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Abstract

Parametric estimation for diffusion processes is considered for high frequency ob-
servations over a fixed time interval. The processes solve stochastic differential equa-
tions with an unknown parameter in the diffusion coefficient. We find easily verified
conditions on approximate martingale estimating functions under which estimators are
consistent, rate optimal, and efficient under high frequency (in-fill) asymptotics. The
asymptotic distributions of the estimators are shown to be normal variance-mixtures,
where the mixing distribution generally depends on the full sample path of the diffu-
sion process over the observation time interval. Utilising the concept of stable con-
vergence, we also obtain the more easily applicable result that for a suitable data
dependent normalisation, the estimators converge in distribution to a standard normal
distribution. The theory is illustrated by a small simulation study comparing an effi-
cient and a non-efficient estimating function.
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1 Introduction

Diffusions given by stochastic differential equations find application in a number of fields
where they are used to describe phenomena which evolve continuously in time. Some ex-
amples include agronomy (Pedersen, 2000), biology (Favetto and Samson, 2010), finance
(Merton, [1971}; |Vasicek, [1977; ICox et al., |1985; |[Larsen and Sgrensen, [2007) and neuro-
science (Ditlevsen and Lanskyl 2006; [Picchini et al., 2008} |Bibbona et al.,[2010).

While the models have continuous-time dynamics, data are only observable in discrete
time, thus creating a demand for statistical methods to analyse such data. With the ex-
ception of some simple cases, the likelihood function is not explicitly known, and a large
variety of alternate estimation procedures have been proposed in the literature, see e.g.
Sgrensen| (2004) and [Kessler et al.|(2012). Parametric methods include the following. Max-
imum likelihood-type estimation using, primarily, Gaussian approximations to the likeli-
hood function was considered by |Prakasa Rao| (1983)), [Florens-Zmirou| (1989)), |Yoshida
(1992)), Genon-Catalot and Jacod|(1993)), [Kessler| (1997)), Jacod (2006), Gloter and Sgrensen
(2009) and [Uchida and Yoshidal (2013)). Analytical expansions of the transition densities
were investigated by |Ait-Sahalia) (2002, |2008)) and [Li| (2013)), while approximations to the
score function were studied by Bibby and Sgrensen| (19935)), Kessler and Sgrensen| (1999)),
Jacobsen| (2001}, 12002), \Uchidal (2004), and [Sgrensen! (2010). Simulation-based likelihood
methods were developed by Pedersen| (1993)), Roberts and Stramer| (2001)), [Durham and
Gallant| (2002)), Beskos et al.| (2006, [2009), |Golightly and Wilkinson| (2006, 2008)), |Bladt
and Sgrensen| (2014)), and [Bladt et al. (2015)).

A large part of the parametric estimators proposed in the literature can be treated within
the framework of approximate martingale estimating functions, see the review in|Sgrensen
(2012). In this paper, we derive easily verified conditions on such estimating functions that
imply rate optimality and efficiency under a high frequency asymptotic scenario and thus
contribute to providing clarity and a systematic approach to this area of statistics.

Specifically, the paper concerns parametric estimation for stochastic differential equations
of the form

dXt = a(X;) dt + b(X[,H) th, (11)

where (W;);»0 is a standard Wiener process. The drift and diffusion coefficients a and b
are known, deterministic functions, and 6 is the unknown parameter to be estimated. For
ease of exposition, X; and 6 are both assumed to be one-dimensional. The extension of
our results to a multivariate parameter is straightforward, and it is expected that multi-
variate diffusions can be treated in a similar way. For n € N, we consider observations
(th,Xz'f, ..., Xp) in the time interval [0, 1], at discrete, equidistant time-points 7! = i/n,
i =0,1,...,n. We investigate the high frequency scenario where n — co. The choice of
the time-interval [0, 1] is not restrictive since results generalise to other compact intervals
by suitable rescaling of the drift and diffusion coefficients. The drift coefficient does not de-
pend on the parameter, because parameters that appear only in the drift cannot be estimated
consistently in our asymptotic scenario.



It was shown by Dohnall (1987) and |Gobet| (2001) that under the asymptotic scenario con-
sidered here, the model (1.1)) is locally asymptotic mixed normal with rate v/ and random
asymptotic Fisher information

1 2
_ aﬁb(xs;g)
10 =2 fo (—b(XS;e) ) ds. (1.2)

Thus, a consistent estimator 8, is rate optimal if \/ﬁ(@n — 6p) converges in distribution
to a non-degenerate random variable as n — oo, where 6y is the true parameter value.
The estimator is efficient if the limit may be written on the form 7(6y)~'/?Z, where Z is
standard normal distributed and independent of 7(6p). The concept of local asymptotic
mixed normality was introduced by Jeganathan| (1982), and is discussed in e.g. [Le Cam
and Yang (2000, Chapter 6) and Jacod|(2010).

Estimation for the model (I.I) under the high frequency asymptotic scenario described
above was considered by (Genon-Catalot and Jacod| (1993], 1994])). These authors proposed
estimators based on a class of constrast functions that were only allowed to depend on the
observations through bz(Xt;vil ;0) and A;l/ Z(X,;z - Xt,'-ll ). The estimators were shown to be
rate optimal, and a condition for efficiency was given.

In this paper, we investigate estimators based on the extensive class of approximate mar-
tingale estimating functions

n
G(®) = )" &(An, Xy, X 56)
i=1

with A, = 1/n, where the real-valued function g(z, y, x; 6) satisfies that Eg(g(A,, X, X 3 0) |
X,:y_l) is of order AX for some k > 2. Estimators are obtained as solutions to the estimating
equation G,(0) = 0 and are referred to as G,-estimators.

This class of estimating functions was also studied by Sgrensen| (2010), who considered
high frequency observations in an increasing time interval for a model like (I.T) where
also the drift coefficient depends on a parameter. Specifically, the observation times were
1} = iA, with A, — 0 and nA, — oco. Simple conditions on g for rate optimality and
efficiency were found under the infinite horizon high frequency asymptotics. To some
extent, the methods of proof in the present paper are similar to those in |Sgrensen| (2010).
However, while ergodicity of the diffusion process played a central role in|Sgrensen|(2010),
this property is not needed here. Another important difference is that here expansions of
a higher order are needed, which complicates the proofs considerably. Furthermore, here
a more complicated version of the central limit theorem for martingales is required, and
we need the concept of stable convergence in distribution, in order to obtain practically
applicable convergence results.

First, we establish results on existence and uniqueness of consistent G,-estimators. We
show that \/ﬁ(@n — 6p) converges in distribution to a normal variance-mixture, which im-
plies rate optimality. The limit distribution may be represented by the product W(6y)Z of



independent random variables, where Z is standard normal distributed. The random vari-
able W(6p) is generally non-degenerate, and depends on the entire path of the diffusion
process over the time-interval [0, 1]. Normal variance-mixtures were also obtained as the
asymptotic distributions of the estimators of (Genon-Catalot and Jacod| (1993)). These dis-
tributions appear as limit distributions in comparable non-parametric settings as well, e.g.
when estimating integrated volatility (Jacod and Protter, 1998} Mykland and Zhang|, 20006)
or the squared diffusion coefficient (Florens-Zmiroul [1993}; Jacod, 2000).

Rate optimality is ensured by the condition that
0,8(0,x,x;0) =0 (1.3)

for all x in the state space of the diffusion process, and all parameter values 6. Here
0,g(0, x, x; 0) denotes the first derivative of g(0, y, x; 8) with respect to y evaluated in y = x.
The same condition was found in S@rensen| (2010) for rate optimality of an estimator of the
parameter in the diffusion coefficient and as one of the conditions for small A-optimality;
see Jacobsen| (20011, [2002).

Due to its dependence on (Xs)seqo,17, the limit distribution is difficult to use for statistical
applications, such as constructing confidence intervals and test statistics. Therefore, we
construct a statistic W,, that converges in probability to W(6p). Using the stable convergence
in distribution of \/ﬁ(@n — 6p) towards W(6p)Z, we derive the more easily applicable result
that \n ITV; L@, - 6y converges in distribution to a standard normal distribution.

The additional condition that

b*(x; 0)

924(0, x, x;0) = K,
180, x, x;0) = Ky P r. 0)

1.4)
(Kg # 0) for all x in the state space, and all parameter values 8, ensures efficiency of G,,-
estimators. The same condition was obtained by [Sgrensen| (2010) in his infinite horizon
scenario for efficiency of estimators of parameters in the diffusion coefficient. It is also
identical to a condition given by Jacobsen| (2002) for small A-optimality. The identity of
the conditions implies that examples of approximate martingale estimating functions that
are rate optimal and efficient in our asymptotic scenario may be found in Jacobsen| (2002])
and Sgrensen| (2010). In particular, estimating functions that are optimal in the sense of
Godambe and Heyde| (1987)) are rate optimal and efficient under weak regularity conditions.

The paper is structured as follows: Section [2|presents definitions, notation and terminology
used throughout the paper, as well as the main assumptions. Section [3]states and discusses
our main results, while Section[d] presents a simulation study illustrating the results. Section
[5] contains main lemmas used to prove the main theorem and proofs of the main theorem
and of the lemmas. Appendix [A]consists of auxiliary technical results, some of them with
proofs.



2 Preliminaries

2.1 Model and Observations

Let (Q, ) be a measurable space supporting a real-valued random variable U, and an inde-
pendent standard Wiener process W = (W,)»0. Let (F;);>0 denote the filtration generated
by U and W.

Consider the stochastic differential equation
dX, = a(Xy) dt + b(X;;0)dW;, Xo=U, (2.1)

for § € ® C R. The state space of the solution is assumed to be an open interval X C R,
and the drift and diffusion coefficients, a : X - Rand b : X x ® — R, are assumed to be
known, deterministic functions. Let (Pg)gce be a family of probability measures on (Q2, )
such that X = (X;);»0 solves (2.1I)) under Py, and let Ey denote expectation under Py.

Let 1} = iA, with A, = 1/n for i € Ny, n € N. For each n € N, X is assumed to be sampled
at times tlf’, i=0,1,...,n, yielding the observations (th,X,zlz, ..., Xpn). Let G, ; denote the
o-algebra generated by the observations (X,g, X,fla, e Xf?)’ with G, = Gn -

2.2 Polynomial Growth

In the following, to avoid cumbersome notation, C denotes a generic, strictly positive, real-
valued constant. Often, the notation C, is used to emphasise that the constant depends
on u in some unspecified manner, where u may be, e.g., a number or a set of parameter
values. Note that, for example, in an expression of the form C,(1 + |x|®*), the factor C, and
the exponent C,, need not be equal. Generic constants C,, often depend (implicitly) on the
unknown true parameter value 6y, but never on the sample size 7.

A function f : [0, 1]x X? x® — R s said to be of polynomial growth in x and y, uniformly
for ¢ € [0, 1] and 6 in compact, convex sets, if for each compact, convex set K C ® there
exist constants Cx > 0 such that

sup  |f(t,y, 5 0)| < Cx(1 + [x]°K + [y|°%)
t€[0,1],0eK

for x,y € X.

Definition 2.1. cg’,?;,r([o, 11x X% x @) denotes the class of continuous, real-valued functions

f(t,y, x; 6) which satisfy that

(i) f and the mixed partial derivatives aﬁa'yj(')zf(t,y, x0),i=0,...,p,j=0,...,9 and
k=0,...,rexist and are continuous on [0, 1] x X? x ®.

(i1) f and the mixed partial derivatives from |[(1)| are of polynomial growth in x and vy,
uniformly for ¢ € [0, 1] and 6 in compact, convex sets.

Similarly, the classes Co([0, 11X X x ©), Co9 (X2 X @), C5(X x ©) and C5”(X) are defined

for functions of the form f(¢, x; 0), f(y, x;0), f(y;6) and f(y), respectively. o



Note that in Definition 2.1} differentiability of f with respect to x is never required.

For the duration of this paper, R(z, y, x; 6) denotes a generic, real-valued function defined
on [0, 1] x X% x ©, which is of polynomial growth in x and y uniformly for ¢ € [0, 1] and
# in compact, convex sets. The function R(¢,y, x; 8) may depend (implicitly) on 6. Func-
tions R(t, x; 6), R(y, x; 8) and R(t, x) are defined correspondingly. The notation R,(z, x; 0)
indicates that R(¢, x; 6) also depends on A € @ in an unspecified way.

2.3 Approximate Martingale Estimating Functions

Definition 2.2. Let g(t, v, x; 6) be a real-valued function defined on [0, 1]x X?x ®. Suppose
the existence of a constant k > 2, such that foralln e N,i=1,...,n,0 € 0,

Eo (8(An. Xir. Xpr :0) | X ) = ASRo(An. Xir ). 22)

Then, the function
n
G(®) = )" &(An, Xy, X 56) 2.3)
i=1

is called an approximate martingale estimating function. In particular, when (2.2)) is satis-
fied with Ry(z, x) = 0, (2.3) is referred to as a martingale estimating function. o

By the Markov property of X, it follows that if Ry(z, x) = 0, then (G,,;)1<i<n defined by
i
Gui®) = ), (A, X, X1 360)
j=1

is a zero-mean, real-valued (G, ;)1 <i<,-martingale under Py for each n € N. The score func-
tion of the observations (X1, X, ..., X;n) is under weak regularity conditions a martingale
estimating function, and an approximate martingale estimating function can be viewed as
an approximation to the score function.

A G,-estimator 8, is essentially obtained as a solution to the estimating equation G,,(6) = 0.
A more precise definition is given in the following Definition 2.3] Here we make the w-
dependence explicit by writing G,,(6, w) and ,(w).

Definition 2.3. Let G, (0, w) be an approximate martingale estimating function as defined
in Definition[2.2] Put @, = ® U {co} and let

D, ={w e Q| G,(0,w) = 0 has at least one solution § € B} .

A Gp-estimator 0,(w) is any G,-measurable function Q — @, which satisfies that for
Py, -almost all w, 8,(w) € ® and G,(8,(w), w) = 0 if w € D,, and G (w) = o if w & D,. ©

For any M,, # 0, the estimating functions G,(¢) and M, G,(0) yield identical estimators of
0 and are therefore referred to as versions of each other. For any given estimating function,
it is sufficient that there exists a version of the function which satisfies the assumptions of
this paper, in order to draw conclusions about the resulting estimators. In particular, we can
multiply by a function of A,,.



2.4 Assumptions
We make the following assumptions about the stochastic differential equation.

Assumption 2.4. The parameter set © is a non-empty, open subset of R. Under the prob-
ability measure Py, the continuous, (7;)>0-adapted Markov process X = (X0 solves a
stochastic differential equation of the form (2.1)), the coefficients of which satisfy that

ay) e CY"(X) and  b(y:6) € Cl (X x ©) .
The following holds for all 6 € ©.
(i) Forally e X, b*(y;6) > 0.
(ii) There exists a real-valued constant Cy > 0 such that for all x,y € X,

la(x) — a(y)l + |b(x; 0) = b(y; 0)] < Cglx —yl.

(iii) Forallm € N,

sup By (1X,") < co.
t€[0,00)

<&

The global Lipschitz condition, Assumption ensures that a unique solution exists
such that X is well-defined. Assumption[2.4]is very similar to the corresponding Condition
2.1 of |Sgrensen| (2010). However, an important difference is that in the current paper, X is
not required to be ergodic. Here, law of large numbers-type results are replaced by what is,
in essence, the convergence of Riemann sums.

We make the following assumptions about the estimating function.

Assumption 2.5. The function g(t,y, x;0) satisfies (2.2) for some k > 2, thus defining an
approximate martingale estimating function by ([2.3). Moreover,

g(t,y, x:60) € Ci% (10, 1] X X* x ©),
and the following holds for all 6 € ©.
(i) Forall x € X, 8,8(0, x, x;60) = 0.
(ii) The expansion

g(A,y, x;0) = g(0,y,x;0) + Ag P (v, x;0) + 1A% Py, x;0) + 1A%y, x; 0)

(2.4)
+A*R(A,y, x; 0)

holds for all A € [0,1] and x,y € X, where g¥(y, x;6) denotes the j'th partial
derivative of g(t,y, x; 8) with respect to t, evaluated in t = Q.



Assumption was referred to by [Sgrensen| (2010) as Jacobsen’s condition, as it is
one of the conditions for small A-optimality in the sense of |Jacobsen| (2001)), see Jacobsen
(2002). The assumption ensures rate optimality of the estimators in this paper, and of the
estimators of the parameters in the diffusion coefficient in|Sgrensen| (2010).

The assumptions of polynomial growth and existence and boundedness of all moments
serve to simplify the exposition and proofs, and could be relaxed.
2.5 The Infinitesimal Generator

For A € O, the infinitesimal generator £, is defined for all functions f(y) € Cg(ﬂ(z\’ ) by
L) = a0y f() + 3D DILF ().
For f(t.y.x,0) € C5% ([0, 1] x X x @), let

Laf(t,y.x:60) = a()dy f(t,y, x;0) + 367 (v; DD, f(1,y, x:6) . (2.5)

Often, the notation L, f(z, y, x;0) = LA(f(¢;0))(y, x) is used, so e.g. L (f(0; 6))(x, x) means
Laf(0,y, x;0) evaluated in y = x. In this paper the infinitesimal generator is particularly
useful because of the following result.

Lemma 2.6. Suppose that Assumption 2.4 holds, and that for some k € Ny,
ay) € c‘z’gl(X), b(y;0) € Cg,ifo(x X®) and f(y,x;,0) € C’z’f,fm,o(xz X 0).
Then, forO<t<t+A<land €@,

Ep (f (Xe+a, X3 0) | Xp)

k Ai ) A U Uk
= ) T LK X 0) + f f f By (L5 f Kivue» X 0) | Xi) ditgr -+ duy
il 0 Jo 0

where, furthermore,

A Up U
[ [ B K X001 X)) it -y = AR, X50).
0 0 0
<&

The expansion of the conditional expectation in powers of A in the first part of the lemma
corresponds to Lemma 1 in|[Florens-Zmirou| (1989) and Lemma 4 in Dacunha-Castelle and
Florens-Zmirou| (1986). It may be proven by induction on k using It6’s formula, see, e.g.,
the proof of Sgrensen| (2012, Lemma 1.10). The characterisation of the remainder term
follows by applying Corollary to L’fl” £ see the proof of Kessler| (1997, Lemma 1).

For concrete models, Lemma [2.6]is useful for verifying the approximate martingale prop-
erty (2.2) and for creating approximate martingale estimating functions. In combination
with (2.2), the lemma is key to proving the following Lemma which reveals two im-
portant properties of approximate martingale estimating functions.



Lemma 2.7. Suppose that Assumptions[2.4\and 2.5 hold. Then
80.x,x:0)=0 and g'V(x,x;0) = = Ls(3(0,))(x. x)
forall x e X and 8 € ©. o

Lemmacorresponds to Lemma 2.3 of [Sgrensen| (2010), to which we refer for details on
the proof.

3 Main Results

Section [3.1] presents the main theorem of this paper, which establishes existence, unique-
ness and asymptotic distribution results for rate optimal estimators based on approximate
martingale estimating functions. In Section[3.2]a condition is given, which ensures that the
rate optimal estimators are also efficient, and efficient estimators are discussed.

3.1 Main Theorem
The final assumption needed for the main theorem is as follows.

Assumption 3.1. The following holds Py-almost surely for all 6 € ©.

(i) Forall A + 6,
1
f (b*(X,:0) — b* (X, ))0;8(0, X, Xs: D) ds # 0,
0
(i)

1
f 0pb* (X3 0)078(0, Xy, X 0)ds # 0,
0

(iii)

1
[ poso @0 x xa0) ds 0.
0

Assumption [3.T|can be difficult to check in practice because it involves the full sample path
of X over the interval [0, 1]. It requires, in particular, that for all § € ®, with Py-probability
one, t — b*(X,;0) — b*(X;; A) is not Lebesgue-almost surely zero when A # 6. As noted
by (Genon-Catalot and Jacod| (1993), this requirement holds true (by the continuity of the
function) if, for example, Xy = U is degenerate at xo, and b*(xq; 6) # b>(xo; ) for all @ # A.

For an efficient estimating function, Assumption[3.I|reduces to conditions on X with no fur-
ther conditions on the estimating function, see the next section. Specifically, the conditions
involve only the squared diffusion coefficient b(x; #) and its derivative dgh?.



Theorem 3.2. Suppose that Assumptions 2.4} [2.5|and [3.1| hold. Then,

(i) there exists a consistent G,-estimator 8,. Choose any compact, convex set K C ®
with 6y € int K, where int K denotes the interior of K. Then, the consistent G,-
estimator 0, is eventually unique in K, in the sense that for any G-estimator 8, with
Pgo(én € K) » 1 as n — oo, it holds that Pgo(én #6,) - 0asn — co.

(ii) for any consistent G,-estimator 8, it holds that
R D
Vn(6, — o) — W(60)Z. (3.1

The limit distribution is a normal variance-mixture, where Z is standard normally
distributed, and independent of W(8y) given by

X , 2
(f %b4(XS;00)(6§g(O,Xs’XS;00)) dS)
W(bp) =

: 3.2)

f L967(X,: 00)528(0. X, X, 60) ds
0

(iii) for any consistent G -estimator 6,

| & 1/2
[A— > X X en))
— no_
W, =~ = (3.3)

n
> Bog(An X, Xer 301)
i=1

—~ P
satisfies that W,, — W(6y), and
VAW, 6 - 60) = Z,

where Z is standard normally distributed.

The proof of Theorem 3.2]is given in Section[5.1]

Dohnal| (1987) and |Gobet, (2001) showed local asymptotic mixed normality with rate /n,
so Theorem [3.2] establishes rate optimality of G,-estimators.

Observe that the limit distribution in Theorem generally depends on not only the
unknown parameter 6y, but also on the concrete realisation of the sample path r — X;
over [0, 1], which is only partially observed. In contrast, Theorem yields a limit
distribution which is of more use in practical applications.

10



3.2 Efficiency

Under the assumptions of Theorem the following additional condition ensures effi-
ciency of a consistent G,-estimator.

Assumption 3.3. Suppose that for each 6 € O, there exists a constant Ky # 0 such that for
allx e X,

Qb*(x; 6)
022(0, x, x;0) = Kg——"
O

Dohnal (1987) and |Gobet| (2001)) showed that the local asymptotic mixed normality prop-
erty holds within the framework considered here with random Fisher information 7 (6p)
given by . Thus, a G,-estimator 6, is efficient if holds with W(6y) = Z(6y)~"/2,
so the following Corollary [3.4| may easily be verified.

Corollary 3.4. Suppose that the assumptions of Theorem [3.2] and Assumption [3.3] hold.
Then, any consistent G,-estimator is also efficient. o

It follows from Theorem [3.2] and Lemma [5.1] that if Assumption [3.3| holds, and if G, is
normalized such that Ky = 1, then

—~1
VT2 (6 — ) —> N(O, 1),

where

n
In Zgz(Ath;"th{l;én)-

1
An i=1

It was noted in Section[2.3]that not necessarily all versions of a particular estimating func-

tion satisfy the conditions of this paper, even though we obtain the same estimator. Thus,

an estimating function is said to be efficient, if there exists a version which satisfies the

conditions of Corollary [3.4] The same goes for rate optimality.

Assumption [3.3]is identical to the condition for efficiency of estimators of parameters in the
diffusion coefficient in|Sgrensen|(2010), and to one of the conditions for small A-optimality
in Jacobsen| (2002).

Under suitable regularity conditions on the diffusion coefficient b, the function

Ab*(x; 0)

g(t,y, x;0) =
8, y, x;0) P 6)

(0 - 07— 1b*(x;0) (3.4)

yields an example of an efficient estimating function. The approximate martingale property
(2.2) can be verified by Lemma [2.6]

When adapted to the current framework, the contrast functions investigated by |Genon-
Catalot and Jacod| (1993) have the form

1< _
Un(O) = — D f (DK 00,8512 (Xy = X))
i=1

11



for functions f(v,w) satisfying certain conditions. For the contrast function identified
as efficient by Theorem 5 of |Genon-Catalot and Jacod, f(v,w) = logv + w?/v. Us-
ing that A, = 1/n, it is then seen that their efficient contrast function is of the form
Un(0) = X1, u(An, Xpp, X 3 6) with

a(t,y, x;0) = tlog b*(x; 0) + (y — x)*/b*(x; 6)

and Oyii(t,y, x;0) = —g(t,y, x; 6). In other words, it corresponds to a version of the efficient
approximate martingale estimating function given by (3.4). The same contrast function
was considered by [Uchida and Yoshida| (2013)) in the framework of a more general class of
stochastic differential equations.

A problem of considerable practical interest is how to construct estimating functions that
are rate optimal and efficient, i.e. estimating functions satisfying Assumptions [2.5]i(i)] and
[3.3] Being the same as the conditions for small A-optimality, the assumptions are, for
example, satisfied for martingale estimating functions constructed by Jacobsen| (2002).

As discussed by [Sgrensen| (2010)), the rate optimality and efficiency conditions are also sat-
isfied by Godambe-Heyde optimal approximate martingale estimating functions. Consider
martingale estimating functions of the form

2(t,y,%:0) = ax, £;0)" (£ (3 0) = Bf (x:6) ,

where a and f are two-dimensional, * denotes transposition, and ¢’9 f(x;0) = Bo(f(Xy;0) |
Xo = x), and suppose that f satisfies appropriate (weak) conditions. Let a be the weight
function for which the estimating function is optimal in the sense of (Godambe and Heyde
(1987), see e.g. [Heyde| (1997) or|Sgrensen| (2012, Section 1.11). It follows by an argument
analogous to the proof of Theorem 4.5 in|Sgrensen|(2010) that the estimating function with

g(t,y,x;0) = ta(x, ;0)*[f(y; 0) — ¢ f (x; 0)]

satisfies Assumptions and [3.3] and is thus rate optimal and efficient. As there is a
simple formula for a (see Section 1.11.1 of [Sgrensen| (2012))), this provides a way of con-
structing a large number of efficient estimating functions. The result also holds if ¢} f(x; 6)
and the conditional moments in the formula for a are approximated suitably by the help of
Lemmal[2.6l

Remark 3.5. Suppose for a moment that the diffusion coefficient of (2.1 has the form
b*(x;0) = h(x)k(6) for strictly positive functions # and k, with Assumption satis-
fied. This holds true, e.g., for a number of Pearson diffusions, including the (stationary)
Ornstein-Uhlenbeck and square root processes. (See Forman and Sgrensen! (2008) for more
on Pearson diffusions.) Then 7(6y) = dpk(69)?/(2k*(6p)). In this case, under the assump-
tions of Corollary an efficient G ,-estimator 6, satisfies that \/ﬁ(@n —0p) — Y in distri-
bution where Y is normally distributed with mean zero and variance 2k2(60)/dek(60)?, i.e.
the limit distribution is not a normal variance-mixture depending on (X;):c[0,17- Note also
that when b?(x; 6) = h(x)k(6) and Assumption holds, then Assumption is satisfied
when e.g. dgk(6) > 0 or dpk(6) < 0. o
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4 Simulation study

This section presents a simulation study illustrating the theory in the previous section. An
efficient and an inefficient estimating function are compared for a model for which the limit
distributions of the consistent estimators are non-degenerate normal variance-mixtures.

Consider the stochastic differential equation
dX, = =2X,dt + (0 + X»)™'? aw, 4.1)

where 6 € (0, c0) is an unknown parameter. Then X is ergodic, and the invariant probability
measure has density proportional to

Hg(x) = exp (—29)62 - x4) (9 + xz) , X€eR, 4.2)

with respect to Lebesgue measure. When X is stationary, the process satisfies Assumption
[2.4] We compare the two estimating functions given by

n n
Gu(®) = )" &, X, Xp 56)  and  Hy(6) = > h(Ay, Xp, X )
i=1 i=1

where

gy, x;0) = (y—x)? - @+ x)7
h(t,y, x,0) = 0+ x)'°(y — x)> = (0 + ¥*)°t.

Both g and £ satisfy Assumptions [2.5]and [3.1] and g is the efficient function (3.4)), while
is not efficient.

Let W (69) and Wy (o) be given by (3.2), that is

1 1/2
(f 2(6o +X§)‘8ds)
0

1
f (6o + XH ds
0

1 1 -1/2
WG(90)=(§ fo mds) and  Wy(6o) = . 43)

Numerical calculations and simulations were done in R 3.1.2 (R Core Team, 2014). First,
m = 10* trajectories of the process X given by were simulated over the time-interval
[0, 1] with 6y = 1, each with sample size n = 10*. These simulations were performed using
the R-package sde (lacus|,2014). For each trajectory, the initial value Xy was obtained from
the invariant distribution of X by inverse transform sampling, using a quantile function
based on (4.2), and calculated by numerical procedures in R. For n = 10 and n = 10%,
let @G’n and 9H,,, denote estimates of 8 obtained by solving the equations G,(f) = 0 and
H,(0) = 0 numerically, on the interval [0.01, 1,99]. Using these estimates, WG,H and WH’,,
are calculated by . Forn = 103, @H,n and thus also WH,,Z, could not be computed for 44
of the m = 10* sample paths. For n = 10*, and for the efficient estimator 8, there were no
problems.

13



Figure 1: QQ-plots comparing /Z\G,n (left) and ZH’,, (right) to the N(0, 1) distribution for
n = 103 (above) and n = 10* (below).
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Figure 2: Approximation to the densities of W(6p) (left) and Wg(6p) (right) based on V~VG
and Wp.

Figure [I|shows QQ-plots of
ZGn= NnWg5h @6, —60) and  Zy, = VaWg'@un—60) .

compared with a standard normal distribution, for n = 10% and n = 10* respectively. These
QQ-plots suggest that, as n goes to infinity, the asymptotic distribution in Theorem 3.2][(ii1)]
becomes a good approximation faster in the efficient case than in the inefficient case.

Inserting 6y = 1 into (.3), the intergrals in these expressions may be approximated by
Riemann sums, using each of the simulated trajectories of X (with n = 10* for maximal ac-
curacy). This method yields a second set of approximations W and Wy to the realisations
of the random variables W (8y) and Wg(8p), presumed to be more accurate than WG, 10+ and
WH,]O“ as they utilise the true parameter value. The density function in R was used (with
default arguments) to compute an approximation to the densities of W(8y) and Wg(6p),
using the approximate realisations W and Wi

It is seen from Figure Q] that the distribution of Wg(6p) is much more spread out than the
distribution of Wg(6p). This corresponds well to the limit distribution in Theorem
being more spread out in the inefficient case than in the efficient case. Along the same lines,
Figure 3| shows similarly computed densities based on \/ﬁ(éG,n —6y) and \/ﬁ(@y,n —6y) for
n = 10*, which may be considered approximations to the densities of the normal variance-
mixture limit distributions in Theorem These plots also illustrate that the limit
distribution of the inefficient estimator is more spread out than that of the efficient estimator.
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Figure 3: Estimated densities of vn(fg,, — 6o) (solid curve) and Vn(fy, — o) (dashed
curve) for n = 10%.

5 Proofs

Section [5.1] states three main lemmas needed to prove Theorem [3.2] which are followed by
the proof of the theorem. Section [5.2] contains the proofs of the three lemmas.

5.1 Proof of the Main Theorem

In order to prove Theorem we use the following lemmas, together with results from
Jacod and Sgrensen| (2012)), and |S@grensen| (2012}, Section 1.10).

Lemma 5.1. Suppose that Assumptions 2.4\ and 2.5\ hold. For 6 € ©, let

n
Gn(0) = " &(An, X, X 56)
i=1

1 n
GYlO) = — > & (A, Xpr, Xpn 3 6)
n An;g ny Aflls Al

and
A(6;60) = 1 fo | (67(Xy: 60) - b*(X,:6)) 938(0, X, X, 0) ds
B(6; 69) = 3 fo 1 (6 (X3 00) — b* (X, 60)) 30680, X, X; 6) ds
-1 fo 1 0gb* (X3 0)928(0, Xy, X: 0) ds
C(6:60) =} fo 1 (b X000 + £ (B2CX:00) - P X3 0)) ) (2360, X, X)) ds.
Then,

16



(i) the mappings 0 — A(6;6y), 0 — B(6;6y) and 6 — C(6;6y) are continuous on ©

(Pg,-almost surely) with A(6o; 6o) = 0 and 0yA(6; 60) = B(6; 6p).

(ii) forallt > 0,

[nt]

1 2 [Ban (gan. X X 3000 1 Xer, )| D5 0

VAL i
1 [nt] ) P
x ZEQO (g(An,Xt;f,Xti"_] ;600) | Xz;’_]) —0
"=l

[nt]
: P
F Z Ef)o (g4(An7 Xz;?,Xt;T_I ; 9()) | Xt:l—l) — 0
noi=1

and

6D

(5.2)

(5.3)

[nt] t
1 P 2
ATZJEQ‘) (82(An X, Xr 160) | Xi ) — 3 fo b*(X,: 60) (928(0. X, X, 60))” dis.
=

(iii) for all compact, convex subsets K C O,
P
sup |G, (0) — A(6; 6p)l — O
0eK

Sup [39Go(6) — B(6: 60)] —> 0
0eK

sup|G27(6) — C(6; 60)] 2> 0.
ek

Lemma 5.2. Suppose that Assumptions[2.4|and 2.5 hold. Then, for all t > 0,

[nr]

P
i ;Eeo (8(An. X X 2 00) (Wi = Wy ) | Fr ) — 0.

Lemma 5.3. Suppose that Assumptions 2.4\ and 2.5\ hold, and let

[nt]

Yn,t = g(Al’hXﬂl’Xﬂ' 990) .
,An lzzl i i-1

5.4

(5.5)

Then the sequence of processes (Yp)nen given by Y, = (Y,1)r=0 converges stably in distri-

bution under Py, to the process Y = (Y;)0 given by

!
v fo B(X,: 00)528(0. X, Xy 00) dB,

Here B = (By)s>0 denotes a standard Wiener process, which is defined on a filtered exten-

sion (', F', (F/ =0, Py) of (U F, (Fi)rz0, Pay), and is independent of U and W.

17
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e . Dy
We denote stable convergence in distribution under Pg, as n — co by =,

Proof of Theorem[3.2] Let a compact, convex subset K C @ with 6 € int K be given. The
functions G,(6), A(6, 6y), B(8, 8y), and C(6, 6y) were defined in Lemma 5.1}

By Lemma 5.1]i(i)] and

Guf0) =250 and sup |09G(6) — B(6, 6p)| 20 (5.6)
0eK

with B(6p; 6p) # 0 by Assumption[3.][(iD)} so G,(6) satisfies the conditions of Theorem 1.58
in |Sgrensen| (2012).

Now, we show (1.161) of Theorem 1.59 in [Sgrensen| (2012). Let £ > 0 be given, and
let B,(6y) and B,(6)), respectively, denote closed and open balls in R with radius & > 0,
centered at 6. The compact set K\B.(6p) does not contain 6y, and so, by Assumption
A(0,6p) # 0 for all 6 € K\B.(6p) with probability one under Py, .

Because

inf  |A(B,0p)| = inf |A(B,6p)] >0
0cK\B,(6p) 0eK\B:(6o)

Py,-almost surely, by the continuity of 6 — A(#6, 6p), it follows that

P(,O( inf |A(6,90)|>O):1.
0eK\B:(6o)

Consequently, by Theorem 1.59 in Sgrensen| (2012), for any G,-estimator 6,
Poy (fn € K\Bs(60)) >0 as n— oo. (5.7)

for any & > 0.

By Theorem 1.58 in |Sgrensen| (2012), there exists a consistent G,-estimator 6,, which is
eventually unique, in the sense that if , is another consistent G,-estimator, then

Py, (9n * 9,,) -0 as n-o . (5.8)
Suppose that 8, is any G,-estimator which satisfies that
Pg, (9,, € K) -1 as n-o . (5.9
Combining (5.7) and (5.9), it follows that
Py, (n € Bs(6p)) > 1 as  n— oo, (5.10)

s0 6, is consistent. Using (5.8)), Theorem follows.
To prove Theorem [3.2][(i1)] recall that A, = 1/n, and observe that by Lemma[5.3]

ViG(60) 2 S (60) (5.11)
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where

1
$(00) = [ 570X 00300, X, X ) .

and B = (By)seq0,1] is a standard Wiener process, independent of U and W. As X is then
also independent of B, S (6p) is equal in distribution to C(6p; 69)'/2Z, where Z is standard
normally distributed and independent of (X;);>0. Note that by Assumption the
distribution of C(6p; 6p)'/%Z is non-degenerate.

Let 8, be a consistent G ,-estimator. By (5.6), (5.11) and properties of stable convergence
(e.g. (2.3) inJacod (1997)),

(x/ﬁano)) D ( S (6o) )
09Gn(6o) B(60; 00))

Stable convergence in distribution implies weak convergence, so an application of Theorem
1.60 in |Sgrensen| (2012) yields

(B, — 86) —> —B(6. 60)™'S (@) (5.12)

The limit is equal in distribution to W(6y)Z, where W(8y) = —B(8y, 00)~' C(60; 69)'/* and
Z is standard normally distributed and independent of W(6y). This completes the proof of

Theorem [3.2|(11)|

Finally, Lemma 2.14 in Jacod and Sgrensen| (2012)) is used to write

Vb, ~ 60) = ~B(6o: 00)™' VnG(6o) + Vnl6y — olen(6o)
where the last term goes to zero in probability under Pg,. By the stable continuous mapping

theorem, (5.12) holds with stable convergence in distribution as well. Lemma may

— P
be used to conclude that W,, — W(6p), so Theorem follows from the stable version
of (5.12)) by application of standard results for stable convergence. i

5.2 Proofs of Main Lemmas

This section contains the proofs of Lemmas and [5.3]in Section A number of
technical results are utilised in the proofs, these results are summarised in Appendix [A]
some of them with a proof.

Proof of Lemma First, note that for any f(x; 6) € Cgi;()( X®) and any compact, convex
subset K C O, there exist constants Cg > 0 such that

If(Xs; 0) < Ci(1 + X,|)

forall s € [0, 1] and 6 € int K. With probability one under Py, for fixed w, Cx(1+|X S(W)[€F)
is a continuous function and therefore Lebesgue-integrable over [0, 1]. Using this method
of constructing integrable upper bounds, Lemma follows by the usual results for
continuity and differentiability of functions given by integrals.
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In the rest of this proof, Lemma[A.3]and (A7) are repeatedly used without reference.
First, inserting 6 = 6 into (A-I)), it is seen that

[n1] [nt]
P
=2 By (88, X, Xz 100) 1 Xer )| = A2 3 RGA Xt 360) — 0
noj=1 i=1
[n1] 5 [n] P
D By (800 X X 160) | X ) = A% > R(Aw X 360) — 0,
ni=1 i=1

proving (5.I) and (5.2). Furthermore, using (A.T)) and (A.3)),

n
P
D" Eay (A X, Xpr 16) | X ) — A(6: 60)
i=1

n
> Eay (£2(An Xe. Xy 10) | Xo ) 50,
i=1

so it follows from Lemma[A T] that point-wise for 6 € @,
G(0) — A(B: 6p) — 0. (5.13)

Using (A.3) and (AJ3)),
[nt]

) B (0 Xy X 10| X

m =1

P ! 2 2
Lo [ oo + (Pt - oot ) (0. X, X:0) ds

and

[nf]
4 . P
e Z;Eeo (8* A Xu. Xp 10) | Xpr ) — 0,
=

completing the proof of Lemma [5.T][(i)] when 6 = 6 is inserted, and yielding
G(6) - C(6:60) — 0 (5.14)

point-wise for § € ® by Lemma[A.T] when ¢ = 1 is inserted. Also, using (A.2) and (A-4),

n
P

Z Eg, (aeg(Am Xt;" Xt;l—l ;0) | Xt?,l) — B(6; 6y)

i=1

- 2 P

0 M S i i-1 '
By (A0, X X 300) 1) 5> 0
i=1

Thus, by Lemmal[A.T] also

06G.1(60) — B(6-60) — 0, (5.15)
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point-wise for § € ©. Finally, recall that 6§g(0, x,x;0) = 0 for j = 0,1. Then, using
Lemmas[A.7)and [A-§] it follows that for each m € N and compact, convex subset K C ©,
there exist constants C,, ¢ > 0 such that for all 6,6’ € K and n € N,

Eg,|(Gn(0) — A(6; 60)) — (Gu(0') — A 00)1" < Couic 10— 017"
Eg,|(89Gn(6) — B(0;00)) — (36Gn(8) — B®; 00)*™ < Cpic 10 — 61" (5.16)
E[(G1(6) — C(8;60)) — (Gy1(6') — C(#';00)*" < Cic 10— 1™

By Lemma the functions 8 — G,(0) — A(6;6y), 6 — 09G,(0) — B(6;6y) and 6 —
G,2(6)— C(6, o) are continuous on ©. Thus, using LemmalA.9|together with (5.13)), (5.14),
(5.15) and (5.16) completes the proof of Lemma[5.1] i

Proof of Lemma[5.2] The overall strategy in this proof is to expand the expression on the
left-hand side of (5.3)) in such a manner that all terms either converge to 0 by Lemma|[A.3]
or are equal to O by the martingale properties of stochastic integral terms obtained by use
of It6’s formula.

By Assumption [2.5]and Lemma[2.7] the formulae

8(0,y,x:0) = 3(y — °0;8(0, x, x;60) + (y — x)’R(y, x; 6)

gV, x:0) = gV(x, x;:0) + (y = DR(y, x:0) G17
may be obtained. Using (2.4) and (5.17),
Eo, (8(An. X, X 1 00) Wy = Wer ) | Fr )
= By, (3(Xn = Xi )?038(0. X | Xpr :00)(Wer = Wy ) | Far )
+Eqy (X = X 'Ry Xy 1000 (Wer = Wy ) | T ) 518

+ AuBey (80X | Xr 160) (W = Wi ) | For )
+ Aoy (X = X YR(X, X 3 00) (Wi = Wi ) | Fr )
+ NBgy (R(An, Xir, Xr 1 00)(Wer = Wi ) | Fn ) -
Note that
AngV X Xin 5 60)Bq, (Wt;? - We | 7‘?;51) =0,
and that by repeated use of the Cauchy-Schwarz inequality, Lemma[A.4]and Corollary[A.3]
B, (X = X PR, X 3 00)(Wer = Wr ) | T )| < AZCC1+1X, [©)

Ap

By (X = Xor DRX, X 3 00)(Wer = Wy )| T )| < A2C(1+1Xe 1)
A

By (R(Ans X, Xt 5000 (W = W ) | P )| < A32C(1+ (X [©)

for suitable constants C > 0, with
1 [nt]

m/2 BTeN
_\/A_n;A" C +Xp [©)— 0
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for m = 4,5 by Lemma[A.3] Now, by (5.18), it only remains to show that
1 [nt]

7)
N Zl 028(0. Xy, Xpr :00)Eq, ((Xir — Xpp V(W = Wy )| Fpr ) — 0. (5.19)
1=

Applying It6’s formula with the function

Fow) == xp w=wy )
to the process (X, W,),Z,ﬁ " conditioned on (thgl, Wt;l—l) = (xt;L W 1), it follows that
Xir = X V(W = Wi )

2 a
=2 f (X, = X Wy = Wy )a(X,) ds + f (W, = Wi BA(X,; 60) ds
L i

"

: “ (5.20)
#2 706 =X b0 s +2 [ 70X = X OV, = Wi I3 60 W,
i )
i
+ | Xy = Xp )’ dW.
LA
By the martingale property of the It6 integrals in (5.20),
By (X = X *(Wy = Wy )| T )
"
= 2f Eq, ((Xs — X YWy = Wi Da(Xy) | 7‘?;’_,) ds
i-1
5.21)

o
+f Eg, ((Ws — Wp )b* (X3 60) | 7‘7;11) ds

n
liy

!
+2 f Eg, (X = Xir )b(X,:60) | Xin ) ds.

i

Using the Cauchy-Schwarz inequality, Lemma[A.4]and Corollary [A.5]again,

< CAL(L+ X [9),

ti
f Eg, (X, = Xir YWy = Wy Ya(Xy) | For ) ds

t

n
i-1

and by Lemma[2.6|
Eq, ((Xs = X )b(Xs3600) | Xpr ) = (s = £ DR(s = £, X 1 60) ,

so also

t’-l
‘ f Egy (X = Xpr )b(X300) | X ) ds| < CAY(1 + X [©).

i

Now

[n1] £
1 2 l
i Z] (0. Xy . Xy 160) fﬂ Ea (X = Xo YWy = W Da(X,) | Fr ) ds
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1 [nt]
+

A
i zl] 07800,y Xy :60) | B (O = Xz Db(Xs360) | Xy ) ds
i= i—1

[nr]

P
< A2C 3 |020(0. Xy X 160)| (1 +1X [€) — 0
i=1

by LemmalA.3] so by (5.19) and (5.21)), it remains to show that

[nt]

17 P
e D" 0280, Xp , X 5 60) f Eg, (W = Wy Jo*(Xs3600) | Fr ) ds — 0.
n =1 fin1

Applying It6’s formula with the function

FO.w) = (w—wa B (y; 60)

and making use of the martingale properties of the stochastic integral terms, yields

!
f By (W = W JB*(X,360) | T, ) dis

i-1

1t S
- f f Eg, (a(X,)0yb> (Xoi; 00) (W = Wy ) | Fr ) duds
noy Y

1! S
+1 f f Eg, (bz(Xu; 00)05b° (X3 60)(Wey = Wir ) | 7:’74) duds
Vi

i—

g
+ f f Eoy (b(X: 00)0y0% (X3 60) | Fir ) duds.
ro Y

Again, by repeated use of the Cauchy-Schwarz inequality and Corollary [A.5]

5
f E(‘)O ((Wl:1 - thf’,l)bz(Xs;QO) | Tt?—l) ds
t

n
i-1

<C+Xp [O)NA; +A)).

Now
1 2 d 2
> ; 9,80, Xpr , X 3 60) jz;‘_] Eg, ((WS — We )b (X3 60) | Tt?—l) ds
[nt] o
< (A7 + A7) > 102600, X, X 3 60)| C1+ X |€) — 0,
i=1
thus completing the proof. O

Proof of Lemma[5.3] The aim of this proof is to establish that the conditions of Theorem
IX.7.28 in|Jacod and Shiryaev|(2003) hold, by which the desired result follows directly.

For all t > O,
[ns]

su By (8(An» Xor, X 360) | Xin
SSII) \/A_n; 90(8( ns A A o) | tl_l)

[nr]

\/A_n ; ’Eeo (g(A"’levXt;’_l :600) | Xfﬁl_l)‘

<
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and since the right-hand side converges to 0 in probability under Py, by (5.I)) of Lemma
5.1} so does the left-hand side, i.e. condition 7.27 of Theorem IX.7.28 holds. From (5.2)
and (5.4) of Lemma[5.1] it follows that for all ¢ > 0,

[nt]

0 (B (2 Xy X 10001 Xy )~ By (980 X, Xy 56000 1 %))
n

i=1

Py s 2 2

— 3| b(X:00) (3380, X, X 60)) dis,
0

establishing that condition 7.28 of Theorem IX.7.28 is satisfied. Lemmal[5.2]implies condi-
tion 7.29, while the Lyapunov condition (5.3) of Lemma [5.1]implies the Lindeberg condi-
tion 7.30 of Theorem 1X.7.28 in Jacod and Shiryaev| (2003)), from which the desired result
now follows.

Theorem IX.7.28 contains an additional condition 7.31. This condition has the same form
as @, but with the« - W,g_ 1 replaced by N,;; - Nt;'_], where N = (V;);>0 is any bounded
martingale on (Q, ¥, ()10, Pg,), which is orthogonal to W. However, since ()= is
generated by U and W, it follows from the martingale representation theorem (Jacod and
Shiryaev, 2003, Theorem II1.4.33) that every martingale on (Q, ¥, (¥;)r>0, Pg,) may be writ-
ten as the sum of a constant term and a stochastic integral with respect to W, and therefore
cannot be orthogonal to W. O

A Auxiliary Results

This section contains a number of technical results used in the proofs in Section[5.2]
Lemma A.1l. (Genon-Catalot and Jacod, |1993, Lemma 9) Fori,n € N, let F,; = 77,? (with
Fno = Fo), and let F,; be an F, ;-measurable, real-valued random variable. If

n n
P P
D By (Fui | Fuict) — F - and ) Byy(Fa, | Faist) — 0,
i=1 i=1

for some random variable F, then

n

> Fui 5 F.
i=1

Lemma A.2. Suppose that Assumptions[2.4|and 2.5 hold. Then, for all 6 € O,
(i)
Eg, (8(An: X Xir 160) | X )

2 2 2 2 (A'l)
= 300 (DX 3 00) — D> (X :0)) 0380, Xpr  Xpr 30) + AZR(An, X 36),
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(ii)
Eqy (398(An, X, X 5 0) | X | )
= 38 (P (X3 60) = 07 (X :6)) 070080, Xy . Xt 36) (A2)
— 10,000* (X 3 0)878(0, X |, Xir 50) + ATR(An, Xpr 3 6),
(iii)
E@Q (gz(Ana Xt?y th’_l ) 9) | Xt?_])
2 2
= 1A (b4(x[?71;90) + L (2K 1 60) - DXy :6) )(0§g(0, Xp Xp :0) (A3)
+ AsR(An, Xpn 36),

(iv)
Eoy ((598 (B X X3 0)) | Xr?_l) = ATR(Aw, Xpr 50), (Ad)

(v)
Eg, (8" (Ans X, X 16) | X ) = ARR(An Xpr 36). (A.5)
Lo

Proof of Lemma[A.2] The formulae (A.T)), (A.2) and (A.3) are implicitly given in the

proofs of [Sgrensen| (2010, Lemmas 3.2 & 3.4). To prove the two remaining formulae,

note first that using (2.5]), Assumption and Lemma
£, (' 0:0)(x, x) =0, =123
£, (20,080 @)(x.x) =0, i=12
Lay(8*(0,087O))(x, 1) = 0
Loy(8°(0.0)8@)(x.x) = 0
L0y(968(0,6)°)(x, x) = 0.
The verification of these formulae may be simplified by using e.g. the Leibniz formula for
the n’th derivative of a product to see that partial derivatives are zero when evaluated in

y = x. These results, as well as Lemmas [2.6and [2.7] and (A.8)) are used without reference
in the following.

o, (G0, Xy Xer:0) 1 X,
= By, (968(0. X, X :0)” | X )
+ 20,Eq, (9680, X, Xpr :0)098" (X, Xpr :0) | X )
+ ATEqg, (R(Aw. Xi, Xpr 360) | Xir )
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= 0680, Xir , Xy 560)" + ALy (0p8(0,0)°)Xir , Xy ) + AJR(An, Xir 5 0)
+ 20, (068(0, X, Xpr :0)008V (X, X 360) + AuR(Ay, X 36))
= MR(An, Xpr 50,

proving (A.4). Similarly,

Eq, (*(An. Xo. Xy 10) | X )

= Eq, (0. Xp. Xy :0) | X )
+ 4A,Eq, (870, Xp, Xi 1008V (Xp, X 160) | Xpr )
+ 6A7Eg, (870, Xpr, Xir 1008V (X, Xir 16)* | Xir )
+ 2A7Eq, (80, Xp, Xir :0)8P (X, Xpr :0) | Xpr )
+ 4A3Eq, (800, Xpr, X 1008V (X, Xpr :0)° | X )
+ 6A3Eq, (8%(0. Xp, Xpr 1008V (X, Xpr :0)gP (X, X 16) | X )
+ 2ATEq, (8°(0. X, X :0)g® (X, X 160) | X )
+ AEgy (R(An, X Xpr 360) | X )

= g*0. Xy . X 30) + Ay Loy (" 0: )X . X )+ 3A; L5 (84(0:0) (X, Xpr )
+ 00 L5 (81 0:0) (X | Xy ) + 40,80, Xp | Xpr 10)gV(Xpn X 360)
+ 407 L (87 (0: 08V ONXen |, X ) + 24, L5, (87(0: 08V (O) (X |, X )
+6A28%(0, Xpr  Xin 1008 V(X X 160)% + 6A) Lg)(87(0: 08O X Xpr )
+ 200830, Xpr X 10087 (X Xpn 16) + 24, Loy (87(0: ) (0) (X . X )
+ 400200, Xy X :0)gV X X 16)
+6A38%(0. X Xpr 1008 V(X Xy 10)8P (X Xy 16)
+ 20383 0. X | Xp 1008 (X | Xy 16)
+ AsR(Ap, Xpr 3 6)

= AfR(An. Xpr 36),

which proves (A.3). i

Lemma A.3. Let x — f(x) be a continuous, real-valued function, and let t > 0 be given.
Then

[nt] "
8 Y 10 ) [ pxds.
i=1

Lemma[A 3] follows easily by the convergence of Riemann sums.
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Lemma A.4. Suppose that Assumption holds, and let m > 2. Then, there exists a
constant C,, > 0, such that for0 <t <t+ A <1,

Eg, (1Xsa — X™ | X,) < CuA™? (1 +1X,™) . (A.6)
o

Corollary A.5. Suppose that Assumption holds. Let a compact, convex set K C © be
given, and suppose that f(y, x; 0) is of polynomial growth in x and y, uniformly for 0 in K.
Then, there exist constants Cx > 0 such that for0 <t <t+A <1,

Eg, (1f (Xeenr X0 O] | X,) < Ck (14 1X,[%)
forall 6 € K. o

Lemma and Corollary correspond to Lemma 6 of [Kessler| (1997), adapted to the
present assumptions. For use in the following, observe that for any 6 € O, there exist
constants Cy > 0 such that

[n7] [nt]
An D |Ro(An, X D] < Coty Y (141X 1),

i=1 i=1

so it follows from Lemma|[A.3|that for any deterministic, real-valued sequence (6, )ner With
0, > 0asn — oo,

[nt]
5 Y [Ro(An Xt )| 5 0. (A7)
i=1

Note that by Corollary [A.5] it holds that under Assumption[2.4]
Egy (R (A, X14a, X130) | Xp) = R(A, X3 6) . (A.8)

Lemma A.6. Suppose that Assumption[2.4|holds, and that the function f(t,y, x; 0) satisfies
that

f(t,y,x,60) € c’l’le,l([o, NxX*x0) with f(0,x,x60)=0 (A.9)

forall x € X and 0 € ©. Let m € N be given, and let Dk(-;6,0") = k(-;0) —k(-;8"). Then,
there exist constants C,, > 0 such that

Eq, (|D F(t = 5, X1, X3 6, 9’)|2’")
< Cplt — s)*7! f [ Eg, (|D fi(u— s, Xy, X3 0, 0’)|2’") du (A.10)
s
+ C(t — 5)™! ft Eq, (|Df2(u — 5, X X3 6, 0’)|2’") du
s
forO<s<t<1land0,0 €O, where f| and f, are given by
f1(t,y, x:0) = 0, (1,y, %:0) + a()dy f (1,y, x:6) + 5b7(y: 60)8, f (1, y, x; 6)
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fZ(Z, Y, X5 0) = b()’, 90)6}’f (ts Y, X5 9) .

Furthermore, for each compact, convex set K C O, there exists a constant Cy, g > 0 such
that

Eq, (IDfi(t = 5. X0, X 0,6))P") < Cor 10 — 61"
forj=1,2,0<s<t<1landall 9,6 € K. o

Proof of Lemma[A.6] A simple application of It6’s formula (when conditioning on X, =
Xs) yields that for all 8 € ©,

! !
f(t_s9XtaXS;0)=f fl (M—S,XM,XS;G) du+ff2(u—s,Xu,Xs;9) qu (All)
S N

under Pyg,.

By Jensen’s inequality, it holds that for any k € N,

a |

for j = 1,2, and by the martingale properties of the second term in (A.TT), the Burkholder-
Davis-Gundy inequality may be used to show that
m)

2m
Eg, ( ] < CiEq, (

k f )
)su—s)k—lego (|ij(u—s,Xu,Xs;0,0')’]k) du
(A.12)

!
f Dfi(u— 5, X, X,:0,0') du
N

!
f sz(u_S,Xu,XS;Q,H,)dWM
N

!
f Dyt = 5, X, Xs: 0,0 V- du
s

(A.13)
Now, (A.TI), (A.12) and (A.T3) may be combined to show (A.10). The last result of the
lemma follows by an application of the mean value theorem. O

Lemma A.7. Suppose that Assumption holds, and let K € ® be compact and convex.
Assume that f(t,y, x; 0) satisfies (A.9) for all x € X and 0 € ©, and define

n
Fa(®) = > f(Du, X, X 56).
i=1

Then, for each m € N, there exists a constant Cy, g > 0, such that
/ 2 /
Egy [Fa(6) = Fa@)[™ < Crux 16— 61"

for all 6,0’ € K and n € N. Define Fn(e) = A;an(Q), and suppose, moreover, that the
Sfunctions

hi(t,y, x:0) = 0,.f (1., x:0) + a(y)dy f (1, y. x:0) + $b*(y: 60)05 f (1, y, x:6)

ha(t,y, x;6) = b(y; 60)0y f (8, y, x;6)

hj(t,y, x;0) = b(y; 69)0yhj(t,y, x,0)
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satisfy (A.9) for j = 1,2. Then, for each m € N, there exists a constant C,, x > 0, such that
1 = o |2m /12m
Egy [Fu(®) = Fa(@)| < Cuk 10— 0|
forall 6,0 € K andn € N, S

Proof of Lemma@] For use in the following, define, in addition to Ay, hy and hj>, the
functions

hji(t,y, x;0) = 0;hj(t,y, x;0) + a(y)dyh(t,y, x;0) + $b*(v; 00)33h (1, y, x; 6)
hi1(t,y, x;0) = 8ihjp(t,y, x,0) + a(y)yhja(t,y, x;60) + $6*(y; 00)05h o (1, y, x; 6)
hja(t,y, x;0) = b(y; 60)0yhjp(t, y, x; 6)

for j = 1,2, and, for ease of notation, let
H'(u36,6') = Dhj(u— 1, X, X ;6,6

for j € {1,2,11,12,21,22,121, 122,221,222}, where Dk(-;0,8") = k(-;0) — k(-;8'). Re-
call that A, = 1/n.

First, by the martingale properties of
n e )
AnY f 1 oy HN 3 6,6') AW,
i=1 V0

the Burkholder-Davis-Gundy inequality is used to establish the existence of a constant

C,, > 0 such that
2m m
] < CpEg, ( ] .

n A n 1
Eq, ( A f, HY (u;6,6) AW, Ay f,n HY (w3 6,6)? du
i=1 i~1 i=1 i~1

Now, using also Ito’s formula, Jensen’s inequality and Lemma [A.6]

2m

2m
<C mEgo

An Y Df(An. Xo, Xpr :6,6)
i=1

o
A, Z; ft H" (13 0,6') du
i= i-1

n
< CmAn Z EGO
i=1

+C mEgo

n o 2m
AvY f HY (30,6 dW, }
=1 Y1
noen "
+cmE90(A,%Z f HY (u;6,6)% du )
=1 Y
n
< Cul)™ 3" |,
i=1

Lo o s

<Col)" ) ( f Eg, (1H| (3 0,6")") du + f Eq, (15" (3 60,6)") du) (A.14)
i=1 \VE i

i1 liy

2m

I

i

"
H"(u;6,60") du
-1

1 1 i 5
— H" (u;0,6')d —f HY'(u;0,0)"d
An ft;’l ! (M ) ! An m, 2 (u ) !

< Cokld — 0P A"
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thus

Eq, (IDF(6,0)P") = A,*"Eg, [ An )" Df(An, X, Xp 16,6)

n

2m
] < Ckld— 01"

i=1

for all 6,6 € K and n € N. In the case where also i; and hj satisfy for all x € X,

6 € ®and j = 1,2, use Lemma[A.6|to write

Eq, (1H}" (u; 6,6)/")

U
< Colu— 11 ) f Eq, (H{ (v:0,6)") dv
1,

i—

+ Cpu— )" f Eq, (H5(v: 0,6)") dv

i-1

U
< Cou — 11 )¥m! f Eq, (H{(v:0,6)") dv

i-1

+ Cm(u _ t:z_l)m—l f ((V _ t?_1)2m—1 f
, 1!

3 -

+ Cu — £ f ((v—t;’_l)m—l f E90(|H;’;2(w;9,9’)|2’") dw] dv
[?‘l 1

i-1 lioy
< Cm,Kle _ 6/|2m ((u _ t;z_l)Zm + (u— t?_l)Sm) ,

Vv
oy (|5, 003000 dw) dv
1

and similarly obtain

Eg, (1H5" (0,6 )P") < Cpoil0 = P ((u = 1) + (= 21 )") .
Now, inserting into (A.14)),

2m

n 1 .
SC%KA?"Z( f By (IH} (6, 0)P") du + ff By (13120, 0)P") du]

i=1 liny i-1

An Df(AYI?Xt::laX[?_l;Ha 9,)

n

i=1

n t;’

< Cil0— 01" A" Z f ((” )"+ (- ff’_1)3m) du
i=1 Y1

< Coil0 = 0P (A3 + A"

and, ultimately,

n
A DF(A X Xp 16.6)
i=1

Zm]
Df(An, Xl;l’ th”l—l 5 0, 0,)
1

2m]
<Cuxl0—01P"(1+A,)

< Cuxl0—61". O

Eg, (IDF,(6,¢0)*") = Eg, [

Ap

n

1
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Lemma A.8. Suppose that Assumption|2.4|is satisfied. Let f € Cgoll (X X @). Define

1
nmifﬂ&@w
0

and let K C ® be compact and convex. Then, for each m € N, there exists a constant
Cim.x > 0 such that for all 6,0 € K,

Ego|F(0) — F(@)*" < Cox 10— 61"

LemmalA.§|follows from a simple application of the mean value theorem.

Lemma A.9. Let K C O be compact. Suppose that H, = (H,(0))scx defines a sequence
(H,)nen of continuous, real-valued stochastic processes such that

H,(0) 2> 0

point-wise for all 6 € K. Furthermore, assume that for some m € N, there exists a constant
Cim.x > O such that for all 6,0’ € K and n € N,

/ 2 /
Egy |[Ha(0) — Ha(@)|™" < Cruxl0 — 6/ (A.15)
Then,

sup |Hu(8)] —> 0.
feK

<&

Proof of Lemma[A.9] (H,(0))ney is tight in R for all 6 € K, so, using (A.13)), it follows
from |Kallenberg| (2002, Corollary 16.9 & Theorem 16.3) that the sequence of processes
(H,))en 1s tight in C(K, R), the space of continuous (and bounded) real-valued functions on
K, and thus relatively compact in distribution. Also, for all d € N and (64, ...,6,) € K¢,

Hn(el) 0

D
—

Hn(ed) 0

so by [Kallenberg| (2002, Lemma 16.2), H, 2, 0 in C(K,R) equipped with the uniform

metric. Finally, by the continuous mapping theorem, supy.g |H,(6)| 2, 0, and the desired
result follows. ]
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