0.0537) (0.0768) (0.0765) (0.0772) (0.1335) (0.1219)

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals

β̂0
i 0.7190 0.6178 0.5250 0.6223 0.6183 0.8722 0.4078 0.5382

(0.0961) (0.1271) (0.1530) (0.0768) (0.0751) (0.0603) (0.1308) (0.1020)

β̂i 0.1399 -0.3669 0.0311 -1.0433 -0.1778 -2.4097 2.6804 -0.6838
(0.0628) (0.1329) (0.1718) (0.0686) (0.1065) (0.1122) (0.0832) (0.0820)

Chems Txtls Oil Util Finan Other

β̂0
i 0.7898 0.4888 0.7927 0.6498 0.5316 0.1067

(0.0516) (0.0981) (0.0852) (0.0925) (0.0986) (0.0632)

β̂i -0.0546 -0.1731 -0.1238 -0.4930 -0.8456 -0.1933
(0.0419) (0.1665) (0.0982) (0.0828) (0.1838) (0.0881)

Note: This table reports the estimation results of the individual slope parameters across industry

realized volatilities, where β̂0
i is the coefficient of market realized volatility, and β̂i is the coefficient

of the average effect of Fama-French factors. Estimations are performed based on our general

model where the projections are carried out with δ∗ = 1. Robust standard errors are reported in

parentheses.
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