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Abstract

The aim of this paper is to assess how climate change is reflected in the variation
of the seasonal patterns of the monthly Central England Temperature time series
between 1772 and 2013. In particular, we model changes in the amplitude and phase
of the seasonal cycle. Starting from the seminal work by Thomson (“The Seasons,
Global Temperature and Precession”, Science, 7 April 1995, vol 268, p. 59–68), a
number of studies have documented a shift in the phase of the annual cycle implying
an earlier onset of the spring season at various European locations. A significant
reduction in the amplitude of the seasonal cycle is also documented. The literature
so far has concentrated on the measurement of this phenomenon by various methods,
among which complex demodulation and wavelet decompositions are prominent. We
offer new insight by considering a model that allows for seasonally varying determin-
istic and stochastic trends, as well as seasonally varying autocorrelation and residual
variances. The model can be summarized as containing a permanent and a tran-
sitory component, where global warming is captured in the permanent component,
on which the seasons load differentially. The phase of the seasonal cycle, on the
other hand, seems to follow Earth’s precession in a stable manner, and the reported
fluctuations are identified as transitory.
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1 Introduction

In this paper we investigate whether climate change is accompanied by a systematic variation

of the phase of the annual cycle in temperatures, which would be responsible for the change in

the seasonal timing of events, such as the onset of spring in the continental areas of the north-

ern hemisphere. This theme was investigated by Thomson (1995), who examined the Central

England Temperature (CET) series, along with other series, and identified a structural break in

the phase of the fundamental seasonal cycle in temperatures (one cycle per year) taking place

around 1940; he further showed that the phase shift is correlated with atmospheric CO2 con-

centrations. He argued that unpredictability of the phase can represent a more serious problem

for biological processes and agriculture than amplitude changes or an average temperature rise.

Stine et al. (2009) estimate the phase shift to have been 1.7 days between 1954 and 2007 over

extra-tropical land, whereas Thackeray et al. (2010) found that the temperature cycle advanced

by the rate of 2.3 to 5.5 days per decade. Paluvs et al. (2005) confirm the advancement of

the spring season in the 1990s, using daily mean near-surface temperature series from seven

European locations at mid-latitudes. However, they regard this as a natural phenomenon taking

place also in the more remote past. Phenological records seem to support the earlier onset of

spring; see, among others, Schwartz and Reiter (2000) and Parmesan (2007).

In contrast to the phase, the amplitude of the seasonal cycle has been decreasing in conti-

nental areas of the northern hemisphere. The negative trend is related to the fact that winter

months are warming more rapidly than the summer months (Stine et al., 2009).

The principal aim of our research is the characterisation of seasonality in the CET series,

along with its global trend. There are several methods for exploring the variation in amplitude

and phase, for example complex demodulation (Bloomfield, 2004). We propose a structural time

series model as an alternative methodology for estimating changes in amplitude and phase. For

validation of our methodology, we rely on the capability of our model to describe the data and

to explain most of the variation of temperature, leaving out uninformative residual variation.

We focus on the CET series of monthly mean surface air temperatures for a location in the

Midlands region. The series is expressed in degrees Celsius and is available for the period from

January 1659 to the present. It can be downloaded at

http://www.metoffice.gov.uk/hadobs/ hadcet/data/download.html.

The series was originally constructed by Manley (1974), and is currently updated by the Hadley
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Centre; see Parker et al. (1992). There is a quality issue relating to the data prior to 1772, and

thus we consider the series from January 1772 to December 2013, for a total of 2904 observations.

See also Thomson (1995) for a brief discussion of this issue. The CET series provides one

of the longest and most investigated temperature records available at the monthly frequency

of observation. As such, its 242 replications of the annual cycle are an invaluable source of

information on the the long run trends in the amplitude and the phase of the seasonal cycle.

The series is plotted in the first panel of Figure 1. As is evident from the plot, the series is

highly seasonal, with the fundamental trigonometric cycle playing a major role. As stated by

Pezzulli et al. (2005), seasonal variation is the most prominent source of climate variability, so

that climate change is reflected in the seasonal patterns. As a consequence, the study of seasonal

shifts should play an important role in assessing the direction of climate change. The bottom

panel of Figure 1 is a plot of the 12 annual series for each month (a monthplot); it highlights

that there is some specificity in the way the series pertaining to different months behave. We

will return to this feature.

Figure 1: Time series plot of the CET series and its monthplot.
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Let us consider the cyclical model

y(t) = A(t) cos (ωt− ϕ(t)) + ǫ(t),

where t denotes time. In this model, y(t) has a systematic part, a cycle with period 2π/ω,

ω ∈ [0, π] representing the frequency of the cycle in radians (e.g. 12 months if t is expressed

in months and ω = π/6), amplitude A(t), and phase ϕ(t) ∈ [0, π]. The systematic part is

contaminated by an error term, ǫ(t), which is a stationary random process. The possibly time-

varying amplitude regulates the displacement of the cycle along the vertical axis, whereas the

phase determines a horizontal displacement (along the time axis). Assuming that there is no

noise contamination (ǫ(t) ≡ 0, for all t), and that A(t) = A,ϕ(t) = ϕ, then y(t) is a deterministic

cycle. While the role of A is self-evident, that of ϕ can be understood by evaluating the times

t0 at which the cycle crosses the zero line, that is y(t0) = 0. The solutions to cos(ωt0 − ϕ) = 0

are of the form

t0 =
1

ω

[

ϕ+ (2k + 1)
π

2

]

, (1)

where k is an integer. Equation (1) highlights the role of the phase in regulating the shift along

the time axis; if the phase changes by an amount dϕ, this will result in a displacement of the

cycle wave along the time axis of an amount dt0 = ω−1dϕ.

The research question posed by the literature reviewed above is whether the global temper-

ature trend has affected the amplitude and the phase of the annual cycle (ω = π/6).

The plan of the paper is the following: in the next section we study the preliminary empirical

evidence on the time-varying amplitude and phase of the temperatures seasonal cycle arising

from the application of complex demodulation and trigonometric regression (Section 2). In

Section 3 stationarity tests are applied to the 12 annual time series for the individual months,

as well as multivariate stationarity and common trend tests. These provide an important aid to

the specification of a stochastic model for temperatures that addresses the main stylized facts.

Our baseline model, formulated in Section 4, features a permanent component and a periodic

transitory component. The permanent component is driven by a single common stochastic

trend as well as by season-specific deterministic drifts. The estimation results and specification

diagnostics are presented in Section 5. In Section 6 we draw our conclusions.
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2 Complex demodulation and trigonometric regression

Complex demodulation (CD) has been used for assessing the changes in the seasonal pattern and

in particular for estimating the local amplitude and phase of the fundamental seasonal cycle.

Applications to temperature series can be found in Thomson (1995) and Thompson and Clark

(2008), for example.

Let yt, t = 1, . . . , n, denote the monthly temperature series, characterised by an annual

cycle, with period equal to p = 12 months. A shift in the frequency of the cycle is performed by

multiplying the series with the complex exponential at the fundamental seasonal frequency, ω =

π/6, corresponding to one cycle per year, yielding xt = yt exp(−ıωt), where ı is the imaginary

unit, ı2 = −1. This aims at shifting the spectrum of yt by −ω along the frequency range.

Subsequently, a low-pass filter is applied to the series xt and the amplitude and phase of the

resulting complex series are computed.

Referring to Bloomfield (2004) for more details, CD operationally works as follows:

• Transform the original time series (complex demodulation) by computing xt = yt exp(−ıωt).

Let xt = ct − ıst, where

ct = yt cos (ωt) , st = yt sin (ωt) .

• Smooth the series ct and st by applying a low-pass filter with cutoff frequency ωc < ω. A

possibility is using the moving average filter

w(L) =
1

12

(

1

2
L−6 + L−5 + . . . L−1 + 1 + L+ . . . + L5 +

1

2
L6

)

,

adopted in seasonal adjustment procedures such as the US Census Bureau X-12 procedure

(Findley, Monsell, Bell, Otto, and Chen, 1998), where L is the lag operator, Ljyt = yt−j ,

or its convolutions [w(L)]k, k = 1, 2, 3, . . . Denote c̃t = w(L)ct, s̃t = w(L)st.

• Compute the amplitude and phase

Ãt = (c̃2t + s̃2t )
1/2, ϕ̃t = arctan

(

−
s̃t
c̃t

)

.

An alternative approach to estimating the phase and the amplitude is based on the following

trigonometric regression model:

yt+ms = µM+m + βM+m cos(ωt) + β∗M+m sin(ωt) + ǫt+ms, t = 1, 2, . . . ,Ms,
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where ǫt ∼ WN(0, σ2), where WN denotes white noise, a sequence of uncorrelated zero mean

random variables with constant variance. The model is estimated by ordinary least squares

(OLS) using Ms consecutive observations referring to a span of M years, for t = 1, 2, . . . ,Ms.

The regression is carried out for m = 0, 1, . . . , ⌊n/s⌋−M and provides an estimate of the varying

amplitude and phase for year M +m:

ÂM+m = (β̂2M+m + β̂∗M+m)
1/2, ϕ̂M+m = arctan

(

β̂∗M+m

β̂M+m

)

,m = 0, 1, . . . , ⌊n/s⌋ −M.

This method is equivalent to that used by Stine et al. (2009), who consider M = 1 in the

methodological appendix and M = 21 in the supplement.1

The upper plots of Figure 2 display the amplitude and phase estimated by applying CD

using respectively k = 3 and k =20 convolutions of the low-pass filter w(L), so as to achieve

two different levels of smoothness. The phase is expressed in days, that is, in light of Equation

(1), we plot the estimate of 30.4375 × (ϕ+ π/2)/ω, which converts the phase shift expressed in

months into days. The lower plots display the patterns of ÂM+m and ϕ̂M+m for M = 3 and

M = 21, which are naturally much smoother for M = 21 (21 years of consecutive data are used

to conduct the above trigonometric regression).

The phase plot is directly comparable with figure S8 in the supplement to Stine et al. (2009)

and displays a sizable drop during the 1960s and 70s, which possibly marks a significant change in

seasonality entailing an earlier onset of spring. The amplitude is characterised by a turning point

taking place around 1920, when the decreasing trend is discontinued, if not reversed, for a period

before 1950. These facts are also discernible from complex demodulation. The main differences

are related to the fact that CD yields noisier time series that are affected by intrayearly volatility,

which could be reduced or eliminated by averaging or subsampling. Also, the presence of a trend

in mean temperatures affects the estimated phases and amplitudes differently. In trigonometric

regression, the variation in the intercept, µM+m, captures the trend in the mean.

In conclusion, complex demodulation can be implemented in various ways so that the esti-

mates of the amplitude and the phase of the seasonal cycle can be characterised by different

degrees of smoothness. However, there is broad agreement on the following stylized facts. Firstly,

the seasonal cycle has been characterised by a time-varying amplitude with a distinctive trend

towards a reduction. Secondly, the phase oscillates around a linear trend with negative slope

and features a local rapid decline during the 1960s, possibly followed by a subsequent increase.

1Note that Stine et al. (2009) use cos(ω(t− 0.5)) and sin(ω(t− 0.5)) as explanatory variables.
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Figure 2: Complex Demodulation: time varying amplitude and phase.
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3 Are temperatures stationary or unstable?

Let yiτ , τ = 1, . . . , T, denote a generic annual temperature series relating to a particular season,

i = 1, . . . , 12 (January, February, and so forth). For each month i we are interested in testing

the stationarity of yiτ with respect to τ against the alternative that yiτ has a stochastic trend

component. The reference model is the following:

yiτ = µiτ + ǫiτ , ǫiτ ∼ IID N(0, σ2ǫi),

µiτ = µi,τ−1 + βi + ηiτ , ηiτ ∼ IID N(0, σ2ηi),
(2)

where we assume that ǫiτ and ηiτ are independent and the process µiτ has started at time 0

with value µ0. The single equation form of (2) is then

yiτ = µ0i + βiτ +

τ−1
∑

j=0

ηi,τ−j + ǫiτ .

The null hypothesis is H0 : σ2ηi = 0 for each individual i, implying that the series is trend

stationary, that is yiτ = µ0i+ βiτ + ǫiτ . The alternative is H1 : σ
2
ηi > 0, in which case the series

displays a stochastic trend.
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The locally best invariant (LBI) test statistic for this testing problem is (Nyblom, 1986):

ξiτ =
1

Ts2i

T
∑

j=1

[

j
∑

τ=1

eiτ

]2

,

where eiτ is the residual from a linear trend fitted by ordinary least squares (OLS), eiτ =

yiτ − µ̂0i − β̂iτ , and s
2
i = T−1

∑

τ e
2
iτ . The rejection region is defined by ξiτ > cτ , with critical

values tabulated by Nyblom (1986). The asymptotic distribution is a second-level Cramer-von

Mises distribution, for which the 5% critical value is 0.149.

If βi = 0 both under the null and the alternative, we are testing level stationarity, yiτ =

µ0i + ǫiτ , against a pure random walk trend. The LBI test statistic (Nyblom and Mäkeläinen,

1983), denoted ξiµ, takes the same form as ξiτ , with eiτ = yiτ − ȳi; the asymptotic distribution

is a first-level Cramer-von Mises distribution, for which the 5% critical value is 0.461.

When ǫiτ is any stationary process, Kwiatkowski et al. (1992) show that the same asymptotic

distribution is attained under the null, if s2i is replaced by an estimate of the long-run variance

such as the Newey and West (1987) estimate

s2iL = γ̂ei (0) + 2
l
∑

k=1

(

1−
k

l + 1

)

γ̂ei (k) (3)

with truncation parameter l, where γ̂ei (k) is the autocovariance at lag k of the residuals eiτ .

The tests ξiµ and ξiτ can be applied to the annual contrasts yiτ −
1
12

∑12
i=1 yiτ . This provides

a test of the null of bivariate cointegration of the temperatures of a particular season with the

yearly average temperature series, with cointegration vector given by [1,−1].

Table 1 reports the values of the stationarity tests ξiµ and ξiτ for the annual temperature

series for the 12 months and for the annual temperature contrasts, obtained as the difference

between the series for a particular month with the yearly average temperature. The tests ξiµ

conducted on the individual time series, using different values of the truncation parameter,

l = 0, 4, 14, lead to rejecting stationarity in several occurrences. The evidence is likely to be

unchanged if we adjusted the critical values so as to account for the multiplicity of the testing

problem. Trend stationarity is rejected for May, July, August, September and October (ξiτ > cτ ).

For January, May, June, October and November, we reject the null that the series for month

i and the average annual temperature series are cointegrated with cointegrating vector [1,−1]

according to the test ξiµ. For January, August and October, we reject the same null cointegration

in the presence of a linear trend.
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Table 1: Stationarity tests of temperature series

Annual Temperature Series

ξiµ test statistica) ξiτ test statisticb)

l = 0 l = 4 l = 14 l = 0 l = 4 l = 14

January 2.371 1.762 1.097 0.074 0.077 0.082

February 0.096 0.102 0.116 0.043 0.046 0.054

March 1.568 1.183 0.819 0.121 0.112 0.119

April 0.408 0.288 0.227 0.134 0.098 0.081

May 0.247 0.203 0.174 0.203 0.168 0.144

June 0.193 0.192 0.168 0.114 0.115 0.102

July 0.533 0.449 0.368 0.214 0.188 0.169

August 0.961 0.670 0.447 0.405 0.299 0.221

September 1.483 1.221 0.808 0.244 0.240 0.208

October 2.545 1.665 0.878 0.393 0.335 0.227

November 3.031 2.081 1.080 0.102 0.108 0.089

December 1.299 1.152 0.796 0.043 0.047 0.049

a) Stationarity test against a random walk. The 5% and 1% critical
values are 0.461 and 0.743, respectively.

b) Stationarity test against a random walk with drift. The 5% and 1%
critical values are 0.149 and 0.218, respectively.

Table 2: Stationarity tests of temperature series con-

trasts with average yearly temperatures

Annual Temperature Contrasts

ξiµ test statistica) ξiτ test statisticb)

l = 0 l = 4 l = 14 l = 0 l = 4 l = 14

January 1.161 0.959 0.680 0.190 0.181 0.158

February 0.344 0.355 0.340 0.088 0.095 0.101

March 0.230 0.247 0.314 0.028 0.031 0.048

April 0.349 0.296 0.285 0.040 0.035 0.039

May 0.843 0.701 0.602 0.054 0.051 0.059

June 2.233 1.755 1.078 0.033 0.036 0.037

July 0.349 0.391 0.402 0.062 0.074 0.089

August 0.352 0.331 0.285 0.185 0.179 0.161

September 0.061 0.075 0.096 0.061 0.075 0.097

October 0.556 0.521 0.395 0.180 0.179 0.150

November 0.880 0.852 0.568 0.038 0.043 0.036

December 0.318 0.355 0.295 0.103 0.120 0.109

a) Stationarity test against a random walk. The 5% and 1% critical
values are 0.461 and 0.743, respectively.

b) Stationarity test against a random walk with drift. The 5% and 1%
critical values are 0.149 and 0.218, respectively.
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The stationarity test has been extended to the multivariate case by Nyblom and Harvey

(2000). Let us consider the multivariate annual temperature series resulting from stacking the

series for the individual months, yτ = {yiτ , i = 1, . . . , N}, with N = 12, and consider the random

walk plus noise model:

yτ = µτ + ǫτ , ǫτ ∼ IID N(0,Σǫ),

µτ = µτ−1 + β + ητ , ητ ∼ IID N(0,Ση).
(4)

Nyblom and Harvey (2000) consider the LBI test of the hypothesis H0 : Ση = 0 against the

homogeneous alternative H1 : Ση = qΣǫ, and show that this has rejection region:

ξN,τ = trace[S−1C] > c,

where

C =
1

T 2

T
∑

τ=1





τ
∑

j=1

ej









τ
∑

j=1

ej





′

, S =
1

T

T
∑

τ=1

eτe
′
τ = Γ̂e(0),

eτ results from OLS detrending of the individual series and Γ̂e(k) is the sample cross-covariance

matrix at lag k. They provide the critical values, c, for N ≤ 4 and show that the asymptotic

distribution is the second-level Cramer-von Mises with N degrees of freedom. When β = 0, the

test statistic is denoted ξN,µ and is computed on et = yt − ȳ.

A non-parametric adjustment, along the lines of Kwiatkowski et al. (1992), can be made

when ǫτ is a general serially correlated and heteroscedastic process; one possibility is to replace

S by the estimator of the long-run covariance matrix:

SL = Γ̂e(0) +

l
∑

k=1

(

1−
k

l + 1

)

[Γ̂e(k) + Γ̂e(k)
′].

If the null is rejected, it is interesting to test the null that the nonstationarity is due to

the presence of a common stochastic trend. Nyblom and Harvey (2000) show that a test for a

specified number of common trends, H0 : rank(Ση) = K, against the alternative that there are

more, H1 : rank(Ση) > K, is given by the sum of the N −K smallest eigenvalues of the matrix

S−1
L C.

Also, the test statistics ξN−1,µ and ξN−1,τ can be used to test the null of cointegration on the

11 contrasts obtained as the deviation of the annual temperatures of month i with a reference

month, e.g. December. Denoting A = [IN−1 − iN ], the multivariate stationarity test computed

on zt = Ayt is a test of the null that the nonstationary series yτ share the same stochastic
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trend, i.e. not only there is a single common trend, but the trend enters the series with exactly

the same loading.

Both multivariate stationarity tests ξNµ and ξNτ , reported in Table 3 for truncation lags 0,

1, and 4, lead to rejection of the null of stationarity. (The optimal truncation lag, determined

according to the method proposed by Hobijn and Franses (2000), is equal to 1). However, if

we allow for a linear trend plus drift, the hypothesis that Ση has rank 1 is accepted. We may

tentatively conclude that the nonstationarity is due to the presence of a single common trend.

The research question is not only if the monthly and annual temperature series have a

common trend, but also if the trend is the same for all the seasons. If the seasons have different

trends, then a phase shift of the seasonal cycle may take place. We thus focus on testing the

stationarity of Ayτ , which is accepted when we allow for a linear trend in the mean (test ξN−1,τ

in the table). This evidence is in contrast with the rejection of the same trend hypotheses

rejected in the univariate setup; see the discussion concerning Table 2.

Table 3: Multivariate Stationarity tests of temperature series and their contrasts

Annual Temperature Series

ξNµ test statistica) ξNτ test statisticb)

l = 0 l = 1 l = 4 l = 0 l = 1 l = 4

8.573∗ 6.779∗ 4.471∗ 1.336∗ 1.242∗ 1.040

H0 : rank(Ση) = 1: constant, no trendc) H0 : rank(Ση) = 1: linear trendd)

l = 0 l = 1 l = 4 l = 0 l = 1 l = 4

1.144∗ 1.115∗ 0.974∗ 0.388 0.386 0.384

Annual Temperature Contrasts Ayτ , A = [IN−1 − iN ]

ξN−1,µ test statistice) ξN−1τ test statisticf)

l = 0 l = 1 l = 4 l = 0 l = 1 l = 4

5.596∗ 5.123∗ 3.869∗ 0.850 0.847 0.868

a) The 5% and 1% critical values are 2.901 and 3.396, respectively.
b) The 5% and 1% critical values are 1.059 and 1.180, respectively.
c) The 5% and 1% critical values are 0.941 and 1.065, respectively.
d) The 5% and 1% critical values are 0.552 and 0.609, respectively.
f) The 5% and 1% critical values are 2.696 and 3.221, respectively.
g) The 5% and 1% critical values are 0.981 and 1.114, respectively.

The main conclusions that we draw from the analysis of the stability of the temperature series

is that trend stationarity is rejected. The most likely source for the rejection is the presence of a

nonstationary random component driving all the 12 series pertaining to each individual months.

In the appendix we report the evidence arising from the application of seasonal stability tests,

which point to the presence of stochastic trend component at the long run frequency. Whether
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the common stochastic trend affects the months in the same way or in different ways remains

an open issue. We will return to this issue in Section 5.

4 Model specification

Our preliminary analysis suggests that we need to model the following characteristics:

• Seasonal heteroscedasticity and periodicity: the temperature in the winter months is more

variable and the serial dependence varies with the season (see Figure 1).

• The seasons may drift at a different rate (Figure 1).

• A global (warming) trend affects all the seasons, possibly with a heterogenous response

(Section 3).

We formulate a specification which decomposes monthly temperatures series into a perma-

nent and a transitory component. Using the trigonometric regression method outlined in Section

2, we can investigate the changes in phase and amplitude in the permanent component. The

permanent component, denoted µt, has a deterministic linear trend component with season-

specific intercept and slope, and a stochastic component that results from the amplification or

contraction of a global stochastic trend. In symbols, for season i, the permanent component is

µt = µ0i + βit+ θiδt,

where δt is the common trend affecting all the seasons and θi is the loading for the i-th season.

We expect a large part of the movements in the series to be transitory: a winter colder than

usual does not affect the seasonal pattern permanently. We model the transitory component,

ψt, as a periodic and heteroscedastic AR(1) process.

In summary, the model has the following formulation:

yt = µt + ψt, t = 1, 2, . . . , T,

µt = x′
t(µ0 + βt+ θδt),

δt = δt−1 + ηt, ηt ∼ N(0, 1),

ψt = (x′
tφ)ψt−1 + ζt, ζt ∼ N(0, (x′

tν)
2).

(5)

All the disturbances are serially and mutually uncorrelated. Here, xt denotes a 12× 1 selection

vector, taking value 1 in the position corresponding to the current season and zero elsewhere,
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so that if the t-th observation refers to month j, x′
tβ = βj , x

′
tν = νj, and so forth. The vector

is characterised by the periodic property xt = xt−12.

The common global trend δt is a random walk with no drift, assumed to have started at

time 0 with δ0 = 0 (any initial effect θδ0 would be incorporated in the intercept µ0, and thus

cannot be identified separately). Hence, the permanent component features a stochastic trend

and a deterministic trend, and both trends have season-specific aspects, captured by the vectors

β and θ.

The transitory component is modelled as a periodically stationary AR(1) process, with sea-

sonally heterogeneous AR coefficients (x′
tφ) resulting from the selection of the relevant compo-

nent of the 12× 1 vector φ.

Let µ0 = iµ̄0+µ∗
0, β = iβ̄+β∗, θ = iθ̄+θ∗, where i is a vector of 1s and the scalars µ̄0, β̄, θ̄

are the average of the corresponding vectors, e.g. µ̄0 = i′µ0/12, and µ∗
0 = Nµ0,β

∗ = Nβ, and

θ∗ = Nθ, with N = I− ii′/12. Then, the permanent component can be expressed as

µt = µ̄t + γDt + γSt ,

µ̄t = µ̄0 + β̄t+ θ̄δt,

γDt = x′
t(µ

∗
0 + β∗t),

γSt = x′
tθ

∗δt.

In other words, the permanent component has a global stochastic trend component, µ̄t, rep-

resented by a random walk with drift β̄, a deterministic seasonal component, γDt , featuring

seasonal drifts, and a stochastic seasonal component driven by the global temperature trend.

This is a systematic sample from a random walk, with weights given by the elements of θ∗.

The model nests several interesting special cases:

• The monthly series feature the same stochastic trend: this arises when θ is a constant

vector, that is θ = θiN . Permanent shocks do not have any effect on the seasonal pattern,

but they modify the long run path only. However, the seasons drift at a different rate.

• The monthly series feature the same stochastic trend and the same deterministic drift. This

arises when θ and β are both constant vectors: θ = θiN and β = βiN . In this case we can

rewrite the permanent component as µt = x′
tµ0 + δ∗t , δ

∗
t = δ∗t−1 + β∗ + η∗t , η

∗
t ∼ N(0, σ2η),

i.e. a season-specific constant plus a random walk with drift. The seasons have the same

drift.

In the unrestricted model, the coefficient vectors µ0,β,θ,ν,φ can be functionally related to

the season index i = 1, . . . , 12, i.e. they vary smoothly across the seasons. This would allow for

12



parsimonious modelling of the coefficients: we can let β = Wβ†, where W is a matrix of spline

weights and β† is a small dimensional vector containing the value of the spline at the knots. In

particular, we use a periodic spline for modelling a pattern in x = [0, 12] with knots located at

the points (0 1 3 7 10 12), see Poirier (1976), so that β† has five elements and

W =




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.

Similarly, we write µ0 = Wµ
†
0, θ0 = Wθ†, ν = Wν†, φ = Wφ†. As a result, our baseline

specification has 25 parameters. We discuss the robustness of the selection of knots in Section

5.3.

5 Estimation results

5.1 Parameter estimates

Our model is represented in state space form and the unknown parameters,

ξ =
(

µ∗′

0 ,β
∗′ ,θ∗′ ,φ∗′ ,ν∗′

)′

,

are estimated by maximum likelihood, with the support of the Kalman filter, see Durbin and Koopman

(2012). The maximised likelihood is ℓM = −2208.08. The parameter estimates are reported in

Table 4 along with their estimation standard errors, which are multiplied by the factor 105 for

convenience.

The first column displays the initial level of temperature for the different months. The main

highlights of the estimation results are:
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• The estimated slopes, β, are higher in the winter months (January and December, in

particular) and November. The parameter estimates are around 10 times the standard

error for these seasons. On the contrary, the drift is not significantly different from zero

for June and July.

• The estimated average drift, β̄, implies a rise in temperatures amounting to 0.37 degrees

Celsius over a century.

• The loadings θ on the global stochastic trend, δt, are higher (in absolute value) for April

and May, and August, September and October. The loadings are close to zero for January

and December.

• The transitory component has higher variability in the winter months: both the variance

νi and the periodic autoregressive coefficients are higher. The periodic autoregressive

coefficients are also higher in the summer months.

Table 4: Parameter estimates and their standard errors (multiplied by 105).

Month µ0 s.e.(*) β s.e.(*) θ s.e.(*) φ s.e.(*) ν s.e.(*)

January 3.06 0.02 0.00045 5.75699 0.0021 0.0022 0.35 0.03 2.81 0.10

February 3.73 0.02 0.00037 5.20530 0.0100 0.0059 0.26 0.03 1.94 0.05

March 5.28 0.01 0.00029 4.11056 0.0186 0.0156 0.09 0.01 1.47 0.06

April 8.14 0.01 0.00019 4.21173 0.0218 0.0184 0.07 0.03 1.23 0.11

May 11.61 0.01 0.00010 3.85030 0.0209 0.0148 0.17 0.02 1.13 0.13

June 14.65 0.01 0.00004 3.89015 0.0191 0.0086 0.29 0.01 1.10 0.13

July 16.25 0.01 0.00007 4.16420 0.0193 0.0052 0.34 0.02 1.12 0.10

August 15.65 0.00 0.00020 4.17306 0.0234 0.0086 0.28 0.02 1.17 0.05

September 13.23 0.01 0.00037 4.58062 0.0270 0.0121 0.16 0.03 1.34 0.05

October 9.63 0.02 0.00051 4.28350 0.0243 0.0114 0.08 0.02 1.85 0.09

November 5.70 0.03 0.00056 4.01393 0.0128 0.0054 0.11 0.03 3.00 0.11

December 3.16 0.02 0.00053 4.66956 0.0021 0.0015 0.24 0.01 3.79 0.13

Mean 9.17 0.00031 0.0168 0.20 1.83

Variance 23.01 0.00000 0.0001 0.01 0.74

(*) Multiplied by 105.

5.2 The global temperature trend, amplitude, and phase changes

Let ξ̃ denote the maximum likelihood estimator (MLE) of ξ, and denote its probability density

function with f(ξ̃s). Let αt denote a statistic of interest, e.g. the phase of the permanent
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component at time t, obtained by the trigonometric regression model outlined in Section 2. We

are interested in estimating the conditional density

f(αt|Yn) =

∫

f(αt|ξ̃, Yn)f(ξ̃)dξ̃, (6)

where Yn = {y1, . . . , yn} denotes the available temperature series, or characteristic values, such

as the mean, the standard deviation, or a particular quantile. The method of composition

(Tanner, 1996) can be used to obtain a Monte Carlo estimate of the conditional density of

interest. In particular, we draw a sample α̃
(i)
t , i = 1, . . . , R, from (6) by the following algorithm:

1. Obtain a bootstrap sample ξ̃
(i)

∼ f(ξ̃): generate a simulated series {y
(i)
t , t = 1, . . . , n}

from model (5), setting the parameters equal to ξ̃. Estimate model (5) for the generated

series to get the required draw, ξ̃
(i)
.

2. Simulate α̃
(i)
t ∼ f(αt|ξ̃

(i)
, Yn), using the simulation smoother proposed by Durbin and Koopman

(2002). In practice, denoting Y
(i)
n = {y

(i)
1 , y

(i)
2 , . . . , y

(i)
n },

α̃
(i)
t = E

(

αt|Yn, ξ̃
(i)
)

+ α
(i)
t − E

(

α
(i)
t |Y (i)

n , ξ̃
(i)
)

.

The above expectations are evaluated by the Kalman filter and smoother (Durbin and Koopman,

2012).

Setting αt = µ̄t, we can obtain point and interval estimates by computing the average and

the standard deviation of the draws µ̄
(i)
t , i = 1, . . . , R. These are displayed in the upper left

plot of Figure 3. The estimates are based on R = 1000 draws and provide an interesting

characterisation of the global warming trend in temperatures: the second decade of the 20th

century marks the inception of an upward trend that increases the level by one degree Celsius.

The estimates of the transitory component, E (ψt|Yn), and 95% bootstrap confidence intervals

are plotted for the period from January 2005 to December 2013, with the purpose of illustrating

the range and the variability of the periodically stationary component in temperatures. Decem-

ber 2010, which has been labelled “the coldest December in a century,” is clearly visible, as

well as a positive and high transitory component in 2006, which has been considered as one the

warmest recent years (see http://news.bbc.co.uk/2/hi/science/nature/6177663.stm).

The permanent component results from a deterministic cycle with seasonal drifts and from

a random component due to the global temperature trend, δt, affecting the seasons in different

ways (due to the differences in the loadings θ). We can assess the dynamics of the amplitude
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Figure 3: Point and interval estimates of the global trend component µ̄t = µ̄0 + β̄t+ θ̄δt, and

the transitory component (subperiod 2015-2013), conditional on the full sample. Conditional

mean and approximate 95% confidence bands for the amplitude and the phase of the permanent

component, µt, according to the trigonometric regression method with M = 3.
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and the phase of the permanent component by simulating from the conditional distribution

of µt, given the observed time series, and performing a trigonometric regression or a complex

demodulation analysis on the draws. The bottom panels of Figure 3 display the point and

interval estimates of the amplitude and phase ÂM+m, and ϕ̂M+m, respectively (see Section 2),

using M = 3 years of consecutive monthly data. Heuristically, the point estimates can be

interpreted as the trend behaviour of the two characteristics, abstracting from the transitory

dynamics.

As can be seen in the bottom right panel of Figure 3, the phase of the permanent component

closely follows a linear function of time with a negative slope implying a shift of the annual cycle

of about minus -4.62 days in the 242 years making up our sample time series, i.e. about minus

one month every 1600 years. Therefore, in about 13,000 years the seasons will be reversed. This

is the effect of precession of Earth’s axis of rotation. Thus, interestingly, the phase shows a
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steady downward trend that does not seem to be affected by global warming. Our results do

not seem to suggest the presence of a shift in the seasons over and above precession.

Obviously, the phase angle does not admit an additive decomposition into a permanent and a

transitory component. However, a weighted additive decomposition exists for the tangent of the

phase angle, which is the ratio of the coefficients attached to the sine and the cosine components

of the trigonometric representation. Setting tan(ϕy) = β∗y/βy for yt = c+βy cos(ωt)+β
∗
y sin(ωt),

tan(ϕµ) = β∗µ/βµ for µt = cµ + βµ cos(ωt) + β∗µ sin(ωt), and tan(ϕψ) = β∗ψ/βψ for ψt = cψ +

βψ cos(ωt) + β∗ψ sin(ωt), it holds

tan(ϕy) = wµ tan(ϕµ) + (1− wµ) tan(ϕψ),

for wµ = βµ/(βµ + βψ). The decomposition is shown in Figure 4, which is based on the trigono-

metric regression of yt, and the estimated µt and ψt, using M = 3. The plot shows that the

downward movements in tan(ϕy) between 1950 and 1980 are transitory. The component tan(ϕµ)

behaves like a straight line and multiplication by the weight wµ does not introduce a systematic

reduction in the 1950’s. These results lend support to the notion that the changes in the phase

of the seasonal cycle could be ascribed to the transitory component.

Figure 4: Additive decomposition of the tangent of the phase angle.
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5.3 Specification diagnostics

The estimation results presented above refer to our selected specification, using a parsimonious

parameterisation of the monthly features (intercept, drift, loading, AR coefficient, periodic vari-

ance). For each of these features, the 12 effects are expressed as linear combinations, with

weights given by the matrix W, of five representative points (January, March, July, October

and December). The selected specification represents a point in the model space, which consists

of all possible numbers and locations of the knots of the periodic spline. It was obtained starting

from a configuration in which we had a knot for each season (spring, summer, autumn, winter),

selected a representative knot within each season, and later added the most relevant additional

knot, which turned out to be January.

In Table 5 we report the maximised log-likelihood, ℓ(ξ̂), associated with alternative, more

general specifications, which differ from our selected model by allowing unrestricted estimation

of one feature at a time, e.g. the intercept µ, while constraining all the remaining parameters to

lie on a periodic spline. All these specifications lead to an increase in the Bayesian Information

Criterion (BIC), reported in the 5th column,

BIC = −2ℓ(ξ̂) + ln(n)#(ξ̂),

where #(ξ̂) denotes the number of parameters, given in the 3rd column. Leaving the intercepts,

the drifts, or the loadings unrestricted reduces the Akaike Information Criterion, AIC = −2ℓ(ξ̂)+

2#(ξ̂). We also considered the possibility of increasing the complexity of the model by adding

an additional knot, for a location corresponding to June, which is the best additional knot for

augmenting the spline model.

The second part of Table 5 presents the results of reducing the complexity of the selected

specification along meaninful directions. We first consider the case of no seasonal drifts, H0 :

β = 0. This restriction is strongly rejected according to the likelihood ratio (LR) test reported in

the 6th column, whose p-value is given in the last column of the table. The second specification

restricts the drift to be the same for all the months: H0 : β = βi, for a scalar drift β; the LR

test has a p-value close to 5%. Also, we reject the null that the global trend component enters

all the seasons with the same weight, H0 : θ = θ̄i, as well as the null that H0 : β = βi,θ = θ̄i.
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Table 5: Analysis of model specification.

Specification Log-likelihood N. parameters AIC BIC

Selected model -2208.08 25 4466.16 4615.51

Unrestricted intercepts -2194.82 32 4453.64 4644.80

Unrestricted drifts -2196.32 32 4456.64 4647.80

Unrestricted loadings -2196.42 32 4456.84 4648.00

Unrestricted AR -2206.32 32 4476.64 4667.80

Unrestricted variances -2208.46 32 4480.92 4672.08

Additional knot (June) -2200.20 30 4460.40 4639.62

Restrictions Log-likelihood N. parameters AIC BIC LR df p-value

No drifts -2220.04 20 4480.08 4599.56 23.92 5.00 0.0002

Same drift -2212.69 21 4467.38 4592.83 9.22 4.00 0.0558

Same loading -2222.73 21 4487.46 4612.91 29.30 4.00 0.0000

Same drift and loading -2228.26 17 4490.52 4592.08 40.36 8.00 0.0000

Diagnostic checking for the selected specification can be performed on the standardised

innovations of the model, rt = (yt−E(yt|Yt−1))/
√

Var(yt|Yt−1), computed by the Kalman filter,

conditional on the maximum likelihood estimate of the parameters. For a correctly specified

model, rt is IID normal with zero mean and unit variance. The time series plot is available

in the upper panel of Figure 5. The distribution of rt does not deviate from normality, as

can be visually appreciated from the estimated probability density function, reported in the

central panel of Figure 5, and from the value of the Jarque-Bera test statistic (Jarque and Bera,

1987), 0.998, which does not lead to reject the null of normality. The sample autocorrelation

function of rt is displayed in the bottom panel, for all the lags from 1 to 36. The largest sample

autocorrelation occurs at lag 14 and equals -0.055 and the value of the Ljung-Box statistic

using 12 lags amounts to 20.350, with a p-value of 0.061. We may conclude that the selected

specification provides a data-coherent representation of the serial dependence structure of the

CET series.

6 Conclusions

The Central England Temperature series provides a very useful dataset for assessing whether the

global trend in temperatures, or global warming, has affected the annual cycle. In particular, we

have investigated whether a shift of the seasonal cycle towards an earlier inception of the spring

season has occurred. The paper has attempted to distinguish between the permanent and the
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Figure 5: Standardised innovations: time series plot, density estimate and sample autocorre-

lation function.
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transitory components of the series. The permanent component is driven by a single stochastic

trend to which the seasons seem to have responded in a differential way. It is characterised by an

upward movement since the beginning of the twentieth century, which is usually identified as a

global warming trend. The transitory component is a stationary periodic autoregressive process

with seasonally heteroscedastic disturbances. The most important changes in the seasonal cycle

concern the amplitude, which appears to be more sensitive to the variations in the global trend.

It has been decreasing until around 1920, and later it stabilises. The phase of the seasonal cycle

is much less affected by the global warming trend, and it is characterised by a steady downward

trend, consistent with precession of Earth’s axis of rotation. The rapid movements in the phase

taking place around 1950 can be ascribed to the transitory component in temperatures.
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Appendix

In this appendix we report the results of seasonal stability tests and some details on the fit

provided by a well known model for seasonal time series, the so called basic structural model,

see Harvey (1989).

A Seasonal stability test

The econometric literature has provided tests of the stability of the seasonal pattern that are

relevant to our discussion. Let us assume that the temperature series admits the decomposition:

yt = µt + γt + ǫt,

where µt is the trend component, γt is the seasonal component, and ǫt ∼ IID N(0, σ2ǫ ). Assume

further that

µt = µt + β + ηt, ηt ∼ IID N(0, σ2η),

γt = γDt + γSt .
(7)

The seasonal component is decomposed into a deterministic term, γDt , a linear combination with

fixed coefficients of sines and cosines defined at the seasonal frequencies ωj = 2πj/12, j = 1.., 6,

plus a nonstationary stochastic term, γSt , arising as a linear combination of the same explanatory

variables with random coefficients:

Defining

zt = [cosω1t, sinω1t, ..., cos ω5t, sinω5t, ..., cos ω6t]
′ ,

γDt = z′tγ0, where γ0 is a vector of 11 fixed coefficients. The stochastic component is γSt =

z′t
∑t

i=1 κi where κt is a vector of serially independent disturbances with zero mean and covari-

ance matrix

Ω = diag(σ21 , σ
2
1 , . . . , σ

2
5 , σ

2
5 , σ

2
6),

independently of ǫt and ηt. The remaining components are defined as before.

Canova and Hansen (1995) and Busetti and Harvey (2003) have derived the locally best

invariant test of the null that seasonality is stable versus the alternative that it is stochastically

evolving. The null hypothesis that the trigonometric cycle at frequency ωj is deterministic is

then formulated as H0 : σ2j = 0, versus H1 : γ0 = 0, σ2j > 0 (stochastic seasonality). The test

statistic is

̟j =
aj
T 2σ2

T
∑

t=1

[

t
∑

i=1

(ei cosωji)
2 +

t
∑

i=1

(ei sinωji)
2

]

, (8)
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where aj = 1, j = 6 and aj = 2 otherwise, and et are the OLS residuals obtained from the

regression of yt on a set of explanatory variables xt = [1, t, z′t]
′ accounting for a deterministic

trend and deterministic seasonals. Under the null ̟j is asymptotically distributed according to

a Cramér-von Mises distribution with 2 degrees of freedom for j = 1, 2, 3, 4, 5 and 1 degree of

freedom for j = 6. The test statistic for H0 : σ21 = σ22 = · · · = σ26 , is ̟ =
∑6

j ̟j. We may also

wish to test the stability of the trend component, H0 : σ2η = 0 (versus H1 : σ2η > 0. The test

statistic is ξτ = 1
T 2σ2

∑T
t=1

[
∑t

i=1 e
2
i

]

.

Given that we are interested in testing the stability of the seasonal trigonometric cycles in

the presence of seasonal trends, we also consider a more general model for the deterministic

seasonal component, namely γDt = z′t(γ0+γ1t), where γ1 is a vector of seasonal drifts. The test

statistic for H0 : σj = 0, takes the same form as (8), with et representing the residual from the

regression of yt on a set of explanatory variables xt = [1, t, z′t, tz
′
t]
′. We label the test ̟+

j . Its

asymptotic null distribution is CvM with time trend; the critical values are available in Table

I(b) of Harvey (2001).

The test statistics in (8) require an estimate of σ2. A nonparametric estimate is obtained

by rescaling the estimate of the spectrum of the sequence et at the frequency ωj, by 2π, using

a Bartlett window.

Table 6 presents the test statistics using a truncation lag l = 24. The Busetti-Harvey Canova-

Hansen test leads to reject the null at the zero frequency and at the fundamental frequency.

However, when we consider the possibility of seasonal trends, we accept the null of stability.

Table 6: Busetti-Harvey stability tests

No drift With drift With drift and seasonal trends

ξµ 3.951∗∗ ξτ 0.324∗∗ ξτ 0.324∗∗

̟1 1.079∗∗ ̟1 1.416∗∗ ̟
†
1

0.198

̟2 0.072 ̟2 0.094 ̟
†
2

0.053

̟3 0.036 ̟3 0.047 ̟
†
3

0.032

̟4 0.105 ̟4 0.139 ̟
†
4

0.034

̟5 0.108 ̟5 0.142 ̟
†
5

0.069

̟6 0.066 ̟6 0.088 ̟
†
6

0.039

a) The 5% and 1% critical values of the ξµ and ̟6 statistics are 0.461 and 0.743, respectively.

b) The 5% and 1% critical values of the ̟j , j = 1, 2, 3, 4, 5, statistics are 0.748 and 1.074, respectively.

c) The 5% and 1% critical values of the ξτ and ̟†
6 statistic are 0.149 and 0.218, respectively.

d) The 5% and 1% critical values of the ̟†
j , j = 1, 2, 3, 4, 5, statistics are 0.247 and 0.329, respectively.

The critical values are obtained from Harvey (2001).
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The overall conclusion is that instability seems to characterise only the long-run frequency,

once seasonal trends are accounted for.

B Basic structural model

Representation (7) is often referred to as the basic structural time series model (BSM, see Harvey

(1989)). When, consistently with the seasonal stability tests results, it is estimated under the

restrictions σ22 = σ23 = σ42 = σ25 = σ62 = 0 (the trigonometric cycles at the harmonic frequencies

are deterministic), we obtain the following maximum likelihood estimates σ̃2η = 0.0047681, σ̃21 =

0.0000526, ǫ̃2 = 1.8344095, β̃ = 0.0002287. For comparison with the models considered in this

paper, we also report the value of the maximised log-likelihood, which equals ℓBSM = −2410.38.

Notice that this is much below the maximised likelihood of the model considered in Section (4),

ℓM = −2208.08. In particular, the representation of the short-run component, given for the

BSM by homoscedastic white noise, appears to be grossly misspecified. This is reflected in the

usual diagnostics, based on the standardised Kalman filter innovations, which are periodically

autocorrelated and seasonally heteroscedastic.
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