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Abstract

Market microstructure theories suggest that the durations between transactions
carry information about volatility. This paper puts forward a model featuring
stochastic volatility, stochastic conditional duration, and jumps to analyze high
frequency returns and durations. Durations affect price jumps in two ways: as
exogenous sampling intervals, and through the interaction with volatility. We adopt
a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional
duration. We develop a MCMC algorithm for the inference on irregularly spaced
multivariate processes with jumps. The algorithm provides smoothed estimates
of the latent variables such as spot volatility, conditional duration, jump times,
and jump sizes. We apply this model to IBM data and find that volatility and
conditional duration are interdependent. We also find that jumps play an important
role in return variation, but joint modeling of volatility and conditional duration
reduces significantly the need for jumps.
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1 Introduction

The recent availability of high frequency data has provided an unprecedented opportunity

to look into financial markets at a microscopic level. With this type of data, every

transaction is recorded. For various reasons, it is common to aggregate the individual

trades over a fixed time interval such as five minutes. At this level of aggregation, high

frequency returns exhibit fat tails, volatility clustering, and jumps similar to returns

obtained at lower frequencies. These features have inspired GARCH and stochastic

volatility models to capture the predictability of volatility with daily or lower frequency

returns. However, fixed time aggregation loses potentially valuable information, such

as the durations between transactions. Pelletier and Zheng (2013) propose modeling

returns and durations jointly using a bivariate stochastic process for the latent volatility

and trading intensity. In this paper, we extend their model to allow jumps in the price

process, and develop bayesian inference for this irregularly spaced multivariate model.

Our proposed stochastic volatility and stochastic duration with jumps (SVSDJ) model

helps fill the gap between irregularly spaced high frequency data and traditional jump-

diffusion models with stochastic volatility. With this model, we can estimate intraday

volatility by exploiting the persistence of volatility as well as the information conveyed

in durations. We also disentangle the jump component from the continuous part, and

measure the effect of trading durations on jumps.

The asymmetric information models of market microstructure suggest that the du-

rations between trades provide information to market participants. Both the presence

and the absence of trade impacts price adjustments. In the seminal work of Easley and

O’Hara (1992), a fraction of traders are informed with a signal (news). Informed traders

buy or sell only when they observe a good or bad signal. A long interval between trades is

more likely to occur when no news has occurred. Increased trading intensity is associated

with an information event and increased number of informed traders.

We utilize the stochastic class of volatility and duration modeling. The logarithmic
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price follows a jump-diffusion process with stochastic volatility and compound Poisson

jump process. Prices are sampled at random time intervals; the durations of the sampling

intervals are random. Moreover, the conditional mean of the durations, or the conditional

duration, follows a stochastic process. The latent volatility and conditional duration

reflect unobservable information flow. Following Pelletier and Zheng (2013), we model the

logarithm of conditional duration and the logarithm of volatility by a bivariate Ornstein-

Uhlenbeck (OU) process. The OU process is mean reverting and when discretized, it leads

to a VAR model. This specification relies on two insights: first, volatility and durations

are persistent, hence conditional volatility/duration will be affected by their own past.

Second, as predicted by microstructure theory, volatility and conditional duration interact

with each other. The bivariate OU process allows the expected volatility and duration

to depend on lagged values as well as contemporaneously correlated shocks.

The presence of jumps is another important feature of financial returns. Merton

(1976) first describes returns using a continuous diffusion process and a compound Poisson

jump process. Jumps are interpreted as “abnormal” variation in price due to the arrival of

important news. They generate infrequent large movements and contribute to the fat tails

in the return distribution. Without jumps, volatility needs to be counterfactually high to

explain the occasional large fluctuations, see e.g. Bates (2000). Also, it is important to

separate the jump component and the diffusion component in price because they are two

fundamentally different sources of risk. Jump risk has different hedging possibilities and

requires a different premium; see e.g. Todorov (2010) or Bollerslev and Todorov (2011).

Stochastic durations affect jump estimation through two channels. Firstly, if we

treat durations as exogenous sampling intervals of the continuous-time jump-diffusion

process, the length of the interval would directly impact jump identification. Secondly,

in our bivariate setting for latent process, the evolution of conditional duration can affect

the evolution of volatility, allowing richer dynamics in the latter, and hence reduce the

need for price jumps. The importance of treating durations as endogenous has been
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emphasized in a small but growing body of literature, for example Renault and Werker

(2011) and Renault, van der Heijden, and Werker (2014), but we extend the intuition to

price jumps.

We resort to Markov chain Monte Carlo methods (MCMC) for the estimation of our

model, which can be viewed as a nonlinear and non-Gaussian state space model. The

latent variables, namely volatility, conditional duration, and jumps, are treated as the

states, and their dynamics are described by the evolution equation. The observation

equation describes how returns and durations depend on the states. MCMC was first

introduced to the stochastic volatility literature by Jacquier, Polson, and Rossi (1994)

as a method of exact finite sample inference. Since then, influential work such as Kim,

Shephard, and Chib (1998) and Jacquier, Polson, and Rossi (2004) has refined the method

and applied it to more general settings. In particular, Chib, Nardari, and Shephard (2002)

and Eraker, Johannes, and Polson (2003) develop MCMC methods to incorporate jumps.

Our algorithm builds upon this literature. To improve efficiency, we also borrow from

particle filters, in particular Johannes, Polson, and Stroud (2009) and Pitt and Shephard

(1999).

One major benefit of using MCMC is that both parameters and state variables are

estimated simultaneously instead of using an ad hoc filtering technique. The estimated

conditional volatility and jumps are useful in applications such as computation of Value at

Risk. Another benefit of MCMC is that we can incorporate prior information properly.

For example, the noise variance estimated from the tick-by-tick returns can be used

to form an informative prior. Also, if jumps are interpreted as infrequent and large

movements, we can use an appropriate prior to elicit such beliefs.

Our model is closely related to the large literature on the direct modeling of durations.

Following the idea behind GARCH, Engle and Russell (1998) propose the autocorrelated

conditional duration (ACD) model. Bauwens and Giot (2000) suggest modeling the

logarithm of durations. It is more flexible and does not impose parameter restrictions to

4



ensure that durations are positive. Bauwens and Veredas (2004) put forth the stochastic

conditional duration (SCD) model, where the expected duration becomes stochastic; we

model durations in a similar fashion in this paper.

The framework of Easley and O’Hara also predicts interdependence between durations

and volatility. Engle (2000) applies ACD models to IBM shares and examines the impact

of durations on volatility. He imposes exogeneity on the duration process but allows

volatility to be influenced by durations in the GARCH framework. His finding supports

the Easley and O’Hara theory in which short duration leads to higher volatility, no trade

being interpreted as no news. Grammig and Wellner (2002) extend Engle’s model and

analyze the impact of volatility on trading intensity. They conclude that lagged volatility

lengthens expected durations. Manganelli (2005) uses a vector autoregressive (VAR)

model to incorporate volume. He allows return and volatility to interact with durations

and volume. He finds that short durations follow large returns, which is in line with Easley

and O’Hara theory, but the result only applies to frequently traded stocks. Ghysels and

Jasiak (1998) note that the class of ACD-GARCH models can be interpreted as time-

deformed GARCH diffusion. Their empirical study finds that volatility has a causal

relationship with durations. Tay, Ting, Tse, and Warachka (2011) utilize an asymmetric

ACD model and they find that durations are important determinants of price dynamics

and volatility.

Non-parametric volatility estimation utilizing realized measure is another important

area in high frequency econometrics. In its simplest form, realized volatility uses returns

sampled at a short horizon (such as 5 minutes) to measure the volatility at a longer

horizon (such as a day). The theoretical foundation was laid by Andersen, Bollerslev,

Diebold, and Labys (2001, 2003), and Barndorff-Nielsen and Shephard (2001, 2002).

Since then, a huge literature has been devoted to the development and implementation

of realized measure.

Realized volatility estimator has led to a non-parametric estimator for jump variation.
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Barndorff-Nielsen and Shephard (2004) introduce the idea of realized bipower variation,

which is the summation of the cross product of returns. Suppose that the price process has

both a diffusion part and a jump part, the difference between realized bipower variation

and realized volatility is a measure of the quadratic variation from the jump component.

Using this tool, recent literature has suggested that jumps play an important role in the

quadratic variation of price. For reviews on realized volatility and jumps, see Barndorff-

Nielsen and Shephard (2005).

One of the most challenging complications in dealing with high frequency data is

the existence of market microstructure noise (MMN). Theoretically, the sum of squared

return converges in probability to quadratic variation when the sampling frequency goes

to infinity. However, the observed price is composed of the efficient price and a noise

component. Even if the noise is iid, the return will consist of efficient return and an

autocorrelated noise, and the realized volatility will be a biased and inconsistent estimator

of the actual volatility. As the sampling frequency increases, the estimator diverges to

infinity.

In the realized volatility literature, there are several approaches to deal with MMN.

The simplest way is to sample sparsely, for example every 5 minutes. Bandi and Russell

(2006) suggest using data sampled at different frequencies to separate noise from volatil-

ity, and determine the optimal sampling frequency. Zhang, Mykland, and Ait-Sahalia

(2005) proposed an estimator that utilizes subsampling, averaging and bias-correction,

where the variance of the microstructure noise is estimated through the variance of re-

turns sampled at the highest frequency. Zhou (1996), Hansen and Lunde (2006) and

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) use the autocovariance of re-

turns to construct kernel-based volatility estimators. Ait-Sahalia, Mykland, and Zhang

(2005) show that if the the noise term is accounted for explicitly, sampling as often as

possible is optimal.

Our approach in dealing with MMN combines several different methods. First, we
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model noise terms explicitly. Noise is treated as a latent variable and it is estimated

in the model. Second, we sample from every Lth transaction. This sampling scheme is

referred to as transaction time sampling or tick time sampling in the realized volatility

literature. Third, the autocovariance of tick-by-tick returns serves as a measure of the

variance of noise. This combined approach is unique to the estimation procedure we

adopt and it allows sampling at finer grid than current parametric models.

The rest of this paper is organized as follows. In Section 2 we describe the model spec-

ification. Section 3 discusses our proposed Bayesian estimation method for this model.

Section 4 presents the empirical results using IBM shares data. Section 5 concludes.

2 Model Specification

2.1 Returns and Durations

We start by assuming that the logarithmic asset price yt follows the jump-diffusion process

dyt =
√
VtdW

y
t + ξyt dN

y
t , (1)

where Vt is the latent spot volatility, which follows a separate stochastic process, and

W y
t denotes a standard Brownian Motion. For simplicity, we assume that Vt and W y

t

are independent. Jumps are modeled by a compound Poisson process since we are inter-

ested in large and infrequent price movements. Jump arrivals are assumed to be state

independent, i.e., the jump intensity γ is constant. Given a time interval ∆, the prob-

ability of observing n jumps is e−γ∆(γ∆)n/n!. Jump sizes ξyt are normally distributed,

ξyt ∼ N(µJ , σ
2
J).

The price process is observed when there is a transaction. The duration Di+1 is

defined as the time interval between an event that occurred at ti and the next event

at ti+1. In the application, we sample every Lth transaction; the event is defined as L
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transactions. For example, if L = 100, Di+1 measures the time it takes to observe 100

transactions. The continuous time framework allows straightforward discretization of the

model over unequally spaced data. Using an Euler approximation, we discretize dyt over

the durations:

yi+1 − yi = rei+1 =
√
ViDi+1ε

y
i+1 + ξyi+1Ji+1, (2)

where the subscript i denotes the time of ith event, ti. Jumps are assumed to be rare,

γ is close to zero, so the probability of observing no jump in the time interval Di+1 can

be approximated by 1 − γDi+1. Furthermore, there is at most one jump in Di+1, with

Pr(Ji+1 = 1|γ) = γDi+1. Hence, Ji+1 is referred to as a jump indicator, and it follows a

Bernoulli distribution.

The efficient log price process yt is unobservable in high frequency financial data due

to market frictions. The observed logarithmic price is the sum of the logarithmic efficient

price and market microstructure noise,

yoi = yi +mi. (3)

We assume that microstructure noise is i.i.d. mean zero and normal, mi ∼ N(0, σ2
m),

and that microstructure noise is independent of the efficient price1. The observed return,

ri+1 = yoi+1 − yoi , are contaminated by an MA(1) noise:

ri+1 =
√
ViDi+1ε

y
i+1 + ξyi+1Ji+1 +mi+1 −mi. (4)

Observed returns are sampled irregularly in time. Sampling intervals have a direct

impact on the estimation of jumps. Since the variation from the continuous part of ri+1 is

proportional to Di+1, when Di+1 is large, jumps are harder to detect. On the other hand,
1These assumptions may be violated for microstructure noise in tick-by-tick price series. However,

the problem lessens when we sample less frequently, say every 100 trades. See Hansen and Lunde (2006)
for an analysis on the properties of microstructure noise.
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as noted by Christensen, Oomen, and Podolskij (2014), coarsely sampled data tends to

attribute a burst in volatility to jumps in return. Equation (4) allows us to disentangle

jumps and volatility while taking durations into consideration. Furthermore, as men-

tioned before, the dynamics of the conditional duration could impact jump estimation

through volatility. To analyze the interaction between stochastic durations and volatil-

ity, we first resort to the direct modeling of durations, which is another active research

area in high frequency econometrics. Following the financial duration literature, Di+1

is modeled as the conditional duration, λi, multiplied by an i.i.d random variable with

positive support, i.e.,

Di+1 = λiei. (5)

We specify a Gamma distribution for ei,

ei ∼ Γ(ds, 1/ds),

where ds is the shape parameter. When ds = 1, this distribution simplifies to the standard

exponential distribution. Allowing ds to differ from 1 gives us more flexibility to fit the

conditional densities of durations, especially since the observed durations are aggregated

over a number of transactions. The scale parameter is restricted to 1/ds so that the mean

of ei equals to 1.2 Under this specification, λi represents the conditional expectation of

Di+1, E(Di+1|λi) = λi.

2.2 Volatility and Conditional Durations

To create persistence and interdependence between volatility and conditional durations,

we follow Pelletier and Zheng (2013) and model the logarithm of λt and Vt using a
2Alternatively, we could restrict the scale parameter to be 1, but we find that the adopted parame-

terization has better mixing properties in the MCMC estimation procedure.
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bivariate OU process. As noted by Andersen, Bollerslev, Diebold, and Ebens (2001),

logarithmic volatility is closer to being normal than raw volatility is. Also, modeling

logarithmic volatility and duration has the benefit of guaranteeing non-negativity without

putting extra constraints on parameters. Let Xt = (log(Vt), log(λt))
′, Xt solves:

dXt = −Ψ(Xt − µx)dt+ SxdW
x
t , (6)

where Ψ is a 2 × 2 matrix that measures the mean reversion and dependence between

conditional duration and volatility. The OU process mean reverts to µx, the diffusive long-

run mean. Sx measures the variation of logarithmic volatility and logarithmic duration,

and Sx = diag(σv, σλ). W x
t is a Brownian motion in R2 with dW v

t dW
λ
t = ρdt, where ρ is

the instantaneous correlation. The instantaneous covariance matrix is given by

Σx = Sx

 1 ρ

ρ 1

Sx =

 σ2
v ρσvσλ

ρσvσλ σ2
λ

 .

The exact solution to the SDE (6) is given by

Xt = (I2 − expm(−Ψt))µx + expm(−Ψt)X0 + Ut,

where Ut has a bivariate normal distribution with mean 0 and vec(Var(Ut)) = (Ψ ⊕

Ψ)−1(I2 − expm(−(Ψ ⊕ Ψ)t))vec(Σx). The symbol ⊕ denotes the kronecker sum. Note

that expm(−Ψt) and expm(−(Ψ ⊕ Ψ)t) are matrix exponentials, which differs from

element-wise exponentials if Ψ is not diagonal. The long-run variance of Xt is given

by vec(Var(Xt)) = (Ψ⊕Ψ)−1 (vec (ΣX)) .

To ensure the existence of a stationary solution, it is sufficient that Ψ has only eigen-

values with positive real parts so that expm(−Ψt) → 0 as t → 0 (See Gardiner, 2009).

We discuss two important subsets of the parameter space. First, if Ψ11 > 0, Ψ22 > 0,
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Ψ12 and Ψ21 have the same sign, and det(Ψ) > 0, then all the eigenvalues of Ψ will

be real and positive. In this case, the system reverts to its diffusive mean following an

exponential decay. This encompasses the case when Ψ is diagonal and the diagonal el-

ements are positive. Second, if Ψ11 > 0, Ψ22 > 0, Ψ12 and Ψ21 has opposite sign, and

(Ψ11 − Ψ22)2 < −4Ψ12Ψ21, the eigenvalues of Ψ have positive real parts with imaginary

parts, and the the system oscillates to the diffusive mean.

The logarithmic volatility and conditional duration Xt are discretized over durations:

Xi+1 = (I2 − expm(−ΨDi+1))µx + expm(−ΨDi+1)Xi + Ui+1, (7)

where

Ui+1 ∼ N(0,Σi+1)

vec(Σi+1) = (Ψ⊕Ψ)−1(I2 − expm(−(Ψ⊕Ψ)Di+1))vec(Σx).

Equations (4), (5), and (7) form our proposed SVSDJ model. We use an Euler

discretization for Xt to gain some insight about the parameters:

Xi+1 = ΨµxDi+1 + (I2 −ΨDi+1)Xi + Σ1/2
x

√
Di+1ε

x
i+1, (8)

rearranging,

 log Vi+1 − µv

log λi+1 − µλ

 =

 1−Ψ11Di+1 −Ψ12Di+1

−Ψ21Di+1 1−Ψ22Di+1


 log Vi − µv

log λi − µλ

+Σ
1
2
x

√
Di+1ε

x
i+1.

The persistence in the logarithmic volatility and conditional duration are measured by Ψ11

and Ψ22, respectively. If Ψ11 is positive and close to zero, volatility is highly persistent and

the speed of mean-reversion is low. Ψ12 is the feedback effect from conditional duration
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to volatility. If Ψ12 is positive, longer duration will lead to lower volatility, and vice versa.

Ψ21 is the impact of lagged volatility on duration. If Ψ21 is positive, high volatility will

have a negative impact on expected duration. The instantaneous correlation between

volatility and expected duration is measured by ρ.

For the estimation procedure, we use the exact solution (7) rather than the Euler

discretization (8) since the accuracy of the Euler approximation depends on Di+1. We

compare the full model SVSDJ to a restricted version, SVSD, in which there is no price

jump. To analyze the effect of random sampling on the estimation of price jump, we

also estimate the SV and SVJ model, in which returns are sampled using durations as

in (4) (with no jump in model SV), but durations are treated as exogenous. In other

words, log Vt is modeled by a univariate OU process with no interaction with conditional

durations. The distributions of Di+1 is explored by estimating the stochastic condi-

tional duration (SD) model versus the stochastic conditional duration with exponentially

distributed durations (SDexp) model. In both models, log λi follows a univariate OU

process. The difference lies in the distribution of Di+1 conditional on λi. In the SD

model, Di+1|λi ∼ Γ(ds, λi/ds) , while in the SDexp model, ds is restricted to 1, and

Di+1|λi ∼ Exp(λi).

3 Bayesian Inference

The model can be considered as a non-linear non-Gaussian state space model. Let Y, Θ

and Z denote the observables, parameters and state variables respectively. The observ-

ables, parameters and state variables in our model are:

Y = {ri, Di}Ni=1

Θ = {Ψ, µx,Σx, µJ , σJ , γ, σ
2
m, ds}

Z = {Vi, λi, ξyi , Ji,mi}Ni=1
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Likelihood-based estimation requires evaluating the marginal likelihood p(Y |Θ). How-

ever, computation of p(Y |Θ) involves integrating out the latent random variables Z, and

this high dimensional integration is usually intractable. One solution is to employ a

linear and Gaussian approximation and use the Kalman Filter to obtain the likelihood.

This method produces a Quasi Maximum Likelihood estimator. In a standard stochastic

volatility model, the adequacy of the approximation depends on the variation of volatility

(Harvey, Ruiz, and Shephard, 1994, Jacquier, Polson, and Rossi, 1994 and Harvey and

Shephard, 1996). The variance of discretized volatility and conditional durations in our

model, i.e., Var(Ui+1) in equation (7), depends on durations and hence it is time varying.

Also, in the presence of jumps and microstructure noise, logarithmic squared returns

do not have a linear state space representation. Hence, we adopt a Bayesian MCMC

algorithm consisting of Gibbs and Metropolis-Hastings(MH) sampler for the estimation.

Bayesian inference in a state space model focuses on the marginal posterior distribu-

tion p(Θ|Y ) and p(Z|Y ). The key feature of the Gibbs sampler is that if we draw G ran-

dom samples {Θ(g), Z(g)}Gg=1 from their conditional distributions p(Θ|Y, Z) and p(Z|Θ, Y )

sequentially, then{Θ(g)}Gg=1 and {Z(g)}Gg=1 converges to the marginal distributions of in-

terest as G → ∞. The conditional posterior p(Z|Y,Θ) updates the prior distribution

p(Z|Θ) with information from the augmented likelihood p(Y |Θ, Z). With sufficiently

large draws {Θ(g)}Gg=1 and {Z(g)}Gg=1, a commonly used point estimate is simply the sam-

ple mean after discarding the first K draws for burning in, i.e., Θ̂ ≈ 1
G−K

∑G
g=K+1 Θ(g)

and Ẑi = 1
G−K

∑G
g=K+1 Z

(g)
i . For an overview of MCMCmethods in finance, see Johannes

and Polson (2010).

If Θ or Z consists of more than one element and they cannot be updated in one

block, we divide them into blocks where conditionals are available. If the conditional

distribution cannot be sampled directly, we adopt the independent Metropolis-Hastings

(IMH) sampler. Our algorithm first divides {Z,Θ} into four blocks: the jump block,

({ξyi , Ji}Ni=1, µJ , σJ , γ); the OU block, ({Vi, λi}Ni=1,Ψ, µ
x,Σx); the MMN block, ({mi}Ni=1, σ

2
m);
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and the shape parameter, (ds). To simplify notations, we define r̂i+1 = ri+1−(mi+1 −mi)

for the jump block, and explain the key insights of the updating procedure in Section

3.1. Similarly, we define r̃i+1 = ri+1 − ξyi+1Ji+1 − mi+1 + mi. Since jumps and market

microstructure noise only affect returns, the distribution of the OU block conditional

on r, ξ, J,m is the same as their distribution conditional on r̃. The sampler for the OU

block will be detailed in Section 3.2. The MMN block and the shape parameter will

be explained in Sections 3.3 and 3.4. Full description of the updating procedure can be

found in the Appendix.

We outline our algorithm as follows:

1. Initialize Z(0) and Θ(0).

2. Sample the jump block by

(a) drawing from {Ji+1|r̂i+1, Vi, Di+1,Θ}Ni=1 and {ξi+1|Ji+1, r̂i+1, Vi, Di+1,Θ}Ni=1;

(b) drawing σJ from σJ |J1:N , ξ1:N and µJ from µJ |σJ , J1:N , ξ1:N ;

(c) drawing γ from γ|J1:N , ξ1:N .

3. Sample the OU block by

(a) drawing from {Vi, λi|V−i, λ−i, r̃i+1, Di+1,Θ}Ni=1 , where V−i denotes the vector

of V except Vi, and λ−i denotes the vector of λ except λi.

(b) drawing Σx from Σx|V1:N , λ1:N ,Ψ, µ
x;

(c) drawing Ψ from Ψ|V1:N , λ1:N , µ
x,Σx;

(d) drawing µx from µx|V1:N , λ1:N ,Ψ,Σx.

4. Sample the MMN block by

(a) drawing from {mi|m−i, V1:N , λ1:N , ξ1:N , J1:N , ri, Di,Θ}Ni=1.

(b) drawing σ2
m from σ2

m|m1:N .
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5. Sample the shape parameter ds from ds|D1:N , λ1:N .

3.1 The Jump Block

We update {Ji+1, ξi+1} in one block by first drawing Ji+1 marginalized over ξi+1, then

drawing ξi+1 conditional on Ji+1 and the rest (observations, other state variables, and

the parameters). This is possible because the density of r̂i+1 can be marginalized over

ξi+1. Specifically, p(r̂i+1|Vi, Di+1, Ji+1) = N(Ji+1µJ , ViDi+1 +Ji+1σ
2
J). The idea is similar

to Johannes, Polson, and Stroud (2009), although they are drawing the state variables

in the context of particle filters.

Conditional on (J1:N , ξ1:N), the jump size parameters (µJ , σ
2
J) can be updated in

one block as in the standard regression model. We use a conjugate prior such that the

posterior for (µJ , σ
2
J) is normal-inverse-Gamma. Also, we choose the prior for σ2

J to

reflects our belief that jumps are large.

The conditional distribution of γ is not standard because the probability of Ji = 1

depends on Di. We use a truncated scaled beta prior for γ, p(γ) ∝ (γD̄)aγ−1(1 −

γD̄)bγ1{γ < 1/D̄}, where D̄ is the mean duration. The truncation restricts γ to be

in the region where γD̄ does not exceed one. 3 The posterior of γ,

p(γ|J) ∝
∏

(γDi)
Ji(1− γDi)

1−Ji(γD̄)aγ−1(1− γD̄)bγ−11{γ < 1/D̄}, (9)

can not be sampled directly and we adopt the independent MH algorithm. The Inde-

pendent MH sampler tends to have better mixing properties than the random-walk MH

sampler if the proposal density is well-designed. We obtain the proposal density for γ by

approximating at Di = D̄:

q(γ|J) ∝ (γD̄)
∑
Ji+aγ−1(1− γD̄)N−1−

∑
Ji+bγ−11{γ < 1/D̄}. (10)

3We use the mean rather than the maximum so the prior would have the same support as the proposal
density for γ.
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If we generate γ̂ ∼ Beta(
∑
Ji + aγ, N − 1−

∑
Ji + bγ), γ(g+1) = γ̂/D̄ has the above

kernel. Then γ(g+1) is accepted with probability α:

α = min

{
p(γ(g+1)|J)q(γ(g)|J)

p(γ(g)|J)q(γ(g+1)|J)
, 1

}
.

We find this proposal density to be a good approximation to the posterior as the accep-

tance probability is close to 1 in our application.

3.2 The OU Block

Updating the OU block is the most challenging part of the algorithm. The conditional

densities of most elements are not standard distributions and need carefully designed

proposal densities. We start with updating X. Let µi+1 = (I2 − expm(−ΨDi+1))µx +

expm(−ΨDi+1)Xi, we can write Xi+1|Xi, Di+1,Θ ∼ N(µi+1,Σi+1), and the conditional

distribution of Xi is

p(Xi|rest) ∝ p(Xi+1|Xi, Di+1,Θ)p(Xi|Xi−1, Di+1, r̃i+1,Θ)p(r̃i+1|Xi, Di+1,Θ)p(Di+1|Xi).

(11)

When the transition density is normal, Pitt and Shephard (1999) suggest the auxiliary

particle filter which uses Taylor expansion of the logarithmic measurement density as the

basis for proposal density. We extend the idea to a bivariate setting to design proposal

density for Xi. Note that in particle filters the target density is the filtered distribution

of Xi, while in Gibbs sampler the target is the full conditional distribution. This does

not impose any difficulty since the first two densities in Equation (11) can be combined

to obtain a multivariate normal kernel π1 as in Jacquier, Polson, and Rossi (1994)

π1 =p(Xi+1|Xi, Di+1)p(Xi|Xi−1, Di) ∝ exp

(
−1

2
(Xi − µ∗i )

′
(Σ∗i )

−1 (Xi − µ∗i )
)
, (12)
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where

Φi+1 = e−ΨDi+1

Σ∗i =
(

Σ−1
i + Φ

′

i+1Σ−1
i+1Φi+1

)−1

µ∗i = Σ∗i

(
Σ−1
i ((I2 − Φi)µx + ΦiXi−1) + Φ

′

i+1Σ−1
i+1 (Xi+1 − (I2 − Φi+1)µx)

)
.

Let π2 and π3 denote the measurement densities p(r̃i+1|Xi, Di+1,Θ) and p(Di+1|Xi).

We approximate log π2 by

log q2 =
1

2

(
r2
i+1

Di+1

e−µ
∗
i,1 − 1

)
Xi,1, (13)

which is obtained by the first order Taylor expansion at µ∗i,1. Likewise, log π3 is approxi-

mated by

log q3 =
(
Di+1dse

−µ∗i,2 − ds
)
Xi,2. (14)

Since π1q2q3 still has a multivariate normal kernel, we use it as the proposal density in

the independent Metropolis-Hastings sampler.

Alternatively, we could update Vi and λi sequentially and construct two inverse

Gamma proposal densities. However, since Vi and λi could be correlated, it is more

efficient to sample both in one block.

Given a flat prior, the posterior for Σx is proportional to p(X|Σx,Ψ, µx), i.e.,

p(Σx|rest) ∝
∏ 1

|Σi+1|0.5
exp

(
−1

2
(Xi+1 − µi+1)

′
Σ−1
i+1 (Xi+1 − µi+1)

)
. (15)

We propose the following inverse Wishart density as an approximation:

q(Σx|rest) ∝
(

1

|Σx|

)N−1
2

exp

(
−1

2
trace

(
Σ−1
x E

))
, (16)
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where E =
∑N−1

i=1 Ei+1, and

vec(Ei+1) =(I2 − expm(−(Ψ⊕Ψ)Di+1))−1(Ψ⊕Ψ)vec
(

(Xi+1 − µi+1) (Xi+1 − µi+1)T
)
.

We show in the Appendix that if Σi+1 can be decomposed into A1ΣxA2, while A1

and A2 are both invertible matrices, the proposal density is proportional to the target

density, and the IMH sampler becomes the Gibbs sampler, i.e., the acceptance rate is

equal to 1. One sufficient condition for this decomposition is that Ψ is a diagonal matrix.

In our application, we find the acceptance rate to be close to 1.

Next, the posterior of Ψ is proportional to p(X|Σx,Ψ, µx)p(Ψ), and it is not a known

distribution. We resort to the Euler discretization for proposal density. Specifically, we

use Equation (8) as a pseudo model, and rewrite it to

Xi+1 −Xi√
Di+1

= Ψµx
√
Di+1 −ΨXi

√
Di+1 + wi+1, (17)

then the posterior of Ψ follows a matrix normal distribution as in a vector regression

model. This posterior from the pseudo model is served as the proposal density for the

true model. To ensure tail-boundness, we use a multivariate-t distribution rather than

Normal. The prior for Ψ is chosen to ensure that the OU process stays in the stationary

region. The stationarity is guaranteed by imposing 4Ψ11Ψ22 > (Ψ12 + Ψ21)2, and we

discard draws that do not satisfy this criteria. Other than imposing stationarity, the

prior is diffuse. Specifically, we choose Beta(1.05, 0.1) for both Ψ11 and Ψ22, and a flat

prior for Ψ12 and Ψ21.

The posterior for µx given a flat prior is multivariate normal and it can be updated

using Gibbs sampler.
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3.3 The MMN Block

Define ři+1 = ri+1− ξyi+1Ji+1, , we have ři+1|rest ∼ N(mi+1−mi, ViDi+1). If the prior for

mi is normal, mi ∼ N(0, σ2
m), the posterior of mi has a normal kernel,

p(mi|rest) ∝p(ři+1|mi,mi+1, Vi, Di+1, σ
2
m)p(ři|mi,mi−1, Vi−1, Di, σ

2
m)p(mi), (18)

The posterior of σ2
m follows standard regression analysis. We use an informative prior

for σ2
m formed using returns sampled at the highest frequency. Efficient price has in-

dependent increments, but the observed tick-by-tick return displays significant negative

autocovariance. The autocovariance can be used to obtain an estimate for σ2
m, as in

Hansen and Lunde (2006) and Zhou (1996). Suppose observed price is composed of effi-

cient price and uncorrelated noise mi. Then observed return is composed of independent

efficient returns and anMA(1) noise. In other words, the autocorrelation of tick-time re-

turn is induced by the microstructure noise and we can use the first-order autocovariance

as a measure of σ2
m. Under the assumption of uncorrelated noise, σ̂2

m = −ΣN−1
i=1 riri+1/N .

We specify an inverse Gamma prior for σ2
m such that the prior mean is equal to σ̂2

m. The

posterior mean E(σ2
m|m) is a weighted average between prior mean and variance of mi.

We use returns sampled from every Lth transaction to estimate the model, and we choose

the weight of prior, or how tight/informative the prior is, according to L. The larger L

is, the more sparse we are sampling, the more informative the prior is.

3.4 The Shape Parameter

Let Ds
i+1 = Di+1/λi, the posterior of ds is given by

p(ds|D,λ) ∝
(

ddss
Γ(ds)

)N−1
(
N−1∏
i=1

Ds
i+1

)ds−1

exp(−
N−1∑
i=1

Ds
i+1ds)p(ds),
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where p(ds) ∝ e−ds/kds is an exponential prior for ds. Following Son and Oh (2006), we use

a normal proposal density q(ds) = N(d∗s, zds), where d∗s is the mode of the logarithmic pdf.

Let logDs denote
∑N−1

i=1 logDs
i+1/(N − 1), d∗s is the numerical solution to the following

FOC with respect to ds:

(log ds + 1)− ψ(ds) + logDs −Ds − 1

kds(N − 1)
= 0,

where ψ is the digamma function. The variance zds is chosen to be the twice the value

of the negative inverse of the second derivative of the logarithmic pdf, i.e.

zds = 2

(
(N − 1)

(
− 1

ds
+ ψ(1)(ds)

)
|ds=d∗s

)−1

.

4 Empirical Results

4.1 Data

We apply our model to the milli-second time stamped IBM trade data. The sample

period is September 2011 (21 trading days). We follow the cleaning procedure proposed

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) to filter out potentially er-

roneous data. First, entries with correction indicators other than 0 are deleted. Second,

we delete entries with an abnormal sales condition. (See the TAQ manual for a com-

plete reference on the correction indicator and sales condition). Third, observations from

outside of the normal opening time are omitted. Fourth, we delete entries from the first

five minutes after opening to eliminate the price changes due to information accumulated

overnight. Last, we treat entries with the same time stamp as one observation and use

the mean price.

Intraday returns can be constructed using different sampling schemes. First, we use a

fixed five-minute sampling frequency to illustrate the motivation for modeling volatility
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Figure 1: The dependence between durations and squared returns.

and duration jointly. Figure 1 depicts the squared five-minute returns versus five-minute

average duration, where the average durations are computed by counting the number

of trades in the five-minute sampling period. The dependence between squared returns

(proxy for volatility) and durations (proxy for conditional durations) is evident.

To preserve the information from durations and mitigate the effect of market mi-

crostructure noise, we sample from every Lth transaction rather than using tick-by-tick

data. At ultra high frequency, unconditional returns display very high kurtosis. Under

the assumption that returns are conditionally normal mixed with Poisson jumps, it is

hard to produce such high kurtosis. Also, the discreteness of return is a dominant feature

in tick-by-tick data since price changes have to be multiples of 1 cent (See Russell and

Engle, 2005). The discreteness of durations induces measurement error as well. More-

over, this measurement error would affect shorter durations/smaller returns more than

the longer durations/larger returns and hence biases the estimation. Another problem

in tick time is that the microstructure noise is autocorrelated (See Hansen and Lunde,

2006). The time dependence of noise becomes negligible as sampling frequency decreases.

Considering these factors, we choose L to be 100, leaving 6038 observations. At this fre-

quency, the mean duration is about 80 seconds. Although a large portion of data is tossed
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out, assumptions underlying our model are better met and this allows for more reliable

estimation.

Intraday volatility and duration have well known diurnal patterns. Transactions hap-

pen more frequently near the opening time and closing time, and less frequently during

the middle of a day. Before we apply the data to the stochastic model, this deterministic

diurnal pattern needs to be filtered out. Durations are adjusted using Di = Du
i /gd(ti),

where Du
i is the unadjusted original duration, and gd(ti) is the diurnal effect at time ti.

A nonparametric estimate of gd is obtained by using a Normal kernel on the five-minute

durations averaged over the entire year of 2011. The level of the diurnal pattern has to be

specified, otherwise the mean of conditional durations will be unidentified. We set gd(ti)

at a level such that the average of gd(ti) over the day equals to one. Diurnal volatility

gv(ti) is obtained by using the Normal kernel on five-minute average squared returns, and

the level of gv(ti) is set such that its mean equals to one. Returns need to be adjusted

to account for the diurnal effect in both durations and volatility. As the unadjusted

volatility V u
i is equal to Vigv(ti), return is adjusted by ri+1 = rui+1/

√
gd(ti)gv(ti+1). The

diurnal pattern gd and gv are plotted in Figure 2. Summary statistics for the returns and

durations before and after the adjustments are given in Table 1.
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Figure 2: Nonparametric estimate of the Diurnal patterns.
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Table 1: Summary Statistics for IBM returns and durations.

ru Du r D

Mean 0.0003 80.20 0.0003 77.99
Std 0.0896 50.76 0.0947 38.39
Autocorrelation 0.0162 0.70 0.0139 0.56

4.2 Estimation Results

We apply the Bayesian estimation procedure for the SVSDJ model and its nested alter-

natives to the deseasonalized returns and durations. Table 2 reports the posterior mean

and standard deviation of the parameters. Models SD and SDexp estimate durations

with gamma (SD) or exponential (SDexp) conditional densities, respectively. The loga-

rithmic conditional duration is stochastic and follows a univariate OU process. SV and

SVJ estimates returns with (SVJ) or without (SV) jumps, assuming that the logarithmic

volatility follows an OU process. SVSD and SVSDJ model assumes that the logarith-

mic volatility and conditional duration are interdependent and they are modeled by a

bivariate OU process.

Our MCMC algorithm also produces smoothed state variable estimates for all the

models. We analyze the results in more detail in the following subsections.

4.3 Estimated Conditional Duration

The estimated conditional duration λi is presented in Figure 3. We omit the duration

estimates in the SVSD model as it is very similar to the SVSDJ model. From Table 2,

the SD model estimates for the shape parameter ds is about 7.1 with standard deviation

being around 0.2, which is significantly different from 1 in the SDexp model. Hence, we
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Table 2: Parameter Estimates

SDexp SD SV SVJ SVSD SVSDJ

Ψ11 0.0010 0.0002 0.0014 0.0010
(0.0001) (5.9e-05) (0.0002) (0.0002)

Ψ21 −0.0005 −0.0004
(7.5e-05) (7.2e-05)

Ψ12 −0.0016 −0.0016
(0.0003) (0.0002)

Ψ22 0.0001 0.0013 0.0010 0.0011
(3.8e-05) (0.0001) (0.0001) (0.0001)

Σ11 0.0015 0.0002 0.0028 0.0019
(0.0002) (6.2e-05) (0.0003) (0.0003)

Σ12 −0.0011 −0.0009
(0.0001) (1.0e-04)

Σ22 1.6e−05 0.0004 0.0005 0.0005
(3.9e-06) (3.3e-05) (4.2e-05) (4.3e-05)

µv −9.1739 −9.2847 −9.3001 −9.3065
(0.0592) (0.1144) (0.0543) (0.0647)

µd 4.3693 4.4152 4.4144 4.4148
(0.0495) (0.0223) (0.0263) (0.0255)

ds 1.0000 7.1370 7.5883 7.5116
(0.1715) (0.1869) (0.1873)

σm 0.0062 0.0061 0.0061 0.0061
(0.0002) (0.0002) (0.0002) (0.0002)

γr 0.0017 0.0002
(0.0005) (0.0002)

µJ 0.0031 −0.0139
(0.0075) (0.0451)

σJ 0.0976 0.1414
(0.0085) (0.0290)

Note: This table reports the posterior mean and the standard deviation of the posterior
(in parentheses). We run 60000 iterations and discard the first 10000 draws for burning

in.

only adopt the SD specification when modelling jointly with volatility.

The effect of relaxing the shape parameter in the conditional densities of durations

is evident in Figure 3. The SDexp model has a more persistent conditional duration

path, which is also consistent with the smaller Ψ22 and smaller Σ22 estimates. Modeling

volatility and conditional duration jointly had less impact on duration parameters or the

conditional duration path.

We compare the standardized durations in Figure 4. The top row is for durations

standardized by their unconditional mean. The middle and bottom rows are for dura-
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tions standardized by the λi estimated with the model SDexp and SVSDJ, respectively.

In the left column we have histograms and in the right column we have the sample au-

tocorrelation function. For the histograms, we superimpose the pdf of an exponential

distribution for the first two rows (durations standardized by the mean or SDexp’s λi).

We can see that in these two cases, the exponential distribution is not a good approxima-

tion. Looking at the autocorrelation function, we can see that although the conditional

expected duration λi obtained from the SDexp model is able to capture the more per-

sistent variations in durations, there are still some short-run dependence left. For the

SVSDJ model, we plot the pdf of Γ(ds, 1/ds) in addition to the empirical density. Both

the empirical density and the autocorrelation structure shows clear improvement over

the SDexp model.

4.4 Estimated Volatility and Jumps

In this subsection we analyze the dynamics of volatility and jumps. Figure 5 plots the

spot volatility estimates for model SV, SVJ, SVSD and SVSDJ. These are obtained from

the posterior mean of Vi. Comparing SV and SVJ, we see that the volatility path in

model SV is more volatile, which is also confirmed by the larger estimates of Ψ11 and

Σ11. This is as expected since all the variation in returns is attributed to volatility in the

SV model. The SVJ model produces the most persistent spot volatility among the four

models, along with the smallest Σ11 estimate. Comparing SVSD and SVSDJ, we observe

the same pattern: allowing jumps in return results in more persistent and less volatile

volatility path, although the difference is less prominent.

Figure 5 shows that modeling conditional duration and volatility jointly leads to

more variations in the volatility path. The off-diagonal elements of Ψ and Σ measure

the interdependence between volatility and duration process. From Table 2, we find that

both the presence and the lack of trade convey information about volatility. The negative

posterior means of Ψ12 and Ψ21 suggests that low volatility leads to short conditional
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Figure 3: Estimated conditional duration. The estimate is obtained from the posterior
mean (average of draws after burning in).

duration, and high conditional duration leads to high volatility. Also, since they have

the same sign, the system reverts to its diffusive mean with an exponential decay. Σ12 is

negative, hence the contemporaneous correlation between the two Brownian motion W v
t

and W λ
t is negative. In other words, short conditional duration is accompanied by high

volatility. The relationship between Vi and λi is opposite in the feedback effect and the

contemporaneous correlation. Although this is worth further investigation, we leave it to

future research.

Since conditional duration adds more variability to volatility, it also has a visible

effect on jump estimation. Figure 6 depicts the estimated jump sizes in returns from the

SVJ and SVSDJ model. More jumps are identified in the SVJ model than the SVSDJ
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Figure 4: Standardized Durations. The left panels are the histogram of durations stan-
dardized by the conditional durations. The black line plots the theoretical conditional
distribution. The right panels are the autocorrelations of the standardized durations.

model. The estimated jump intensity γ is also higher in the SVJ model. When we

allow conditional durations to affect volatility, there is a significantly lesser need for price

jumps.

We compare the estimated volatility and jumps to the popularly utilized bipower

variation and jump variation. To estimate integrated volatility in one day, we take the

sum of the spot volatility multiplied by the duration, and adjust it back using the diurnal

functions, i.e., ÎVt =
∑

i∈day(t) Vigv(ti)Di+1gd(ti+1). Bipower variation is constructed

using five-minute returns, BVt = µ−2
1

∑1/∆
j=2 |rt+j∆||rr+(j−1)∆|, where ∆ = 1/78 and µ1 =√

2/π. The estimated integrated volatility, ÎVt from the four parametric models and

bipower variation are plotted in Figure 7. They show similar patterns, with ÎVt lying
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Figure 5: Estimated spot volatility. The estimate is obtained from the posterior mean
(average of draws after burning in).

slightly above in most days.

In the realized volatility literature, jump variation is measured by the difference

between realized volatility and bipower variation, see Barndorff-Nielsen and Shephard

(2006). Realized volatility is computed using five-minute returns, RVt =
∑1/∆

j=1 r
2
t+j∆.

The difference can be negative with finite ∆, so the empirical measure of jump variation

is truncated at zero, JVt = max (RVt −BVt, 0). When ∆ → 0, JVt converges to the

quadratic variation due to jumps, JVt →
∑

t<s<t+1 ξ
2(s). Define ÎJV t =

∑
i∈day(t) ξ

2
i Ji,

if our model is correctly specified, ÎJV t and JVt should converge to the same value. We

plot ÎJV t and JVt in each day in Figure 8. JVt is a lot larger than ÎJV t in most days.

One explanation for this is that our models use returns sampled at a finer grid. As noted

28



-0.3

-0.2

-0.1

0

0.1

0.2

Jumps in Return

SVJ

1 2 6 7 8 9 12 13 14 15 16 1920 21 22 23 26 27 28 29 30
-0.3

-0.2

-0.1

0

0.1

0.2
SVSDJ

Figure 6: Estimated jumps.

by Christensen, Oomen, and Podolskij (2014), jump variation based on coarser data tend

to attribute a burst in volatility to jumps in return. Figure 9 depicts the first hour of

logarithmic price in the day when JVt is the highest in the sample period, which is Sep

14th. Top panel presents the logarithmic price every five minutes. There are severe

price changes that are close to one percent. In a five-minute period, these are rare and

might be considered as jumps. However, if we look at the bottom panel, where prices are

plotted every 100th trade, there is no clear indication of large discrete price movement.

Another reason for the difference is that the SVJ and SVSDJ model would take the level

of volatility into consideration: large returns happened during high volatility period is

less likely to be identified as jumps compare to large returns that occurred during low

volatility period.

On the other hand, there are days when JV does not identify any jump but IJV

does, for example, on Sep 27th. In Figure 10, we plot the returns in the first hour since

opening, and compare that with Sep 14th. Although the magnitude of return variation

is similar in the two plots, return variation happened over shorter durations on Sep 27th,

and the SVJ model is able to identify some jumps.
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Figure 7: Estimated daily integrated volatility and realized bipower variation.

The proportion of variation due to jumps can be computed by

∑
t ÎJV t∑

t ÎV t +
∑

t ÎJV t

.

In the sample periods, 1.8% of the quadratic variation is from jumps in the SVJ model,

while 0.3% of the total variation is from jumps in the SVSDJ model. The sample period

is one month and it does not cover well known periods of market stress, so the estimated

proportion does not serve as an indication of the magnitude of jump variation. However,

using realized volatility, jump variation accounts for 8.8% of the total variation.

5 Conclusion

This paper puts forward a jump-diffusion model SVSDJ to jointly model volatility and

conditional duration. Market microstructure theory suggests that durations between

trades provide information to market participants, so volatility and durations are inter-

dependent. Our model analyses the interdependence and utilizes this relationship to gain
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Figure 8: Estimated daily IJV and JV.

information about volatility. Given the nature of durations, observations are irregularly

spaced. We develop an MCMC algorithm for inference about irregularly spaced multi-

variate process. The algorithm provides smoothed estimates of the latent variables, such

as spot volatility, jump times and jump sizes. Spot volatility can be easily converted to

integrated volatility in a given horizon. Knowing when jumps happen and how large the

jumps are helps us understand jump dynamics and price jump risk.

Applications to IBM data using our model and two nested alternatives reveal insights

into the behavior of high frequency returns. First, jumps are important. Without jumps,

stochastic volatility cannot fully capture the fat tails in the conditional distribution of

returns. Second, total variation due to price jumps becomes smaller as we use returns

sampled at finer grids. Third, volatility and conditional durations are interdependent,

and modeling them jointly significantly reduces the need for price jumps.
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Figure 10: Returns and Jumps from model SVJ. The top panel is on September 14th,
the day with the highest jump variation. The bottom panel is on September 27th, the
day with the highest integrated jump variation.
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Appendix: MCMC algorithm for SVSDJ model

The full detail of the MCMC algorithm for SVSDJ model are provided here. Other

models are special cases of this model and the algorithm can be easily derived.

1. Initialize Z and Θ. For the SD, SDexp, SV and SVJ model, the initial value for

states and parameters are obtained from QMLE estimations using Kalman Filter.

For the VD and VDJ model, the initial values are taken from the estimation results

from SD, SV and SVJ.

2. Sample the jump block. For notational simplicity, we use r̂i+1 = ri+1−(mi+1−mi).

(a) The conditionals of the jump indicator Ji+1 marginalized over ξi+1 is

p(Ji+1|rest) ∝ exp

(
−1

2

(r̂i+1 − Ji+1µJ)

ViDi+1 + Ji+1σ2
J

2
)

(γDi+1)Ji+1 (1− γDi+1)1−Ji+1 .

Define odds ratio or = p(Ji+1 = 1|rest)/p(Ji+1 = 0|rest), then

p(Ji+1 = 1|rest) =
or

or + 1
,

and it can sampled from a Bernoulli distribution. Conditional on Ji+1, the

jump sizes ξyi+1 can be updated from

p(ξyi+1|Ji+1 = 0, rest) ∼ N(µJ , σ
2
J)

p(ξyi+1|Ji+1 = 1, rest) ∼ N(µ∗J , σ
∗2
J ),

where

µ∗J = Σ∗J
(
r̂i+1V

−1
i D−1

i+1 + µJ/σ
2
J

)
σ2∗
J =

(
V −1
i D−1

i+1 + 1/σ2
J

)−1
.
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(b) To update γ, we draw from the proposal density in equation (10) and accept

using the Independent MH algorithm.

(c) We use a normal-inverse-Gamma prior for µJ and ΣJ :

p(σ2
J) ∼ IG(wJ , fJ)

p(µJ |σ2
J) ∼ N(cJ , σ

2
J/kJ).

Let NJ =
∑
Ji and ξ̄ =

∑
i:Ji=1 ξi, the posteriors are

p(σ2
J |rest) ∼ IG(w∗J , f

∗
J )

p(µJ |σ2
J , rest) ∼ N(c∗J , σ

2
J/k

∗
J),

where

f ∗J = fJ +NJ/2

w∗J = wJ +
1

2

(∑
i:Ji=1

(
ξi − ξ̄

)2
+

kJNJ

kJ +NJ

(
ξ̄ − cJ

)2

)

k∗J = kJ +NJ

c∗J =
kJ

kJ +NJ

cJ +
NJ

kJ +NJ

ξ̄.

3. Sample the OU block. The measurement density is given by:

p(Di+1|λi,Θ) ∝ λ−dsi Dds−1
i+1 exp(−Di+1ds

λi
),

and p(r̃i+1|Vi) ∼ N(0, ViDi+1), where r̃i+1 = ri+1 − ξyi+1Ji+1 −mi+1 +mi.
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(a) The conditional distribution of Xi is

p(Xi|rest) ∝ p(Xi+1|Xi, Di+1,Θ)p(Xi|Xi−1, Di+1, r̃i+1,Θ)︸ ︷︷ ︸
π1

× p(r̃i+1|Xi, Di+1,Θ)︸ ︷︷ ︸
π2

p(Di+1|Xi)︸ ︷︷ ︸
π3

.

As explained in section 3.2, π1 has a multivariate normal kernel as in equation

(12), and we can rewrite it to

π1 ∝ exp

(
− 1

2(1− ρ2)

((
Xi,1 − µ∗i,1

σ∗i,1

)2

+

(
Xi,2 − µ∗i,2

σ∗i,2

)2

−
2ρ
(
Xi,1 − µ∗i,1

) (
Xi,2 − µ∗i,2

)
σ∗i,1σ

∗
i,2

))
,

The measurement density π2 and π3 are approximated by q2 and q3 as ex-

plained in section 3.2. Let µa and µb denote the right-hand-side of equation

(13) and (14), we have

q1 ∝ exp (µaXi,1)

q2 ∝ exp (µbXi,2) .

The proposal density for Xi is multivariate normal:

q(Xi) ∝ exp

(
− 1

2(1− ρ2)

((
Xi,1 − µ∗∗i,1

σ∗i,1

)2

+

(
Xi,2 − µ∗∗i,2

σ∗i,2

)2

−
2ρ
(
Xi,1 − µ∗∗i,1

) (
Xi,2 − µ∗∗i,2

)
σ∗i,1σ

∗
i,2

))
,
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where

µ∗∗i,1 = µ∗i,1 + µa
(
σ∗i,1
)2

+ ρσ∗i,1σ
∗
i,2µb

µ∗∗i,2 = µ∗i,2 + µb
(
σ∗i,2
)2

+ ρσ∗i,1σ
∗
i,2µa.

Generate Xi from this multivariate normal density, then accept it with prob-

ability

α = min

π2

(
X

(g+1)
i

)
π3

(
X

(g+1)
i

)
q2

(
X

(g)
i

)
q3

(
X

(g)
i

)
π2

(
X

(g)
i

)
π3

(
X

(g)
i

)
q2

(
X

(g+1)
i

)
q3

(
X

(g+1)
i

) , 1

 .

(b) The posterior for Σx is given by equation (15). If Σi+1 can be decomposed

into A1ΣxA2,

vec(Σi+1) = (Ψ⊕Ψ)−1(I2 − e−(Ψ⊕Ψ)Di+1)vec(Σx) =
(
AT2 ⊗ A1

)
vec(Σx).

Then,

(Xi+1 − µi+1)
′
Σ−1
i+1 (Xi+1 − µi+1)

= (Xi+1 − µi+1)
′
A−1

2 Σx

(
A−1

1 (Xi+1 − µi+1)
)

=trace
(
Σ−1
x Ei+1

)
,

where Ei+1 = A−1
1 (Xi+1 − µi+1) (Xi+1 − µi+1)

′

A−1
2 . It is easy to show that

vec(Ei+1) = (AT2 ⊗ A1)−1vec
(

(Xi+1 − µi+1) (Xi+1 − µi+1)T
)

=(I2 − e−(Ψ⊕Ψ)Di+1)−1(Ψ⊕Ψ)vec
(

(Xi+1 − µi+1) (Xi+1 − µi+1)T
)
.

Since we also have |Σi+1| = |A1||Σx||A2|, the inverse Wishart proposal den-

sity in equation (16) is proportional to the target density. In other words, if

36



Σi+1 can be decomposed into A1ΣxA2 (note that we do not need to find the

decomposition, we just need it to exist), the posterior has an inverse Wishart

kernel. In general, this is not the case, but the inverse Wishart proposal den-

sity still serves as a good approximation to the target density, and we us IMH

to sample the posterior.

(c) Next, the posterior of Ψ is given by

p(Ψ|rest) ∝
N−1∏
i=1

1

|Σi+1|0.5
exp

(
−1

2
(Xi+1 − µi+1)

′
Σ−1
i+1 (Xi+1 − µi+1)

)
p(Ψ).

From the Euler discretization in equation (17), the posterior for Ψ with a flat

prior is given by a Matrix Normal distribution

Ψ ∼MN

(((
B
′

2B2

)−1

B
′

2B1

)′
,
(
B
′

2B2

)−1

⊗ Σx

)

B1 =

(
X2 −X1√

D2

, . . . ,
XN −XN−1√

DN

)′
B2 =

(
(µx −X1)

√
D2, . . . , (µ

x −XN−1)
√
DN

)′
.

To ensure tail-boundness, we use a multivariate t distribution rather than

Normal as the proposal density. The difference between this proposal density

and the posterior depends on the difference between Euler discretization and

the exact solution. In the application, we find the acceptance rate to be close

to 50%.
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(d) The posterior for µx given a multivariate normal prior N(Cx, Zx) is

p(µx|rest) ∼ N(C∗x, Z
∗
x),

(Z∗x)−1 =

(
N−1∑
i=1

[
(I2 − Φi+1)

′
Σ−1
i+1 (I2 − Φi+1)

])
+ Z−1

x

C∗x = Z∗x

{
N−1∑
i=1

[
(I2 − Φi+1)

′
Σ−1
i+1 (Xi+1 − Φi+1Xi)

]
+ Z−1

x Cx

}
.

4. For the MMN block, we assume E(mi) = 0 and the prior distribution of mi is

N(0, σ2
m). We use the notation ři+1 = ri+1 − ξyi+1Ji+1.

(a) The posterior of mi is given by:

p(mi|rest) ∼N(cm, zm)

where

z−1
m =

1

ViDi+1

+
1

Vi−1Di

+
1

σ2
m

cm = zm

(
mi+1 − ři+1

ViDi+1

+
ři +mi−1

Vi−1Di

)
.

(b) To update σ2
m, we use a conjugate Inverse Gamma prior IG(fm, wm). The

posterior is

p(σ2
m|m) ∝ IG

(
fm +

N

2
, wm +

1

2

N∑
i=1

m2
i

)
.

5. The shape parameter is sampled using the procedure in Section 3.4.
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