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Abstract

Two different pricing frameworks are typically used in the literature when pricing op-
tions under GARCH with non-normal innovations: the equilibrium approach and the
no-arbitrage approach. Each framework can accommodate various forms of GARCH
and innovation distributions, but empirical implementation and tests are typically done
in one framework or the other because of the computational challenges that are in-
volved in obtaining the relevant pricing parameters. We contribute to the literature
by comparing and documenting the empirical performance of a GARCH specification
which can be readily implemented in both pricing frameworks. The model uses a par-
simonious GARCH specification with skewed and leptokurtic Johnson su innovations
together with either the equilibrium based framework or the no-arbitrage based frame-
work. Using a large sample of options on the S&P 500 index, we find that the two
approaches give rise to very similar pricing errors when implemented with time-varying
pricing parameters. However, when implemented with constant pricing parameters, the
performance of the no-arbitrage approach deteriorates in periods of high volatility rel-
ative to the equilibrium approach whose performance remains stable and at par with
the models with time-varying pricing parameters.
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1 Introduction

Motivated by the empirical success of GARCH models with non-normal innovations to fit

asset returns, an important literature on discrete-time option pricing based on these processes

has emerged (see for example the recent survey in Christoffersen, Jacobs and Ornthanalai

(2013)). Because GARCH models are discrete-time processes with continuously distributed

innovations for the underlying asset returns, the market is incomplete and there is no unique

pricing measure. Hence, this literature has mainly relied on two different pricing approaches.

A first approach is based on an equilibrium pricing framework and was used in e.g. Duan

(1999). This framework relies on a representative agent and strong assumptions about

preferences to derive the restrictions that must be satisfied in equilibrium to obtain a coherent

pricing model. A second approach is based on the no-arbitrage assumption as proposed in

e.g. Christoffersen, Elkamhi, Feunou, and Jacobs (2010) (hereafter CEFJ). This framework is

less restrictive and essentially requires an assumption about the form of the Radon-Nikodym

derivative and the absence of arbitrage.1

The two methods lead to equivalent pricing restrictions in the Gaussian case, but such a

result is not available when the distribution is non-normal. In this empirically more relevant

case the methods differ in the way the risk premium is taken into account when deriving the

risk neutral dynamics. This may consequentially result in different estimated option prices.

Although both approaches allow coherent computations of option prices, the literature does

not provide any guidance about which one should be used by someone wishing to implement

GARCH models with non-normal innovations. Furthermore, while both approaches allow

for time-varying pricing parameters, most empirical implementations rely on a constant

pricing parameter and the literature is silent about the relevance of such an assumption.

In this paper, we attempt to fill these gaps by comparing and documenting the empirical

performance of the equilibrium and no-arbitrage pricing approaches and by assessing if the

1An alternative method to that of CEFJ which would provide a similar set of conditions is to specify a
candidate stochastic discount factor directly as is done in e.g. Gourieroux and Monfort (2007).
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use of a constant or time-varying pricing parameter produces significant pricing differences.

Our main findings can be summarized as follows. First, when implemented with time-

varying pricing parameters, both approaches obtain very similar pricing errors for a large

sample of option prices on the S&P 500 index from 2006 to 2011. This indicates that the

choice of a pricing approach in the GARCH framework should be mostly based upon conve-

nience of implementation. However, when implemented with a constant pricing parameter

as is done most often in the existing empirical literature, the approaches are not equivalent.

With the equilibrium pricing approach, a constant pricing parameter obtains option prices

highly correlated with those from the time-varying parameter case, an indication that this

simpler setting provides a pricing precision equivalent to the more intricate time-varying

case. For the no-arbitrage approach, when implemented with a constant pricing parame-

ter, a deterioration of the performance is observed in periods of high volatility. Our results

show that these larger pricing errors are caused, in part, by the pricing parameter of the

no-arbitrage approach which is proportional to the variance, while the equilibrium approach

has a pricing parameter proportional to the standard deviation. This apparent deficiency of

the no-arbitrage approach can be fixed by scaling the pricing parameter with the GARCH

volatility.

The equilibrium approach in option pricing takes its roots in the work of Rubinstein

(1976) and Brennan (1979). Duan (1999) generalizes the local Risk Neutral Valuation Rela-

tionship introduced in Duan (1995), to the case of non-normal innovations. In his study, the

implementation of the pricing framework is done by assuming a symmetric Generalized Error

distribution and relies on nested Monte Carlo simulations for risk premia determination and

option price computations. The numerical complexity of the nested simulations prevents us-

ing this specification for large scale empirical testing. This motivates Christoffersen, Dorion,

Jacobs and Wang (2010) to propose a practical specification of this equilibrium based pricing

model. They rely on an approximation based on the symmetry of the error distribution al-

lowing for a convenient computation of the risk premium, making the specification amenable
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to an empirical implementation. In Lehnert (2003), the Generalized Error distribution used

in Duan (1999) and Christoffersen, Dorion, Jacobs and Wang (2010) is extended to include

skewness, an important feature of stock index returns. However, the proposed model does

not include any pricing restrictions preventing the absence of arbitrage. Finally, in Stentoft

(2008), a feasible approach including both skewness and kurtosis different from the normal

distribution is proposed with the Normal Inverse Gaussian distribution. This approach is

used in Stentoft (2015) to price a large sample of individual stock options in an empirical

exercise that documents the importance of allowing for GARCH features and non-normal

innovations.

The second category of option pricing papers trying to address volatility clustering with

non-normal innovations uses the approach proposed in CEFJ. In this framework, using an

assumption about the form of the Radon-Nikodym derivative and the absence of arbitrage, an

equivalent martingale measure is characterized. This differs from the equilibrium approach

since no explicit assumptions are made about a representative investor or their preferences.

As discussed in CEFJ the no-arbitrage framework nests several interesting recent option

pricing models. For example, the model used in Christoffersen, Heston, and Jacobs (2006)

which uses an Inverse Gaussian distribution allowing for both conditional skewness and

kurtosis is a special case, and so is the heteroskedastic model with Poisson-normal innovations

developed in Duan, Ritchken, and Sun (2005). Other recent contributions that uses the

no-arbitrage approach include the use of Gaussian mixtures as the underlying conditional

distribution in Rombouts and Stentoft (2014) and Rombouts and Stentoft (2015). These

distributions capture well the skewness and kurtosis in stock return data and help producing

theoretical option prices that are closer to observed values.

Although the two frameworks are based on fundamentally different premises, they are in

fact related since specific assumptions about investor preferences are implicit in the specifi-

cation of the risk premium in the return dynamics of the no-arbitrage framework. To our

knowledge however, none of the existing papers compare the performance of these pricing
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approaches in the general setting where the distribution is non-normal and the risk is priced.

The current paper is thus the first to document the potential equivalence of these frameworks

and the high correlation between the predicted price errors from the two different approaches

to option pricing. The main reason for this gap in the existing literature is most likely related

to the computational challenges involved in obtaining the pricing parameters, especially for

the equilibrium based framework, either through direct estimation on historical return data

alone or together with calibrating the models to existing option prices.

To fill this gap in the existing literature, we introduce a particular specification of the

GARCH option pricing model with Johnson su innovations. This specification is more par-

simonious than Gaussian mixtures but fits well historical time series of index or individual

stock return data. Besides the empirical relevance of this distribution, an important reason

motivating its use is the ease with which it can be implemented in both pricing frameworks.

Unlike other non-Gaussian choices such as the Generalized Error, Normal Inverse Gaussian

or the asymmetric t, the Johnson su is a natural candidate to implement the equilibrium

approach because it is built upon a monotone and continuous transformation of a Gaus-

sian distribution. This in turn provides a simple solution of the risk-neutral distribution and

pricing parameter identification avoiding the computational burden involved in, for example,

Duan (1999). Moreover, the tools required to compute the moments, density, distribution

functions and random numbers are straightforward to use and only involves functions asso-

ciated with normal distributions allowing Monte Carlo simulation to be used for option price

computation.

A valid concern that one might have is that our findings are specific to using the John-

son su distribution as the conditional distribution. Thus, in the last section of the paper,

robustness checks are performed to assess if the findings of our analysis are in fact restricted

to the distributional assumption adopted above. First, a distribution-free version of the

no-arbitrage approach is implemented and is shown to result in pricing errors similar to the

Johnson based model. Second, we examine if an alternative specification of our GARCH
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model where both the skewness and kurtosis are time-varying obtains different results. Such

a specification thus uses a conditional time-varying non-normal distribution which is imple-

mented and tested with market data. Although these specifications show slightly different

pricing precisions, the results reveal similar qualitative findings about the two pricing frame-

works: i.e. they obtain highly correlated pricing errors when implemented with time-varying

pricing parameters.

The rest of this paper is organized as follows. Section 2 presents the physical return

process with Johnson su error terms used in this study and some empirical evidence regarding

its fit. Section 3 and 4 explain how this specification can be implemented in the equilibrium

and no-arbitrage pricing approaches. Section 5 provides empirical results regarding how each

pricing approach performs with a sample of option prices. Finally, Section 6 presents the

robustness checks while Section 7 concludes.

2 The return process

With Ft denoting the information set up to time t, the Johnson NGARCH process for the

continuously compounded stock price return under the physical measure is given by:

ln
St

St−1

+ δt = α− γt + σtεt, (1)

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1 (εt−1 − θ)2 , (2)

εt| Ft−1 ∼ Jsu (a, b) (3)

where St is the stock price at t, δt is the continuously compounded deterministic dividend

yield, and σ2
t is the conditional variance of the continuously compounded return. Here, α

is a constant parameter interpreted as the expected return over the next period. This in-

terpretation is warranted because γt is determined according to eγt = Et−1 (e
σtεt) which

implies Et−1 [St] = St−1e
α−δt . The conditional variance follows a standard NGARCH(1,1)

process with the usual parameter interpretation. We choose this GARCH specification since
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it is usually found to provide an adequate fit to stock return data. Other GARCH specifica-

tions could however be used here since our option pricing approach will rely on Monte Carlo

simulation, a numerical approach capable of handling most specifications.

The unit variance innovations εt| Ft−1 are assumed to be distributed according to a

Johnson su distribution with parameters a and b, denoted by Jsu (a, b). Such a distribution,

proposed in Johnson (1949), allows the skewness and kurtosis to be different from the stan-

dard normal distribution with −∞ < a < ∞ controlling the skewness and b > 0 controlling

the kurtosis. A positive (negative) value of a induces a negative (positive) skewness while

smaller (higher) values of b are associated with larger (smaller) kurtosis values. As mentioned

in the introduction, such random variables are simple to use, have finite higher moments and

produce a large region of admissible skewness and kurtosis pairs which is very similar to the

asymmetric t, a popular alternative to introduce non-normalities in GARCH models (see for

example Hansen (1994)). In the context of the present study, an important advantage of

Johnson su distribution is its link with the standard normal distribution. A Johnson random

variable is a monotone transformation of a standard normal random variable. As shown in

the next section, such a structure makes this distribution a natural candidate which greatly

facilitate the computation of the risk-premium parameter in the context of the equilibrium

pricing approach. A disadvantage associated with this distribution is the absence of a closed

form expression for the moment generating function that would facilitate the computation of

option prices in the no-arbitrage framework. The absence of such a function can however be

bypassed by using a precise analytical approximation based on the first four moments which

are available in closed form. Appendix A describes how a standard normal random variable

can be used to build a Johnson random variable, and provides the likelihood function for

the above model with such random shocks.

Table 1 reports estimation results with a time series of daily S&P 500 index returns ob-

tained from the Center for Research in Security Prices (CRSP) for the period from January

1, 1990 to December 31, 2011. As a first set of result, under the heading “Gaussian physi-
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cal”, this table shows the parameter estimates obtained by maximising the likelihood of the

system (1) to (3) as if the innovations where Gaussian. These numbers thus represent quasi-

maximum likelihood (QML) estimates. As shown by the standard errors in parenthesis, all

parameters are statistically significant. However, the Jarque Bera test on the standardized

residuals reveals that the normality assumption is strongly rejected. As a second set of re-

sults, the maximum likelihood (ML) estimation of the above system is reported under the

header “Johnson su physical”. Again all parameters are statistically significant, including the

skewness and kurtosis parameters a and b. As expected, the estimated GARCH parameter

values for the QML and ML approaches are very close to each others. Although the specifi-

cations are non-nested (the normal distribution is not a special case of the Johnson su), it is

interesting to notice that the likelihood value obtained with the Johnson assumption (18138)

is much higher than the one obtained with the Gaussian distribution assumption (18042),

with only two additional parameters. The validity of the Johnson error term assumption

can be tested by computing the Jarque Bera test on the standard normal residuals implied

from the model and computed with the procedure explained in Appendix A. As shown by

the results of this test, the normality assumption cannot be rejected at the 5% confidence

level. Figure 1 shows the quantile to quantile plot of the implied normal residuals and offers

a visual validation of the distributional assumption. For both the QML and ML estimation,

as indicated by the Ljung-Box test, the error terms (normalized by the estimated standard

deviations) still show some significant autocorrelations. A detailed look at the residuals re-

veals that these are caused by small but significant autocorrelation coefficients in the first

lag.

3 Equilibrium pricing approaches

As shown in Duan (1999), the generalized local risk-neutral valuation relationship (GLRNVR)

implies the following risk-neutralized dynamics for the above physical system:

R∗
t = α− δt − γt + σ∗

t ε
∗
t , (4)
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σ∗2
t = β0 + β1σ

∗2
t−1 + β2σ

∗2
t−1

(
ε∗t−1 − θ

)2
, (5)

ε∗t | Ft−1 = F−1
su

[Φ (z∗t − λt)] (6)

where z∗t is a standard Gaussian random variable under the risk-neutral measure Q, F−1
su

is

the inverse of the Johnson su distribution function, Φ is the standard normal distribution

function, and where λt is a sequence that must satisfy the following restriction:

α− γt + lnEQ
t−1

[
eσ

∗

t
F−1
su

[Φ(z∗
t
−λt)]

]
= rt (7)

with rt the continuously compounded periodic risk-free rate. To get a feasible pricing model,

the computation of the expected value appearing in the above expression is required in order

to determine λt. We tackle this problem in two steps.

In a first step, we develop an explicit expression for ε∗t = F−1
su

[Φ (z∗t − λt)] appearing in

the exponential function. As shown in Appendix B, such terms are characterized by a four

parameter Johnson su random variable written as

ε∗t = c + d× sinh

(
z∗t − a∗t

b

)
(8)

where a∗t = a+λt, c = −M (a, b) /
√
V (a, b), d = 1/

√
V (a, b), and where expressions forM (·)

and V (·) are available in Appendix A. Parameters c and d are location and scale parameters.

Hence, the risk neutralization does not change the distribution of the random shock which

remains a Johnson su random variable. Only the skewness parameter is affected by a shift

induced by λt. The fact that we can characterize the risk neutral distribution explicitly

sets this model apart from previous applications of the equilibrium framework in which

numerical approximations have to be used (see for example, Duan (1999), Stentoft (2008),

and Christoffersen, Dorion, Jacobs and Wang (2010)).

In a second step, rewriting EQ
t−1

[
eσ

∗

t
F−1
su

[Φ(z∗
t
−λt)]

]
as EQ

t−1

[
eσ

∗

t
ε∗
t

]
, we use a fourth order

Taylor series to obtain an analytical approximation for computing such expected values

from the first four moments of the random quantity ε∗t . This analytical approximation can

also be used to compute γt = lnEt−1 (e
σtεt), which appears in the restriction allowing the
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determination of λt. The analytical approximation is written as:

EQ
t−1

[
eσ

∗

t
ε∗
t

]
≃ 1 + σ∗

t µ
∗
1 +

1

2
σ∗2
t µ∗

2 +
1

6
σ∗3
t µ∗

3 +
1

24
σ∗4
t µ∗

4 (9)

where µ∗
i = EQ

t−1 [ε
∗i
t ] . For Johnson su random error terms, these expected values are avail-

able in closed form and are described in Appendix C. Table 2 reports some results about the

performance of the approximation to compute lnEQ
t−1

[
eσ

∗

t
ε∗
t

]
. The approximation is com-

pared to a precise Monte Carlo simulation with 15 million sample paths which generates

Johnson su random errors ε∗t according to equation (8) for various values of a and b. In these

simulations, σ∗
t = 0.2 ×

√
1/252 while λt = 0.05. As shown in Table 2, this approximation

is precise enough for all practical purposes. Other computations with different values of σ∗
t

and λt yield similar results.

With the above specification, a key step is the computation of the values of the pricing

parameter λt that allow implementing the risk-neutral system for pricing options. In the

Gaussian case λt is readily interpreted as the risk premium. Though a similar overall in-

terpretation can be given to the parameter in the non-Gaussian case, this interpretation is

no longer exact (see also the discussion in Stentoft (2015)). The λt parameter nevertheless

remains connected to the risk premium irrespectively of the assumed underlying distribution

and Duan (1999) refers to it as the risk premium parameter. To avoid any kind of uncer-

tainty, we refer to λt in the following as the pricing parameter in the equilibrium pricing

framework. In the next subsections, two avenues are examined to obtain this parameter.

3.1 Equilibrium approach #1: constant λ

As in Stentoft (2008), a possible approach to estimating the pricing parameter λt is to assume

a constant value for it i.e. λt = λ. Substituting the pricing restriction (7) and the analytical

approximation (9) in equation (1) results in the following system for the return process under

the physical measure:

Rt = rt − δt − ln

[
1 + σ∗

t µ
∗
1 +

1

2
σ∗2
t µ∗

2 +
1

6
σ∗3
t µ∗

3 +
1

24
σ∗4
t µ∗

4

]
+ σtεt, (10)

10



σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1 (εt−1 − θ)2 , (11)

εt ∼ Jsu (a, b) . (12)

The quantities in square brackets are functions of the constant pricing parameter λ, which

can therefore be obtained straightforwardly with maximum likelihood (ML) estimation of

the above system. In the estimation procedure, the term between the square brackets can be

computed with the physical variance σ2
t which is locally equal to the risk-neutral variance,

a property of the GLRNVR pricing framework.

With the estimated value of the pricing parameter λ, option pricing using this approach

can be done with Monte Carlo simulation, with the following steps to simulate a risk-neutral

price on a sample path, given estimated values for the parameters β0, β1, β2, θ, a, b, λ and

a starting value for σt:

• Simulate ε∗t , a risk-neutral Johnson su innovation, with equation (8).

• Use the risk-neutral system (4) and (5) with the simulated risk-neutral Johnson su

shock to obtain the stock price at time t, with α− δ − γt set to

rt − δt − ln
[
1 + σ∗

t µ
∗
1 +

1
2
σ∗2
t µ∗

2 +
1
6
σ∗3
t µ∗

3 +
1
24
σ∗4
t µ∗

4

]
in the return equation.2

Using the simulated risk-neutral sample paths for the stock prices, Monte Carlo option price

estimates are then obtained the usual way. The fourth column of Table 1 reports the ML

estimation results for the above time series model with a constant pricing parameter. The

results are similar to those reported in the third column for the physical process. Imposing

the equilibrium pricing restriction does not change the likelihood and yields a statistically

significant value for λ. We also notice that the P-value of the Q-stat goes from 3.8% to 5.1%,

giving some indication that having a risk-premium which is a function of the time-varying

volatility improves the fit.

2Without loss of generality, for the parameter estimation and option prices computations, the risk-free
rate and the dividend yield are considered constant through time and are set to the values observed at the
date at which the option prices are computed. In unreported trials, specifications with time-varying dividend
and interest rates were implemented without noticeable differences in results.

11



3.2 Equilibrium approach #2: time-varying λt

As an alternative to the above approach, the pricing parameter could be determined di-

rectly when computing the option price with the risk-neutral system. In a Monte Carlo

simulation context, at every simulation step and for every path, a nonlinear equation must

be solved for the unknown pricing parameter. This system is obtained from substituting

the approximation (9) for γt and EQ
[
eσ

∗

t
ε∗
t

]
in the restriction (7). With other distributions,

for which numerical approximations are required for the risk-neutral expectation, this ap-

proach is clearly too time consuming. However, with our proposed Johnson su distribution

it remains feasible, and obtains the following equation:

α− rt − ln

[
1 + 1

2
σ2
t +

1
6
σ3
tµ3 +

1
24
σ4
t µ4

1 + σ∗
tµ

∗
1 +

1
2
σ∗2
t µ∗

2 +
1
6
σ∗3
t µ∗

3 +
1
24
σ∗4
t µ∗

4

]
= 0 (13)

where µi = Et−1 [ε
i
t] with µ1 = 0 and µ2 = 1 because εt is a zero-mean unit-variance

innovation. Recall that µ∗
i are functions of λt. The pricing parameter can thus be solved for

numerically by finding the value of λt yielding the above equality. As shown in Figure 2, this

restriction, when expressed as a function of λt, is linear for all practical purposes. Moreover,

this function is equal to α − rt when λt = 0, since the numerator and denominator in the

square brackets of restriction (13) become equal. This suggests that λt can be solved for

with a simple linear interpolation as described in Appendix D. Table 3 compares the values

of λt computed with a bisection algorithm and with the linear interpolation. As seen in this

table, the linear interpolation obtains a performance which is precise enough for all practical

purposes. Using this approach, computing the solution takes a fraction of a second and

can be readily used in a Monte Carlo simulation to quickly compute the pricing parameter

values.

Option pricing using this approach can be done with Monte Carlo simulation, with the

following steps to simulate a risk-neutral price on a sample path, given estimated values for

the parameters α, β0, β1, β2, θ, a, b and a starting value for σt:

• Compute the pricing parameter λt with the linear interpolation method in Appendix
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D.

• Simulate ε∗t , a risk-neutral Johnson su innovation, with equation (8).

• Use the risk-neutral system (4) and (5) with the simulated risk-neutral Johnson su

shock to obtain the stock price at time t, with γt computed with ln(1+ 1
2
σ∗2
t + 1

6
σ∗3
t µ3+

1
24
σ∗4
t µ4).

Using the simulated risk-neutral sample paths for the stock prices, Monte Carlo option price

estimates are obtained the usual way. Notice here that γt is computed with the risk-neutral

variance σ∗2
t which is locally equal to the physical variance, a property of the GLRNVR

pricing framework. It should also be noticed that, instead of the linear interpolation, the

exact solution to the restriction (13) could be obtained with a bisection algorithm, using

as a starting point the linearly interpolated λt. However, this would be significantly more

time consuming and as the results above show it would not affect the performance in any

noticeable way.

4 No-arbitrage pricing approaches

With GARCH models, markets are incomplete and hence there is no unique pricing measure

needed for option pricing. In this section, we examine the general pricing approach pro-

posed in CEFJ for deriving one such measure, which does not require strong assumptions

about preferences. In this framework, assuming the absence of arbitrage, a candidate equiv-

alent martingale measure is specified from the following likelihood ratio (or Radon Nikodym

derivative):

Lt = exp

(
−

t∑

i=1

(νiεiσi +Ψi (νi))

)

where Ψ (u) = lnE
[
e−u

√
σε
]
is the logarithm of the conditional moment generating function

(MGF), and where νt is a sequence that must satisfy the following restriction:

α−Ψt (−1) + Ψt (νt − 1)−Ψt (νt) = rt (14)
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where Ψt (−1) = γt. In the general case, the risk neutral dynamics are characterized through

the log conditional MGF which can then be used to derive the specific parametric risk-neutral

distribution using the Inversion Theorem (see for example Billingsley (1995, Theorem 26.2)

or Davidson (1997, Theorem 11.12)). Thus, given a set of values νt agreeing with the above

restriction, the risk-neutral dynamics for a given GARCH process can be obtained, and

Monte Carlo option prices can be computed the usual way with these risk-neutral dynamics.

The risk neutral dynamics for the volatility with non-normal innovations typically in-

volves time-varying GARCH parameters. Alternatively, a computationally simpler approach

which uses the physical constant GARCH parameters can be used even if the risk neutral

distribution is unavailable explicitly. This approach simulates the stock prices under the

physical process, in conjunction with the likelihood ratio Lt, to obtain a Monte Carlo option

price from

e−rT

n

n∑

j=1

pay (ST,j)× LT,j (15)

where pay (·) is the payoff function of the option, n is the number of sample paths, and LT,j

is the likelihood ratio computed along the jth path. Here, the likelihood ratio is a factor

adjusting the simulated option payoff under the measure P, into an option payoff under

the required risk-neutral measure Q. In order to apply this pricing method, a closed form

expression for the function Ψt (·) must be available to implement the pricing restriction. For

this purpose, we again rely here on the fourth order Taylor series approximation to obtain:

Ψt (u) ≈ ln

[
1 +

1

2
u2σ2

t +
1

6
u3σ3

tµ3 +
1

24
u4σ4

tµ4

]
. (16)

As in the case of the GLRNVR, the computation of the values of the pricing parameter

νt in the pricing restriction is a key step that allows implementing the above pricing system.

In CEFJ it is noted that in the Gaussian case νt is related to the price of risk, though it

is not exactly equal to the risk premium in this case. More generally, νt is related to the

risk premium even in the non-Gaussian case. To avoid any kind of uncertainty related to

the exact interpretation one can give to this parameter, we refer to νt in the following as
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the pricing parameter in the no-arbitrage pricing framework. In the next subsections, two

avenues are examined to obtain values for this parameter.

4.1 No-arbitrage approach #1: constant ν

As in Rombouts and Stentoft (2015), a possible approach to estimating the pricing parameter

νt is to assume a constant value for it i.e. νt = ν. Substituting the pricing restriction (14)

in equation (1) results in the following system for the return process under the physical

measure:

Rt = [rt − δt −Ψt (ν − 1) + Ψt (ν)] + σtεt, (17)

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1 (εt−1 − θ)2 , (18)

εt ∼ Jsu (a, b) (19)

which can be estimated with a ML approach using the approximation for the logarithm of

the MGF in (16).

With the estimated value of the pricing parameter ν, option pricing using this approach

can be done with Monte Carlo simulation, with the following steps to simulate a sample

path of stock returns, given estimated values for the parameters β0, β1, β2, θ, a, b, ν and a

starting value for σt:

• Simulate εt, a physical Johnson su innovation, with the procedure outlined in Appendix

A.

• Use the system (17) and (18) with the simulated Johnson su shock to obtain the stock

price at time t and the likelihood ratio Lt with the estimated ν used to calculate Ψt (ν)

and Ψt (ν − 1) with equation (16).

Using the simulated physical sample paths and likelihood ratios, Monte Carlo option price

estimates for European options are obtained with the approach outlined above in equation

(15). The fifth column of Table 1 reports the ML estimation results for the above time series
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model with a constant value for ν. Again, the results are almost identical to those reported

for the physical process and the physical process with the equilibrium pricing restriction.

Imposing the no-arbitrage pricing restriction does not change the likelihood and yields a

statistically significant value for the pricing parameter ν and results in a higher P-value of

the Q-stat which indicates that having a risk-premium which is a function of the time-varying

variance improves the fit.

4.2 No-arbitrage approach #2: time-varying νt

Instead of assuming a constant value, νt can be computed for every time point and every

sample path. Given numerical values for the parameters a and b of the Johnson su distribu-

tion, which allows the computations of the moments µ3 and µ4, the pricing restriction (14)

can be solved for νt using a bisection algorithm. Alternatively, one can use the approximation

proposed in CEFJ which is written as:

νt =
α− rt − γt

σ2
t

+
1

2
. (20)

As with the equilibrium approach, the pricing restriction (14) is approximately linear in νt

as shown in Figure 3. This suggests that a linear interpolation similar to the one presented

in Appendix D could be used to solve for the required values of νt. Table 4 provides a

comparison of these three different approaches which can be used to solve for the pricing

restrictions. Except for small volatility values, the three methods give very similar answers.

Option pricing using this approach can be done with Monte Carlo simulation, with the

following steps to simulate a price on a sample path, given estimated values for the parameters

α, β0, β1, β2, θ, a, b, and a starting value for σt:

• Compute the pricing parameter νt with the approximation given by equation (20).

• Simulate εt, a physical Johnson su innovation, with the procedure outlined in Appendix

A.
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• Use the system (1) and (2) with the simulated Johnson su shock to obtain the stock

price at time t and the likelihood ratio Lt with the computed value of νt used to

calculate Ψt (νt) with equation (16).

Using the simulated physical sample paths and likelihood ratios, Monte Carlo option price

estimates for European options are then obtained with the approach outlined above in equa-

tion (15). It should be noticed that, instead of using approximation (20), the exact solution

to the restriction (14) could be solved with a bisection algorithm, using as a starting point

the approximated νt given by equation (20). However, this would again be significantly

more time consuming and as the results above show would not affect the performance in any

noticeable way.

5 Results

The previous two sections demonstrate how our proposed GARCH specification with Johnson

su innovations can be implemented in the equilibrium based framework of Duan (1999) and

the no-arbitrage framework of CEFJ with constant as well as with time-varying pricing

parameters. In this section we examine how each of the four pricing models presented above

perform in relative terms when taken to actual data. For convenience, we will refer to the

pricing approaches as follows: EquCst is for the equilibrium approach with a constant pricing

parameter λ; EquTva is for the equilibrium approach with a time-varying pricing parameter

λt; NoaCst is for the no-arbitrage approach with a constant pricing parameter ν; NoaTva is

for the no-arbitrage approach with a time-varying parameter νt.

5.1 Call option prices from the MLE estimates

As a first test, Table 5 presents the Black-Scholes implied volatilities (IV) for a sample of

artificial option prices computed with the parameter values obtained from the time series

estimates reported in Table 1. The numbers are for European call options with maturities

of 30, 90 and 270 days, a stock price of 50, and strike prices ranging from 47 to 53. The
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variance is initialized with the variance estimated for the last data point in the time series

estimation. The prices are computed using Monte Carlo simulations with paths generated as

described in the earlier sections. Each option price is computed with 1,000,000 sample paths

and common random numbers for all approaches. A Black-Scholes control variate and the

Empirical Martingale simulation approach from Duan and Simonato (1998) are also used as

variance reduction techniques. For the equilibrium approach, computing the option prices

with the time-varying parameter involves more computations but can still be done quickly.

For example, computing the option prices in the table with 100,000 paths requires around 7.5

second with the constant λ case, while it takes around 8.5 seconds for the time-varying case.

For the no-arbitrage approach, the additional computations required by the time-varying νt

are negligible.

As shown in this table, the four different specifications result in values differing only

by small amounts. For the time-varying cases, such results can be explained in part by the

behavior of the pricing parameters λt and νt since both approaches share the exact same set of

GARCH and Johnson parameters obtained from the ML estimation of the physical process.

As shown by equations (13) and (20), when computing options prices, the pricing parameters

λt and νt are fluctuating in response to changes in the volatility level. Figure 4 shows a plot

of λt and νt as a function of the volatility level (on a two scale graph). From this graph we see

that both parameters exhibit similar responses to changes in volatility levels, although they

have a different scale (an issue discussed later). For the constant pricing parameter case,

the absence of sensitivity to changes in the variance does not seem to affect the computed

prices which are similar to those of the time-varying cases. The results presented here are

however dependant on the GARCH and Johnson parameters estimated in Table 1 and may

not translate to other parameter values and variance levels.
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5.2 Pricing errors from a sample of observed option prices

To examine results with different sets of GARCH and Johnson parameter values, we use a

large sample of call and put options on the S&P 500 index from OptionMetrics covering the

years 2006 to 2011. This sample thus includes the turbulent periods associated with the

financial crisis of 2008. We impose the following standard restrictions on our sample: firstly,

we consider weekly data only and choose the options traded on Wednesdays. If Wednesday

is not a trading day we pick the date closest to it. This choice is made to balance the

tradeoff between having a long time period against the computational complexity from model

estimation and option pricing. We choose Wednesdays as these options are the least affected

by weekend effects. Secondly, we choose to work only with those contracts which had a daily

traded volume of at least 100 contracts. Thirdly, we exclude options which have a price,

defined as (bid + ask)/2, below 50 cents. Fourthly, we exclude options with less than 7 or

more than 252 calendar days to maturity. Finally, we eliminate options in the LEAPS series

as the contract specifications for these options do not correspond to that of the standard

options.

Each week, to compute the theoretical option prices, the parameters of the GARCH

models are estimated with a ML estimation approach on a rolling window using the most

recent historical time series of 5,000 daily index returns with dividends. Using these param-

eter estimates, a constant risk-free rate and dividend yield taken from the OptionMetrics

database for the day at which the option prices are observed, we compute the theoretical

option prices using the Monte Carlo procedures outlined earlier for each of the four pricing

approaches. We use 100,000 paths, common random numbers for all pricing approaches, and

the same variance reduction technique that are used in the previous table. The theoretical

prices are then converted into Black Scholes implied volatilities and compared to the implied

volatility of the observed option prices.

Table 6 reports the results for the pricing errors computed as the differences between the

IV of the option prices computed with the GARCH models and the IV of the observed prices.
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The first and second panel report the correlations between the pricing errors and the absolute

pricing errors. The EquCst, EquTva and NoaTva pricing errors show correlations over 0.94

between each other. The NoaCst case stands out from the group with smaller correlations,

indicating that it generates results different from the other approaches. The third panel of

the table also shows that this last approach stands out with different mean errors (ME),

mean absolute errors (MAE) and root-mean-squared errors (RMSE), unlike the other three

approaches who have similar performances. The fourth and fifth panels report the MAE

examined with respect to maturities and moneyness of the options. A similar phenomena

emerge from these panels which show that the NoaCst approach stands-out, and performs

particularly poorly for options that have long maturities and are in the money. Finally,

panels six and seven examine the MAE by volatility and year. With these, a clearer picture

emerge and we see that the NoaCst shows differences with the other methods for higher

implied volatility levels and for years where volatility was much higher i.e. the financial crisis

in 2008. For example, when σ > 40% the MAE is 25% larger for the NoaCst and during

2008 the errors were 54% larger. A closer examination of the results for 2008 does not reveal

any systematic pattern across moneyness or maturities though.

5.3 Alternative specifications in the no-arbitrage framework

In order to examine further the source of the discrepancies for the constant pricing param-

eter case, we notice that an important difference between the equilibrium and no-arbitrage

approach is how the pricing parameter enters the return process. This can be seen by looking

at the case of normally distributed errors with a constant pricing parameter. As shown in

Appendix E, in such a context, the return process can be rewritten as

Rt = r − δt + λσt −
1

2
σ2
t + σtεt

for the equilibrium approach, while it can be rewritten as

Rt = r − δt + νσ2
t −

1

2
σ2
t + σtεt
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for the no-arbitrage approach. Thus with the equilibrium approach, the pricing parameter

λ loads on the volatility, while ν loads on the variance for the no-arbitrage approach. This

explains the scale differences between these parameters: because the daily volatility level is

smaller than one, the squared volatility is much smaller in magnitude than the volatility, and

thus commands a higher value of the pricing parameter. In periods of high volatility, the

combination of a constant pricing parameter loading on the level of the squared volatility

appears to be an important issue explaining the differences. Although the above analysis

is for the Gaussian case, a similar relationship holds for the non-Gaussian case but with

additional effects brought on by higher moments.

To examine more closely this issue, we look at two additional specifications of the no-

arbitrage case with a constant pricing parameter: a first specification where the parameter

is scaled by the volatility i.e. νt = ν/σt and a second version where the parameter is scaled

by the the variance i.e. νt = ν/σ2
t . As for the NoaCst case, using these specifications and

the pricing restriction (14), we obtain physical return specifications for which the pricing

parameter appears as a constant which may be estimated by a ML estimation approach.

Table 7 presents the pricing error statistics obtained with these alternative approaches. The

second column of this table reports, for convenience, the results for the NoaCst approach

(νt = ν) and the fifth column reports the results for the EquCst approach (λt = λ), both

of which also appear in Table 6. The third and fourth columns present the νt = ν/σt and

νt = ν/σ2
t cases, respectively. As shown by these results, when the pricing parameter is

scaled by the volatility or the variance, the pricing error become similar to those of the

EquCst, and therefore also to those of the EquTva and NoaTva cases.

From the analysis above, we see that the equilibrium and no-arbitrage pricing approaches

provide similar option prices with time-varying pricing parameters and with the constant

pricing parameters (when properly scaled). Hence the choice of which pricing approach to

use should be largely dictated by convenience issues associated with the implementation.

While the equilibrium approach is simple to implement with the Johnson distribution, it is
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difficult to do so with other distribution choices, as shown by the earlier literature. This is

not the case for the no-arbitrage approach which can be easily implemented as long as the

first four moments of the error distributions are known in closed form, or more generally by

deriving the risk neutral dynamics which exist and are generally from the same distribution,

provided the physical conditional distribution is an infinitely devisable distribution with

finite second moment (see CEFJ, proposition 1.3)). Furthermore, our results show that

the simple case of a constant pricing parameter, properly scaled by the standard deviation,

gives results equivalent to those obtained with the more intricate case of a time-varying

pricing parameter. Thus, for actual applications one can use the more convenient constant

pricing method instead of the significantly more time-consuming and complicated time-

varying method without sacrificing precision.

6 Robustness checks

As mentioned previously the two pricing frameworks yield equivalent pricing restrictions in

the Gaussian case and when risk premia are zero. In reality however, returns are neither

Gaussian nor are risk premia zero. Thus, there is no theoretical reason that the two frame-

works should produce pricing results that are as close to each other as what we have found

in the previous section. A valid concern that one might have is that our findings are driven

by the particular choice of conditional distribution. In this section several robustness checks

are performed to assess if the findings of our analysis are restricted to the distributional

assumption adopted above.

6.1 A distribution-free approach

As implemented in the previous sections, the no-arbitrage approach with a time-varying

parameter uses the distribution assumption in the parameter estimation step (to obtain

the likelihood function), and in the simulation step (to generate random error terms with

the appropriate skewness and kurtosis). However, in both steps the Johnson distribution
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assumption can be avoided, and we now examine an approach that does not assume any

specific distribution for the innovations in the no-arbitrage framework. In the estimation

step, the QML estimator of Table 1 can be used to compute non-parametric estimates of

the skewness and kurtosis. These can then be used in the simulation step which can be

adapted by replacing the simulation of the Johnson random numbers with a Cornish-Fisher

approximation that can generate random error terms with the target skewness and kurtosis.

The procedure to obtain Cornish-Fisher random numbers is taken from Maillard (2012).

Table 8 reports the results obtained for the artificial sample of call options when using the

QML parameter estimates. The first panel reports the case of a constant pricing parameter

ν while the second reports the time-varying νt case. In each panel, for convenience, we first

show the results obtained using the Johnson distribution in the estimation and pricing steps

that have already been reported in a previous table (the NoaTva and NoaCst cases). For

the constant ν case (first panel), the parameter estimates are taken from the last column

in Table 1. For this case, (unlike the time-varying νt case), a genuine QML estimator is

not possible. Instead, the parameter estimates are obtained using a two-step approximate

QML procedure. In a first step, the system given by equations (17) and (18) is estimated

with a Gaussian likelihood and µ3 and µ4 set to 0 and 3. Using the residuals from this step,

estimated values of µ3 and µ4 are obtained and used as inputs in the second step where the

Gaussian likelihood associated to the system is optimized once more. As shown by the results

in Table 1, the GARCH parameter estimates are very close to the genuine QML estimator

with a likelihood only sightly higher. The pricing parameter ν is estimated precisely and is

very close in value to the one reported in the Johnson su case.

Looking at the computed IV, the differences in the option implied volatilities are small,

showing that a distribution free approach gives results similar to the NoaTva approach,

which itself obtains results very similar to the other approaches examined in this study. The

third set of option prices reported in this panel shows the implied volatilities of the options

computed with the approximate QML estimates using Johnson random numbers instead of
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Cornish-Fisher. The parameters for the Johnson distribution have been obtained by finding

the a and b parameters that allow matching the estimated skewness and kurtosis obtained

from the QML residuals. This panel shows IVs that agree in most cases to the third digit

after the decimal point. This indicates that the differences in the NoaTva and QML Cornish-

Fisher option prices are mainly due to the changes in the parameters used as inputs, and

are not caused by the Johnson assumption for the random shocks used to compute the the

option prices. Looking at the time-varying νt case in the second panel of Table 8, results

similar to those from the first panel are obtained. Small differences between the ML Johnson

su and QML Cornish-Fisher case are observed, while the IV from these option prices are

almost indistinguishable from those reported for the QML Johnson su case.

To get a clearer picture of the possible discrepancies, Table 9 shows the pricing differences

for our sample of option prices. For convenience, the second column reports the NoaTva case

already reported in an earlier table. The third column reports the case of QML estimates

with time-varying νt, but with option prices computed with Johnson random numbers with

moment matched a and b parameters, as in the previous table. The fourth column shows

the QML case with time-varying νt, and Cornish-Fisher random numbers. As with the

results from the previous table, the option prices obtained with the QML-Johnson and

QML-Cornish-Fisher approaches are very close, with a pricing error correlation of 99% and

very small discrepancies between the different statistics about the errors. The fifth column

reports the pricing errors obtained with the approximate QML estimates and a fixed ν.

The results obtained with this approach are similar to those of the NoaCst case, showing

a marked deterioration of the precision when the variance is high. Finally, unreported in

this table, the performance of a QML no-arbitrage model with a constant pricing parameter

scaled by the volatility was also examined. As in Table 7, such a model restores the error to

the level of those associated to the QML time-varying νt model, showing again that such a

result is not solely associated to our earlier assumption of Johnson su shocks.
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6.2 Time-varying non-normal distributions

Differences between the two pricing frameworks are linked to the non-normality of the in-

novations and could thus be more pronounced in periods with more skewness or excess

kurtosis. To examine this issue we now consider an alternative specification which relies

on time-varying distributions where the skewness and kurtosis are modeled as conditional

mean reverting processes. We introduce the time-varying skewness and kurtosis through

a dynamic specification of the parameters of the random shock distribution. The a and b

parameters, which govern the third and fourth moments of et = εtσt are time-varying and

allowed to revert to long-run values of a and b. Such a specification is in the spirit of Jon-

deau and Rockinger (2003), who also use a dynamic specification for the parameters of the

distribution, which evolves according to the shocks affecting the returns.3

More specifically, we assume that the stock return with dividends under the physical

measure is given by:

Rt + δt = α− γt + et, (21)

with

σ2
t = β0 + β1σ

2
t−1 + β2σ

2
t−1 (et−1/σt − θ)2 , (22)

and

at = a+ φa,1 (at−1 − a) + φa,2 ×
(
e3t−1 − µ3,e

(
a, b
))

, (23)

bt = b+ φb,1

(
bt−1 − b

)
+ φb,2 ×

(
e4t−1 − µ4,e

(
a, b
))

. (24)

In this specification, α, β0, β1, β2, θ, a, φa,1, φa,2, b, φb,1, φb,2 are constant parameters. Here,

µ3,e

(
a, b
)
and µ4,e

(
a, b
)
are the long-run third and fourth central moments of et, which

are functions of a and b. The values of these functions are the third and fourth moments

of a Johnson su random variable with parameter a and b with a variance equal to the

3We note here that the return shock et is also a Johnson random variable with skewness and kurtosis
determined by at and bt, but with a variance given by σ2

t which is a known quantity at t. More technically,

et is a Johnson su random variable written as et = c̃ + d̃ × xt where c̃t = σtct and d̃t = σtdt where the
quantities xt, ct and dt are described in Appendix A.
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unconditional variance of the daily return i.e.

µ3,e

(
a, b
)
= E

(
e3
)

and µ4,e

(
a, b
)
= E

(
e4
)

where e is a Jsu

(
a, b
)
with a mean of zero and a variance set equal to the sample variance of

the returns. Using this specification for the returns, it is possible to examine the four pricing

approaches examined earlier i.e. the EquCst, EquTva, NoaCst, and NoaTva specifications.

Table 10 presents the ML estimation for the parameters of the physical process with-

out pricing restrictions and the physical processes with the pricing restrictions associated

with the constant pricing parameter approaches. As shown in this table, all parameters

are statistically significant with a large increase in the likelihood when compared with the

constant a and b parameter case examined earlier. The mean reversion parameters φa,1 and

φb,1 suggest that the a and b parameters strongly revert towards their long run estimates,

which correspond to long run skewness and kurtosis estimates of -0.15 and 3.82 respectively.

The reverting behavior exhibited by the conditional parameters at and bt is accompanied

by skewness and kurtosis shock effects with both coefficients φa,2 and φb,2 significant at the

5% level. Imposing the pricing restriction improves the likelihood slightly and yield a sta-

tistically significant value for λ and ν, respectively. When compared with the physical case,

we also notice an improvement in the Q-stat when imposing the pricing restrictions, giving

some indications that a pricing parameter which is a function of the time-varying volatility

or variance improves the fit.

Table 11 shows the statistics about the pricing errors computed with our sample of

options with the time-varying non-normal distribution model. The same rolling window

estimation procedure is adopted to compute the parameter estimates for the four pricing

models. The results presented in this table show a pattern which is qualitatively very close

to that presented earlier. In particular, the NoaCst approach stands out from the other

methods in general and with much larger pricing errors for options that have long maturities

and are in the money. Moreover, across volatility and through time a clear pattern arises

and this model performs particularly bad in periods of high volatility like the financial crisis
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in 2008. Thus, the conclusions reached earlier translate to this model showing the robustness

of the results to a more general framework with conditional non-normalities.

7 Conclusion

This paper examines and compares the performance of the two main pricing approaches that

have been used in the GARCH option pricing literature with non-normal innovations. Using

Johnson su innovations for our GARCH process, we show how the equilibrium approach and

the no-arbitrage approach can be used to compute option prices with constant and time-

varying pricing parameters. The numerical and empirical results show that both pricing

frameworks obtain very similar option prices when implemented with time-varying pricing

parameters. Hence, the choice of a pricing framework is more a matter of convenience than

a matter of pricing precision. When implemented with a constant pricing parameter, we

find that the equilibrium approach gives similar results to the time-varying parameter case.

This indicates that such a simplifying assumption can obtain results equivalent to the more

computationally complex time-varying case and represents a reasonable choice to someone

wishing to use the equilibrium approach. However, unlike the equilibrium case, the no-

arbitrage approach with a constant pricing parameter obtains pricing errors that are larger

than those obtained with the time-varying case. As shown by numerical experiments, these

differences are mainly caused by the specification of the no-arbitrage approach which has a

pricing parameter proportional to the variance, unlike the equilibrium approach parameter

which loads on the volatility. The differences disappear when a constant pricing parameter

specification scaled by the volatility is used. Finally, we examine the robustness of our

results to changes in our main distributional assumption, which reveal that similar results

are obtained with alternative assumptions.
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A Johnson su innovations

This appendix describes the Johnson su random variables that have been introduced in

Johnson (1949).

A zero-mean, unit variance random variable following a two parameter Johnson su dis-

tribution with parameters a and b can be written as

εt = c + d× xt (25)

where xt = sinh
(
zt−a
b

)
, with zt is a standard normal random variable and

c = −M (a, b) /
√
V (a, b), d = 1/

√
V (a, b),

M (a, b) = −w
1

2 sinh (Ω) ,

and

V (a, b) =
1

2
(w − 1) (w cosh (2Ω) + 1) .

Parameters a and b control the skewness and kurtosis, cosh (u) = (eu + e−u) /2 and sinh (u) =

(eu − e−u) /2 are the hyperbolic cosine and sine functions while w = e
1

b2 and Ω = a
b
. Here

M (·) and V (·) are the mean and variance of xt, the unstandardized two parameter Johnson

su random variable. The values c and d, which are here functions of a and b, are used to

change the location and scale of x in such a way that it becomes a standardized Johnson su

random variable.
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From Simonato (2012), the log likelihood function of the time series model described by

equation (1) and (2), for a time series of T observations, can be written as:

lnL = −1

2

T∑

t=1

ln σ2
t −

T

2
ln 2π − 1

2

T∑

t=1

(
a + b · sinh−1

(
M (a, b) + εt

√
V (a, b)

))2
+

T

2
lnV (a, b) + T ln b− 1

2

T∑

t=1

ln

((
M (a, b) + εt

√
V (a, b)

)2
+ 1

)
.

The standard normal residual at the source of the Johnson errors can be recovered with

zt = a+ b · sinh−1
(
M (a, b) + εt

√
V (a, b)

)
(26)

where sinh−1 (u) = ln
(
u+

√
u2 + 1

)
. The validity of the Johnson distribution assumption

can be verified by testing if the z’s from a ML estimation are normally distributed.

B Risk-neutral Johnson su innovations

We want to find an explicit expression for the risk-neutral innovations ε∗t = F−1
su

(Φ (z∗t − λt)).

For the standardized two parameter Johnson su random variable defined in Appendix A, the

inverse of the distribution function is

F−1
su

(u) = c+ d× sinh

(
Φ−1 (u)− a

b

)

where u is a probability. In the present context, u = Φ(z∗t − λt) and

F−1
su

[Φ (z∗t − λt)] = c+ d× sinh

(
Φ−1 (Φ (z∗t − λt))− a

b

)

which yields

ε∗t = c + d× sinh

(
z∗t − a∗t

b

)

since ε∗t = F−1
su

[Φ (z∗t − λt)] and where a∗t = a+λt. It should be emphasized here that the c

and d quantities (described in Appendix A) are not the location and scale parameter making

sinh
(

z∗
t
−a∗

t

b

)
a zero-mean unit-variance random variable. Hence, ε∗t can be seen here as a

four parameter Johson su random variable, with parameters a∗t , b, c and d.
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C Moments of a Johnson su random variable

Let z denote a standard normal random variable and consider x, a two parameter Johnson

su random variable defined as x = sinh
(
z−a
b

)
where −∞ < a < ∞, b > 0, sinh (u) =

(eu − e−u) /2. Using the moment generating function of a normal random variable, the first

four moments of x can be derived analytically. The formulas for these moments are:

E [x] = −w
1

2 sinh (Ω) ,

E
[
x2
]
=

1

2

[
w2 cosh (2Ω)− 1

]
,

E
[
x3
]
=

1

4

(
3w

1

2 sinh (Ω)− w
9

2 sinh (3Ω)
)
,

E
[
x4
]
=

1

8

[
w8 cosh (4Ω)− 4w2 cosh(2Ω) + 3

]
,

with cosh (u) = (eu + e−u) /2, w = e
1

b2 and Ω = a
b
.

For a four parameter Johnson su random variable written as ε = c+ d× x, the moments

can be computed from those above with:

E [ε] = c+ d× E [x] ,

E
[
ε2
]
= c2 + 2cdE [x] + d2E

[
x2
]
,

E
[
ε3
]
= c3 + 3c2dE [x] + 3cd2E

[
x2
]
+ d3E

[
x3
]
,

E
[
ε4
]
= c4 + 4c3dE [x] + 6c2d2E

[
x2
]
+ 4cd3E

[
x3
]
+ d4E

[
x4
]
.

D Solving for λt with a linear interpolation

Denote the pricing restriction as a function of the unknown value for λt to be:

f (λt) = α− r − ln

[
1 + 1

2
σ2
t +

1
6
σ3
tµ3 +

1
24
σ4
t µ4

1 + σ∗µ∗
1 +

1
2
σ∗2
t µ∗

2 +
1
6
σ∗3
t µ∗

3 +
1
24
σ∗4
t µ∗

4

]

where the µ∗
i are functions of λt. We want to find a value λ∗

t such that f (λ∗
t ) = 0. Given the

approximate linearity of the function and a first point on the function given by f (0) = α−r,

we use a second point λ̃t to obtain:

λ∗
t =

α− r

α− r − f
(
λ̃t

) × λ̃t.
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E Equilibrium and no-arbitrage under normality and

a constant pricing parameter

The pricing restriction for the equilibrium approach, given by equation (7), is

α = r + γt − lnEQ
t−1

[
eσ

∗

t
F−1
su

[Φ(z∗
t
−λt)]

]
.

With a normal distribution for the shocks, γt =
1
2
σ2
t and F−1

su
= Φ−1, which leads, under the

assumption of a constant pricing parameter, to

α = r + σtλ

since σ∗
t = σt. This expression can be substituted in the physical return dynamics to obtain

Rt = r − δt + λσt −
1

2
σ2
t + σtεt.

For the no-arbitrage case, the pricing restriction is given by equation (14) and is written as:

α = r −Ψt (νt − 1) + Ψt (νt) + Ψt (−1) .

Using a constant value for the pricing parameter, the definition for Ψt (·) and the moment

generating function of a normal random variable, we can write

Ψt (−1) = γt,

Ψt (ν) = lnE
[
e−νεt

]
=

1

2
σ2
t ν

2,

and

Ψt (ν − 1) = lnE
[
e−(ν−1)εt

]
= ln e

1

2
σ2

t
ν2−σ2

t
ν+ 1

2
σ2

t .

Substituting in the physical return expression gives

Rt = r − δt + νσ2
t −

1

2
σ2
t + σtεt.
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Table 1: Time series estimation results

Gaussian Johnson su Johnson su Johnson su QML
physical physical equilibrium no-arbitrage no-arbitrage

β0 1.4e-06 1.1e-06 1.2e-06 1.4e-06 1.7e-06
(1.3e-07) (1.7e-07) (1.6e-07) (1.8e-07) (1.5e-07)

β1 0.8653 0.8664 0.8638 0.8600 0.8600
(0.0067) (0.0098) (0.0099) (0.0102) (0.0070)

β2 0.0638 0.0631 0.0631 0.0642 0.0648
(0.0046) (0.0064) (0.0064) (0.0065) (0.0047)

θ 0.9937 1.0316 1.0308 1.0413 0.9959
(0.0811) (0.1099) (0.1100) (0.1091) (0.0809)

a – 0.3478 0.3410 0.3604 –
– (0.0869) (0.0877) (0.0867) –

b – 2.1610 2.1621 2.1622 –
– (0.1307) (0.1307) (0.1308) –

α 3.1e-04 3.3e-04 – – –
(1.1e-04) (1.1e-04) – – –

λ – – 0.0311 – –
– – (0.0135) – –

ν – – – 1.7772 1.9879
– – – (0.9755) (1.0025)

Loglik 18042 18138 18138 18138 18043
JB 649.7317 0.3909 0.4148 0.3063 637.4257

[0.0000] [0.8187] [0.8112] [0.8691] [0.0000]
Q(20) 32.2506 32.5304 31.3165 30.3431 30.3369

[0.0407] [0.0380] [0.0511] [0.0645] [0.0646]
Q2(20) 23.4912 21.6906 22.1540 22.8584 24.6091

[0.2653] [0.3575] [0.3322] [0.2958] [0.2168]

This table reports the QML (“Gaussian physical”) and ML estimates (“Johnson su physical”) for the physical

process described by equations (1), (2) and (3), the ML estimates of the physical process with a constant

pricing parameter for the equilibrium pricing approach (“Johnson su equilibrium”) given by equation (10),

(11) and (12), and the ML and QML estimates of the physical process with a constant pricing parameter for

the no-arbitrage approach (“Johnson su no-arbitrage” and “QML no-arbitrage”) given by equations (17),

(18) and (19). Standard errors are reported in parenthesis below the parameter estimates. “Loglik” is the

log-likelihood value and “JB” is the Jarque-Bera normality test for the standard normal residuals computed

with equation (26) in Appendix A. Q(20) is the Ljung-Box portmanteau test for up to 20th-order serial

correlation in the standardized residuals, whereas Q2(20) is the same test for the squared standardized

residuals. The p-values for these tests are reported below in square brackets.
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Table 2: Analytical approximation performance for lnEQ
t−1[e

σ∗

t
ε∗
t ]

a b simu. appr. diff.
0.0 1.5 -0.000546 -0.000540 0.000006
0.0 2.0 -0.000543 -0.000547 0.000004
0.0 2.5 -0.000545 -0.000549 0.000004
0.0 3.0 -0.000545 -0.000550 0.000005
1.0 1.5 -0.000522 -0.000521 0.000001
1.0 2.0 -0.000541 -0.000541 0.000000
1.0 2.5 -0.000546 -0.000547 0.000001
1.0 3.0 -0.000551 -0.000549 0.000002
2.0 1.5 -0.000504 -0.000499 0.000005
2.0 2.0 -0.000532 -0.000529 0.000003
2.0 2.5 -0.000541 -0.000541 0.000000
2.0 3.0 -0.000547 -0.000546 0.000001
3.0 1.5 -0.000492 -0.000490 0.000002
3.0 2.0 -0.000524 -0.000521 0.000003
3.0 2.5 -0.000532 -0.000535 0.000003
3.0 3.0 -0.000547 -0.000542 0.000005

This table reports results on the performance of the approximation in (9): “simu.” is the expected value

computed with a Monte Carlo simulation using 15 million sample paths and “appr.” is the analytical value

computed with the approximation formula given by equation (9). In these computations σ∗
t = 0.2×

√
1/252

and λt = 0.05.
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Table 3: Solving for λt with a linear interpolation

a b bisec. lin. int. diff.
0.0 1.0 0.023895 0.023879 0.000016
0.0 2.0 0.022162 0.022157 0.000005
0.0 3.0 0.022076 0.022068 0.000008
0.0 4.0 0.022052 0.022054 0.000002
1.0 1.0 0.026996 0.026250 0.000746
1.0 2.0 0.022467 0.022265 0.000202
1.0 3.0 0.022137 0.022045 0.000093
1.0 4.0 0.022076 0.022024 0.000052
2.0 1.0 0.028632 0.027670 0.000961
2.0 2.0 0.022968 0.022631 0.000336
2.0 3.0 0.022284 0.022117 0.000167
2.0 4.0 0.022137 0.022033 0.000105
3.0 1.0 0.028912 0.027909 0.001003
3.0 2.0 0.023285 0.022883 0.000402
3.0 3.0 0.022430 0.022213 0.000217
3.0 4.0 0.022198 0.022062 0.000136

This table reports results for two methods which can be used to solve the pricing restriction in (13): “bisec.”

is the value of λt computed with a bisection algorithm and “lin. int.” is the value of λt computed with the

linear interpolation approach. In these computations σ∗
t = 0.2×

√
1/252 and α = 0.1/252, r = 0.03/252.
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Table 4: Solving for νt

a b σ bisec. lin. int. approx.
1.0 1.0 0.10 6.315247 7.104352 7.005481
1.0 2.0 0.10 6.884111 7.017292 7.000914
1.0 3.0 0.10 6.952161 7.007081 7.000375
1.0 4.0 0.10 6.973826 7.003864 7.000204
1.0 1.0 0.20 1.703993 1.801053 1.760663
1.0 2.0 0.20 1.742703 1.758614 1.751819
1.0 3.0 0.20 1.747009 1.753530 1.750747
1.0 4.0 0.20 1.748368 1.751926 1.750408
1.0 1.0 0.30 0.784489 0.811006 0.793322
1.0 2.0 0.30 0.779146 0.783499 0.780493
1.0 3.0 0.30 0.778345 0.780124 0.778894
1.0 4.0 0.30 0.778087 0.779058 0.778388
1.0 1.0 0.60 0.207850 0.209674 0.222830
1.0 2.0 0.60 0.196964 0.197271 0.199795
1.0 3.0 0.60 0.195483 0.195606 0.196656
1.0 4.0 0.60 0.195011 0.195079 0.195654

This table reports results for the three approaches which can be used to solve the pricing restriction in (14):

“bisec.” is the value of νt computed with a bisection algorithm, “lin. int.” is the the value of νt computed

with the linear interpolation approach, and “approx.” is the value of νt computed with the approximation

suggested in CEFJ. In these computations α = 0.1/252, r = 0.03/252 and σ is multiplied by
√
1/252.
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Table 5: Black-Scholes implied volatilities of European call option prices on the S&P 500

Strike prices
47 48 49 50 51 52 53

Equilibrium: constant λ
T = 30 0.2745 0.2577 0.2415 0.2261 0.2114 0.1978 0.1855
T = 90 0.2669 0.2540 0.2415 0.2294 0.2178 0.2068 0.1963
T = 270 0.2668 0.2589 0.2512 0.2437 0.2366 0.2297 0.2230

Equilibrium: time-varying λt

T = 30 0.2745 0.2577 0.2414 0.2258 0.2111 0.1974 0.1850
T = 90 0.2671 0.2541 0.2415 0.2293 0.2177 0.2066 0.1961
T = 270 0.2674 0.2593 0.2516 0.2441 0.2369 0.2299 0.2233

No-arbitrage: constant ν
T = 30 0.2742 0.2573 0.2410 0.2255 0.2108 0.1972 0.1848
T = 90 0.2664 0.2534 0.2408 0.2287 0.2170 0.2060 0.1956
T = 270 0.2667 0.2586 0.2508 0.2433 0.2360 0.2291 0.2224

No-arbitrage: time-varying νt
T = 30 0.2742 0.2574 0.2412 0.2256 0.2109 0.1972 0.1849
T = 90 0.2671 0.2541 0.2415 0.2293 0.2176 0.2065 0.1960
T = 270 0.2677 0.2596 0.2518 0.2443 0.2370 0.2301 0.2234

This table reports the Black-Scholes implied volatilities obtained from theoretical call option prices computed

with a Monte-Carlo simulation with one million sample paths. The NGARCH-Johnson parameter values are

taken from the time series estimations reported in Table 1. In each case, the initial variance is set to the

estimated variance for the last data point in the time series estimation. The initial stock price is set to 50,

the interest rate to 0.03/252 and the dividend yield to 0.01/252.
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Table 6: Statistics about the pricing errors computed with a weekly sample of call and put
options on the S&P 500 index from 2006 to 2011

EquCst EquTva NoaCst NoaTva

Correlations of pricing errors
EquCst – 0.9987 0.8780 0.9679
EquTva – – 0.8721 0.9689
NoaCst – – – 0.8800

Correlations of absolute pricing errors
EquCst – 0.9960 0.8225 0.9434
EquTva – – 0.8042 0.9465
NoaCst – – – 0.8174

Pricing errors
me -0.0119 -0.0146 -0.0062 -0.0142
mae 0.0386 0.0392 0.0431 0.0391
rmse 0.0576 0.0580 0.0705 0.0578

mae by maturity
T ≤ 30 0.0413 0.0414 0.0455 0.0412
30 < T ≤ 90 0.0375 0.0383 0.0417 0.0382
90 < T ≤ 180 0.0345 0.0364 0.0394 0.0361
T > 180 0.0328 0.0353 0.0423 0.0346

mae by moneyness
out 0.0509 0.0526 0.0566 0.0523
near 0.0312 0.0315 0.0347 0.0313
in 0.1187 0.1184 0.1506 0.1210

mae by implied volatility
σ ≤ 0.20 0.0224 0.0225 0.0226 0.0224
0.20 < σ ≤ 0.30 0.0384 0.0395 0.0401 0.0393
0.30 < σ ≤ 0.40 0.0559 0.0575 0.0635 0.0573
σ > 0.40 0.0816 0.0817 0.1086 0.0816

mae by years
2006 0.0171 0.0165 0.0174 0.0166
2007 0.0235 0.0238 0.0234 0.0237
2008 0.0474 0.0461 0.0714 0.0463
2009 0.0541 0.0559 0.0558 0.0556
2010 0.0408 0.0428 0.0400 0.0427
2011 0.0388 0.0402 0.0392 0.0396

This table reports statistics about the pricing errors, expressed as differences between Black-Scholes implied

volatilities, computed with a weekly sample of call and put options on the S&P 500 index from 2006 to 2011.

“EquCst” is for the equilibrium approach with a constant pricing parameter; “EquTva” is for the equilibrium

approach with a time-varying pricing parameter; “NoaCst” is for the no-arbitrage approach with a constant

pricing parameter; “NoaTva” is for the no-arbitrage approach with a time-varying pricing parameter. “me”

are mean pricing errors; “mae” are mean absolute pricing errors; “rmse” are root-mean-squared errors.

“out” are out-of-the-money options defined as S/K < 0.9 for calls and S/K > 1.1 for puts. “in” are in-the-

money options defined as S/K > 1.1 for calls and S/K < 0.9 for puts. “near” are near-the-money options

with S/K between 0.9 and 1.1.
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Table 7: Statistics about the pricing errors computed with a weekly sample of call and
put options on the S&P 500 index from 2006 to 2011 for alternative specifications of the
no-arbitrage approach with constant pricing parameters

νt = ν νt = ν/σt νt = ν/σ2

t λt = λ

Correlations of pricing errors
νt = ν – 0.9045 0.8842 0.8780
νt = ν/σt – – 0.9678 0.9301
νt = ν/σ2

t – – – 0.9409
Correlations of absolute pricing errors

νt = ν – 0.8668 0.8302 0.8225
νt = ν/σt – – 0.9441 0.8817
νt = ν/σ2

t – – – 0.8971
Pricing errors

me -0.0062 -0.0109 -0.0123 -0.0119
mae 0.0431 0.0383 0.0382 0.0386
rmse 0.0705 0.0581 0.0561 0.0576

mae by maturity
T ≤ 30 0.0455 0.0413 0.0409 0.0413
30 < T ≤ 90 0.0417 0.0373 0.0372 0.0375
90 < T ≤ 180 0.0394 0.0338 0.0344 0.0345
T > 180 0.0423 0.0315 0.0324 0.0328

mae by moneyness
out 0.0566 0.0503 0.0510 0.0509
near 0.0347 0.0310 0.0307 0.0312
in 0.1506 0.1222 0.1137 0.1187

mae by implied volatility
σ ≤ 0.20 0.0226 0.0223 0.0221 0.0224
0.20 < σ ≤ 0.30 0.0401 0.0379 0.0379 0.0384
0.30 < σ ≤ 0.40 0.0635 0.0553 0.0560 0.0559
σ > 0.40 0.1086 0.0816 0.0801 0.0816

mae by years
2006 0.0174 0.0173 0.0169 0.0171
2007 0.0234 0.0230 0.0232 0.0235
2008 0.0714 0.0482 0.0464 0.0474
2009 0.0558 0.0533 0.0538 0.0541
2010 0.0400 0.0402 0.0409 0.0408
2011 0.0392 0.0382 0.0383 0.0388

This table reports statistics about the pricing errors, expressed as differences between Black-Scholes implied

volatilities, computed with a weekly sample of call and put options on the S&P 500 index from 2006 to

2011. “νt = ν” is for the no-arbitrage approach with a constant pricing parameter; “νt = ν/σt” is for the

no-arbitrage approach with a constant pricing parameter scaled by the volatility; “νt = ν/σ2

t ” is for the no-

arbitrage approach with a constant pricing parameter scaled by the variance; “me” are mean pricing errors;

“mae” are mean absolute pricing errors; “rmse” are root-mean-squared errors. “out” are out-of-the-money

options defined as S/K < 0.9 for calls and S/K > 1.1 for puts. “in” are in-the-money options defined as

S/K > 1.1 for calls and S/K < 0.9 for puts. “near” are near-the-money options with S/K between 0.9 and

1.1.
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Table 8: Black-Scholes implied volatilities of European call option prices on the S&P 500 in
the no-arbitrage pricing framework

Strike prices
47 48 49 50 51 52 53

constant ν

ML Johnson su
T = 30 0.2803 0.2648 0.2503 0.2370 0.2249 0.2142 0.2052
T = 90 0.2743 0.2623 0.2508 0.2399 0.2296 0.2201 0.2114
T = 270 0.2867 0.2781 0.2699 0.2621 0.2548 0.2478 0.2414

QML Cornish-Fisher
T = 30 0.2711 0.2555 0.2409 0.2276 0.2157 0.2053 0.1967
T = 90 0.2598 0.2483 0.2373 0.2271 0.2176 0.2087 0.2007
T = 270 0.2618 0.2543 0.2471 0.2404 0.2341 0.2281 0.2225

QML Johnson su
T = 30 0.2710 0.2555 0.2410 0.2277 0.2158 0.2054 0.1967
T = 90 0.2598 0.2483 0.2374 0.2272 0.2177 0.2088 0.2008
T = 270 0.2618 0.2542 0.2471 0.2404 0.2341 0.2281 0.2225

time-varying νt

ML Johnson su
T = 30 0.2800 0.2654 0.2516 0.2390 0.2274 0.2172 0.2084
T = 90 0.2737 0.2624 0.2516 0.2413 0.2315 0.2224 0.2139
T = 270 0.2713 0.2641 0.2572 0.2506 0.2442 0.2381 0.2323

QML Cornish-Fisher
T = 30 0.2700 0.2553 0.2414 0.2287 0.2173 0.2072 0.1988
T = 90 0.2585 0.2477 0.2374 0.2277 0.2185 0.2101 0.2023
T = 270 0.2514 0.2450 0.2389 0.2331 0.2275 0.2222 0.2172

QML Johnson su
T = 30 0.2700 0.2553 0.2415 0.2288 0.2174 0.2073 0.1988
T = 90 0.2586 0.2478 0.2375 0.2278 0.2187 0.2102 0.2023
T = 270 0.2515 0.2451 0.2390 0.2331 0.2276 0.2223 0.2172

This table reports Black-Scholes implied volatilities of call option prices computed with a Monte-Carlo

simulation with one million sample paths for the no-arbitrage models with constant and time-varying νt.

“ML Johnson su” are for option prices obtained from the no-arbitrage pricing framework with Johnson su

shocks, “QML Cornish-Fisher” are for option prices obtained with a quasi-maximum likelihood estimator

and Cornish-Fisher random numbers, and “QML Johnson su” are for option prices obtained with a quasi-

maximum likelihood estimator and Johnson su random numbers. In each case, the initial variance is set to

the estimated variance for the last data point in the time series estimation. The initial stock price is set to

50, the constant interest rate to 0.03/252 and the dividend yield to 0.01/252.

40



Table 9: Statistics about the pricing errors computed with a weekly sample of call and put
options on the S&P 500 index from 2006 to 2011

NoaTva QML-John QML-CF QML-CF
Tva Tva Cst

Correlations of pricing errors
NoaTva – 0.9478 0.9452 0.8796
QML-John – – 0.9950 0.8859
QML-CF – – – 0.8867

Correlations of absolute pricing errors
NoaTva – 0.9089 0.9036 0.8362
QML-John – – 0.9914 0.8211
QML-CF – – – 0.8213

Pricing errors
me -0.0142 -0.0191 -0.0196 -0.0146
mae 0.0391 0.0382 0.0382 0.0415
rmse 0.0578 0.0545 0.0545 0.0630

mae by maturity
T ≤ 30 0.0412 0.0374 0.0374 0.0410
30 < T ≤ 90 0.0382 0.0374 0.0375 0.0398
90 < T ≤ 180 0.0361 0.0409 0.0410 0.0448
T > 180 0.0346 0.0425 0.0426 0.0484

mae by moneyness
out 0.0523 0.0504 0.0506 0.0537
near 0.0313 0.0310 0.0310 0.0338
in 0.1210 0.1118 0.1111 0.1407

mae by implied volatility
σ ≤ 0.20 0.0224 0.0222 0.0220 0.0225
0.20 < σ ≤ 0.30 0.0393 0.0402 0.0404 0.0418
0.30 < σ ≤ 0.40 0.0573 0.0568 0.0570 0.0611
σ > 0.40 0.0816 0.0716 0.0717 0.0911

mae by years
2006 0.0166 0.0186 0.0181 0.0179
2007 0.0237 0.0233 0.0232 0.0227
2008 0.0463 0.0378 0.0378 0.0566
2009 0.0556 0.0590 0.0593 0.0590
2010 0.0427 0.0421 0.0423 0.0417
2011 0.0396 0.0395 0.0396 0.0403

This table reports statistics about the pricing errors, expressed as differences between Black-Scholes implied

volatilities, computed with a weekly sample of call and put options on the S&P 500 index from 2006 to

2011 with the no-arbitrage approach. “NoaTva” are for option prices computed with a maximum likelihood

approach and a time-varying ν; “QML-John-Tva” are for option prices computed with a quasi-maximum

likelihood approach, Johnson su random numbers and a time-varying νt; “QML-CF-Tva” are for option prices

computed with a quasi-maximum likelihood approach, Cornish-Fisher random numbers and a time-varying

νt; “QML-CF-Cst” are for option prices computed with a quasi-maximum likelihood approach, Cornish-

Fisher random numbers and a constant ν. “me” are mean pricing errors; “mae” are mean absolute pricing

errors; “rmse” are root-mean-squared errors. “out” are out-of-the-money options defined as S/K < 0.9 for

calls and S/K > 1.1 for puts. “in” are in-the-money options defined as S/K > 1.1 for calls and S/K < 0.9

for puts. “near” are near-the-money options with S/K between 0.9 and 1.1.
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Table 10: Time series estimation results for time-varying conditional non-normal distribu-
tions

physical equilibrium no-arbitrage

β0 1.8e-06 1.9e-06 2.2e-06
(2.7e-07) (2.6e-07) (2.9e-07)

β1 0.8446 0.8429 0.8371
(0.0108) (0.0109) (0.0113)

β2 0.0662 0.0660 0.0669
(0.0067) (0.0066) (0.0067)

θ 1.1097 1.1031 1.1162
(0.1138) (0.1144) (0.1147)

ā 0.2808 0.2691 0.2905
(0.0796) (0.0776) (0.0731)

φa,1 0.5277 0.5408 0.5670
(0.2634) (0.2557) (0.2482)

φa,2 -47968 -48464 -47753
(26640) (26632) (26377)

b̄ 2.5434 2.5455 2.5634
(0.2298) (0.2294) (0.2293)

φb,1 0.9855 0.9857 0.9863
(0.0033) (0.0032) (0.0031)

φb,2 222798 221687 222092
(91444) (90414) (88809)

α 2.9e-04 – –
(1.1e-04) – –

λ – 0.0297 –
– (0.0138) –

ν – – 2.0797
– – (1.0111)

loglik 18154 18156 18156
JB 2.0823 2.1726 1.9204

[0.3427] [0.3421] [0.3793]
Q(20) 31.3145 30.4335 29.4389

[0.0512] [0.0631] [0.0795]
Q2(20) 27.1567 27.5678 30.0118

[0.1309] [0.1200] [0.0697]

This table reports the maximum likelihood estimates for the time series model with conditional time-varying

non-normal distribution described by equations (21) to (24). Standard errors are reported in parenthesis

below the parameter estimates. “Loglik” is the log-likelihood value and “JB” is the Jarque-Bera normality

test for the standard normal residuals computed with equation (26). Q(20) is the Ljung-Box portmanteau

test for up to 20th-order serial correlation in the standardized residuals, whereas Q2(20) is the same test for

the squared standardized residuals. The p-values for these tests are reported below in square brackets.
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Table 11: Statistics about the pricing errors computed with a weekly sample of call and
put options on the S&P 500 index from 2006 to 2011 with the time-varying non-normal
distribution model

EquCst EquTva NoaCst NoaTva
Correlations of pricing errors

EquCst – 0.9932 0.8258 0.9672
EquTva – – 0.8181 0.9625
NoaCst – – – 0.8285

Correlations of absolute pricing errors
EquCst – 0.9878 0.7586 0.9453
EquTva – – 0.7410 0.9390
NoaCst – – – 0.7577

Pricing errors
me -0.0170 -0.0194 -0.0118 -0.0192
mae 0.0375 0.0385 0.0417 0.0384
rmse 0.0559 0.0571 0.0678 0.0566

mae by maturity
T ≤ 30 0.0398 0.0401 0.0431 0.0400
30 < T ≤ 90 0.0362 0.0373 0.0401 0.0373
90 < T ≤ 180 0.0348 0.0370 0.0402 0.0369
T > 180 0.0345 0.0387 0.0441 0.0366

mae by moneyness
out 0.0507 0.0528 0.0556 0.0525
near 0.0298 0.0304 0.0330 0.0302
in 0.1159 0.1162 0.1500 0.1200

mae by implied volatility
σ ≤ 0.20 0.0204 0.0206 0.0204 0.0205
0.20 < σ ≤ 0.30 0.0381 0.0395 0.0392 0.0394
0.30 < σ ≤ 0.40 0.0567 0.0588 0.0630 0.0585
σ > 0.40 0.0794 0.0812 0.1072 0.0809

mae by years
2006 0.0172 0.0166 0.0182 0.0165
2007 0.0232 0.0236 0.0231 0.0235
2008 0.0398 0.0397 0.0639 0.0397
2009 0.0616 0.0635 0.0614 0.0636
2010 0.0384 0.0403 0.0374 0.0405
2011 0.0365 0.0384 0.0363 0.0376

This table reports statistics about the pricing errors, expressed as differences between Black-Scholes implied

volatilities, computed with a weekly sample of call and put options on the S&P 500 index from 2006 to 2011.

“EquCst” is for the equilibrium approach with a constant pricing parameter; “EquTva” is for the equilibrium

approach with a time-varying pricing parameter; “NoaCst” is for the no-arbitrage approach with a constant

pricing parameter; “NoaTva” is for the no-arbitrage approach with a time-varying pricing parameter. “me”

are mean pricing errors; “mae” are mean absolute pricing errors; “rmse” are root-mean-squared errors.

“out” are out-of-the-money options defined as S/K < 0.9 for calls and S/K > 1.1 for puts. “in” are in-the-

money options defined as S/K > 1.1 for calls and S/K < 0.9 for puts. “near” are near-the-money options

with S/K between 0.9 and 1.1.
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Figure 1: Quantile to quantile plot of standardized normal residuals implied by the Johnson
su distribution
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Figure 2: Pricing restriction as a function of λ in the equilibrium pricing framework

0 0.01 0.02 0.03 0.04 0.05
-12

-10

-8

-6

-4

-2

0

2

4
x 10

-4

λ

45



Figure 3: Pricing restriction as a function of ν in the no-arbitrage pricing framework
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Figure 4: Equilibrium and no-arbitrage pricing parameter as a function of the volatility level
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