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Abstract

The linear regression model is widely used in empirical work in Economics. Researchers

often include many covariates in their linear model specification in an attempt to control for

confounders. We give inference methods that allow for many covariates and heteroskedasticity.

Our results are obtained using high-dimensional approximations, where the number of covariates

are allowed to grow as fast as the sample size. We find that all of the usual versions of Eicker-

White heteroskedasticity consistent standard error estimators for linear models are inconsistent

under this asymptotics. We then propose a new heteroskedasticity consistent standard error

formula that is fully automatic and robust to both (conditional) heteroskedasticity of unknown

form and the inclusion of possibly many covariates. We apply our findings to three settings:

(i) parametric linear models with many covariates, (ii) semiparametric semi-linear models with

many technical regressors, and (iii) linear panel models with many fixed effects.
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1 Introduction

A key goal in empirical work is to estimate the structural, causal, or treatment effect of some

variable on an outcome of interest, such as the impact of a labor market policy on outcomes like

earnings or employment. Since many variables measuring policies or interventions are not exoge-

nous, researchers often employ observational methods to estimate their effects. One important

method is based on assuming that the variable of interest can be taken as exogenous after con-

trolling for a suffi ciently large set of other factors or covariates. A major problem that empirical

researchers face when employing selection-on-observables methods to estimate structural effects is

the availability of many potential covariates. This problem has become even more pronounced in

recent years because of the widespread availability of large (or high-dimensional) new data sets.

While it is often the case that economic theory (or intuition) will suggest a large set of vari-

ables that might be important, researchers prefer to also include additional “technical” controls

constructed using indicator variables, interactions and other non-linear transformations of those

variables. Therefore, many economic studies include very many covariates in order to control for as

broad array of confounders as possible. For example, it is common practice in microeconometrics to

include dummy variables for many potentially overlapping groups based on age, cohort, geographic

location, etc. Even when some controls are dropped after valid covariate selection, as was recently

developed by Belloni, Chernozhukov, and Hansen (2014b), many controls usually may remain in

the final model specification.

We present valid inference methods that explicitly account for the presence of possibly many

controls in linear regression models with unrestricted (conditional) heteroskedasticity. Specifically,

we consider the setting where the object of interest is β in a model of the form

yi,n = β′xi,n + γ′nwi,n + ui,n, i = 1, . . . , n, (1)

where yi,n is a scalar outcome variable, xi,n is a regressor of small (i.e., fixed) dimension d, wi,n
is a vector of covariates of possibly large (i.e., growing) dimension Kn, and ui,n is an unobserved

error term. Two important cases discussed in more detail below, are “flexible”parametric modeling

of controls via basis expansions such as higher-order powers and interactions (i.e., a series-based

formulation of the partially linear regression model), and models with many dummy variables such

as fixed effects and interactions thereof in panel data. In both cases conducting OLS-based inference

on β in (1) is straightforward when the error ui,n is homoskedastic and/or the dimension Kn of

the nuisance covariates is modeled as a vanishing fraction of the sample size. The latter modeling

assumption, however, seems inappropriate in applications with many dummy variables model and

does not deliver the best approximation when many covariates are included.

Motivated by the above observations, this paper studies the consequences of allowing the error

ui,n in (1) to be (conditionally) heteroskedastic in a setting where the covariate wi,n is permitted

to be high-dimensional in the sense that Kn is allowed, but not required, to be a non-vanishing

fraction of the sample size. Our main purpose is to investigate the possibility of constructing
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heteroskedasticity-consistent variance estimators for the OLS estimator of β in (1) without (nec-

essarily) assuming any special structure on the part of the covariate wi,n. We present two main

results. First, we provide high-level suffi cient conditions guaranteeing a valid Gaussian distribu-

tional approximation to the finite sample distribution of the OLS estimator of β, allowing for the

dimension of the nuisance covariates to be proportional to the sample size (Kn ∝ n). Second, we

characterize the large sample properties of a class of variance estimators and use this characteri-

zation to obtain both negative and positive results. The negative finding is that the Eicker-White

estimator is inconsistent in general, as are popular variants of this estimator. The positive result

gives conditions under which an alternative heteroskedasticity-robust variance estimator (described

in more detail below) is consistent. The main condition needed for our constructive results is a high-

level assumption on the nuisance covariates requiring in particular that their number be strictly

less than half of the sample size.

Our results contribute to the already sizeable literature on heteroskedasticity-robust variance

estimators for linear regression models, a recent review of which is given by MacKinnon (2012).

Important papers whose results are related to ours include White (1980), MacKinnon and White

(1985), Wu (1986), Chesher and Jewitt (1987), Shao and Wu (1987), Chesher (1989), Cribari-Neto,

Ferrari, and Cordeiro (2000), Bera, Suprayitno, and Premaratne (2002), Stock and Watson (2008),

Cribari-Neto and da Gloria A. Lima (2011), and Müller (2013). In particular, Bera, Suprayitno,

and Premaratne (2002) analyze some finite sample properties of a variance estimator similar to the

one whose asymptotic properties are studied herein.

This paper also adds to the literature on high-dimensional linear regression where the number

of regressors grow with the sample size; see, e.g., Huber (1973), Koenker (1988), Mammen (1993),

El Karoui, Bean, Bickel, Lim, and Yu (2013) and references therein. In particular, Huber (1973)

showed that fitted regression values are not asymptotically normal when the number of regressors

grows as fast as sample size, while Mammen (1993) obtained asymptotic normality for arbitrary

contrasts of OLS estimators in linear regression models where the dimension of the covariates is at

most a vanishing fraction of the sample size. More recently, El Karoui, Bean, Bickel, Lim, and Yu

(2013) showed that, if a Gaussian distributional assumption on regressors and homoskedasticity is

assumed, then certain estimated coeffi cients and contrasts in linear models are asymptotically nor-

mal when the number of regressors grow as fast as sample size, but do not discuss inference results

(even under homoskedasticity). Our result in Theorem 1 below shows that certain contrasts of OLS

estimators in high-dimensional linear models are asymptotically normal under fairly general regu-

larity conditions. Intuitively, we circumvent the problems associated with the lack of asymptotic

Gaussianity by focusing exclusively on a small subset of regressors when the number of covariates

gets large. We give inference results by constructing heteroskedasticity consistent standard errors

without imposing any distributional assumption or other very specific restrictions on the regressors.

As discussed in more detailed below, our high-level conditions allow for Kn ∝ n and restrict

the data generating process in fairly general and intuitive ways. In particular, our generic suffi -

cient condition on the nuisance covariates wi,n covers several special cases of interest for empirical

2



work. For example, our results encompass (and weakens in some sense; see Remark 2 below) those

reported in Stock and Watson (2008), who investigated the one-way fixed effects panel data re-

gression model in detail and showed that the conventional Eicker-White heteroskedasticity-robust

variance estimator is inconsistent in that model, being plagued by a non-negligible bias problem

attributable to the presence of many covariates (i.e., the fixed effects). The very special structure

of the covariates in the one-way fixed effects model estimator enabled Stock and Watson (2008)

to give an explicit characterization of this bias and to demonstrate consistency of a bias-corrected

version of the Eicker-White variance estimator. The generic variance estimator proposed herein

essentially reduces to their bias corrected variance estimator in the special case of the one-way fixed

effects model, even though our results are derived from a different perspective.

The rest of this paper is organized as follows. Section 2 presents the variance estimators we

study and gives a heuristic description of their main properties. Section 3 introduces the three

leading examples covered by our results. Section 4 introduces a general framework that unifies

the examples, gives the main results of the paper, and discusses their implications for the three

examples we consider. Section 5 reports the results of a Monte Carlo experiment, while Section 6

concludes. To conserve space, proofs of all results are reported in a supplemental appendix.

2 Variance Estimators

For the purposes of discussing variance estimators associated with the OLS estimator β̂n of β in

(1) it is convenient to write the estimator in “partialled out”form as

β̂n = (

n∑
i=1

v̂i,nv̂
′
i,n)−1(

n∑
i=1

v̂i,nyi,n), v̂i,n =

n∑
j=1

Mij,nxj,n,

where Mij,n = 1(i = j) − w′i,n(
∑n

k=1wk,nw
′
k,n)−1wj,n, 1(·) denotes the indicator function, and the

relevant inverses are assumed to exist. Defining Γ̂n =
∑n

i=1 v̂i,nv̂
′
i,n/n, the objective is to find an

estimator Σ̂n of the variance of
∑n

i=1 v̂i,nui,n/
√
n such that

Ω̂−1/2n

√
n(β̂n − β)→d N (0, Id), Ω̂n = Γ̂−1n Σ̂nΓ̂−1n , (2)

in which case asymptotically valid inference on β can be conducted in the usual way by employing

the distributional approximation β̂n
a∼ N (β, Ω̂n/n).

Defining ûi,n =
∑n

j=1Mij,n(yj,n − β̂
′
nxj,n), standard choices of Σ̂n in the fixed-Kn case include

the homoskedasticity-only estimator

Σ̂HOn = σ̂2nΓ̂n, σ̂2n =
1

n− d−Kn

n∑
i=1

û2i,n,
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and the Eicker-White-type estimator

Σ̂EWn =
1

n

n∑
i=1

v̂i,nv̂
′
i,nû

2
i,n.

Perhaps not too surprisingly, we find that consistency of Σ̂HOn under homoskedasticity holds quite

generally even for models with many covariates. In contrast, construction of a heteroskedasticity-

robust estimator of Σn is more challenging, as it turns out that consistency of Σ̂EWn generally requires

Kn to be a vanishing fraction of n.

To fix ideas, suppose (yi,n, x
′
i,n, w

′
i,n) are i.i.d. over i. It turns out that, under certain regularity

conditions,

Σ̂EWn =
1

n

n∑
i=1

n∑
j=1

M2
ij,nv̂i,nv̂

′
i,nE[u2j,n|xj,n, wj,n] + op(1),

whereas a requirement for (2) to hold is that the estimator Σ̂n satisfies

Σ̂n =
1

n

n∑
i=1

v̂i,nv̂
′
i,nE[u2i,n|xi,n, wi,n] + op(1). (3)

The difference between the leading terms in the expansions is non-negligible in general unless

Kn/n→ 0. In recognition of this problem with Σ̂EWn , we study the more general class of estimators

of the form

Σ̂n(κn) =
1

n

n∑
i=1

n∑
j=1

κij,nv̂iv̂
′
iû
2
j ,

where κij,n denotes element (i, j) of a symmetric matrix κn = κn(w1,n, . . . , wn,n). Estimators that

can be written in this fashion include Σ̂EWn (which corresponds to κn = In) as well as variants of the

so-called HCk estimators, k ∈ {1, 2, 3, 4}, discussed by MacKinnon (2012), among others.1

All of the HCk-type estimators (correspond to a diagonal choice of κn and) share with Σ̂EWn

the shortcoming that they do not satisfy (3) when Kn/n 9 0. On the other hand, it turns out

that a certain non-diagonal choice of κn makes it possible to satisfy (3) even if Kn is a non-

vanishing fraction of n. To be specific, it turns out that (under regularity conditions and) under

mild conditions under the weights κij,n, Σ̂n(κn) satisfies

Σ̂n(κn) =
1

n

n∑
i=1

n∑
j=1

n∑
k=1

κik,nM
2
kj,nv̂i,nv̂

′
i,nE[u2j,n|xj,n, wj,n] + op(1),

1To be specific, a natural variant of HCk is obtained by choosing κn to be diagonal with κii,n = Υi,nM
−ξi,n
ii,n , where

(Υi,n, ξi,n) = (n/(n −Kn), 0) for HC1, (Υi,n, ξi,n) = (1, 1) for HC2, (Υi,n, ξi,n) = (1, 2) for HC3, and (Υi,n, ξi,n) =
(1,min(4, nMii,n/Kn)) for HC4.
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suggesting that (3) holds with Σ̂n = Σ̂n(κn) provided κn is chosen in such a way that

n∑
k=1

κik,nM
2
kj,n = 1(i = j), 1 ≤ i, j ≤ n.

Accordingly, we define

Σ̂HCn = Σ̂n(κHCn ) =
1

n

n∑
i=1

n∑
j=1

κHCij,nv̂i,nv̂
′
i,nû

2
j,n,

where, with Mn denoting the matrix with element (i, j) given by Mij,n and � denoting the

Hadamard product,

κHCn =


κHC11,n · · · κHC1n,n
...

. . .
...

κHCn1,n · · · κHCnn,n

 =


M2
11,n · · · M2

1n,n
...

. . .
...

M2
n1,n · · · M2

nn,n


−1

= (Mn �Mn)−1.

The estimator Σ̂HCn is well defined whenever Mn�Mn is invertible, a simple suffi cient condition for

which is thatMn < 1/2, where2

Mn = 1− min
1≤i≤n

Mii,n.

More importantly, a slight strengthening of the conditionMn < 1/2 will be shown to be suffi cient

for (2) and (3) to hold with Σ̂n = Σ̂HCn .

Remark 1. The estimator Σ̂HCn can be written as n−1
∑n

i=1 v̂i,nv̂
′
i,nũ

2
i,n, where ũ

2
i,n =

∑n
j=1 κ

HC
ij,nû

2
j,n

can be interpreted as a bias-corrected “estimator”of (the conditional expectation of) u2i,n.

3 Examples

The heuristics of the preceding section will be made precise in the next section. Before doing so,

we present three leading examples, all of which are covered by the results developed in Section 4:

(i) linear regression models with increasing dimension, (ii) semiparametric partially linear models,

and (iii) fixed effects panel data regression models.

Let λmin(·) denote the minimum eigenvalue of its argument and let ‖ · ‖ denote the Euclidean
norm.

3.1 Linear Regression Model with Increasing Dimension

The model of main interest is the linear regression model characterized by (1) and the following

assumptions.

Assumption LR1 {(yi,n, x′i,n, w′i,n) : 1 ≤ i ≤ n} are i.i.d. over i.
2The fact thatMn < 1/2 implies invertibility of Mn�Mn is a consequence of the Gershgorin circle theorem. For

details, see the supplemental appendix.
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Assumption LR2 E[‖xi,n‖2] = O(1), E[ui,n|xi,n, wi,n] = 0, and max1≤i≤n |v̂i,n|/
√
n = op(1).

Assumption LR3 P[λmin(
∑n

i=1wi,nw
′
i,n) > 0]→ 1, limn→∞Kn/n < 1, and CLRn = Op(1), where

CLRn = max
1≤i≤n

{E[u4i,n|xi,n, wi,n] + E[‖Vi,n‖4|wi,n]}

+ max
1≤i≤n

{1/E[u2i,n|xi,n, wi,n] + 1/λmin(E[Vi,nV
′
i,n|wi,n])},

with Vi,n = xi,n − E[xi,n|wi,n].

We shall consider this model in some detail because it is important in its own right and because

the insights obtained for it can be used constructively in other cases, including the partially linear

model (4) and the fixed effects panel data regression model (5) presented below. Linear regression

models with (possibly) increasing dimension have a long tradition in econometrics and statistics,

and we consider them here as a theoretical device to obtain asymptotic approximations that better

represent the finite-sample behavior of the statistics of interest.

The main difference between Assumptions LR1-LR3 and those familiar from the fixed-Kn case

is the presence of the condition max1≤i≤n |v̂i,n|/
√
n = op(1) in Assumption LR2. At the present

level of generality it seems diffi cult to formulate primitive suffi cient conditions for this condition

that cover all cases of interest, but for completeness we mention that under mild moment conditions

it suffi ces to require that one of the following conditions hold (see the supplemental appendix for

details):

(i)Mn →p 0, or

(ii) χLRn = minδ∈RKn×d E[‖E(xi,n|wi,n)− δ′wi,n‖2]→ 0, or

(iii) max1≤i≤n
∑n

j=1 1(Mij,n 6= 0) = op(n
1/3).

Each of these conditions is interpretable. First,Mn ≥ Kn/n because
∑n

i=1Mii,n = n−Kn and

a necessary condition for (i) is therefore that Kn/n→ 0. Conversely, because

Mn ≤
Kn

n

1−min1≤i≤nMii,n

1−max1≤i≤nMii,n
,

the condition Kn/n → 0 is suffi cient for (i) whenever the design is “approximately balanced” in
the sense that (1−min1≤i≤nMii,n)/(1−max1≤i≤nMii,n) = Op(1). In other words, (i) requires and
effectively covers the case where it is assumed that Kn is a vanishing fraction of n. In contrast,

conditions (ii) and (iii) can hold also when Kn is a non-vanishing fraction of n, which is the case

of primary interest in this paper.

Because (ii) is a requirement on the accuracy of the approximation

E[xi,n|wi,n] ≈ δ′nwi,n, δn = E[wi,nw
′
i,n]−1E[wi,nx

′
i,n],

primitive conditions for it are available when the elements of wi,n are approximating functions, as in

the partially linear model (4) discussed next. Indeed, in such cases one typically has χLRn = O(K−αn )
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for some α > 0, so condition (ii) not only accommodates Kn/n9 0, but actually places no upper

bound on the magnitude of Kn in important special cases.

Finally, condition (iii), and its underlying higher-level condition described in the supplemental
appendix, is useful to handle cases where wi,n can not be interpreted as approximating functions,

but rather just many different covariates included in the linear model specification. This condition

is a “sparsity” condition on the matrix Mn, which allows for Kn/n 9 0. Although somewhat

stronger than needed, the condition is easy to verify in certain cases, including the panel data

model (5) discussed below.

3.2 Semiparametric Partially Linear Model

Another econometric model covered by our results is the partially linear model

yi = β′xi + g(zi) + εi, i = 1, . . . , n, (4)

where xi and zi are explanatory variables, εi is an error term, and the function g(z) is unknown.

Suppose {pk(z) : k = 1, 2, · · · ,Kn} are functions having the property that linear combinations
can approximate square-integrable functions of z well, in which case g(zi) ≈ γ′npn(zi) for some

γn, where pn(z) = (p1(z), . . . , pKn(z))′. Defining yi,n = yi, xi,n = xi, wi,n = pn(zi), and ui,n =

εi + g(zi)− γ′nwi,n, the model (4) is of the form (1), and β̂n is the series estimator of β previously

studied by Donald and Newey (1994) and Cattaneo, Jansson, and Newey (2015). In this case, our

analysis of β̂n will proceed under the following assumptions.

Assumption PL1 {(yi, x′i, z′i) : 1 ≤ i ≤ n} are i.i.d. over i.

Assumption PL2 E[εi|xi, zi] = 0, %PLn → 0, χPLn → 0, and n%PLn χ
PL
n → 0, where

%PLn = min
γ∈RKn

E[|E[yi − β′xi|xi, zi]− γ′pn(zi)|2], χPLn = min
δ∈RKn×d

E[‖E[xi|zi]− δ′pn(zi)‖2].

Assumption PL3 P[λmin(
∑n

i=1 pn(zi)pn(zi)
′) > 0] → 1, limn→∞Kn/n < 1, and CPLn = Op(1),

where

CPLn = max
1≤i≤n

{E[ε4i |xi, zi] + E[‖νi‖4|zi] + 1/E[ε2i |xi, zi] + 1/λmin(E[νiν
′
i|zi])},

with νi = xi − E[xi|zi].

Because g(zi) 6= γ′npn(zi) in general, the partially linear model does not (necessarily) satisfy

E[ui,n|xi,n, wi,n] = 0. To accommodate this failure a relaxation of Assumption LR2 is needed.

The approach taken here, made precise in Assumption PL2, is motivated by the fact that linear

combinations of {pk(z)} are assumed to be able to approximate the functions g(z) and h(z) well,

where h(zi) = E[xi|zi]. Under standard smoothness conditions, and for standard choices of basis
functions, we have %PLn = O(K

−αg
n ) and χPLn = O(K−αhn ) for some pair (αg, αh) of positive constants,
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in which case Assumption PL2 holds provided Kαg+αh
n /n → ∞. For further technical details see,

for example, Newey (1997), Chen (2007), Cattaneo and Farrell (2013), and Belloni, Chernozhukov,

Chetverikov, and Kato (2015).

3.3 Fixed Effects Panel Data Regression Model

Stock and Watson (2008) consider heteroskedasticity-robust inference for the panel data regression

model

Yit = αi + β′Xit + Uit, i = 1, . . . , N, t = 1, . . . , T, (5)

where αi ∈ R is an individual-specific intercept, Xit ∈ Rd is a regressor of dimension d, Uit ∈ R is
an error term, and the following assumptions are satisfied.

Assumption FE1 {(Ui1, . . . , UiT , X ′i1 . . . , X ′iT ) : 1 ≤ i ≤ n} are independent over i, T ≥ 3 is

fixed, and E[UitUis|Xi1 . . . , XiT ] = 0 for t 6= s.

Assumption FE2 E[Uit|Xi1 . . . , XiT ] = 0.

Assumption FE3 CFEN = Op(1), where

CFEN = max
1≤i≤N,1≤t≤T

{E[U4it|Xi1 . . . , XiT ] + E[‖Xit‖4]}

+ max
1≤i≤N,1≤t≤T

{1/E[U2it|Xi1 . . . , XiT ] + 1/λmin(E[ṼitṼ
′
it])},

with Ṽit = Xit − E[Xit]− T−1
∑T

s=1(Xis − E[Xis]).

Defining n = NT, Kn = N, γn = (α1, . . . , αN )′, and

(y(i−1)T+t,n, x
′
(i−1)T+t,n, u(i−1)T+t,n, w

′
(i−1)T+t,n) = (Yit, X

′
it, Uit, e

′
i,N ), 1 ≤ i ≤ N, 1 ≤ t ≤ T,

where ei,N ∈ RN is the i-th unit vector of dimension N, the model (5) is also of the form (1) and

β̂n is the fixed effects estimator of β. In general, this model does not satisfy Assumption LR1, but

Assumption FE1 enables us to employ results for independent random variables when developing

asymptotics. In other respects this model is in fact more tractable than the previous models due

to the special nature of the covariates wi,n.

Remark 2. One implication of Assumptions FE1 and FE2 is that E[Yit|Xi1, . . . , XiT ] = αi+β
′Xit,

where αi can depend on i and the conditioning variables (Xi1, . . . , XiT ) in an arbitrary way.

In the spirit of “fixed effects”(as opposed to “correlated random effects”) Assumptions FE1-

FE3 further allow V[Yit|Xi1, . . . , XiT ] to depend not only on (Xi1, . . . , XiT ), but also on i. In

particular, unlike Stock and Watson (2008), we do not require (Ui1, . . . , UiT , X
′
i1 . . . , X

′
iT ) to

be i.i.d. over i. In addition, we do not require any kind of stationarity on the part of (Uit, X
′
it).

The amount of variance heterogeneity permitted is quite large, as Assumption FE3 basically

only requires V[Yit|Xi1, . . . , XiT ] = E[U2it|Xi1, . . . , XiT ] to be bounded and bounded away
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from zero. (On the other hand, serial correlation is assumed away because Assumptions FE1

and FE2 imply that C[Yit, Yis|Xi1, . . . , XiT ] = 0 for t 6= s.)

4 Results

The three models presented in the previous section are non-nested, but may be treated in a unified

way by embedding them in a general framework. This general framework, which accommodates

our motivating examples as well as others, is presented next.

4.1 General Framework

Suppose {(yi,n, x′i,n, w′i,n) : 1 ≤ i ≤ n} is generated by (1). Let Xn = (x1,n, . . . , xn,n) and for a set

Wn of random variables satisfying E[wi,n|Wn] = wi,n, define the constants

%n =
1

n

n∑
i=1

E[R2i,n], Ri,n = E[ui,n|Xn,Wn],

ρn =
1

n

n∑
i=1

E[r2i,n], ri,n = E[ui,n|Wn],

χn =
1

n

n∑
i=1

E[‖Qi,n‖2], Qi,n = E[vi,n|Wn],

where vi,n = xi,n − (
∑n

j=1 E[xj,nw
′
j,n])(

∑n
j=1 E[wj,nw

′
j,n])−1wi,n is the population counterpart of

v̂i,n. Also, define

Cn = max
1≤i≤n

{E[U4i,n|Xn,Wn] + E[‖Vi,n‖4|Wn] + 1/E[U2i,n|Xn,Wn]}+ 1/λmin(E[Γ̃n|Wn])},

where Ui,n = yi,n − E[yi,n|Xn,Wn], Vi,n = xi,n − E[xi,n|Wn], Γ̃n =
∑n

i=1 Ṽi,nṼ
′
i,n/n, and Ṽi,n =∑n

j=1Mij,nVj,n.

In the supplemental appendix we show how the three examples fit in this general framework

and verify that Assumptions LR1—LR3, PL1—PL3 and FE1—FE3, respectively, imply the following

three assumptions.

Assumption 1 C[Ui,n, Uj,n|Xn,Wn] = 0 for i 6= j and max1≤i≤Nn #Ti,n = O(1), where #Ti,n
is the cardinality of Ti,n and where {Ti,n : 1 ≤ i ≤ Nn} is a partition of {1, . . . , n} such that
{(Ut,n, Vt,n) : t ∈ Ti,n} are independent over i conditional on Wn.

Assumption 2 χn = O(1), %n + n(%n − ρn) + nχn%n = o(1), and max1≤i≤n |v̂i,n|/
√
n = op(1).

Assumption 3 P[λmin(
∑n

i=1wi,nw
′
i,n) > 0]→ 1, limn→∞Kn/n < 1, and Cn = Op(1).
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4.2 General Results

As a means to the end of establishing (2), we give an asymptotic normality result for β̂n which may

be of interest in its own right.

Theorem 1 Suppose Assumptions 1—3 hold. Then

Ω−1/2n

√
n(β̂n − β)→d N (0, Id), Ωn = Γ̂−1n ΣnΓ̂−1n , (6)

where Σn =
∑n

i=1 v̂i,nv̂
′
i,nE[U2i,n|Xn,Wn]/n.

In the literature on high-dimensional linear models, Mammen (1993) obtains a similar asymp-

totic normality result as in Theorem 1 but under the condition K1+δ
n /n→ 0 for δ > 0 restricted by

certain moment condition on the covariates. In contrast, our result only requires limn→∞Kn/n < 1

but imposes a different restriction on the high-dimensional covariates (e.g., condition (i), (ii) or
(iii) discussed previously), and exploits the partially linear structure of the model (i.e., in Mammen
(1993) notation, it considers the case c = (ι′, 0′)′ with ι denoting a d-dimensional vector of ones and

0 denoting a Kn-dimensional vector of zeros). In addition, Theorem 1 is a substantial improvement

over Cattaneo, Jansson, and Newey (2015, Theorem 1) because here it is not required that Kn →∞
nor χn = o(1), thereby allowing for quite general form of nuisance covariate wi,n beyond specific

approximating basis functions (and thus the corresponding smoothness assumptions).

Achieving (2), the counterpart of (6) in which the unknown matrix Σn is replaced by the

estimator Σ̂n, requires additional assumptions. One possibility is to impose homoskedasticity.

Theorem 2 Suppose the assumptions of Theorem 1 hold. If E[U2i,n|Xn,Wn] = σ2n, then (2) holds

with Σ̂n = Σ̂HOn .

This result shows in quite some generality that homoskedastic inference in linear models remains

valid even when Kn is proportional to n, provided the variance estimator incorporates a degrees-

of-freedom correction, as Σ̂HOn does.

Establishing (2) is also possible whenKn is assumed to be a vanishing fraction of n, as is of course

the case in the usual fixed-Kn linear regression model setup. The following theorem establishes

consistency of the conventional standard error estimator Σ̂EWn under the assumptionMn →p 0, and

also derives an asymptotic representation for estimators of the form Σ̂n(κn) without imposing this

assumption.

Theorem 3 Suppose the assumptions of Theorem 1 hold.

(a) IfMn →p 0, then (2) holds with Σ̂n = Σ̂EWn .

(b) If ‖κn‖∞ = max1≤i≤n
∑n

j=1 |κij,n| = Op(1), then

Σ̂n(κn) =
1

n

n∑
i=1

n∑
j=1

n∑
k=1

κik,nM
2
kj,nv̂i,nv̂

′
i,nE[U2j,n|Xn,Wn] + op(1).
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The conclusion of part (a) typically fails when the condition Kn/n → 0 is dropped. For

example, when specialized to κn = In part (b) implies that in the homoskedastic case (i.e., when

the assumptions of Theorem 2 are satisfied)

Σ̂EWn = Σn −
σ2n
n

n∑
i=1

(1−Mii,n)v̂i,nv̂
′
i,n + op(1),

where
∑n

i=1(1 −Mii,n)v̂i,nv̂
′
i,n/n 6= op(1) in general (unless Kn/n → 0). Similar remarks apply to

the variants of the HCk estimators mentioned above; see the supplemental appendix for details.

On the other hand, because
∑
1≤k≤n κ

HC
ik,nM

2
kj,n = 1(i = j) by construction, part (b) implies that

Σ̂HCn is consistent provided ‖κHCn ‖∞ = Op(1). A simple condition for this to occur can be stated in

terms ofMn. Indeed, ifMn < 1/2, then κHCn is diagonally dominant and it follows from Theorem

1 of Varah (1975) that

‖κHCn ‖∞ ≤
1

1/2−Mn
.

As a consequence, we obtain the following theorem, whose conditions can hold even if Kn/n9 0.

Theorem 4 Suppose the assumptions of Theorem 1 hold.

If P[Mn < 1/2]→ 1 and if 1/(1/2−Mn) = Op(1), then (2) holds with Σ̂n = Σ̂HCn .

BecauseMn ≥ Kn/n, a necessary condition for Theorem 4 to be applicable is that limn→∞Kn/n <

1/2. When the design is balanced, that is, when M11,n = . . . = Mnn,n (as occurs in the panel data

model (5)), the condition limn→∞Kn/n < 1/2 is also suffi cient, but in general it seems diffi cult

to formulate primitive suffi cient conditions for the assumption made about Mn in Theorem 4.

In practice, the fact that Mn is observed means that the condition Mn < 1/2 is verifiable, and

therefore unlessMn is found to be “close”to 1/2 there is reason to expect Σ̂HCn to perform well.

4.3 Examples

4.3.1 Linear Regression Model with Increasing Dimension

Specializing Theorems 2—4 to the linear regression model, we obtain the following result.

Theorem LR Suppose Assumptions LR1—LR3 hold.

(a) If E[u2i,n|xi,n, zi,n] = σ2n, then (2) holds with Σ̂n = Σ̂HOn .

(b) IfMn →p 0, then (2) holds with Σ̂n = Σ̂EWn .

(c) If P[Mn < 1/2]→ 1 and if 1/(1/2−Mn) = Op(1), then (2) holds with Σ̂n = Σ̂HCn .

This theorem gives a formal justification for employing Σ̂HCn as the variance estimator when

forming confidence intervals for β in linear models with possibly many nuisance covariates and

heteroskedasticity. The resulting confidence intervals for β will remain consistent even when Kn is

proportional to n, provided the technical conditions given in part (c) are satisfied.
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Remark 3. Our main results for linear models concern large-sample approximations for the finite-
sample distribution of the usual t-statistics. An alternative, equally automatic approach

is to employ the bootstrap and closely related resampling procedures (see, among others,

Freedman (1981), Mammen (1993), Gonçalvez and White (2005), Kline and Santos (2012)).

Assuming Kn/n 9 0, Bickel and Freedman (1983) demonstrated an invalidity result for the

bootstrap. We conjecture that similar results can be obtained for other resampling procedures.

Furthermore, we also conjecture that employing appropriate resampling methods on the “bias-

corrected”residuals ũ2i,n (Remark 1) can lead to valid inference procedures. Investigating these

conjectures, however, is beyond the scope of this paper.

4.3.2 Semiparametric Partially Linear Model

The results for the partially linear model (4) are in perfect analogy with those for the linear

regression model.

Theorem PL Suppose Assumptions PL1—PL3 hold.

(a) If E[ε2i |xi, zi] = σ2, then (2) holds with Σ̂n = Σ̂HOn .

(b) IfMn →p 0, then (2) holds with Σ̂n = Σ̂EWn .

(c) If P[Mn < 1/2]→ 1 and if 1/(1/2−Mn) = Op(1), then (2) holds with Σ̂n = Σ̂HCn .

A result similar to Theorem PL(a) was previously reported in Cattaneo, Jansson, and Newey

(2015), but parts (b) and (c) of Theorem PL are new.

4.3.3 Fixed Effects Panel Data Regression Model

Finally, consider the panel data model (5). Because Kn/n = 1/T is fixed this model does not admit

an analog of Theorem 3. On the other hand, it does admit an analog of Theorems 2 and 4.

Theorem FE Suppose Assumptions FE1—FE3 hold. Then (2) holds with Σ̂n = Σ̂HCn . If also

E[U2it|Xi1, . . . , XiT ] = σ2, then (2) holds with Σ̂n = Σ̂HOn .

To see the connection between our results and those in Stock and Watson (2008), observe that

Mn = IN ⊗ [IT − ιT ι′T /T ] for ιT ∈ RT a T × 1 vector of ones. We then obtain Mii,n = 1 − 1/T

(for i = 1, . . . , n) and thereforeMn ≤ 1/3 because T ≥ 3. More importantly, perhaps, we obtain a

closed-form expression for κHCn given by

κHCn = IN ⊗
T

T − 2

[
IT −

1

(T − 1)2
ιT ι
′
T

]
.

As a consequence,

Σ̂HCn =
1

N(T − 2)

N∑
i=1

T∑
t=1

X̃itX̃
′
itÛ

2
it −

1

N(T − 2)

N∑
i=1

(
1

T − 1

T∑
t=1

X̃itX̃
′
it

)(
1

T − 1

T∑
t=1

Û2it

)
,
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where X̃it = Xit−T−1
∑T

s=1Xis and Ûit = Yit−T−1
∑T

s=1 Yis−β̂
′
nX̃it. Apart from an asymptotically

negligible degrees of freedom correction, this estimator coincides with the estimator Σ̂HR−FE of

Stock and Watson (2008, Eq. (6), p. 156).

Remark 4. The result above not only highlights a tight connection between our general standard
error estimator and the one in Stock and Watson (2008), but also indicates that our general

formula Σ̂HCn could be used to derive explicit, simple expressions in other contexts where

multi-way fixed effects or similar discrete regressors are included.

5 Simulations

We report the results from a small Monte Carlo experiment aimed to capture the extent to which

our main theoretical findings are present in samples of moderate size. To facilitate comparability

with other studies, we employ a data generating process (DGP) that is as similar as possible to

those employed in the literature before. In particular, we consider the following model:

yi = βxi + γ′wi + ui, ui|(xi, wi) ∼ i.i.d. N (0, σ2ui), σ2ui = κu(1 + (xi + ι′wi)2)ϑ,

xi = vi, vi|wi ∼ i.i.d. N (0, σ2vi), σ2vi = κv(1 + (ι′wi)2)ϑ,

where ι = (1, 1, · · · , 1)′, β = 0 and γ = 0, and the constants κu and κv are chosen so that
V[ui] = V[vi] = 1. In the absence of the additional covariates wi, this design coincides with the one

in Stock and Watson (2008), and is very similar to the one considered in MacKinnon (2012).

The simulation study employs 5, 000 replications, sets the sample size to n = 1, 000, and con-

siders models with Kn/n ∈ {0.1, 0.2, 0.3, 0.4}. The two main parameters varying in the Monte
Carlo experiments are: the constant ϑ and the distribution of the covariates wi. The first para-

meter controls the degree of heteroskedasticity: ϑ = 0 corresponds to homoskedasticity, and ϑ = 1

corresponds to moderate heteroskedasticity, as classified by MacKinnon (2012). For the distrib-

ution of the covariates we consider the following cases: independent standard N (0, 1) (Model 1),

independent U(−1, 1) (Model 2), independent discrete covariates constructed as 1(N (0, 1) ≥ 2.33).

The results are given in Table 1. Following MacKinnon (2012), these tables report empirical

coverage rates for eight distinct nominal 95% confidence intervals for β, across the range of Kn and

values of ϑ. Each confidence interval considered employs a different standard error formula: HO0
uses homoskedastic standard errors without degrees of freedom correction, HO1 uses homoskedastic

standard errors with degrees of freedom correction, HC0—HC4 are described in footnote 1 (see also

Section 4.5 in the supplemental appendix), and HCK uses Σ̂HCn .

The main findings from the small simulation study are in line with our theoretical results. We

find that the confidence interval estimators constructed our proposed standard errors formula Σ̂HCn ,

denoted HCK , offer close-to-correct empirical coverage in all cases considered. The alternative

heteroskedasticity consistent standard errors currently available in the literature lead to confidence

intervals that could deliver substantial under or over coverage depending on the design and degree
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of heteroskedasticity considered. We also found that inference based on HC3 standard errors is

conservative, a general asymptotic result that is formally established in the supplemental appendix.

6 Conclusion

We established asymptotic normality of the OLS estimator of a subset of coeffi cients in high-

dimensional linear regression models with many nuisance covariates, and investigated the proper-

ties of several popular heteroskedasticity-robust standard error estimators in this high-dimensional

context. We showed that none of the usual formulas deliver consistent standard errors when the

number of covariates is not a vanishing proportion of the sample size. We also proposed a new stan-

dard error formula that is consistent under (conditional) heteroskedasticity and many covariates,

which is fully automatic and does not assume special, restrictive structure on the regressors.

Our results concern high-dimensional models where the number of covariates is at most a

non-vanishing fraction of the sample size. A quite recent related literature concerns ultra-high-

dimensional models where the number of covariates is much larger than the sample size, but some

form of (approximate) sparsity is imposed in the model; see, e.g., Belloni, Chernozhukov, and

Hansen (2014a,b), Belloni, Chernozhukov, Hansen, and Fernandez-Val (2014), Farrell (2015), and

references therein. In that setting, inference is conducted after covariate selection, where the

resulting number of selected covariates is at most a vanishing fraction of the sample size (usually

much smaller). Thus, it would be of interest to investigate whether the methods proposed herein

can be applied also for inference post covariate selection in ultra-high-dimensional settings, which

would allow for weaker forms of sparsity because more covariates could be selected for inference.
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Science B.V.

Chesher, A. (1989): “Hájek Inequalities, Measures of Leverage and the Size of Heteroskedasticity

Robust Wald Tests,”Econometrica, 57(4), 971—977.

Chesher, A., and I. Jewitt (1987): “The Bias of a heteroskedasticity consistent covariance

matrix estimator,”Econometrica, 55(5), 1217—1222.

Cribari-Neto, F., and M. da Gloria A. Lima (2011): “A sequence of improved standard

errors under heteroskedasticity of unknown form,”Journal of Statistical Planning and Inference,

141(11), 3617—3627.

Cribari-Neto, F., S. L. P. Ferrari, and G. M. Cordeiro (2000): “Improved

Heteroscedasticity-Consistent Covariance Matrix Estimators,”Biometrika, 87(4), 907—918.

Donald, S. G., and W. K. Newey (1994): “Series Estimation of Semilinear Models,”Journal

of Multivariate Analysis, 50(1), 30—40.

El Karoui, N., D. Bean, P. J. Bickel, C. Lim, and B. Yu (2013): “On Robust Regression

with High-Dimensional Predictors,”Proceedings of the National Academy of Sciences, 110(36),

14557—14562.

Farrell, M. H. (2015): “Robust Inference on Average Treatment Effects with Possibly More

Covariates than Observations,”Journal of Econometrics, forthcoming.

Freedman, D. A. (1981): “Bootstrapping Regression Models,”Annals of Statistics, 9(6), 1218—

1228.

Gonçalvez, S., and H. White (2005): “Bootstrap Standard Error Estimates for Linear Regres-

sion,”Journal of the American Statistical Association, 100(471), 970—979.

Huber, P. J. (1973): “Robust Regression: Asymptotics, Conjectures, and Monte Carlo,”Annals

of Stastistics, 1(5), 799—821.

15



Kline, P., and A. Santos (2012): “Higher order properties of the wild bootstrap under misspec-

ification,”Journal of Econometrics, 171(1), 54—70.

Koenker, R. (1988): “Asymptotic Theory and Econometric Practice,”Journal of Applied Econo-

metrics, 3(2), 139—147.

MacKinnon, J., and H. White (1985): “Some Heteroskedasticity-consistent Covariance Matrix

Estimators with Improved Finite Sample Properties,”Journal of Econometrics, 29, 305—325.

MacKinnon, J. G. (2012): “Thirty years of heteroskedasticity-robust inference,” in Recent Ad-

vances and Future Directions in Causality, Prediction, and Specification Analysis, ed. by X. Chen,

and N. R. Swanson. Springer.

Mammen, E. (1993): “Bootstrap and Wild Bootstrap for High Dimensional Linear Models,”An-

nals of Statistics, 21(1), 255—285.

Müller, U. K. (2013): “Risk of Bayesian Inference in Misspecified Models, and the Sandwich

Covariance Matrix,”Econometrica, 81(5), 1805—1849.

Newey, W. K. (1997): “Convergence Rates and Asymptotic Normality for Series Estimators,”

Journal of Econometrics, 79, 147—168.

Shao, J., and C. F. J. Wu (1987): “Heteroscedasticity-Robustness of Jackknife Variance Esti-

mators in Linear Models,”Annals of Statistics, 15(4), 1563—1579.

Stock, J. H., and M. W. Watson (2008): “Heteroskedasticity-Robust Standard Errors for Fixed

Effects Panel Data Regression,”Econometrica, 76(1), 155—174.

Varah, J. M. (1975): “A Lower Bound for the Smallest Singular Value of a Matrix,” Linear

Algebra and its Applications, 11(1), 3—5.

White, H. (1980): “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct

Test for Heteroskedasticity,”Econometrica, 48(4), 817—838.

Wu, C. F. J. (1986): “Jackknife, Bootstrap and Other Resampling Methods in Regression Analy-

sis,”Annals of Statistics, 14(4), 1261—1295.

16



Table 1: Empirical Coverage of 95% Confidence Intervals.

(a) Model 1: Gaussian wi,n Regressors

ϑ Kn/n HO0 HO1 HC0 HC1 HC2 HC3 HC4 HCK
0 0.1 0.939 0.952 0.940 0.950 0.950 0.963 0.977 0.950
0 0.2 0.922 0.952 0.920 0.952 0.951 0.969 0.993 0.950
0 0.3 0.899 0.948 0.897 0.949 0.949 0.981 0.987 0.947
0 0.4 0.867 0.952 0.866 0.951 0.951 0.987 0.974 0.950
1 0.1 0.421 0.442 0.899 0.917 0.918 0.932 0.962 0.929
1 0.2 0.436 0.479 0.852 0.896 0.896 0.934 0.976 0.929
1 0.3 0.446 0.516 0.809 0.878 0.881 0.941 0.955 0.928
1 0.4 0.442 0.554 0.742 0.858 0.858 0.937 0.902 0.922

(b) Model 2: Uniform wi,n Regressors

ϑ Kn/n HO0 HO1 HC0 HC1 HC2 HC3 HC4 HCK
0 0.1 0.937 0.950 0.938 0.950 0.950 0.962 0.980 0.950
0 0.2 0.930 0.959 0.929 0.960 0.960 0.975 0.993 0.959
0 0.3 0.905 0.955 0.904 0.953 0.952 0.982 0.988 0.953
0 0.4 0.872 0.951 0.870 0.952 0.951 0.989 0.973 0.950
1 0.1 0.387 0.406 0.901 0.922 0.922 0.939 0.964 0.936
1 0.2 0.420 0.463 0.862 0.905 0.906 0.939 0.981 0.932
1 0.3 0.427 0.499 0.807 0.886 0.885 0.943 0.959 0.931
1 0.4 0.419 0.521 0.736 0.853 0.853 0.942 0.908 0.927

(c) Model 3: Discrete wi,n Regressors

ϑ Kn/n HO0 HO1 HC0 HC1 HC2 HC3 HC4 HCK
0 0.1 0.936 0.949 0.935 0.948 0.947 0.960 0.976 0.946
0 0.2 0.919 0.948 0.920 0.948 0.947 0.967 0.993 0.946
0 0.3 0.896 0.945 0.897 0.947 0.946 0.978 0.982 0.945
0 0.4 0.868 0.945 0.871 0.947 0.943 0.988 0.971 0.943
1 0.1 0.346 0.366 0.834 0.861 0.900 0.949 0.991 0.942
1 0.2 0.516 0.569 0.802 0.856 0.893 0.957 0.992 0.940
1 0.3 0.616 0.703 0.777 0.858 0.892 0.970 0.964 0.943
1 0.4 0.670 0.790 0.751 0.867 0.899 0.982 0.927 0.950

Notes:
(i) ϑ = 0 and ϑ = 1 correspond to homoskedastic and heteroskedastic models, respectively.
(ii) HO0 and HO1 employ homoskedastic consistent standard errors without and with degrees of
freedom correction, respectively.
(iii) HC0—HC4 employ HCk heteroskedastic consistent standard errors; see footnote 1 for details.
(iv) HCK employs our proposed standard errors formula, denoted by Σ̂HCn .
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1 Setup

The model is

yi,n = β′xi,n + γ′nwi,n + ui,n, i = 1, . . . , n,

where yi,n ∈ R, xi,n ∈ Rd, wi,n ∈ RKn , and ui,n ∈ R.
Let Xn = (x1,n, . . . , xn,n) and for a set Wn of random variables satisfying E[wi,n|Wn] = wi,n,

define the constants

%n =
1

n

n∑
i=1

E[R2i,n], Ri,n = E[ui,n|Xn,Wn],

ρn =
1

n

n∑
i=1

E[r2i,n], ri,n = E[ui,n|Wn],

χn =
1

n

n∑
i=1

E[‖Qi,n‖2], Qi,n = E[vi,n|Wn],

where ‖ · ‖ is the Euclidean norm and where

vi,n = xi,n − δ′nwi,n, δn = (

n∑
i=1

E[wi,nw
′
i,n])−1

n∑
i=1

E[wi,nx
′
i,n],

is the population counterpart of

v̂i,n =
n∑
j=1

Mij,nxj,n =
n∑
j=1

Mij,nvj,n, Mij,n = 1(i = j)− w′i,n(
n∑
k=1

wk,nw
′
k,n)−1wj,n.

Also, letting λmin(·) denotes the smallest eigenvalue of its argument, define

Cn = max
1≤i≤n

{E[U4i,n|Xn,Wn] + E[‖Vi,n‖4|Wn] + 1/E[U2i,n|Xn,Wn]}+ 1/λmin(E[Γ̃n|Wn])},

where Ui,n = yi,n − E[yi,n|Xn,Wn], Vi,n = xi,n − E[xi,n|Wn], and

Γ̃n =
1

n

∑
1≤i≤n

Ṽi,nṼ
′
i,n, Ṽi,n =

∑
1≤j≤n

Mij,nVj,n.

We impose the following three assumptions.

Assumption 1 C[Ui,n, Uj,n|Xn,Wn] = 0 for i 6= j and max1≤i≤Nn #Ti,n = O(1), where #Ti,n
is the cardinality of Ti,n and where {Ti,n : 1 ≤ i ≤ Nn} is a partition of {1, . . . , n} such that
{(Ut,n, Vt,n) : t ∈ Ti,n} are independent over i conditional on Wn.

Assumption 2 χn = O(1), %n + n(%n − ρn) + nχn%n = o(1), and max1≤i≤n |v̂i,n|/
√
n = op(1).

Assumption 3 P[λmin(
∑n

i=1wi,nw
′
i,n) > 0]→ 1, limn→∞Kn/n < 1, and Cn = Op(1).
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2 Useful Lemmas

Our main results are based on several lemmas and are obtained by working with the representation

√
n(β̂n − β) = Γ̂−1n Sn,

where Γ̂n =
∑
1≤i≤n v̂i,nv̂

′
i,n/n and Sn =

∑
1≤i≤n v̂i,nui,n/

√
n. Strictly speaking, the displayed

representation is valid only when λmin(
∑n

i=1wi,nw
′
i,n) > 0 and λmin(Γ̂n) > 0. Both events occur

with probability approaching one under our assumptions and our main results are valid no matter

which definitions (of β̂n and Σ̂n) are employed on the complement of the union of these events, but

for specificity we let M̄ij,n = ωnMij,n, where ωn = 1{λmin(
∑n

k=1wk,nw
′
k,n) > 0}, and, in a slight

abuse of notation, we define

Γ̂n =
1

n

∑
1≤i≤n

v̂i,nv̂
′
i,n, Sn =

1√
n

∑
1≤i≤n

v̂i,nui,n, v̂i,n =
∑
1≤j≤n

M̄ij,nxj,n,

and

β̂n = 1{λmin(Γ̂n) > 0}Γ̂−1n (
1

n

∑
1≤i≤n

v̂i,nyi,n).

The first lemma can be used to bound Γ̂−1n .

Lemma SA-1 If Assumptions 1—3 hold, then Γ̂−1n = Op(1).

Let Σn = Σn(Xn,Wn) = V[Sn|Xn,Wn]. The second lemma can be used to bound Σ−1n and to

show asymptotic normality of Sn.

Lemma SA-2 If Assumptions 1—3 hold, then Σ−1n = Op(1) and Σ
−1/2
n Sn →d N (0, Id).

The third lemma can be used to approximate σ̂2n by means of σ̃
2
n, where

σ̂2n =
1

n− d−Kn

∑
1≤i≤n

û2i,n, σ̃2n =
1

n−Kn

∑
1≤i≤n

Ũ2i,n,

with ûi,n =
∑
1≤j≤n M̄ij,n(yj,n − β̂

′
nxj,n) and Ũi,n =

∑
1≤j≤n M̄ij,nUj,n.

Lemma SA-3 If Assumptions 1—3 hold, then σ̂2n = E[σ̃2n|Xn,Wn] + op(1).

The fourth lemma can be used to approximate Σ̂n(κn) by means of Σ̃n(κn), where

Σ̂n(κn) =
1

n

∑
1≤i,j≤n

κij,nv̂iv̂
′
iû
2
j , Σ̃n(κn) =

1

n

∑
1≤i,j≤n

κij,nv̂i,nv̂
′
i,nŨ

2
j,n.

Lemma SA-4 Suppose Assumptions 1—3 hold.
If ‖κn‖∞ = max1≤i≤n

∑
1≤j≤n |κij,n| = Op(1), then Σ̂n(κn) = E[Σ̃n(κn)|Xn,Wn] + op(1).
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The fifth lemma can be combined with the third lemma to show consistency of Σ̂HOn under

homoskedasticity.

Lemma SA-5 Suppose Assumption 1 holds.
If E[U2i,n|Xn,Wn] = σ2n, then E[σ̃2n|Xn,Wn] = σ2nωn and Σn = σ2nΓ̂n.

The sixth lemma can be combined with the fourth lemma to show consistency of Σ̂n(κn). Part

(a) is a general result stated under a high-level condition. Part (b) gives suffi cient conditions for

the condition of part (a) for estimators of HCk type and part (c) does likewise for Σ̂HCn . Let

Mn = 1− min
1≤i≤n

M̄ii,n.

Lemma SA-6 Suppose Assumption 3 holds.
(a) If

max
1≤i≤n

{|
∑
1≤k≤n

κik,nM̄
2
ik,n − 1|+

∑
1≤j≤n,j 6=i

|
∑
1≤k≤n

κik,nM̄
2
jk,n|} = op(1),

then E[Σ̃n(κn)|Xn,Wn] = Σn + op(1).

(b) Suppose κij,n = ωn1(i = j)Υi,nM
−ξi,n
ii,n , where 0 ≤ ξi,n ≤ 4 and Υi,n ≥ 0.

If max1≤i≤n{|1 − Υi,n|} = op(1) and if Mn = op(1), then E[Σ̃n(κn)|Xn,Wn] = Σn + op(1) and

‖κn‖∞ = Op(1).

(c) Suppose κn = ωnκ
HC
n , where

κHCn =


κHC11,n · · · κHC1n,n
...

. . .
...

κHCn1,n · · · κHCnn,n

 =


M2
11,n · · · M2

1n,n
...

. . .
...

M2
n1,n · · · M2

nn,n


−1

= (Mn �Mn)−1.

If P[Mn < 1/2] → 1 and if 1/(1/2 −Mn) = Op(1), then E[Σ̃n(κn)|Xn,Wn] = Σn + op(1) and

‖κn‖∞ = Op(1).

Finally, the seventh lemma can be used to formulate primitive suffi cient conditions for the last

part of Condition 2.

Lemma SA-7 Suppose Assumptions 1 and 3 hold and suppose that

1

n

∑
1≤i≤n

E[‖Qi,n‖2+θ] = O(1)

for some θ ≥ 0. If either (i) θ > 0 and Mn = op(1); or (ii) χn = o(1); or (iii) θ > 0 and

max1≤i≤n
∑
1≤j≤n 1(Mij,n 6= 0) = op(n

θ/(2θ+2)), then max1≤i≤n |v̂i,n|/
√
n = op(1).
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3 Proofs of Lemmas

Throughout the proofs we simplify the notation by assuming without loss of generality that d = 1.

(In Lemma SA-2 the case where d > 1 can be handled by means of the Cramér-Wold device and

simple bounding arguments.)

3.1 Proof of Lemma SA-1

It suffi ces to show that Γ̃n = E[Γ̃n|Wn] + op(1) and that Γ̂n − Γ̃n ≥ op(1).

First,

Γ̃n =
1

n

∑
1≤i≤Nn

aii,n +
2

n

∑
1≤i,j≤Nn,i<j

aij,n, aij,n =
∑

s∈Ti,n,t∈Tj,n

M̄st,nVs,nVt,n,

where
∑
1≤i,j≤Nn V[aij,n|Wn] = Op(n) because

V[aij,n|Wn] ≤ (#Ti,n)(#Tj,n)
∑

s∈Ti,n,t∈Tj,n

M̄2
st,nV[Vs,nVt,n|Wn] ≤ C2T ,nCV,n

∑
s∈Ti,n,t∈Tj,n

M̄2
st,n,

where CT ,n = max1≤i≤Nn #(Ti,n) = Op(1), CV,n = 1 + max1≤i≤n E[‖Vi,n‖4|Wn] = Op(1) and∑
1≤i,j≤Nn

∑
s∈Ti,n,t∈Tj,n

M̄2
st,n =

∑
1≤i,j≤n

M̄2
ij,n =

∑
1≤i≤n

M̄ii,n ≤ n.

As a consequence,

V[
1

n

∑
1≤i≤Nn

aii,n|Wn] =
1

n2

∑
1≤i≤Nn

V[aii,n|Wn] ≤ 1

n2

∑
1≤i,j≤Nn

V[aij,n|Wn] = op(1)

and

V[
1

n

∑
1≤i,j≤Nn,i<j

aij,n|Wn] =
1

n2

∑
1≤i,j≤Nn,i<j

V[aij,n|Wn] ≤ 1

n2

∑
1≤i,j≤Nn

V[aij,n|Wn] = op(1),

implying in particular that Γ̃n = E[Γ̃n|Wn] + op(1).

Next, defining Q̃i,n =
∑
1≤j≤n M̄ij,nQj,n, we have

Γ̂n − Γ̃n =
1

n

∑
1≤i≤n

Q̃2i,n +
2

n

∑
1≤i≤n

Q̃i,nṼi,n ≥
2

n

∑
1≤i≤n

Q̃i,nṼi,n =
2

n

∑
1≤i≤n

Q̃i,nVi,n = op(1),
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the last equality using the fact that E[Q̃i,nVi,n|Wn] = 0 and

V[
1

n

∑
1≤i≤n

Q̃i,nVi,n|Wn] =
1

n2

∑
1≤i≤Nn

V[
∑
s∈Ti,n

Q̃s,nVs,n|Wn]

≤ 1

n2

∑
1≤i≤Nn

(#Ti,n)
∑
s∈Ti,n

V[Q̃s,nVs,n|Wn] ≤ 1

n
CT ,nCV,n(

1

n

∑
1≤i≤Nn

∑
s∈Ti,n

Q̃2s,n)

≤ 1

n
CT ,nCV,n(

1

n

∑
1≤i≤n

Q2i,n) =
1

n
Op(χn) = op(1).

3.2 Proof of Lemma SA-2

Defining S̃n = Sn − E[Sn|Xn,Wn] =
∑
1≤i≤n v̂i,nUi,n/

√
n and employing the decomposition

Sn − S̃n =
1√
n

∑
1≤i≤n

Ṽi,nri,n +
1√
n

∑
1≤i≤n

Q̃i,nri,n +
1√
n

∑
1≤i≤n

v̂i,n(Ri,n − ri,n),

we begin by showing that Sn = S̃n + op(1).

First, defining r̃i,n =
∑
1≤j≤n M̄ij,nrj,n and using E[r̃i,nVi,n|Wn] = 0 and

V[
1√
n

∑
1≤i≤n

r̃i,nVi,n|Wn] =
1

n

∑
1≤i≤Nn

V[
∑
s∈Ti,n

r̃s,nVs,n|Wn] ≤ 1

n

∑
1≤i≤Nn

(#Ti,n)
∑
s∈Ti,n

V[r̃s,nVs,n|Wn]

≤ CT ,nCV,n
1

n

∑
1≤i≤n

r̃2i,n ≤ CT ,nCV,n
1

n

∑
1≤i≤n

r2i,n = Op(ρn) = Op(%n) = op(1),

we have
1√
n

∑
1≤i≤n

Ṽi,nri,n =
1√
n

∑
1≤i≤n

r̃i,nVi,n = op(1).

Also, using the Cauchy-Schwarz inequality,

| 1√
n

∑
1≤i≤n

Q̃i,nri,n|2 ≤ n(
1

n

∑
1≤i≤n

Q2i,n)(
1

n

∑
1≤i≤n

r2i,n) = Op(nχnρn) = op(1)

and

| 1√
n

∑
1≤i≤n

v̂i,n(Ri,n − ri,n)|2 ≤ n(
1

n

∑
1≤i≤n

v̂2i,n)(
1

n

∑
1≤i≤n

|Ri,n − ri,n|2) = Op[n(%n − ρn)] = op(1),

where the penultimate equality uses

1

n

∑
1≤i≤n

v̂2i,n ≤
1

n

∑
1≤i≤n

v2i,n ≤
2

n

∑
1≤i≤n

Q2i,n +
2

n

∑
1≤i≤n

V 2i,n = Op(1)

and E[|Ri,n − ri,n|2] = E[R2i,n]− E[r2i,n]. As a consequence, Sn = S̃n + op(1).

5



Next, using Assumption 1,

Σn =
1

n

∑
1≤i≤Nn

∑
t∈Ti

v̂2t,nE[U2t,n|Xn,Wn] =
1

n

∑
1≤i≤n

v̂2i,nE[U2i,n|Xn,Wn]

≥ Γ̂n min1≤i≤n E[U2i,n|Xn,Wn],

so Σ−1n = Op(1). The proof can therefore be completed by showing that Σ
−1/2
n S̃n →d N (0, 1).

We shall do so assuming without loss of generality that λmin(Σn) > 0 (a.s.). Because

Σ−1/2n S̃n =
1√
n

∑
1≤i≤Nn

ηi,n, ηi,n = Σ−1/2n

∑
t∈Ti

v̂t,nUt,n,

where, conditional on (Xn,Wn), ηi,n are mean zero independent random variables with

1

n

∑
1≤i≤Nn

V[ηi,n|Xn,Wn] = 1,

it follows from the Berry-Esseen inequality that

sup
z∈R
|P(Σ−1/2n S̃n ≤ z|Xn,Wn)− Φ(z)| ≤ min(

∑
1≤i≤Nn E[|ηi,n|3|Xn,Wn]

n3/2
, 1),

where Φ(·) is the standard normal cdf. It therefore suffi ces to show that

1

n3/2

∑
1≤i≤Nn

E[|ηi,n|3|Xn,Wn] = op(1).

Now,

1

n3/2

∑
1≤i≤Nn

E[|ηi,n|3|Xn,Wn] ≤ λmin(Σn)−3/2
1

n3/2

∑
1≤i≤Nn

E[|
∑
t∈Ti

v̂t,nUt,n|3|Xn,Wn]

≤ λmin(Σn)−3/2
1

n3/2

∑
1≤i≤Nn

(#Ti)2
∑
t∈Ti

|v̂t,n|3E[|Ut,n|3|Xn,Wn]

≤ C2T ,nCU,nλmin(Σn)−3/2
1

n3/2

∑
1≤i≤Nn

∑
t∈Ti

|v̂t,n|3 = op(1),

where CU,n = 1 + max1≤i≤n E[U4i,n|Xn,Wn] = Op(1) and where the last equality uses the fact that

1

n3/2

∑
1≤i≤Nn

∑
t∈Ti

|v̂t,n|3 =
1

n3/2

∑
1≤i≤n

|v̂i,n|3 ≤ (
max1≤i≤n |v̂i,n|√

n
)(

1

n

∑
1≤i≤n

v̂2i,n) = op(1).

3.3 Proof of Lemma SA-3

It suffi ces to show that σ̃2n = E[σ̃2n|Xn,Wn] + op(1) = Op(1) and that
∑
1≤i≤n(ûi,n− Ũi,n)2 = op(n).
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First,

σ̃2n =
1

n−Kn

∑
1≤i≤Nn

bii,n +
2

n−Kn

∑
1≤i,j≤Nn,i<j

bij,n, bij,n =
∑

s∈Ti,n,t∈Tj,n

M̄st,nUs,nUt,n,

where
∑
1≤i,j≤Nn V[bij,n|Xn,Wn] = Op(n) because

V[bij,n|Xn,Wn] ≤ (#Ti,n)(#Tj,n)
∑

s∈Ti,n,t∈Tj,n

M̄2
st,nV[Us,nUt,n|Xn,Wn]

≤ C2T ,nCU,n
∑

s∈Ti,n,t∈Tj,n

M̄2
st,n ≤ C2T ,nCU,nn.

As a consequence,

V[
1

n−Kn

∑
1≤i≤Nn

bii,n|Xn,Wn] =
1

(n−Kn)2

∑
1≤i≤Nn

V[bii,n|Xn,Wn]

≤ 1

(n−Kn)2

∑
1≤i,j≤Nn

V[bij,n|Xn,Wn] = op(1)

and

V[
1

n−Kn

∑
1≤i,j≤Nn,i<j

bij,n|Xn,Wn] =
1

(n−Kn)2

∑
1≤i,j≤Nn,i<j

V[bij,n|Xn,Wn]

≤ 1

(n−Kn)2

∑
1≤i,j≤Nn

V[bij,n|Xn,Wn] = op(1),

implying in particular that σ̃2n = E[σ̃2n|Xn,Wn] + op(1), where

E[σ̃2n|Xn,Wn] =
1

n−Kn

∑
1≤i≤n

M̄ii,nE[U2i,n|Xn,Wn] ≤ CU,n = Op(1).

Next, by Lemmas SA-1 and SA-2 and their proofs, Γ̃n(β̂n − β)2 = op(1). Also, using %n → 0,

we have
1

n

∑
1≤i≤n

R̃2i,n ≤
1

n

∑
1≤i≤n

R2i,n = Op(%n) = op(1).

As a consequence, using ûi,n − Ũi,n = R̃i,n + Ṽi,n(β̂n − β),

∑
1≤i≤n

(ûi,n − Ũi,n)2 ≤ 2n[
1

n

∑
1≤i≤n

R̃2i,n + Γ̃n(β̂n − β)2] = op(n).

3.4 Proof of Lemma SA-4

It suffi ces to show that Σ̂n(κn) = Σ̃n(κn) + op(1) and that Σ̃n(κn) = E[Σ̃n(κn)|Xn,Wn] + op(1).
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First,

Σ̃n(κn) =
1

n

∑
1≤i≤Nn

cii,n +
2

n

∑
1≤i,j≤Nn,i<j

cij,n,

cij,n =
∑

s∈Ti,n,t∈Tj,n

∑
1≤k,l≤n

κkl,nv̂
2
k,nM̄sl,nM̄tl,nUs,nUt,n,

where
∑
1≤i,j≤Nn V[cij,n|Xn,Wn] = op(n

2) because

V[cij,n|Xn,Wn] ≤ (#Ti,n)(#Tj,n)
∑

s∈Ti,n,t∈Tj,n

(
∑

1≤k,l≤n
κkl,nv̂

2
k,nM̄sl,nM̄tl,n)2V[Us,nUt,n|Xn,Wn]

≤ C2T ,nCU,n
∑

s∈Ti,n,t∈Tj,n

∑
1≤k,l,K,L≤n

κkl,nκKL,nv̂
2
k,nv̂

2
K,nM̄sl,nM̄tl,nM̄sL,nM̄tL,n

= C2T ,nCU,n
∑

1≤i,j≤n

∑
1≤k,l,K,L≤n

κkl,nκKL,nv̂
2
k,nv̂

2
K,nM̄il,nM̄jl,nM̄iL,nM̄jL,n

= C2T ,nCU,n
∑

1≤k,l,K,L≤n
κkl,nκKL,nv̂

2
k,nv̂

2
K,nM̄

2
lL,n

≤ C2T ,nCU,n
∑

1≤k,l,K,L≤n
|κkl,n||κKL,n|v̂2k,nv̂2K,nM̄2

lL,n

and∑
1≤k,l,K,L≤n

|κkl,n||κKL,n|v̂2k,nv̂2K,nM̄2
lL,n ≤ (max1≤i≤n v̂

2
i,n)

∑
1≤k,l,K,L≤n

|κkl,n||κKL,n|v̂2K,nM̄2
lL,n

≤ (max1≤i≤n v̂
2
i,n)‖κn‖∞

∑
1≤l,K,L≤n

|κKL,n|v̂2K,nM̄2
lL,n

≤ (max1≤i≤n v̂
2
i,n)‖κn‖∞

∑
1≤K,L≤n

|κKL,n|v̂2K,n

≤ n2(
max1≤i≤n |v̂i,n|√

n
)2‖κn‖2∞(

1

n

∑
1≤i≤n

v̂2i,n) = op(n
2).

As a consequence,

V[
1

n

∑
1≤i≤Nn

cii,n|Xn,Wn] =
1

n2

∑
1≤i≤Nn

V[cii,n|Xn,Wn] ≤ 1

n2

∑
1≤i,j≤Nn

V[cij,n|Xn,Wn] = op(1)

and

V[
1

n

∑
1≤i,j≤Nn,i<j

cij,n|Xn,Wn] =
1

n2

∑
1≤i,j≤Nn,i<j

V[cij,n|Xn,Wn] ≤ 1

n2

∑
1≤i,j≤Nn

V[cij,n|Xn,Wn] = op(1).
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In particular, Σ̃n(κn) = E[Σ̃n(κn)|Xn,Wn] + op(1), where

|E[Σ̃n(κn)|Xn,Wn]| ≤ 1

n

∑
1≤i,j≤n

|κij,n|v̂2j,nE[Ũ2i,n|Xn,Wn] ≤ CU,n
1

n

∑
1≤i,j≤n

|κij,n|v̂2j,n

≤ CU,n‖κn‖∞(
1

n

∑
1≤i≤n

v̂2i,n) = Op(1).

To complete the proof it suffi ces to show that

Σ̂n(κn)− Σ̃n(κn) =
1

n

∑
1≤i,j≤n

κij,nv̂
2
j,n([Ũi,n + R̃i,n − Ṽi,n(β̂n − β)]2 − Ũ2i,n) = op(1).

To do so, it suffi ces (by the Cauchy-Schwarz inequality and using v̂j,n = Ṽj,n + Q̃j,n, R̃i,n =

r̃i,n + (R̃i,n − r̃i,n), and Σ̃n(κn) = Op(1)) to show that

1

n

∑
1≤i,j≤n

|κij,n|Ṽ 2j,nr̃2i,n = op(1),
1

n

∑
1≤i,j≤n

|κij,n|Ṽ 2j,n|R̃i,n − r̃i,n|2 = op(1),

1

n

∑
1≤i,j≤n

|κij,n|Q̃2j,nR̃2i,n = op(1), (β̂n − β)2
1

n

∑
1≤i,j≤n

|κij,n|v̂2j,nṼ 2i,n = op(1).

First, n−1
∑
1≤i,j≤n |κij,n|Ṽ 2j,nr̃2i,n = op(1) because

E[
1

n

∑
1≤i,j≤n

|κij,n|Ṽ 2j,nr̃2i,n|Wn] =
1

n

∑
1≤i≤n

r̃2i,n
∑
1≤j≤n

|κij,n|E[Ṽ 2j,n|Wn]

≤ CT ,nCV,n‖κn‖∞
1

n

∑
1≤i≤n

r̃2i,n = Op(ρn) = op(1),

where the inequality uses

E[Ṽ 2i,n|Wn] = E[(
∑
1≤j≤n

M̄ij,nVj,n)2|Wn] = E[(
∑

1≤j≤Nn

∑
s∈Tj,n

M̄is,nVs,n)2|Wn]

=
∑

1≤j≤Nn

E[(
∑
s∈Tj,n

M̄is,nVs,n)2|Wn]

≤
∑

1≤j≤Nn

(#Tj,n)
∑
s∈Tj,n

M̄2
is,nE[V 2s,n|Wn] ≤ CT ,nCV,n

∑
1≤j≤Nn

∑
s∈Tj,n

M̄2
is,n

= CT ,nCV,n
∑
1≤j≤n

M̄2
ij,n = CT ,nCV,nM̄ii,n ≤ CT ,nCV,n.

Next,

1

n

∑
1≤i,j≤n

|κij,n|Ṽ 2j,n|R̃i,n − r̃i,n|2 ≤ nCκ,n(
1

n

∑
1≤i≤n

Ṽ 2i,n)(
1

n

∑
1≤i≤n

|R̃i,n − r̃i,n|2)

= Op[n(%n − ρn)] = op(1)
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and

1

n

∑
1≤i,j≤n

|κij,n|Q̃2j,nR̃2i,n ≤ n‖κn‖∞(
1

n

∑
1≤i≤n

Q̃2i,n)(
1

n

∑
1≤i≤n

R̃2i,n) = Op(nχn%n) = op(1).

Finally,

(β̂n − β)2
1

n

∑
1≤i,j≤n

|κij,n|v̂2j,nṼ 2i,n = op(1)

because
√
n(β̂n − β) = Op(1) and

1

n2

∑
1≤i,j≤n

|κij,n|v̂2j,nṼ 2i,n ≤ ( max
1≤i≤n

v̂2i,n)
1

n2

∑
1≤i,j≤n

|κij,n|Ṽ 2i,n

≤ (
max1≤i≤n |v̂i,n|√

n
)2‖κn‖∞(

1

n

∑
1≤i≤n

Ṽ 2i,n) = op(1).

3.5 Proof of Lemma SA-5

Because E[Ũ2j,n|Xn,Wn] =
∑
1≤i≤n M̄

2
ij,nE[U2i,n|Xn,Wn],

E[σ̃2n|Xn,Wn] =
1

n−Kn

∑
1≤i,j≤n

M̄2
ij,nE[U2i,n|Xn,Wn] =

1

n−Kn

∑
1≤i≤n

M̄ii,nE[U2i,n|Xn,Wn]

=
1

n−Kn

∑
1≤i≤n

M̄ii,nE[U2i,n|Xn,Wn],

so if E[U2i,n|Xn,Wn] = σ2n, then

E[σ̃2n|Xn,Wn] = σ2n

∑
1≤i≤n M̄ii,n

n−Kn
= σ2nωn

and

Σn =
1

n

∑
1≤i≤n

v̂2i,nE[U2i,n|Xn,Wn] = σ2nΓ̂n.

3.6 Proof of Lemma SA-6

Defining dij,n =
∑
1≤k≤n κik,nM̄

2
jk,n − 1(i = j), we have

E[Σ̃n(κn)|Xn,Wn]− Σn =
1

n

∑
1≤i,j≤n

dij,nv̂
2
i,nE[U2j,n|Xn,Wn],

10



so if max1≤i≤n
∑
1≤j≤n |dij,n| = op(1), then

|E[Σ̃n(κn)|Xn,Wn]− Σn| ≤
1

n

∑
1≤i,j≤n

|dij,n|v̂2i,nE[U2j,n|Xn,Wn] ≤ CU,n
1

n

∑
1≤i,j≤n

|dij,n|v̂2i,n

≤ CU,n(
1

n

∑
1≤i≤n

v̂2i,n)( max
1≤i≤n

∑
1≤j≤n

|dij,n|) = op(1).

This establishes part (a).

Next, if λmin(
∑n

k=1wk,nw
′
k,n) > 0 and if κij,n = 1{i = j}Υi,nM

−ξi,n
ii,n (with 0 ≤ ξi,n ≤ 4 and

Υi,n ≥ 0), then∑
1≤j≤n

|dij,n| = |Υi,nM
2−ξi,n
ii,n − 1|+

∑
1≤j≤n,j 6=i

Υi,nM
−ξi,n
ii,n M2

ji,n

≤ |Υi,n − 1|+ Υi,n|M
2−ξi,n
ii,n − 1|+ Υi,nM

1−ξi,n
ii,n (1−Mii,n)

≤ |Υi,n − 1|+ Υi,n(M−2ii,n −M
2
ii,n) + Υi,nM

−3
ii,n(1−Mii,n)

= |Υi,n − 1|+ Υi,n[(1 +M2
ii,n)(1 +Mii,n) +M−3ii,n](1−Mii,n).

Part (b) follows from this inequality and the fact that P[λmin(
∑n

k=1wk,nw
′
k,n) > 0]→ 1.

Finally, ifMn < 1/2, then

|
∑
1≤k≤n

κHCik,nM
2
ik,n − 1|+

∑
1≤j≤n,j 6=i

|
∑
1≤k≤n

κHCik,nM
2
jk,n| = 0

and, by Theorem 1 of Varah (1975),

‖κHCn ‖∞ ≤
1

1/2−Mn
.

Part (c) follows from these displays and the fact that P[Mn < 1/2]→ 1.

3.7 Proof of Lemma SA-7

Because v̂i,n = Ṽi,n + Q̃i,n, we have

max1≤i≤n |v̂i,n|√
n

≤ max1≤i≤n |Ṽi,n|√
n

+
max1≤i≤n |Q̃i,n|√

n
=

max1≤i≤n |Q̃i,n|√
n

+ op(1),

the equality using the fact that

P[
max1≤i≤n |Ṽi,n|√

n
> ε|Wn] ≤ min(

∑
1≤i≤n

P[|Ṽi,n| > ε
√
n|Wn], 1) ≤ min(

1

ε4n2

∑
1≤i≤n

E[Ṽ 4i,n|Wn], 1)
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and

E[Ṽ 4i,n|Wn] = E[(
∑
1≤j≤n

M̄ij,nVj,n)4|Wn] = E[(
∑

1≤j≤Nn

∑
s∈Tj,n

M̄is,nVs,n)4|Wn]

=
∑

1≤j≤Nn

E[(
∑
s∈Tj,n

M̄is,nVs,n)4|Wn]

+3
∑

1≤j,k≤Nn,k 6=j
E[(

∑
s∈Tj,n

M̄is,nVs,n)2(
∑
t∈Tk,n

M̄it,nVt,n)2|Wn]

≤
∑

1≤j≤Nn

(#Tj,n)3
∑
s∈Tj,n

M̄4
is,nE[V 4s,n|Wn]

+3
∑

1≤j,k≤Nn,k 6=j
(#Tj,n)(#Tk,n)

∑
s∈Tj,n,t∈Tk,n

M̄2
is,nM̄

2
it,nE[V 2s,nV

2
t,n|Wn]

≤ 3C3T ,nCV,n
∑

1≤j,k≤Nn

∑
s∈Tj,n,t∈Tk,n

M̄2
is,nM̄

2
it,n

= 3C3T ,nCV,n
∑

1≤j,k≤n
M̄2
ij,nM̄

2
ik,n = 3C3T ,nCV,nM̄2

ii,n ≤ 3C3T ,nCV,n = Op(1).

It therefore suffi ces to show that max1≤i≤n |Q̃i,n|/
√
n = op(1).

Defining M̄⊥ij,n = ωn1(i = j)− M̄ij,n, we have

max1≤i≤n |Q̃i,n|√
n

=
ωn√
n

max
1≤i≤n

|Qi,n −
∑
1≤j≤n

M̄⊥ij,nQj,n|

≤ max1≤i≤n |Qi,n|√
n

+
1√
n

max
1≤i≤n

|
∑
1≤j≤n

M̄⊥ij,nQj,n|

=
1√
n

max
1≤i≤n

|
∑
1≤j≤n

M̄⊥ij,nQj,n|+ op(1),

where the last equality uses the fact that n−1
∑
1≤i≤n E[|Qi,n|2+θ] = o(nθ/2) if θ > 0 or if χn = o(1).

It therefore suffi ces to show that max1≤i≤n |
∑
1≤j≤n M̄

⊥
ij,nQj,n|/

√
n = op(1).

In cases (i) and (ii) the desired conclusion follows from
∑
1≤j≤n(M̄⊥ij,n)2 = M̄⊥ii,n ≤Mn because,

by the Cauchy-Schwarz inequality,

(
max1≤i≤n |

∑
1≤j≤n M̄

⊥
ij,nQj,n|√

n
)2 ≤ ( max

1≤i≤n
M̄⊥ii,n)(

1

n

∑
1≤i≤n

Q2i,n)

≤ Mn(
1

n

∑
1≤i≤n

Q2i,n) =MnOp(χn).

Finally, in case (iii) the desired conclusion follows from n−1
∑
1≤i≤n E[|Qi,n|2+θ] = O(1) because,
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by the Hölder inequality,

1√
n
|
∑
1≤j≤n

M̄⊥ij,nQj,n| ≤ (2+θ)/(1+θ)

√
1

nθ/(2θ+2)

∑
1≤j≤n

|M̄⊥ij,n|(2+θ)/(1+θ) 2+θ
√

1

n

∑
1≤j≤n

|Qj,n|2+θ

≤ (2+θ)/(1+θ))

√
1

nθ/(2θ+2)
[1 +

∑
1≤j≤n

1(Mij,n 6= 0)]Op(1).

4 Proofs of Main Results

4.1 General Results

Theorem 1 follows from Lemmas SA-1 and SA-2. Theorem 2 follows from Theorem 1 combined

with Lemmas SA-3 and SA-5. Theorems 3 and 4 follow from Theorem 1 combined with Lemmas

SA-4 and SA-6.

4.2 Linear Regression Model with Increasing Dimension

If Assumption LR1 holds, then Assumption 1 holds withWn = (w1,n, . . . , wn,n), Nn = n, Ti,n = {i},
and max1≤i≤Nn #Ti,n = 1. Moreover, χn ≤ max1≤i≤n E[‖xi,n‖2], so Assumption 2 holds (with
%n = ρn = 0) if Assumptions LR1-LR2 hold. Finally, Assumption 3 is implied by Assumptions

LR1-LR3. In particular,

λmin(E[Γ̃n|Wn]) = λmin(
1

n

∑
1≤i≤n

E[Ṽi,nṼ
′
i,n|wi,n])

= ωnλmin(
1

n

∑
1≤i≤n

Mii,nE[Vi,nV
′
i,n|wi,n])

≥ ωn
1

n

∑
1≤i≤n

Mii,nλmin(E[Vi,nV
′
i,n|wi,n])

≥ ωn(
1

n

∑
1≤i≤n

Mii,n) min
1≤i≤n

λmin(E[Vi,nV
′
i,n|wi,n])

≥ ωn(1−Kn/n)/CLRn ,

so 1/λmin(E[Γ̃n|Wn]) = Op(1) because P[ωn = 1]→ 1, limn→∞Kn/n < 1, and CLRn = Op(1).

Under Assumptions LR1 and LR3, we have

χn = χLRn = min
δ∈RKn×d

E[‖E(xi,n|wi,n)− δ′wi,n‖2] = E[‖Qi,n‖2],

where

Qi,n = E[vi,n|wi,n], vi,n = xi,n − E[xi,nw
′
i,n]E[wi,nw

′
i,n]−1wi,n.

Setting θ = 2 in Lemma SA-7 and specializing it to the linear regression model with increasing

dimension we therefore obtain the following lemma, whose conditions are discussed in the main
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text.

Lemma SA-8 Suppose Assumptions LR1 and LR3 hold and suppose that E[‖xi,n‖2] = O(1),

E[ui,n|xi,n, wi,n] = 0, and that E[‖Qi,n‖4] = O(1). If either (i) Mn = op(1); or (ii) χLRn = o(1);

or (iii) max1≤i≤n
∑
1≤j≤n 1(Mij,n 6= 0) = op(n

1/3), then max1≤i≤n |v̂i,n|/
√
n = op(1).

4.3 Semiparametric Partially Linear Model

If Assumption PL1 holds, then Assumption 1 holds with Wn = (z1, . . . , zn), Nn = n, Ti,n = {i},
and max1≤i≤Nn #Ti,n = 1. Moreover, in this case we have

χn = min
δ∈RKn×d

E[‖E(xi|zi)− δ′pn(zi)‖2] = χPLn

and, using E(yi − β′xi|xi, zi) = g(zi) = E(yi − β′xi|zi),

%n = min
γ∈RKn

E[|E(yi − β′xi|zi)− γ′pn(zi)|2] = min
γ∈RKn

E[|E(yi − β′xi|xi, zi)− γ′pn(zi)|2] = ρn = %PLn ,

so Assumption 2 holds when Assumptions PL1-PL2 hold, the condition max1≤i≤n |v̂i,n|/
√
n = op(1)

holding by Lemma SA-7 because χn = o(1). Finally, Assumption 3 is implied by Assumptions PL1-

PL3. In particular,

λmin(E[Γ̃n|Wn]) = ωnλmin(
1

n

∑
1≤i≤n

Mii,nE[νiν
′
i|zi])

≥ ωn
1

n

∑
1≤i≤n

Mii,nλmin(E[νiν
′
i|zi])

≥ ωn(
1

n

∑
1≤i≤n

Mii,n) min
1≤i≤n

λmin(E[νiν
′
i|zi])

≥ ωn(1−Kn/n)/CPLn ,

so 1/λmin(E[Γ̃n|Wn]) = Op(1) because P[ωn = 1]→ 1, limn→∞Kn/n < 1, and CPLn = Op(1).

4.4 Fixed Effects Panel Data Regression Model

If Assumption FE1 holds, then Assumption 1 holds with Wn = (w1,n, . . . , wn,n), Nn = N = n/T,

Ti,n = {T (i−1)+1, . . . , T i}, and max1≤i≤Nn #Ti,n = T.Moreover, χn ≤ max1≤i≤N,1≤t≤T E[‖Xit‖2],
so Assumption 2 holds (with %n = ρn = 0) when Assumptions FE1-FE3 hold, the condition

max1≤i≤n |v̂i,n|/
√
n = op(1) holding by Lemma SA-7 because

∑
1≤j≤n 1(Mij,n 6= 0) = T. Finally,

Assumption 3 is implied by Assumptions FE1-FE3. In particular,

λmin(E[Γ̃n|Wn]) = λmin(
1

NT

∑
1≤i≤N,1≤t≤T

E[ṼitṼ
′
it])

≥ min
1≤i≤N,1≤t≤T

λmin(E[ṼitṼ
′
it]) ≥ 1/CFEn ,
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so 1/λmin(E[Γ̃n|Wn]) = Op(1) because CFEn = Op(1).

4.5 HCk Standard Errors with Many Covariates

The HCk variance estimators (see MacKinnon (2012) for a review) are of the form Σ̂n(κn) with

κij,n = 1(i = j)Υi,nM
−ξi,n
ii,n for some choice of (Υi,n, ξi,n). Lemma SA-6 (b) can be used to formulate

conditions (including Kn/n→ 0) under which these estimators are consistent in the sense that

Σ̂n(κn) = Σn + op(1), Σn =
1

n

n∑
i=1

v̂i,nv̂
′
i,nE[U2i,n|Xn,Wn].

More generally, Theorem 3(b) shows that, under regularity conditions and if κij,n = 1(i = j)Υi,nM
−ξi,n
ii,n ,

then

Σ̂n(κn) = Σ̄n(κn) + op(1), Σ̄n(κn) =
1

n

n∑
i=1

n∑
j=1

Υi,nM
−ξi,n
ii,n M2

ij,nv̂i,nv̂
′
i,nE[U2j,n|Xn,Wn].

We therefore obtain the following (mostly negative) results about the properties of HCk estimators

when Kn/n9 0.

• HC0: (Υi,n, ξi,n) = (1, 0). If E[U2j,n|Xn,Wn] = σ2n, then

Σ̄n(κn) = Σn −
σ2n
n

n∑
i=1

(1−Mii,n)v̂i,nv̂
′
i,n ≤ Σn,

with n−1
∑n

i=1(1−Mii,n)v̂i,nv̂
′
i,n 6= op(1) in general (unless Kn/n→ 0). Thus, Σ̂n(κn) = Σ̂EWn

is inconsistent in general. In particular, inference based on Σ̂EWn is asymptotically liberal (even)

under homoskedasticity.

• HC1: (Υi,n, ξi,n) = (n/(n−Kn), 0). If E[U2j,n|Xn,Wn] = σ2n and if M11,n = . . . = Mnn,n, then

Σ̄n(κn) = Σn, but in general this estimator is inconsistent when Kn/n 9 0 (and so is any

other scalar multiple of Σ̂EWn ).

• HC2: (Υi,n, ξi,n) = (1, 1). If E[U2j,n|Xn,Wn] = σ2n, then Σ̄n(κn) = Σn, but in general this

estimator is inconsistent under heteroskedasticity when Kn/n9 0. For instance, if d = 1 and

if E[U2j,n|Xn,Wn] = v̂2j,n, then

Σ̄n(κn)− Σn =
1

n

n∑
i=1

n∑
j=1

[
M2
ij,n

2
(M−1ii,n +M−1jj,n)− 1(i = j)]v̂2i,nv̂

2
j,n 6= op(1)

in general (unless Kn/n→ 0).

• HC3: (Υi,n, ξi,n) = (1, 2). Inference based on this estimator is asymptotically conservative
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because

Σ̄n(κn)− Σn =
1

n

n∑
i=1

n∑
j=1,j 6=i

M−2ii,nM
2
ij,nv̂i,nv̂

′
i,nE[U2j,n|Xn,Wn] ≥ 0,

where n−1
∑n

i=1

∑n
j=1,j 6=iM

−2
ii,nM

2
ij,nv̂i,nv̂

′
i,nE[U2j,n|Xn,Wn] 6= op(1) in general (unless Kn/n→

0).

• HC4: (Υi,n, ξi,n) = (1,min(4, nMii,n/Kn)). If M11,n = . . . = Mnn,n = 2/3 (as occurs when

T = 3 in the fixed effects panel data model), then HC4 reduces to HC3, so this estimator is

also inconsistent in general.

5 Properties of Mn �Mn

Because Mn is symmetric, so is Mn �Mn and it follows from the Gerschgorin circle theorem (see,

e.g., Barnes and Hoffman (1981) for an interesting discussion) that

λmin(Mn �Mn) ≥ min
1≤i≤n

{M2
ii,n −

∑
1≤j≤n,j 6=i

|M2
ij,n|} = min

1≤i≤n
{2M2

ii,n −
∑
1≤j≤n

M2
ij,n},

where, using the fact that
∑
1≤j≤nM

2
ij,n = Mii,n because Mn is idempotent,

min
1≤i≤n

{2M2
ii,n −

∑
1≤j≤n

M2
ij,n} = min

1≤i≤n
{2M2

ii,n −Mii,n} = 2 min
1≤i≤n

{Mii,n(Mii,n − 1/2)}.

Thus, λmin(Mn �Mn) > 0 (i.e., Mn �Mn is positive definite) wheneverMn < 1/2.

Under the same condition, Mn �Mn is diagonally dominant and it follows from Theorem 1 of

Varah (1975) that

‖(Mn �Mn)−1‖∞ ≤
1

1/2−Mn
.
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