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Abstract

We provide a new resampling procedure - the local stable bootstrap - that is able to mimic
the dependence properties of realized power variations for pure-jump semimartingales observed at
different frequencies. This allows us to propose a bootstrap estimator and inference procedure for
the activity index of the underlying process, β, as well as a bootstrap test for whether it obeys
a jump-diffusion or a pure-jump process, that is, of the null hypothesis H0 : β = 2 against the
alternative H1 : β < 2. We establish first-order asymptotic validity of the resulting bootstrap
power variations, activity index estimator, and diffusion test for H0. Moreover, the finite sample
size and power properties of the proposed diffusion test are compared to those of benchmark tests
using Monte Carlo simulations. Unlike existing procedures, our bootstrap test is correctly sized in
general settings. Finally, we illustrate use and properties of the new bootstrap diffusion test using
high-frequency data on three FX series, the S&P 500, and the VIX.
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1 Introduction

Itô semimartingales comprise an important class of continuous time processes that are widely used

to model financial asset prices, asset return volatility, volume of trades, among others. Hence, power

variations of discrete increments of such processes have similarly become imperative risk measures

in asset- and derivatives pricing, risk management, and portfolio selection.1 Defined as the sum of

absolute (log-)innovations raised to a given power, p, these risk measures contain the realized variance

as a special case with p = 2. When the leading term of the Itô semimartingale is a Brownian motion,

it is well known that, under weak conditions, the realized variance converges to the quadratic variation

of the process as the interval between successive observations progressively shrinks, see, e.g., Jacod &

Shiryaev (2003). If, however, the leading term is a pure-jump process with activity index β ∈ (0, 2),

cf. Aı̈t-Sahalia & Jacod (2009), the realized variance diverges since power variation statistics with

β < p are not asymptotically bounded (formal definitions are given below). Hence, it is important

to estimate and make inference on β to determine whether the underlying process is a jump-diffusion

or a pure-jump semimartingale, that is, to distinguish between the two hypotheses H0 : β = 2 and

H1 : β < 2, when specifying financial models and making inference on financial risk measures.

The limiting behavior of realized power variations has been extensively studied in the continuous

Brownian semimartingale case, see, e.g., Barndorff-Nielsen & Shephard (2002, 2003), and later ex-

tended to allow for jumps that may affect the limiting properties of the statistics in Jacod (2008).

However, while the Brownian semimartingale model is commonly adopted in financial economics, e.g.

Andersen & Benzoni (2012) and references therein, recent empirical evidence suggests that pure-jump

semimartingales with infinite activity jumps may provide a better approximation for logarithmic inno-

vations in equities, equity indices and exchange rates, see, e.g., Wu (2008), Aı̈t-Sahalia & Jacod (2009,

2012), and Jing, Kong & Liu (2012); for option pricing, e.g., Carr & Wu (2003) and Wu (2006); and

for volatility modeling, see, e.g., Carr, Geman, Madan & Yor (2003), Todorov & Tauchen (2011b), An-

dersen, Bondarenko, Todorov & Tauchen (2014), and Todorov, Tauchen & Grynkiv (2014). Either in

the process of establishing this evidence, motivated by it, or independently, the study of the limiting

behavior of realized power variations has been extended to the case where the underlying innova-

tion process obeys a pure-jump semimartingale, see Aı̈t-Sahalia & Jacod (2009), Todorov & Tauchen

(2011a), Todorov (2013) along with earlier work by Woerner (2003, 2007). In particular, consistency

and asymptotic central limit theory for realized power variation estimates of the stochastic scale have

been established and used to construct estimators of the underlying activity index, β.

However, while asymptotically valid, central limit theory based coverage for both the stochastic

scale and β may have poor finite sample properties, especially when applied to a moderate number

of intra-daily observations. This is exemplified by the Monte Carlo study in Barndorff-Nielsen &

Shephard (2005), who show that the feasible asymptotic theory for realized variance in a Brownian

semimartingale setting may provide a poor guide to the finite sample distribution, and by Jing, Kong,

1See, e.g., Andersen, Bollerslev & Diebold (2010) and Barndorff-Nielsen & Shephard (2007) for reviews and references.
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Liu & Mykland (2012), who show that the activity index estimator of Aı̈t-Sahalia & Jacod (2009)

suffer from a non-negligible bias and large mean-squared errors in finite samples. As a result, ex-

isting tests of the null hypothesis H0 against H1 may suffer from similar distortions. To improve

finite sample inference on the realized variance estimator for the continuous Brownian semimartingale

case, Gonçalves & Meddahi (2009) propose a wild bootstrap and show that it achieves second-order

refinements. Hounyo (2014) provides further improvements with a local Gaussian bootstrap, which

achieves third-order refinements. However, none of the two procedures accommodate power variations

at different frequencies, nor allow the process to be a pure-jump semimartingale.

In this paper, we propose a new resampling procedure - the local stable bootstrap - that is able

to mimic the dependence properties of power variations for pure-jump semimartingales observed at

different frequencies. As a result, we use the bootstrap to propose a new estimator and inference

procedure for the activity index, β, along with a new test for whether the underlying process is a

jump-diffusion or a pure-jump semimartingale, that is, of H0 against H1. We establish first-order

asymptotic validity of the local stable bootstrap as well as the resulting estimator of β. Moreover,

and as a by-product of the analysis, we establish consistency of a bipower variation estimator for

the stochastic scale when the underlying process obeys a pure-jump semimartingale. We design the

local stable bootstrap test for H0 to have good size properties by targeting the resampling towards

a specific null hypothesis, similar to the recommendations in Davidson & MacKinnon (1999). Hence,

when assessing the finite sample size and power of our test in a Monte Carlo study, it is not surprising

that we find our test to be correctly sized in a variety of settings, in contrast to existing tests for H0

that are oversized for all sample sizes and settings considered. Finally, we illustrate the practical use

of the local stable bootstrap procedure by testing H0 using high-frequency data on three exchange

rate series, the S&P 500 index and the VIX from 2011. We find that the (null) presence of a diffusion

is rarely rejected for the S&P 500, rejected 60-87% of the days for the VIX, whereas the rejection rates

for the exchange rate series falls between the two. Moreover, we show that existing tests uniformly

reject more often than our bootstrap test, verifying the patterns from the simulation study.

The outline of the paper is as follows. Section 2 lays out the setup, assumptions, and review exist-

ing results. Section 3 introduces the local stable bootstrap procedure and establishes its asymptotic

properties. Section 4 contains the simulation study, and Section 5 provides the empirical analysis.

Finally, Section 6 concludes. An appendix contains additional assumptions, proofs, and implemen-

tation details. The following notation is used throughout: P∗, E∗ and V∗ denotes the probability

measure, expected value and variance, respectively, induced by the bootstrap resampling and is, thus,

conditional on a realization of the original time series. In addition, for a generic sequence of bootstrap

statistics X∗n, we write X∗n = op∗ (1) or X∗n
P∗−→ 0 as n→∞, in probability-P, if for any ε > 0 and any

δ > 0, limn→∞ P [P∗ (|X∗n| > δ) > ε] = 0. Similarly, we write X∗n = Op∗ (1) as n→∞, in probability-P,

if for all ε > 0 there exists a Mε <∞ such that limn→∞ P [P∗ (|X∗n| > Mε) > ε] = 0. Finally, we write

X∗n
d∗−→ X as n → ∞, in probability-P, if conditional on the original sample, X∗n converges weakly to

some X under P∗, for all samples contained in a set with probability-P approaching one.
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2 Setup, Assumptions, and Existing Results

This section introduces a general Itô semimartingale framework and provides the necessary assumptions

to perform the theoretical analysis. Moreover, it defines the realized power variations statistics of

interest, the activity index of the underlying process and its estimator. Finally, we review some

asymptotic results, which are relevant for designing our local stable bootstrap.

2.1 The Framework

Let Z denote the logarithmic asset price process defined on a filtered probability space, (Ω,F , (Ft),P),

where the information filtration (Ft) ⊆ F is an increasing family of σ-fields satisfying P-completeness

and right continuity. In particular, we assume that Z obeys an Itô semimartingale of the form

dZt = αtdt+ σt−dLt + dYt, 0 ≤ t ≤ 1, (1)

where αt and σt are some processes with càdlàg paths; Lt is a Lévy process, which is a martingale, if

of infinite variation, and a sum of jumps, if of finite variation; and, finally, Yt is some “residual” jump

process, which is dominated by Lt over small time scales. As will be formalized below, we assume

throughout that Lt is “locally” a stable process with activity parameter β, that is, Lt behaves like a

stable process over small time increments.2 In particular, we will restrict attention to the empirically

relevant case 1 < β ≤ 2, i.e., where the high-frequency movements in Zt behave locally like a stable

process of infinite activity with stochastic scale, σt. For the boundary case β = 2, Lt is a Brownian

motion at high frequencies and for 1 < β < 2, Lt behaves like a pure-jump process, but continues to

dominate the drift term, αt. Hence, separating the cases β = 2 and β < 2 is of a central importance

for, e.g., volatility measurement, see, e.g., Todorov & Tauchen (2011a) and Todorov (2013).

The process in (1) covers most widely applied models of financial asset prices, for example, the

affine class of jump-diffusions in Duffie, Pan & Singleton (2000), and the time-changed Lévy models

of Carr et al. (2003). Furthermore, note that the “residual” jump process, Yt, need not be independent

of Lt (nor αt and σt). This implies that Zt need not share tail behavior of Lt, which may be driven,

for example, by tempered stable process, whose tail behavior may be very different from that of a

stable process. Exactly such flexible modeling of the tails has been emphasized, e.g., for characterizing

investor equity, variance, and jump risk premia, see Bollerslev & Todorov (2011), and by Andersen,

Fusari & Todorov (2014) in the context of index option pricing.

2.2 The Objective

To set the stage, we assume to have a discrete set of observations Zti , i = 0, 1, . . . , n, available from

an equidistant sampling grid, that is, where ti = i/n ∀i, and define a general class of power variation

2Details on stable processes may be found in, e.g., Sato (1999).
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statistics as

Vn (p, Z, υ) ≡
n∑
i=υ

|∆n,υ
i Z|p , ∆n,υ

i Z = Zti − Zti−υ =
υ∑
j=1

∆n,1
i+1−jZ, (2)

which are indexed by the frequency υ. In particular, we seek to make bootstrap inference on the

quantities,

Vn (p, Z, 1) =
n∑
i=1

∣∣∣∆n,1
i Z

∣∣∣p , Vn (p, Z, 2) =
n∑
i=2

∣∣∣∆n,1
i−1Z + ∆n,1

i Z
∣∣∣p , (3)

whose asymptotic central limit theory have already been studied in Todorov & Tauchen (2011a) and

Todorov (2013) under similar assumptions, see also Woerner (2003, 2007). To improve the finite

sample inference in the special case where Zt is a Brownian semimartingale without jumps, Gonçalves

& Meddahi (2009) propose a wild bootstrap procedure for Vn (2, Z, 1), showing that it achieves second-

order refinements, and Hounyo (2014) provides further improvements by proposing a local Gaussian

bootstrap, which achieves third-order refinements. The present problem, however, is much more

demanding as we seek to make bootstrap inference on Vn (p, Z, υ), that is, for some power p, difference

orders υ = (1, 2), and, perhaps most importantly, for the general class of processes (1).

The added challenge is readily illustrated by the definition of the generalized Blumenthal-Getoor

index, cf. Aı̈t-Sahalia & Jacod (2009), which, under certain regularity conditions that will be stated

below, suggests that

β = inf

{
p > 0 : plim

n→∞
Vn (p, Z, 1) <∞

}
, (4)

that is, power variations diverge for powers greater than the “local” activity index, β.3 This implies

that unless β = 2, the widely applied realized variance quantity, Vn (2, Z, 1), diverges. Hence, we also

seek to utilize our bootstrap procedure for (3) to make inference on the activity estimator,

β̂(p) =
p ln(2)

ln (Vn (p, Z, 2))− ln (Vn (p, Z, 1))
1{Vn (p, Z, 2) 6= Vn (p, Z, 1)}, (5)

where 1{·} is the indicator function. Note that (5) combines the estimators from Todorov & Tauchen

(2011a) and Todorov (2013), and it is recently used empirically by Andersen, Bondarenko, Todorov &

Tauchen (2014) to study the high-frequency dynamics of S&P 500 equity-index options.

Remark 1. The analysis is performed without consideration of market microstructure noise, which

is known to contaminate observed prices at tick-by-tick frequencies. Several ways of correcting for

noise-induced effects have been proposed in the context of quadratic variation estimation for Brownian

semimartingales. However, for pure-jump semimartingales, common practice is to use moderately

sampled data to alleviate the impact of noise. Hence, the use of a bootstrap inference procedure is

particularly warranted in this settings since the feasible asymptotic theory may deviate substantially

from finite sample distributions, see, e.g., the remarks on Barndorff-Nielsen & Shephard (2005) and

3The index in (4) is a generalization of the original Blumenthal-Getoor index, proposed by Blumenthal & Getoor (1961),
which is only defined for pure-jump Lévy processes.
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Jing, Kong, Liu & Mykland (2012) in the introduction above.

2.3 Assumptions

First, let us recall the definition of a Lévy process on Jacod & Shiryaev (2003, p. 75), which states

that Lt is a Lévy process with characteristic triplet (b, c, ν) if its (logarithmic) characteristic function

is given by

lnE
[
eiuLt

]
= itub− tcu2/2 + t

∫
R

(
eiux − 1− iuκ(x)

)
ν(dx) (6)

where κ(·) is a continuous truncation function, which behaves like κ(x) = x in a neighborhood of the

origin, and ν(·) is the Lévy measure, whose density controls the activity of the process. Following, e.g.,

Todorov (2013), we will for simplicity assume throughout that κ(−x) = −κ(x) and, furthermore, let

κ′(x) = x−κ(x). Intuitively, the truncation function assists in quantifying the asymptotic behavior of

Lt depending on the activity index, β. For example, when β ∈ (1, 2), we need both κ′(x) and κ(x) to

decompose the infinity activity Lévy process into the martingale component of the small jumps and

large jumps, see, e.g., the discussion in Aı̈t-Sahalia & Jacod (2012).

Assumption 1. Let the constants A1 and A2 satisfy A1 > 0 and A2 ≥ 0, respectively, then

(a) Lt is a Lévy process with characteristic triplet (0, 0, ν) where the Lévy measure ν has density

defined by ν(x) = ν1(x) + ν2(x) with

ν1(x) = A1|x|−(β+1) and |ν2(x)| = A2|x|−(β
′+1) when |x| ≤ x0

for some x0 > 0, β′ < 1, β ∈ (1, 2],
∫
R |x|ν(x)dx <∞ and, finally, where

A1 =

(
4Γ(2− β)| cos(βπ/2)|

β(β − 1)

)−1
, when β ∈ (1, 2).

(b) Yt is an Itô semimartingale with a characteristic triplet (B,C, νY ) given by

(
B,C, νY

)
=

(∫ t

0

∫
R
κ(x)νYs (dx)ds, 0, dt⊗ νYt (dx)

)
with

∫
R(|x|β′+ε∧1)νYt (dx) being locally bounded and predictable, and where β′ satisfies the condi-

tions in (a) and ε > 0 is arbitrarily small. A formal definition of Itô semimartingales, including

the characteristic triplet, is provided in Jacod & Shiryaev (2003, pp. 75-76).

Assumption 1 imposes conditions similar to those in Aı̈t-Sahalia & Jacod (2009), Todorov &

Tauchen (2011, 2012), and Todorov (2013). In particular, it formalizes the notion of local stable

behavior over small time increments, that is, we have h−1/βLht
d−→ St for h → 0 where convergence

holds under the Skorokhod topology on the space of càdlàg functions, and St is a strictly stable process

5



with characteristic function

lnE
[
eiuSt

]
= −t|u|β/2, (7)

see, e.g., Todorov & Tauchen (2012, Lemma 1). Intuitively, the result follows as β′ < β such that the

behavior from the Lévy density of a stable, ν1(x), dominates the contribution from the other jump

measure ν2(x), which is not necessarily Lévy, when h → 0. As in Todorov & Tauchen (2012), we

conveniently normalize the constant A1 since it ensures that when β → 2, the jump process converges

finite-dimensionally to a Brownian motion. This normalization seems innocuous from a modeling

perspective since we observe Zt, whose leading small time increment behavior is determined by an

integral of σt−dLt, and not the components σt− and dLt separately.

Similar to the residual jump component ν2(x) in Lt, the activity of the high-frequency“residual”, Yt,

is also restricted by the index β′. However, unlike the former, whose time variation is also determined

by the stochastic scale, σt, the latter is almost unrestricted in its time variation. This allows Zt

to exhibit different, and more general, variation from that implied by the stable measure, ν1(x), at

larger time increments. For example, and as thoroughly discussed in Todorov & Tauchen (2012) and

Todorov (2013), having two high-frequency jump “residual” components makes Zt general enough to

nest time-changed Lévy processes and Lévy-driven CARMA models.

Finally, we need to impose conditions on the drift, at, and the stochastic scale, σt. Intuitively, these

are required to obey Itô semimartingales, which may be arbitrarily driven by Brownian motions and

random Poisson measures with locally bounded coefficients. Since the technical details are identical

to those in Todorov & Tauchen (2011a, (3.10)-(3.11)) and Todorov (2013, Assumption B), they are

deferred to Appendix A for ease of exposition. It is important to note, however, that the conditions

allow for dependence between the innovations in αt, σt, and the driving Lévy process, Lt, which

is important for financial applications, see, among others, Klüppelberg, Lindner & Maller (2004),

Bollerslev & Todorov (2011), Andersen, Fusari & Todorov (2014), and Todorov et al. (2014).

Remark 2. The assumption of symmetry for A1 when x > 0 and x < 0 as well as the conditions

β′ < 1 and β ∈ (1, 2] (though β′ < β remains) may be relaxed following the work of Todorov (2013). In

particular, this involves replacing the pair (Vn(p, Z, 1), Vn(p, Z, 2)) with (Vn(p, Z, 2), Vn(p, Z, 4)), and

perform an analysis similar to the one below. Whereas the latter combination is more robust to drift

and asymmetric jumps in Lt, it is at the expense of a somewhat larger asymptotic variance when

estimating the integrated power variation of the stochastic scale and, as a result, the activity index.

2.4 Review of Relevant Asymptotic Results

Before stating asymptotic results that are relevant for designing our local stable bootstrap, we need

to impose a few additional, yet mild restrictions on the activity indices β, β′, and the power p.

Assumption 2. In addition to the restrictions implied by Assumption 1, the activity indices β and

β′, along with the power p, are assumed to satisfy one of the following conditions:
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(a) p ∈ (0, β);

(b) β′ < β/2, β >
√

2 as well as p ∈
(
|β−1|

2 ∨ 2−β
2(β−1) ∨

ββ′

2(β−β′) , β/2
)

;

While Assumption 2 (a) provides a mild condition for sub-additivity of functionals of the form |x|p,
Assumption 2 (b) gives sufficient conditions on β, β′, and p to invoke a central limit theorem for power

variation statistics below. The lower bound on p is here determined by the drift and the less active

jump components of Z. In particular, p > 2−β
2(β−1) and p > |β−1|

2 are induced by the presence of a

drift term, leading to the restriction β >
√

2. The remaining lower and upper bounds p > ββ′

2(β−β′)
and p < β/2, respectively, are required to eliminate the contribution from less active residual jump

components at high frequencies, see also Todorov & Tauchen (2011a, Remark 3.7).

Finally, let us define µp(β) = E[|Si|p] where S0, S1, . . . are i.i.d. strictly β-stable random variables

whose characteristic function satisfies (7) for t = 1, and, moreover, let Σ(p, β, k) = E[S1S
′
1+k] for

k = 0, 1 where Si = (|Si|p − µp(β), |Si + Si+1|p − 2p/βµp(β))′, then we may state the following lemma,

which combines results from Todorov & Tauchen (2011a) and Todorov (2013).

Lemma 1. Under Assumption 1 and Assumption 3 of Appendix A, then if additionally

(a) Assumption 2 (a) holds,

np/β−1Vn (p, Z, 1)
P−→ µp(β)

∫ 1

0
|σs|pds, np/β−1Vn (p, Z, 2)

P−→ 2p/βµp(β)

∫ 1

0
|σs|pds,

(b) Assumption 2 (b) holds,

√
n

(
np/β−1Vn (p, Z, 1)− µp(β)

∫ 1
0 |σs|

pds

np/β−1Vn (p, Z, 2)− 2p/βµp(β)
∫ 1
0 |σs|

pds

)
ds−→ Ω(p, Z)×N

where N is a two-dimensional standard normal random variable defined on an extension of the

original probability space and orthogonal to F , and Ω(p, Z) =
∫ 1
0 |σs|

2pds × Ξ where the 2 × 2

matrix Ξ ≡ (Ξi,j)1≤i,j≤2 is defined as Ξ = Σ(p, β, 0) + Σ(p, β, 1) + Σ(p, β, 1)′.

Proof. Under the stated assumptions, the two consistency results in (a) follow by applying Todorov

& Tauchen (2012, Lemma 1) in conjunction with Todorov & Tauchen (2011a, Theorem 3.2 (b)) and

Todorov (2013, Theorem 2 (a)) for Vn (p, Z, 1) and Vn (p, Z, 2), respectively. Similarly, the joint central

limit theorem in (b) follows by Todorov & Tauchen (2012, Lemma 1) in conjunction with Todorov

& Tauchen (2011a, Theorem 3.4 (b)), Todorov (2013, Theorem 2 (b)) and a stable Cramer-Wold

theorem, see Varneskov (2014, Lemma C.1 (d)).

Corollary 1. Under the conditions for Lemma 1 (b),

√
n
(
β̂(p)− β

)
ds−→ Ωβ(p, Z)×N , Ωβ(p, Z) =

∫ 1
0 |σs|

2pds(∫ 1
0 |σs|pds

)2 × β4

µ2p(β)p2(ln(2))2
× Ξ̃
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where N is a univariate standard normal random variable defined on an extension of the original

probability space and orthogonal to F , and Ξ̃ = Ξ1,1−21−p/βΞ1,2 +2−2p/βΞ2,2 with the 2×2 covariance

matrix Ξ = (Ξi,j)1≤i,j≤2 defined as in Lemma 1.

Lemma 1 formalizes the asymptotic behavior of Vn (p, Z, 1) and Vn (p, Z, 2), whose joint law is

described using the notion of stable convergence, see, e.g., Jacod & Shiryaev (2003, pp. 512-518)

and Podolskij & Vetter (2010) for details. The specific combination of estimators, Vn (p, Z, 1) and

Vn (p, Z, 2), and their use in defining β̂(p), is inspired by the approach in Andersen, Bondarenko,

Todorov & Tauchen (2014), who, however, do not state any formal asymptotic results for β̂(p). Fur-

thermore, they define Lt (in our notation) to be a standard, strictly stable process, whereas we only

require it to be locally stable, as described by Assumption 1. Most importantly for our purposes, how-

ever, the central limit theory in Lemma 1 and Corollary 1 highlight the dependence patterns, we seek

to replicate with our proposed bootstrap procedure in order to perform inference on power variation

statistics and the activity index, β, respectively. This is described in detail next.

3 The Local Stable Bootstrap

In this section, we propose a novel bootstrap procedure to perform inference on the 2-dimensional

vector of power variation statistics (Vn(p, Z, 1), Vn(p, Z, 2))′ and, in conjunction with the delta method,

the activity index estimator, β̂(p). Specifically, we suggest to resample the (possibly) higher-order

increments ∆n,υ
i Z for each i = υ, . . . , n such as to mimic their dependence properties. In order to

motivate our bootstrap procedure, let us highlight two features of the locally stable process Z. From

Todorov & Tauchen (2012, Lemma 1), we already know h−1/βLht
d−→ St for h → 0. Then, as the

remaining terms in (1) are of strictly lower order under Assumptions 1 and 2, it is straightforward to

deduce that

h−1/β
Zt+sh − Zt

σt

d−→ S′t+s − S′t as h→ 0, (8)

similarly, with convergence under the Skorokhod topology on the space of càdlàg functions where S′t has

a distribution identical to that of the strictly stable process St, which is described in (7). Furthermore,

it follows by self-similarity of strictly stable processes that

St − Ss
d
= |t− s|1/βS1, 0 ≤ s < t. (9)

Intuitively, the result in (8) suggests that each high frequency increment of Z behaves locally like a

stable process with a constant scale σt, which is “known” at the onset of the increment. Hence, if the

stochastic process σt was directly observable at each discrete time point ti, i = 0, . . . , n, we could scale

the increments of Z accordingly, and its resulting (infill asymptotic) behavior will be similar to that

of a sequence of i.i.d. stable random variables, which suggests that a wild bootstrap-type procedure

will be appropriate in this setting. Hence, we introduce a particular wild bootstrap – the local stable

bootstrap – that may be summarized as the following 3-step algorithm.
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Algorithm 1.

Step 1. Estimate the activity index, β, of the process Z using the estimator β̂(p) defined in (5).

Step 2. Generate an n+ 1 sequence of identically and independently distributed β̂(p)-stable random

variables S∗1 , S
∗
2 , . . . , S

∗
n+1, whose characteristic function are defined as

lnE
[
eiuS

∗
i

]
= −|u|β̂(p)/2, ∀i = 1, . . . , n+ 1. (10)

Step 3. The local stable bootstrap generates observations according to

∆n,υ
i Z∗ = ∆n,1

i Z ·
( υ∑
t=1

S∗i+t−1

)
, i = υ, . . . , n, (11)

and redefines the power variation statistics Vn(p, Z, 1) and Vn(p, Z, 2) as follows

V ∗n (p, Z, 1) =
n∑
i=1

|∆n,1
i Z∗|p, V ∗n (p, Z, 2) =

n∑
i=1

|∆n,2
i Z∗|p.

The three steps of the bootstrap algorithm deserves a few comments. First, to fully appreciate the

careful design of Step 3, let us explicate the bootstrap power variation statistics as

V ∗n (p, Z, 1) =
n∑
i=1

|∆n,1
i Z|p|S∗i |p, V ∗n (p, Z, 2) =

n∑
i=1

|∆n,1
i Z|p|S∗i + S∗i+1|p. (12)

This decomposition highlights the respective contributions of the two components in ∆n,υ
i Z∗ to the

power variation statistics. Heuristically, the first component in each statistic, ∆n,1
i Z, contains in-

formation about the “scale” of the process Z, that is, about n−1/βσti−1 , and the second component,∑υ
t=1 S

∗
i+t−1, is included to mimic the local asymptotic dependence, which arises as a result of using

(possibly) higher-order increments in the construction of the power variation statistics.

Second, we stress that a direct generalization of the two bootstrap procedures in Gonçalves &

Meddahi (2009) and Hounyo (2014), respectively, to power variation statistics for pure-jump semi-

martingales will not work for those based on high-order increments, that is, when υ > 1. To clarify

this point, note that we may write the resulting generalization of the procedure in Gonçalves & Med-

dahi (2009) as

Ṽ ∗n (p, Z, 2) =
n∑
i=2

|∆n,1
i−1Z · S

∗
i + ∆n,1

i Z · S∗i+1|p

when υ = 2. A similar generalization of the procedure in Hounyo (2014) will also share this generic

form, albeit it will be defined in blocks of contiguous observations. The main problem with a direct

application of both bootstraps is the lack of separation between the additive components inside of the

power functional |x|p, which prevents the procedures, in combination with V ∗n (p, Z, 1), from replicating

9



the moments of the joint central limit theorem in Lemma 1 (b).

Third, the simple form of the characteristic function in Step 2 results from normalization of the

constant A1 in Assumption 1, which implies that the local asymptotic behavior of h−1/βLt is like that

of a strictly stable process with characteristic function (7). In general, however, the validity of our

bootstrap algorithm pertains to the case where A1 > 0 is arbitrary. The only two changes are that

the characteristic function, we simulate from, becomes increasingly complicated, being of the general

form (6), and that the characteristic parameters µp(β) and Σ(p, β, k) will have to be redefined, see,

e.g., the corresponding definitions in Todorov & Tauchen (2011a) and Todorov (2013).

3.1 Moments of Bootstrap Power Variation Statistics

We start examining the properties of the local stable bootstrap by establishing asymptotic results

for the first two moments of the bootstrap power variation statistics in Step 3. Before proceeding,

however, let us define the analogous characteristic parameters of S∗1 , S
∗
2 , . . . , S

∗
n+1, the sequence of

i.i.d. β̂(p)-stable random variables generated in Step 2 of the bootstrap, as E∗[|S∗i |p] = µp(β̂(p)) and

E∗[S∗1S∗′1+k] = Σ(p, β̂(p), k) for k = 0, 1 where S∗i = (|S∗i |p − µp(β̂(p)), |S∗i + S∗i+1|p − 2p/β̂(p)µp(β̂(p)))′.

We, then, specifically seek to describe

E∗n(p, Z) ≡ E∗
[
np/β−1

(
V ∗n (p, Z, 1)

V ∗n (p, Z, 2)

)]
, Ω∗n(p, Z) ≡ V∗

[
√
nnp/β−1

(
V ∗n (p, Z, 1)

V ∗n (p, Z, 2)

)]
(13)

and their probability limits E∗(p, Z) = plimn→∞ E∗n(p, Z), respectively, Ω∗(p, Z) = plimn→∞Ω∗n(p, Z).

Lemma 2. Suppose S∗i , i = 1, . . . , n + 1, are i.i.d. strictly β̂(p)-stable random variables, defined as

described in Step 2 of the local stable bootstrap algorithm, then

E∗n(p, Z) =

(
1

2p/β̂(p)

)
µp(β̂(p))np/β−1Vn(p, Z, 1), and

Ω∗n(p, Z) = n2p/β−1Σ(p, β̂(p), 0)
n∑
i=1

|∆n,1
i Z|2p

+ n2p/β−1
n−1∑
i=1

|∆n,1
i Z|p|∆n,1

i+1Z|
p
(
Σ(p, β̂(p), 1) + Σ(p, β̂(p), 1)′

)
.

Lemma 2 shows that the moments of the bootstrap power variation statistics depend on the charac-

teristic parameters of the β̂(p)-stable random variables generated in Step 2 as well as the properties of

Vn(p, Z, 1), Vn(2p, Z, 1), and the bipower variation statistic, BVn(2p, Z, 1) =
∑n−1

i=1 |∆
n,1
i Z|p|∆n,1

i+1Z|p.
Under Assumptions 1, 3, and p ∈ (0, β/2), we may invoke Lemma 1 (a) to show

np/β−1Vn(p, Z, 1)
P−→ µp(β)

∫ 1

0
|σs|pds and n2p/β−1Vn(2p, Z, 1)

P−→ µ2p(β)

∫ 1

0
|σs|2pds.

10



However, before being able to characterize the probability limit of the whole asymptotic covariance

matrix, Ω∗(p, Z), a similar convergence result needs to be established for BVn(2p, Z, 1).

Theorem 1. Under Assumption 1, 3, and p ∈ (0, β/2), then

n2p/β−1BVn(2p, Z, 1)
P−→ µ2p(β)

∫ 1

0
|σs|2pds.

Theorem 1 extends previous consistency results for the bipower variation statistic, see Barndorff-

Nielsen & Shephard (2004, Theorem 2) for the original result and Barndorff-Nielsen, Graversen, Jacod

& Shephard (2006, Theorem 1) for a generalization, by allowing Z to obey the general class of locally

stable processes (1) instead of Brownian semimartingale with finite activity jumps.4 Moreover, the

result allows us to state the following corollary:

Corollary 2. Suppose that the conditions for Lemmas 1 (b) and 2 along with p < β̂(p)/2, then

Ω∗(p, Z) =

∫ 1

0
|σs|2pds

(
µ2p(β)Σ(p, β, 0) + µ2p(β)

(
Σ(p, β, 1) + Σ(p, β, 1)′

))
.

Proof. The power variation results follow from Lemma 1 (a) and Theorem 1. Consistency of the

characteristic parameters Σ(p, β, k) follows since p < β̂(p)/2, guaranteeing the existence of 2p moments

for S∗i , i = 1, . . . n+1, β̂(p) is consistent for β by Corollary 1, and since continuity of all non-degenerate

stable distributions allows us to invoke the continuous mapping theorem.

Corollary 2 shows that the bootstrap variance, Ω∗n(p, Z), will only be a consistent estimator of the

asymptotic variance Ω(p, Z) if µ2p(β) = µ2p(β) = 1, which is not possible as it would contradictory

imply that Σ(p, β, 0)1,1 = 0, that is, the “variablility” of the strictly β-stable process is 0. However, de-

spite Ω∗n(p, Z) not being consistent for Ω(p, Z), an asymptotically valid bootstrap can still be achieved

for the studentized distribution. In particular, let us define

Q(2p) =

∫ 1

0
|σs|2pds, M(p, β) = µ2p(β)Σ(p, β, 0) + µ2p(β)

(
Σ(p, β, 1) + Σ(p, β, 1)′

)
such that Ω∗(p, Z) = Q(2p)M(p, β), then we consider

T ∗n ≡
(
Ω̂∗n(p, Z)

)−1/2√
nnp/β−1

(
V ∗n (p, Z, 1)− E∗[V ∗n (p, Z, 1)]

V ∗n (p, Z, 2)− E∗[V ∗n (p, Z, 2)]

)
(14)

where

Ω̂∗n(p, Z) = Q̂∗n(2p, β̂(p))M(p, β̂(p)), Q̂∗n(2p, β̂(p)) = µ−22p (β̂(p))n2p/β̂(p)−1V ∗n (2p, Z, 1) (15)

4Note that both Barndorff-Nielsen & Shephard (2004) and Barndorff-Nielsen et al. (2006) develop central limit theory for
the bipower variation statistic. However, as this is not necessary for our further analysis of the properties of the proposed
local stable bootstrap, we leave this for further research.
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and M(p, β̂(p)) is the feasible analogue of M(p, β). The key aspect for the validity of the bootstrap

procedure is that we use a consistent estimator Ω̂∗n(p, Z) for Ω∗(p, Z) when constructing the studentized

bootstrap t-statistic, T ∗n , such that its asymptotic variance is a 2-dimensional identity matrix I2.

Remark 3. An implication of Lemma 2 is that the ratio

E∗[np/β−1V ∗n (p, Z, 2)]/E∗[np/β−1V ∗n (p, Z, 1)] = 2p/β̂(p)
P−→ 2p/β

under the conditions of Corollary 1. Hence, in addition to using the local stable bootstrap to make

inference on power variation statistics, we may also utilize the resampling procedure to mimic the

asymptotic behavior of the ratio (np/β−1Vn(p, Z, 2))/(np/β−1Vn(p, Z, 1))
P−→ 2p/β, under the conditions

of Lemma 1 (a), and, as a result, to make inference on the activity index, β.

3.2 A Bootstrap CLT for Power Variation Statistics

In this section, we proceed by establishing asymptotic central limit theory for the studentized bootstrap

t-statistic, T ∗n , in (14) along with its first-order asymptotic validity for corresponding studentized

statistic from the asymptotic distribution,

Tn ≡
(
Ω̂n(p, Z)

)−1/2√
n

(
np/β−1Vn(p, Z, 1)− µp(β)

∫ 1
0 |σs|

pds

np/β−1Vn(p, Z, 2)− 2p/βµp(β)
∫ 1
0 |σs|

pds

)
(16)

where Ω̂n(p, Z) is a consistent estimator of the asymptotic covariance matrix Ω(p, Z) in Lemma 1. In

particular, we let

Ω̂n(p, Z) =
np/β̂(p)−1

µ2p(β̂(p))
Vn(2p, Z, 1)× Ξ̂

where Ξ̂ is a consistent estimator of the matrix Ξ that is written out explicitly in Appendix C.

Theorem 2. Let Assumptions 1, 2 (b), and 3 of Appendix A hold and suppose S∗i , i = 1, . . . , n+1, are

i.i.d. strictly β̂(p)-stable random variables, defined as described in Step 2 of the local stable bootstrap

algorithm, then as n→∞,

(a) T ∗n
d∗−→ N(0, I2) in probability-P,

(b) supx∈R2 |P∗ (T ∗n ≤ x)− P (Tn ≤ x)| P−→ 0.

Theorem 2 is the main asymptotic result in the paper. It provides the theoretical justification for

using the local stable bootstrap to consistently estimate the distribution of Tn. Moreover, it allows

us to use the bootstrap to construct percentile-t (bootstrap studentized statistic) intervals for the

stochastic scale of pure-jump semimartingales, µp(β)
∫ 1
0 |σs|

pds, along with non-linear transformations

thereof, an application of which is shown below. As mentioned above, Theorem 2 generalizes existing

bootstrap results for power variation statistics, cf. Gonçalves & Meddahi (2009) and Hounyo (2014),
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by allowing the power, p, to take other values than 2, by accommodating difference orders v = (1, 2),

and, most importantly, by allowing Zt to obey the general class of processes (1).

Remark 4. Theorem 2 may straightforwardly be adapted to perform feasible inference on the stochastic

scale µp(β)
∫ 1
0 |σs|

p by replacing β in T ∗n with a consistent estimator β̂ (p). To see this, let

Ē∗n(p, Z) ≡ E∗
[
np/β̂(p)−1

(
V ∗n (p, Z, 1)

V ∗n (p, Z, 2)

)]
, Ω̄∗n(p, Z) ≡ V∗

[
√
nnp/β̂(p)−1

(
V ∗n (p, Z, 1)

V ∗n (p, Z, 2)

)]

then, under the conditions for Theorem 2, it follows that

Ē∗n(p, Z) =
(
µp(β̂(p)), 22/β̂(p)µp(β̂(p))

)′
np/β̂(p)−1Vn(p, Z, 1), and

Ω̄∗n(p, Z) = n2p/β̂(p)−1Σ(p, β̂(p), 0)
n∑
i=1

|∆n,1
i Z|2p

+ n2p/β̂(p)−1
n−1∑
i=1

|∆n,1
i Z|p|∆n,1

i+1Z|
p
(

Σ(p, β̂(p), 1) + Σ(p, β̂(p), 1)′
)
.

by Lemma 2 such that plimn→∞ Ē∗n(p, Z) = E∗(p, Z) and plimn→∞ Ω̄∗n(p, Z) = Ω∗(p, Z) by combining

Lemma 1, Corollaries 1-2, and the continuous mapping theorem. In addition,

(
Ω̄∗n(p, Z)

)−1/2√
nnp/β̂(p)−1

(
Vn(p, Z, 1)− E∗[Vn(p, Z, 1)]

Vn(p, Z, 2)− E∗[Vn(p, Z, 2)]

)
d∗−→ N (0, I2)

in probability-P follows from Theorem 2. These results are immediate since β̂ (p) is not random under

the bootstrap probability measure P∗ and β̂ (p)
P−→ β by Corollary 1. Unlike the feasible inference result

for the stochastic scale in, e.g., Todorov (2013, Theorem 3), this demonstrates that the local stable

bootstrap procedure may be implemented without additional bias corrections.

3.3 A Bootstrap CLT for Activity Index Estimation

An important implication of Theorem 2 is that we may deduce a consistency result as well as a

central limit theorem for a bootstrap activity index estimator, denoted by β̂∗ (p). In particular, and as

explicated in Lemma 2 and Remark 2, the logarithmic ratio of bootstrap power variations at frequencies

v = (1, 2) may be studied to learn about the activity index estimator β̂(p) and, consequently, about

the underlying β, similar to the formulation of the former in (5). Hence, we propose the estimator

β̂∗ (p) =
p ln(2)

ln (V ∗n (p, Z, 2))− ln (V ∗n (p, Z, 1))
1{V ∗n (p, Z, 2) 6= V ∗n (p, Z, 1)}, (17)

whose consistency for β follows by combining results from Lemma 2 and Corollaries 1-2. Further-

more, we may apply the delta method in conjunction with the central limit theorem in Theorem 2 to

characterize the asymptotic distribution of β̂∗ (p). This is summarized in the following theorem:
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Theorem 3. Suppose the conditions of Theorem 2, then it follows that

τ∗n ≡
√
n
(

Ω̂∗β(p, Z)
)−1/2 (

β̂∗(p)− β̂(p)
)

d∗−→ N(0, 1), in probability-P,

where the estimator of the asymptotic variance Ω̂∗β(p, Z) is defined as

Ω̂∗β(p, Z) = (β̂∗(p))4 · (p ln(2))−2 · Q̂∗n(2p, β̂(p)) · ζ̂(p, Z, β̂(p)),

with Q̂∗n(2p, β̂(p)) given in (15), ζ̂(p, Z, β̂(p)) is defined through

ζ̂(p, Z, β̂(p))

n2−2p/β̂(p)
=
M(p, β̂(p))1,1

(V ∗n (p, Z, 1))2
− M(p, β̂(p))1,2 +M(p, β̂(p))2,1

V ∗n (p, Z, 1)V ∗n (p, Z, 2)
+
M(p, β̂(p))2,2

(V ∗n (p, Z, 2))2

and M(p, β̂(p))i,j is the (i, j)-th element of the matrix M(p, β̂(p)) in (15).

Theorem 3 justifies using the local stable bootstrap to make inference on the activity index, β,

for pure-jump semimartingales via bootstrap percentile-t intervals. Moreover, it allows us to propose

a bootstrap test of whether Zt is a pure-jump semimartingale or a jump diffusion. However, if the

bootstrap is used blindly to construct such a test, the resulting procedure may have poor finite sample

properties, see, e.g., Hall & Wilson (1991). One way to avoid this problem is to allow the bootstrap

test to differ from the bootstrap confidence intervals by generating the bootstrap distribution for

the former under a specific and pre-specified null hypothesis, as discussed in Davidson (2007). Not

only will tests based on a null hypothesis resampling procedure differ from interval-based tests, they

often have superior size properties. Indeed, Davidson & MacKinnon (1999) show that in order to

minimize the error in rejection probability under the null hypothesis of a bootstrap test (i.e., its Type

I error), we should generate the bootstrap data as efficiently as possible, see also MacKinnon (2009).

For specificity, this entails generating the bootstrap data under the restriction specified by the null

hypothesis H0 : β = 2. A simple and natural way to accommodate this restriction in resampling

procedure is to implement the bootstrap Algorithm 1 with β̂(p) = 2 as follows:

Algorithm 2.

Step 1. Under the restriction specified by H0 : β = 2, use β̂(p) = 2.

Step 2. Generate an n + 1 sequence of identically and independently distributed 2-stable random

variables S∗1 , S
∗
2 , . . . , S

∗
n+1, whose characteristic function are defined as

lnE
[
eiuS

∗
i

]
= −|u|2/2, ∀i = 1, . . . , n+ 1,

and which are independent of the original sample, Zti , i = 0, . . . , n.

Step 3. Same as Step 3 of Algorithm 1 using the 2-stable random variables S∗1 , S
∗
2 , . . . , S

∗
n+1.
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Corollary 3. Suppose the conditions of Theorem 2, then for β̂(p) = 2 under H0, it follows that

τ∗n(2) ≡
√
n
(

Ω̂∗β(p, Z)
)−1/2 (

β̂∗(p)− 2
)

d∗−→ N(0, 1), in probability-P,

where the estimator of the asymptotic variance Ω̂∗β(p, Z) is defined as

Ω̂∗β(p, Z) = (β̂∗(p))4 · (p ln(2))−2 · Q̂∗n(2p, 2) · ζ̂(p, Z, 2).

Proof. Follows directly from Theorem 3.

The bootstrap testing procedure in Algorithm 2 and Corollary 3 are targeted against a specific null

hypothesis H0 : β = 2. Of course, one may be interested in different null hypotheses, for example, a

pre-specified null H̃0 : β ∈ (
√

2, 2) or H̄0 : β = β̂(p). In either case, the bootstrap data generating

process in Algorithm 2 can easily be adapted to satisfy the requisite null. Nevertheless H0 against the

alternative H1 : β < 2 seems to be the most interesting hypothesis for many problems in finance and

econometrics such as, e.g., option pricing, risk premia characterization, and volatility modeling.

4 Simulation Study

In this section, we assess the finite sample properties of the proposed bootstrap test in Algorithm 2

for H0 : β = 2 against H1 : β < 2 using Monte Carlo simulations. For comparison, we also include a

feasible test based on the limiting result in Corollary 1, which is inspired by the approach in Andersen,

Bondarenko, Todorov & Tauchen (2014) and combines the methods in Todorov & Tauchen (2011a) and

Todorov (2013). Since the latter is a state-of-the-art benchmark, their relative properties will speak

directly to the usefulness of our bootstrap test. We detail how to implement both testing procedures

in Appendix C. Finally, we include a test based on Algorithm 1 where β̂(p) is used to generate the

bootstrap sample to gauge the benefits of targeting the bootstrap test against a specific H0.

4.1 Simulation Setup

We simulate the data to match a standard 6.5-hour trading day and normalize the trading window to

the unit interval, t ∈ [0, 1], such that 1 second corresponds to an increment of size 1/23400. At each

increment, we generate observations of Zt according to the general process

dZt = adt+ σtdLt + dYt, dYt =

∫
R
k2xµ (dt, dx) (18)

where the drift, a, is assumed to be constant, the locally stable process, Lt is either modeled as a

standard Brownian motion under the null hypothesis H0 : β = 2 or as a symmetric tempered stable
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process, e.g. Rosinski (2007), with compensator νt(dx) = dt⊗ ν(dx),

ν(dx) = c1 exp(−λ1|x|)|x|−(β+1)dx where c1 > 0, λ1 > 0 and β ∈
(√

2, 2
)

(19)

under the alternative, consistent with Assumptions 1-2. We will use the notation Lt = Wt for the

locally stable process under H0 to avoid confusion. The tempered stable process under the alternative

is simulated using the series representation in Rosinski (2001), see also Todorov (2009). The stochastic

scale, σt, is assumed to follow a two-factor model,

σt = s-exp(b0 + b1τ1,t + b2τ2,t) where dτ1,t = a1τ1,tdt+ dB1,t,

dτ2,t = a2τ2,tdt+ (1 + φτ2,t)dB2,t, Corr(B1,t,Wt) = ρ1, Corr(B2,t,Wt) = ρ2,

and both B1,t and B2,t are standard Brownian motions, following, e.g., Chernov, Gallant, Ghysels &

Tauchen (2003) and Huang & Tauchen (2005). The function s-exp is an exponential with a linear

growth function splined in at high values of its argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) =
exp(x0)√

x0

√
x0 − x20 + x2 if x > x0 with x0 = ln(1.5). Note that the stochastic scale is driven by two

standard Brownian motions, which are correlated with the dominant term in (18) under the null

hypothesis, thus allowing for leverage effects. Since such correlation statistics are not well-defined

under the alternative when Lt is pure-jump process, we will here assume Lt ⊥⊥ (B1,s, B2,s) ∀t, s.
The residual jump process, Yt, is assumed to obey a symmetric tempered stable process with either

of the following two compensators νYt (dx) = dt⊗ νY (dx),

νY (dx) = c2
exp(−x2/(2σ22))√

2πσ2
dx or νY (dx) = c2 exp(−λ2|x|)|x|β

′+1dx (20)

where σ2 > 0, c2 > 0, λ2 > 0 and β′ ∈ [0, 1). Whereas the first compensator in (20) captures

a compound Poisson process with normally distributed mean-zero jumps, the second specification

models the residual jumps as a symmetric tempered stable process of finite activity. The compound

Poisson process has activity index zero, while it is β′ for the tempered stable process.

We consider ten different specifications within this general setting. For all cases, we fix some

parameters according to Huang & Tauchen (2005): α = 0.03, b0 = −1.2, b1 = 0.04, b2 = 1.5,

a1 = −0.00137, a2 = −1.386, φ = 0.25, and ρ1 = ρ2 = −0.3. Moreover, we initialize the two factors

at the beginning of each “trading day” by drawing the most persistent factor from its unconditional

distribution, τ1,0 ∼ N(0, 1/(2a1))), and by letting the strongly mean-reverting factor, τ2,t, start at

zero. For the remaining parameters, the ten cases are described in Table 1. Out of the ten cases,

the first six, that is, DGP’s A-F, model Zt under the null hypothesis, H0, whereas DGP’s G-J specify

Zt as pure-jump semimartingales under the alternative, H1. In particular, DGP’s A-B use the same

parameters as Todorov (2009) to calibrate to contribution of Yt, specified as a tempered stable process,

to the total variation of the series. These reflect the empirical results in Huang & Tauchen (2005) and

set the variation of Yt to be 0.1 on average, which is 10% of the average variation in the dominant

16



component under the null hypothesis. DGP’s C and D are variants where the activity of Yt have been

increased. In DGP’s E and F, on the other hand, Yt is modeled as a compound Poisson processes with

relatively infrequent jumps (e.g., once per trading day) of “moderate size”, which, for example, may

capture discontinuous movements surrounding news announcements. Whereas Yt is specified similarly

for DGP’s G-J, Lt is implemented as in (19) with activity indices β = {1.51, 1.91}.
Once Zt has been simulated, we construct equidistant samples ti = i/n for i = 0, . . . n and generate

returns ∆n,1
i Z = Zti − Zti−1 . Here, we primarily consider n = {39, 78, 195, 390}, which corresponds

to sampling observations every {10, 5, 2, 1} minutes, respectively. Note that the impact of market

microstructure noise is greatly alleviated at these relatively sparse frequencies, in particular for very

liquid assets such as those we consider in the empirical analysis below. Moreover, we implement the

tests with p = {0.7, 0.9} and assign significance at a 5% nominal level. Finally, the simulation study is

carried out using 999 bootstrap samples for each of the 1000 Monte Carlo replications. The rejection

rates of H0 are reported in Table 2 for DGP’s A-F (size) and in Table 3 for DGP’s G-J (power).

4.2 Simulation Results

There are several interesting observations from Table 2. First, the feasible test based on the central

limit result in Corollary 1, labelled CLT, is oversized for all DGP’s considered, showing rejection rates

in the 8-35% range, often much larger than the nominal 5% level. Furthermore, the size distortions

remain when the sample size is increased from n = 39 to n = 390. Second, the local stable bootstrap

test based on Algorithm 1, labelled LSB 1, has better size properties than the CLT test, but with

rejection rates in the 4-11% range, it is still slightly liberal with respective to size. Third, the proposed

bootstrap test based on Algorithm 2, labelled LSB 2, is conservative for small samples, but as the

sample size approaches n = 195, the size of the tests are very close to the 5% nominal level. Hence,

this shows the value of generating the bootstrap sample more efficiently by targeting the test towards

a specific null hypothesis, consistent with the results in Davidson & MacKinnon (1999). Fourth, the

tests based on p = 0.7 generally exhibit slightly lower rejection rates than those for p = 0.9. Finally,

we wish to highlight the results for DGP F. When the residual jump process, Yt, is modeled as large

infrequent jumps, the size distortions of the CLT test are particularly pronounced. However, the LSB

2 test is not affected by such jumps and has a slightly conservative size around 3-3.5%.

The rejection rates in Table 3 for DGP’s G-J illustrate that all tests have power against the alter-

native hypothesis H1 : β < 2. Not surprisingly, we find that the LSB 2 test has low power for small

sample sizes. This is the price we pay for having a correctly sized test. However, its power increases

dramatically when the sample size is increased to n = {195, 390} observations. The corresponding

rejection rates for both the CLT and LSB 1 tests are larger. However, as emphasized by Horowitz

& Savin (2000) and Davidson & MacKinnon (2006), such power results are misleading since the sizes

of the respective tests are liberal for all sampling frequencies considered, especially for the CLT test.

Interestingly, despite the fact that all tests using power p = 0.9 violate the condition p < β/2 for the

two alternative DGP’s with β = 1.51, their relative finite sample rejection rates resembles the two
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cases with β = 1.91 where the condition holds. Last, when the sample size is increased to n = 780

observations, all tests display rejection rates of approximately 100%.

In general, the proposed local stable bootstrap tests of the null hypothesis H0 : β = 2 provide

useful alternatives to existing central limit theory based tests that have (much) better size properties.

Whereas the bootstrap test based on Algorithm 2 displays the best size properties, the test based on

Algorithm 1 may have a slight edge in terms of power, in particular for smaller samples.

5 Empirical Analysis

We analyze the null hypothesis, H0 : β = 2, using high-frequency data on three exchange rate series,

the S&P 500 index and the VIX from 2011, which presents an interesting and diverse period with

calm markets in the beginning of the year followed by a turbulent month of August where stock prices

dropped sharply in fear of contagion of the European sovereign debt crises to Italy and Spain. In

particular, we use observations on the Euro (EUR), Japanese Yen (JPY), and the Swiss Franc (CHF)

against the U.S. Dollar (USD) from Tick Data. These are collected from both pit and electronic trading

and cover whole trading days. Moreover, we use futures contracts on the S&P 500, that are traded

on the Chicago Mercantile Exchange (CME) Group during regular trading hours from 8.30-15.15 CT.

The high-frequency VIX observations cover the same trading window. In general, all three markets are

very liquid and the use of futures contracts for the S&P 500 eliminates the need for adjustments due

to dividend payments. To strike a compromise between the liquidity of the series and concerns about

market microstructure noise, we construct series of one- and two-minute logarithmic returns on each

full trading day. For the FX series, these are of length n = 1439 and n = 719. Similarly, for the S&P

500 and the VIX, they contain n = 404 and n = 201 observations, respectively. For all five assets, we

compute the mean and median estimates of β using (5) across the trading days as well as the rejection

rates of H0 for the CLT, LSB 1, and LSB 2 tests. The estimator and the tests are implemented with

powers p = {0.7, 0.9} and using a 5% nominal level. The results are reported in Table 4.

From Table 4, we see that H0 is rarely rejected for the S&P 500 series, the rejection rates being

approximately 4-7% for both the CLT and LSB 1 tests and 1-4% for the LSB 2 test. For the VIX, on

the other hand, the average and median activity index estimates are around 1.35-1.6 and the rejection

rates of H0 are much higher, being in the 60-87% range. These results for the CLT test corroborate the

findings in Andersen, Bondarenko, Todorov & Tauchen (2014) by showing that the S&P 500 and the

VIX are (usually) best described as a jump-diffusion and a pure-jump semimartingale, respectively.

The corresponding estimates for the three FX series fall between the two extremes. Furthermore, there

are differences between the one- and two-minute results. Whereas the β estimates using two-minute

sampling fall in the 1.90-2.00 interval and the rejection rates are between 8-25%, the comparable ranges

for series sampled every minute are 1.80-1.95 and 20-56%. The frequent rejection of H0 contradicts

the findings in Todorov & Tauchen (2010) and Cont & Mancini (2011), who, using five-minute log-

returns on the DM-USD exchange rate from the 1990’s, argue that exchange rates are best described
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as jump-diffusions. Instead, on many trading days, we find that all three tests provide support for the

use of a pure-jump semimartingale model. As shown by Carr & Wu (2003), these results may have

important implications for the daily pricing of exchange rate derivatives. Notice, however, that there

are striking differences between the rejection rates from the CLT and LSB 2 tests. For example, when

considering the EUR-USD exchange rate and p = 0.9, the CLT test rejects H0 on 55 out of the 207

full trading days in the sample (26.57%), whereas the LSB 2 test only rejects on 42 days (20.29%).

Given the liberal size of the CLT test, this suggest that it may wrongfully reject H0 on 13 trading

days out of a year, which, again, may lead to a daily misspecification of the exchange rate model.

In fact, we find that the LSB 2 test rejects uniformly less than the CLT test for all series, which is

consistent with the size properties of the two procedures, as illustrated by the simulation study. This

clearly highlights the usefulness of the proposed local stable bootstrap procedure, which may be used

to construct a correctly sized and more conservative test of H0 than existing methods.

Remark 5. Last, note that the lower β estimates and resulting higher rejection rates of H0 for one-

minute compared to two-minute sampled exchange rate series are not easily explained by market mi-

crostructure noise. To see this, suppose Xti = Zti + Uti where Uti ∼ i.i.d.N(0, σ2u). Then, since

∆n,1
i Z = Op(n

−1/β) for β ∈ (
√

2, 2] and ∆n,1
i U = Op(1), we have

Vn(p,X, 1) ≈ Vn(p, U, 1), Vn(p,X, 2) ≈ Vn(p, U, 2) ≈ Vn(p, U, 1), as n→∞

and, consequently, it follows that β̂(p)
P−→ ∞. In other words, adding a noise component will inflate

the activity index estimates, not result in more frequent rejection of H0.

6 Conclusion

We provide a new resampling procedure - the local stable bootstrap - that is able to mimic the depen-

dence properties of power variations for pure-jump semimartingales observed at different frequencies.

This allows us to propose a bootstrap estimator and inference procedure for the activity index of the

underlying process as well as a test for whether it is a jump-diffusion or a pure-jump semimartingale.

We establish first-order asymptotic validity of the resulting bootstrap power variations, activity index

estimator, and diffusion test. Moreover, we examine the finite sample size and power of the proposed

diffusion test using Monte Carlo simulations and show that, unlike existing tests, it is correctly sized in

general settings. Finally, we test for the (null) presence of a diffusive component using high-frequency

data on three exchange rate series, the S&P 500 index and the VIX from 2011. We find that the

null hypothesis is rarely rejected for the S&P 500 series, rejected 60-87% of the days for the VIX,

whereas the rejection rates for the exchange rate series falls in between the two. Importantly, we show

that existing tests uniformly reject more often than our bootstrap test, verifying the results from the

simulation study and illustrating the usefulness of our correctly sized bootstrap test.

Finally, we note that the proposed resampling procedure is generally applicable to processes, which
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behave locally like an infinite activity stable process. Hence, it may possibly be adapted to - and has

potential to improve upon the finite sample inference for - alternative activity index estimators in the

literature that rely on a similar approximation over small time scales such as those in Aı̈t-Sahalia &

Jacod (2009), Zhao & Wu (2009), Jing, Kong, Liu & Mykland (2012), and Todorov (2015). Another

interesting direction for further research is to extend the local stable bootstrap to make it robust

against market microstructure noise, possibly in combination with an existing noise-robust activity

index estimator such as the one proposed by Jing, Kong & Liu (2011) based on pre-averaging. However,

both extensions are beyond the scope of the paper.
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Parameter Configurations for the Simulation Study

DGP Specification of Lt Specification of Yt

A Brownian Motion TS with (β′, k2, c2, λ2) = (0.1, 0.0119, 0.125, 0.015)

B Brownian Motion TS with (β′, k2, c2, λ2) = (0.5, 0.0161, 0.4, 0.015)

C Brownian Motion TS with (β′, k2, c2, λ2) = (0.8, 0.0106, 0.1, 0.015)

D Brownian Motion TS with (β′, k2, c2, λ2) = (0.9, 0.0161, 0.1, 0.015)

E Brownian Motion CP with (k2, c2, σ2) = (1, 0.1, 1)

F Brownian Motion CP with (k2, c2, σ2) = (1, 1, 1.5)

G TS with (β, k1, c1, λ1) = (1.51, 1, 1, 0.25) Yt = 0

H TS with (β, k1, c1, λ1) = (1.91, 1, 1, 0.25) CP with (k2, c2, σ2) = (1, 0.1, 1)

I TS with (β, k1, c1, λ1) = (1.51, 1, 1, 0.25) TS with (β′, k2, c2, λ2) = (0.05, 0.0106, 0.1, 0.015)

J TS with (β, k1, c1, λ1) = (1.91, 1, 1, 0.25) TS with (β′, k2, c2, λ2) = (0.05, 0.0106, 0.1, 0.015)

Table 1: Parameter configurations. This table provides an overview of the parameter configurations for the
dominant component, Lt, and the residual jump process, Yt, of the general price process (18) for the simulation
study. Here, “TS” and “CP” abbreviate tempered stable and compound Poisson processes, respectively, which are
defined using the compensators in (20). Hence, DGP’s A-F capture the null hypothesis H0 : β = 2 whereas DGP’s
G-J capture the one-sided alternative H1 : β < 2.

21



Rejection Rates under H0

p = 0.7 p = 0.9

β̂-Mean β̂-Med CLT LSB 1 LSB 2 β̂-Mean β̂-Med CLT LSB 1 LSB 2

DGP A

n = 39 2.36 2.09 10.00 5.00 1.20 2.29 2.07 13.20 7.40 3.70

n = 78 2.23 2.07 10.10 4.90 1.70 2.17 2.05 13.60 7.50 3.50

n = 195 2.04 2.00 10.40 6.10 3.50 2.03 1.99 14.80 9.80 5.00

n = 390 2.01 2.00 10.60 5.40 3.60 1.99 2.00 13.10 8.30 4.70

DGP B

n = 39 2.60 2.10 10.10 4.60 1.20 2.47 2.07 12.70 6.60 3.20

n = 78 2.23 2.07 10.80 4.90 1.70 2.17 2.04 13.90 7.60 3.30

n = 195 2.04 1.99 10.60 6.60 3.90 2.03 1.98 14.30 10.00 5.40

n = 390 2.01 1.99 9.70 5.30 3.60 1.99 1.99 12.30 7.80 4.40

DGP C

n = 39 2.73 2.14 8.00 4.40 1.50 2.58 2.09 11.10 6.40 3.40

n = 78 2.26 2.08 9.30 5.10 2.20 2.20 2.05 12.60 7.70 4.00

n = 156 2.05 2.00 10.00 6.70 3.80 2.04 1.99 13.40 10.40 5.40

n = 390 2.02 2.00 9.10 5.40 3.70 2.01 1.99 11.40 8.50 4.30

DGP D

n = 39 2.68 2.10 9.00 4.30 1.50 2.21 2.06 11.90 6.30 3.30

n = 78 2.21 2.05 10.20 5.90 2.10 2.16 2.03 13.60 8.60 4.20

n = 195 2.03 1.99 11.50 7.10 4.30 2.02 1.98 15.20 11.10 5.90

n = 390 2.00 1.98 10.30 6.40 3.70 1.99 1.98 12.60 8.40 4.90

DGP E

n = 39 2.59 2.12 8.50 5.60 1.20 2.32 2.08 12.90 8.20 3.70

n = 78 2.29 2.08 8.30 4.80 1.50 2.25 2.03 12.20 7.70 2.60

n = 195 2.07 2.01 8.20 5.40 3.70 2.05 2.01 11.20 8.80 4.90

n = 390 2.04 2.00 8.20 5.90 3.90 2.02 2.00 9.80 7.80 4.90

DGP F

n = 39 1.51 1.71 25.20 8.40 1.30 2.02 1.70 34.40 8.90 3.20

n = 78 1.88 1.74 27.80 10.50 2.10 1.84 1.71 35.00 11.00 3.60

n = 195 1.86 1.81 25.10 9.90 3.00 1.81 1.79 31.60 8.20 3.40

n = 390 1.87 1.86 22.40 8.70 3.50 1.83 1.84 28.60 7.40 3.10

Table 2: Size results. This table provides rejection frequencies of the null hypothesis H0 : β = 2 for DGP’s A-F
in Table 1, sample sizes n = {39, 78, 156, 390}, powers p = {0.7, 0.9} along with three different tests CLT, LSB 1,
and LSB 2. In particular, CLT is the feasible test based on Corollary 1, see also Andersen, Bondarenko, Todorov
& Tauchen (2014), LSB 1 is the local stable bootstrap test based on Algorithm 1, and LSB 2 is the local stable
bootstrap test based on Algorithm 2, which is targeted against H0. The nominal level of the tests is 5%. β̂-Mean
and β̂-Med denote the mean and median, respectively, of the activity index estimator β̂(p) in (5). Finally, the
exercise is performed for 999 bootstrap samples for every one of the 1000 Monte Carlo replications.
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Rejection Rates under H1

p = 0.7 p = 0.9

β̂-Mean β̂-Med CLT LSB 1 LSB 2 β̂-Mean β̂-Med CLT LSB 1 LSB 2

DGP G

n = 39 1.99 1.82 22.40 14.20 4.00 1.98 1.83 27.80 15.40 7.20

n = 78 1.78 1.71 39.90 28.80 12.70 1.79 1.72 44.40 27.80 14.30

n = 195 1.64 1.59 79.20 69.70 52.90 1.66 1.62 77.50 65.10 43.70

n = 390 1.60 1.59 99.60 98.90 97.50 1.63 1.61 98.20 96.00 88.70

n = 780 1.56 1.55 100.00 100.00 100.00 1.58 1.57 100.00 100.00 99.50

DGP H

n = 39 2.56 2.05 12.80 8.50 2.80 2.71 2.02 18.40 10.70 5.70

n = 78 2.08 1.96 18.40 12.90 4.90 2.10 1.94 23.60 15.70 7.50

n = 195 1.95 1.92 43.90 34.90 22.80 1.92 1.86 44.90 36.70 21.90

n = 390 1.92 1.91 91.40 89.20 84.60 1.89 1.90 84.90 78.70 68.20

n = 780 1.90 1.88 100.00 100.00 100.00 1.87 1.88 99.80 99.60 99.40

DGP I

n = 39 3.06 1.87 27.70 15.50 4.10 2.29 1.90 32.30 15.80 7.20

n = 78 1.81 1.66 42.70 28.90 11.00 1.82 1.70 47.00 27.00 12.50

n = 195 1.62 1.57 77.30 65.50 47.40 1.64 1.60 76.00 59.10 38.00

n = 390 1.58 1.57 99.60 97.70 94.70 1.59 1.59 98.50 91.90 82.50

n = 780 1.54 1.54 100.00 99.70 98.50 1.56 1.56 99.60 97.80 95.80

DGP J

n = 39 2.68 2.11 17.70 9.30 2.70 2.36 2.03 22.60 12.00 5.40

n = 78 2.23 1.95 24.30 14.00 5.40 2.12 1.92 29.20 16.10 7.00

n = 195 1.94 1.93 45.30 33.30 21.60 1.91 1.86 47.20 33.50 19.70

n = 390 1.92 1.90 94.30 88.20 81.10 1.89 1.86 86.90 76.00 64.80

n = 780 1.89 1.88 100.00 99.50 98.70 1.85 1.82 100.00 97.90 96.30

Table 3: Power results. This table provides rejection frequencies of the null hypothesis H0 : β = 2 for DGP’s
G-J in Table 1, sample sizes n = {39, 78, 156, 390, 780}, powers p = {0.7, 0.9} along with three different tests CLT,
LSB 1, and LSB 2. In particular, CLT is the feasible test based on Corollary 1, see also Andersen, Bondarenko,
Todorov & Tauchen (2014), LSB 1 is the local stable bootstrap test based on Algorithm 1, and LSB 2 is the local
stable bootstrap test based on Algorithm 2, which is targeted against H0. The nominal level of the tests is 5%.
β̂-Mean and β̂-Med denote the mean and median, respectively, of the activity index estimator β̂(p) in (5). Finally,
the exercise is performed for 999 bootstrap samples for every one of the 1000 Monte Carlo replications.

23



Activity Index Estimates and Diffusion Tests Based On Empirical Data

p = 0.7 p = 0.9

β̂-Mean β̂-Med CLT LSB 1 LSB 2 β̂-Mean β̂-Med CLT LSB 1 LSB 2

EUR-USD

1-min 1.85 1.84 49.28 45.89 43.96 1.95 1.94 26.57 26.09 20.29

2-min 1.92 1.91 24.64 20.29 16.43 1.99 1.97 14.49 14.01 10.14

USD-CHF

1-min 1.88 1.86 42.51 38.16 34.78 1.94 1.93 25.60 23.67 18.84

2-min 1.98 1.98 14.49 12.56 9.18 2.02 2.02 13.04 12.08 7.73

USD-JPY

1-min 1.82 1.81 56.04 53.62 50.72 1.90 1.88 42.51 40.58 34.30

2-min 1.99 1.98 13.53 13.04 9.18 1.99 1.98 13.53 13.04 9.18

S&P 500

1-min 2.20 2.14 5.95 3.97 3.97 2.29 2.24 3.57 2.78 2.38

2-min 2.14 2.07 6.75 5.16 1.98 2.20 2.13 3.97 4.37 1.19

VIX

1-min 1.41 1.35 86.64 85.78 83.19 1.51 1.46 82.76 80.60 77.59

2-min 1.51 1.42 71.98 70.26 65.95 1.58 1.49 69.83 68.53 61.21

Table 4: Summary statistics. This table provides activity index estimates as well as rejection rates of null
hypothesis H0 : β = 2, using 1-minute and 2- minute return series, powers p = {0.7, 0.9} along with the three
different tests; CLT, LSB 1, and LSB 2. The activity indices are estimated and tested using regular exchange
days in 2011. The three FX series are constructed using FX observations, which are collected from both pit and
electronic trading and cover whole trading days. Hence, the 1-minute and 2-minute series have n = 1439 and
n = 719 observations, respectively. The S&P 500 series are constructed using futures contracts during regular
trading hours at the CME from 8.30-15.15 CT. Hence, the 1-minute and 2-minute series have n = 404 and n = 201
observations, respectively. The high-frequency VIX series are of similar length. CLT is the feasible test based on
Corollary 1, see also Andersen, Bondarenko, Todorov & Tauchen (2014), LSB 1 is the local stable bootstrap test
based on Algorithm 1, and LSB 2 is the local stable bootstrap test based on Algorithm 2, which is targeted against
H0. The nominal level of the tests is 5%. β̂-Mean and β̂-Med denote the mean and median, respectively, of the
activity index estimator β̂(p) in (5). Finally, we used 999 replications for the bootstrap resampling.
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Gonçalves, S. & Meddahi, N. (2009), ‘Bootstrapping realized volatility’, Econometrica 1, 283–306.

Hall, P. & Wilson, S. R. (1991), ‘Two guidelines for bootstrap hypothesis testing’, Biometrics 47, 757–

762.

Horowitz, J. L. & Savin, N. E. (2000), ‘Empirically relevant critical values for hypothesis tests: A

bootstrap approach’, Journal of Econometrics 95, 375–389.

Hounyo, U. (2014), Bootstrapping realized volatility and realized beta under a local gaussianity as-

sumption. Unpublished manuscript, University of Oxford.

Huang, X. & Tauchen, G. (2005), ‘The relative contribution of jumps to total price variance’, Journal

of Financial Econometrics 3, 456–499.

26



Jacod, J. (2008), ‘Asymptotic properties of realized power variations and related functionals of semi-

martingales’, Stochastic Processes and their Applications 118, 517–559.

Jacod, J. & Protter, P. (2012), Discretization of Processes, Springer-Verlag: Berlin.

Jacod, J. & Shiryaev, A. N. (2003), Limit Theorems for Stochastic Processes, 2nd Edition, Springer-

Verlag: New-York.

Jing, B.-Y., Kong, X.-B. & Liu, Z. (2011), ‘Estimating the jump activity index under noisy observations

using high-frequency data’, Journal of the American Statistical Association 106, 558–568.

Jing, B.-Y., Kong, X.-B. & Liu, Z. (2012), ‘Modeling high-frequency financial data by pure jump

processes’, The Annals of Statistics 40, 759–784.

Jing, B.-Y., Kong, X.-B., Liu, Z. & Mykland, P. (2012), ‘On the jump activity index for semimartin-

gales’, Journal of Econometrics 166, 213–223.
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Rosinski, J. (2007), ‘Tempering stable processes’, Stochastic Processes and Their Applications

117, 677–707.
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Journal of Econometrics 153, 83–92.

28



A Additional Assumptions

Before proceeding to the remaining assumptions for the theoretical analysis, let us fix some notation.

In particular, let R+ = {x ∈ R : x ≥ 0} define the non-negative real line, and let (E, E) denote an

auxiliary measurable space on the original filtered probability space (Ω,F , (Ft),P). Then,

Assumption 3. The drift, αt, and the stochastic scale, σt, are Itô semimartingales of the form

αt = α0 +

∫ t

0
bαs ds+

∫ t

0

∫
E
κ (δα(s, x)) µ̃(ds, dx) +

∫
E
κ (δα(s, x))µ(ds, dx)

σt = σ0 +

∫ t

0
bσs ds+

∫ t

0

∫
E
κ (δσ(s, x)) µ̃(ds, dx) +

∫
E
κ (δσ(s, x))µ(ds, dx)

(A.1)

where the different components satisfy the following:

(a) |σt|−1 and |σt−|−1 are strictly positive;

(b) µ is a homogenous Poison random measure on R+×E with compensator (Lévy measure) dt⊗λ(dx).

Furthermore, µ may have arbitrary dependence with Lt;

(c) the processes δα(t, x) and δσ(t, x) are predictable, left-continuous with right limits in t. In addition,

let Tk denote a sequence of stopping times increasing to +∞, then δα(t, x) and δσ(t, x) are

assumed to satisfy

|δα(t, x)|+ |δσ(t, x)| ≤ γk(x), ∀t ≤ Tk,

where γk(x) is a deterministic function on R satisfying
∫
R(|γk(x)|β+ε ∧ 1)dx < ∞, β being the

activity index defined in Assumption 1 and ε > 0 is arbitrarily small;

(d) the processes bαt and bσt are both Itô semimartingales of the form (A.1) with components satisfying

restrictions equivalent to (b) and (c).

The regularity conditions on αt and σt implied by Assumption 3 are identical to the corresponding

conditions in Todorov & Tauchen (2011a) and Todorov (2013). This is not surprising as our bootstrap

procedure carefully seeks to mimic the dependence in the original series, ∆n,ν
i Z, such that we may

obtain a bootstrap central limit theorem, which is similar to their results (presented in Section 2.4).

Similar to the proofs in Todorov (2013), we will rely on the following stronger assumption when

establishing some of the asymptotic results below, in particular Theorem 1, and then use a standard

localization argument to extend them to the weaker case in Assumption 3, see, for example, the

discussion in Jacod & Protter (2012, Section 4.4.1).

Assumption 3’. In addition to Assumption 3, the following holds

(a) the processes bαt , bσt , |σt| and |σt|−1 are uniformly bounded;

(b) the processes |δα(t, x)| + |δσ(t, x)| ≤ γ(x) for all t where γ(x) is a deterministic function on R
satifying

∫
R |γ(x)|β+ε, β being the activity index defined in Assumption 1 and ε ∈ [β, 2];
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(c) the coefficients of the Itô semimartingales bαt and bσt satisfy conditions, which are analogous to the

conditions (a) and (b) above;

(d) the process
∫
R(|x|β′+ε ∧ 1)νYt (dx) is bounded and so are the jumps of L and Y .

B Proofs of Theoretical Results

In the following proofs, we will use the notation Eni [·] ≡ E[·|Fti ]. Furthermore, K denotes a constant,

which may change from line to line and from (in)equality to (in)equality. Moreover, for a given d× d
matrix A, ‖A‖ denotes the Euclidean matrix norm and $i(A) denotes its i-th eigenvalue.

B.1 Proof of Lemma 2

We first establish the result for E∗n(p, Z) by utilizing the properties of the bootstrap expectation

operator to rewrite the vector as

E∗n(p, Z)n1−p/β =

( ∑n
i=1 |∆

n,1
i Z|pE∗[|S∗i |p]∑n

i=1 |∆
n,1
i Z|pE∗[|S∗i + S∗i+1|p]

)
=

(
µp(β̂(p))

∑n
i=1 |∆

n,1
i Z|p

2p/β̂(p)µp(β̂(p))
∑n

i=1 |∆
n,1
i Z|p

)

and, then, by using the definition of Vn(p, Z, 1). For the asymptotic covariance matrix Ω∗n(p, Z), we

establish the result element-by-element. First, for the two diagonal terms, it follows that

V∗
[√

nnp/β−1V ∗n (p, Z, 1)
]

= Σ(p, β̂(p), 0)1,1n
2p/β−1

n∑
i=1

|∆n,1
i Z|2p,

where Σ(p, β̂(p), k) = (Σ(p, β̂(p), k)i,j)1≤i,j≤2, and

V∗
[√

nnp/β−1V ∗n (p, Z, 2)
]

= Σ(p, β̂(p), 0)2,2n
2p/β−1

n∑
i=1

|∆n,1
i Z|2p

+ 2Σ(p, β̂(p), 1)2,2n
2p/β−1

n−1∑
i=1

|∆n,1
i Z|p|∆n,1

i+1Z|
p,

respectively, using the properties of the bootstrap variance operator. For the cross-product terms, we

have Cov∗[np/β−1/2V ∗n (p, Z, 1), np/β−1/2V ∗n (p, Z, 2)] = n2p/β−1Cov∗[V ∗n (p, Z, 1), V ∗n (p, Z, 2)] where

Cov∗ [V ∗n (p, Z, 1), V ∗n (p, Z, 2)] =
n∑
i=1

n∑
j=1

|∆n,1
i Z|p|∆n,1

j Z|pCov∗
[
|S∗i |p, |S∗j + S∗j+1|p

]
=

n∑
i=1

|∆n,1
i Z|2pCov∗

[
|S∗i |p, |S∗i + S∗i+1|p

]
+

n−1∑
i=1

|∆n,1
i+1Z|

p|∆n,1
i Z|pCov∗

[
|S∗i+1|p, |S∗i + S∗i+1|p

]
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with Cov∗[|S∗i |p, |S∗j + S∗j+1|p] = Σ(p, β̂(p), 0)1,2, Cov∗
[
|S∗i+1|p, |S∗i + S∗i+1|p

]
= Σ(p, β̂ (p) , 1)1,2, and,

similarly, for n2p/β−1Cov∗[V ∗n (p, Z, 2), V ∗n (p, Z, 1)]. Finally, collecting terms as

Ω∗n(p, Z) = n2p/β−1Σ(p, β̂(p), 0)
n∑
i=1

|∆n,1
i Z|2p

+ n2p/β−1
n−1∑
i=1

|∆n,1
i Z|p|∆n,1

i+1Z|
p
(
Σ(p, β̂(p), 1) + Σ(p, β̂(p), 1)′

)
,

provides the final result.

B.2 Proof of Theorem 1

We collect two approximation error bounds, based on the results in Todorov (2013, Section 5.2.2), and

highlight them as an auxiliary lemma since they will be useful later in the proof.

Lemma 3. Under Assumptions 1, 3, and p ∈ (0, β/2), it holds that

E
[∣∣|σti− |p − |σs|p∣∣] ≤ Kn−1/(β+ε)∧1, E

[∣∣∣|σs|p − |σt(i−1)− |
p
∣∣∣] ≤ Kn−1/(β+ε)∧1,

for some s ∈ [ti−1, ti] and ε ∈ [0, 2− β]

Proof. By using the same arguments as for Todorov (2013, Equations (29) and (30)).

Next, we make the decomposition

n2p/β−1BVn(2p, Z, 1)− µ2p(β)

∫ 1

0
|σs|2pds = E1 + E2 + E3 (B.1)

where the three terms may be written as

E1 =
1

n

n∑
i=1

|σt(i−1)− |
p|σti− |p

(
np/β|∆n,1

i S|pnp/β|∆n,1
i+1S|

p − µ2p(β)
)
,

E2 = µ2p(β)
n−1∑
i=1

(
1

n
|σt(i−1)− |

p|σti− |p −
∫ ti

ti−1

|σs|2pds

)
,

E3 = n2p/β−1
n−1∑
i=1

(
|∆n,1

i Z|p|∆n,1
i+1Z|

p − |σt(i−1)− |
p|σti− |p|∆

n,1
i S|p|∆n,1

i+1S|
p
)
,

and analyze each of the three terms separately. First, for E1, write

E1 =
1

n

n−1∑
i=1

|σt(i−1)− |
2p
(
np/β|∆n,1

i S|pnp/β|∆n,1
i+1S|

p − µ2p(β)
)

+
1

n

n−1∑
i=1

|σt(i−1)− |
p
(
|σti− |p − |σt(i−1)− |

p
)(

np/β|∆n,1
i S|pnp/β|∆n,1

i+1S|
p − µ2p(β)

)
≡ E1,1 + E1,2
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for which we may bound the second term as

|E1,2| ≤
K

n

n−1∑
i=1

∣∣∣|σti− |p − |σt(i−1)− |
p
∣∣∣ ≤ Op(n−1/(β+ε)∧1) for ε ∈ [0, 2− β] (B.2)

using boundedness of |σt(i−1)− | from above an below along with the existence of the p-th absolute

moment of a strictly stable process for p < β. For the second inequality, we use Lemma 3. Next,

define χi = n1/β∆n,1
i S and rewrite E1,1 as E1,1 = n−1

∑n−1
i=1 |σt(i−1)− |2p(|χi|p|χi+1|p − µ2p(β)). Then,

by Todorov & Tauchen (2012, Lemma 1), it follows that χi
d−→ Si with Si, i = 1, . . . , n, being the

self-similar, strictly stable process defined via the characteristic function (7). Then, as

1

n

n−1∑
i=1

Eni−1
[
|σt(i−1)− |

2p
(
|χi|p|χi+1|p − µ2p(β)

)]
=

1

n

n−1∑
i=1

|σt(i−1)− |
2p
(
Eni−1 [|χi|p]Eni−1 [|χi+1|p]− µ2p(β)

)
= 0,

since Eni−1 [|χi|p] = µp(β), and

1

n2

n−1∑
i=1

Eni−1
[
|σt(i−1)− |

4p
(
|χi|p|χi+1|p − µ2p(β)

)2]
=

1

n2

n−1∑
i=1

|σt(i−1)− |
4pEni−1

[(
|χi|p|χi+1|p − µ2p(β)

)2] ≤ K

n2

n−1∑
i=1

Eni−1
[(
|χi|p|χi+1|p − µ2p(β)

)2] ≤ K

n

using, again, boundedness of |σt(i−1)− | from above an below along with existence of the p-th absolute

moment of a strictly stable process for p < β/2. This implies E1,1 = op(n
−1/2).

Second, for E2, write

E2 = µ2p(β)
1

n

n−1∑
i=1

|σti− |p
(
|σt(i−1)− |

p − |σti− |p
)

+ µ2p(β)
n−1∑
i=1

(
1

n
|σti− |2p −

∫ ti+1

ti

|σs|2pds
)
ds

P−→ 0 (B.3)

using Lemma 3 for the first term, as in (B.2), and Riemann integrability for the second term.

Third, to show E3
P−→ 0, it suffices to establish a bound for

np/β
(
|∆n,1

i Z|p − |σt(i−1)−|
p|∆n,1

i S|p
)

= np/β

(
|∆n,1

i Z|p −
∣∣∫ ti

ti−1

σs−dLt
∣∣p)+ np/β

(∣∣∫ ti

ti−1

σs−dLt
∣∣p − |σt(i−1)− |

p|∆n,1
i S|p

)
≡ E3,1 + E3,2

and use it in conjunction with an addition and subtraction argument to bound the whole sum. Before
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proceeding, we highlight the following two algebraic inequalities

∣∣|a+ b|p − |a|p
∣∣ ≤ |b|p and

∣∣∑
i

ai
∣∣p ≤∑

i

|ai|p (B.4)

for a, b ∈ R, ai ∈ R ∀i, and p ∈ (0, 1). Using these, we may decompose

|E3,1| ≤
∣∣n1/β ∫ ti

ti−1

αsds+ n1/β
∫ ti

ti−1

dYs
∣∣p ≤ ∣∣n1/β ∫ ti

ti−1

αsds
∣∣p +

∣∣n1/β ∫ ti

ti−1

dYs
∣∣p = Op

(
n(1/β−1)p

)
where the last inequality follows by Assumptions 1 and 3’ since β′ < 1. Next, rewrite E3,2 as

E3,2 = np/β
∣∣σt(i−1)−∆n,1

i L− σt(i−1)−∆n,1
i L+

∫ ti

ti−1

σs−dLt
∣∣p − np/β|σt(i−1)− |

p|∆n,1
i S|p

≤ np/β
∣∣∫ ti

t−i
(σs − σt(i−1)−)dLs

∣∣p + np/β|σt(i−1)− |
p
(
|∆n,1

i L|p − |∆n,1
i S|p

)
≡ E3,2,1 + E3,2,2.

Then, we may bound E3,2,1 as

E3,2,1 ≤
∫ ti

ti−1

|σs− − σt(i−1)− |
p|n1/βdLs|p

≤ sup
s∈[ti−1,ti]

|σs− − σt(i−1)− |
p

∫ ti

ti−1

|n1/βdLs|p ≤ Op(n−(p/β∧1−ι))×Op(n−1), ∀ι > 0

using that E[|σs − σt|] ≤ K|t − s|p/β∧1−ι for s, t > 0 in conjunction with n1/βdLs
d
= Si, cf. Todorov

& Tauchen (2012) and (9), as n → ∞ and β′ < 1 and the existence of absolute moments for the

self-similar, strictly stable process Si when p < β. Last, before establishing a bound for E3,2,1, we note

that Lt may be decomposed as

Lt = St + S̃t − Ŝt,

see Todorov (2013, Equation (22)), where S̃t and Ŝt are pure-jump Lévy processes with the first two

characteristics zero with respect to the truncation function κ(·), and Lévy densities 2|ν2(x)|1{ν2(x) <

0} and |ν2(x)|, respectively, see the supplementary appendix for Todorov & Tauchen (2012) for details

on this decomposition. Then, using boundedness of |σt(i−1)− | and the inequalities (B.4), we may write

|E3,2,2| ≤ K
∣∣|n1/β∆n,1

i L|p − |n1/β∆n,1
i S|p

∣∣ ≤ K (|n1/β∆n,1
i Ŝ|p + |n1/β∆n,1

i S̃|p
)

= Op

(
n(1/β−1/β

′)p
)

since the activity indices of Ŝ and S̃ are determined by |ν2(x)|, i.e., they are β′. The results for E3,1

and E3,2 may be combined to show E3
P−→ 0, concluding the proof.

B.3 Proof of Theorem 2

The proof of the main theorem proceeds in two steps:
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Step 1. Show the desired result for T̃ ∗n where

T̃ ∗n ≡ (Ω∗n(p, Z))−1/2
√
nnp/β−1

(
V ∗n (p, Z, 1)− E∗[V ∗n (p, Z, 1)]

V ∗n (p, Z, 2)− E∗[V ∗n (p, Z, 2)]

)
.

Step 2. Show Ω̂∗n(p, Z)−Ω∗n(p, Z)
P−→ 0 using Corollary 2.

First, for Step 1, let Φ(x;V ) be the multivariate distribution function of N(0,V ) on R2. Then, we

will first show that

sup
x∈R2

∣∣∣P∗ (T̃ ∗n ≤ x)− P
(
T̃n ≤ x

)∣∣∣ P−→ 0, (B.5)

with

T̃n ≡ (Ωn (p, Z))−1/2
√
n

(
np/β−1Vn(p, Z, 1)− µp (β)

∫ 1
0 |σs|

p ds

np/β−1Vn(p, Z, 2)− 2p/βµp(β)
∫ 1
0 |σs|

p ds

)
,

where

Ωn(p, Z) = V

[
√
nnp/β−1

(
Vn(p, Z, 1)

Vn(p, Z, 2)

)]
.

Under Assumptions 1, 2 (b), and 3 of Appendix A, T̃n
ds−→ N(0, I2) follows from Lemma 1 (b). Hence,

we may invoke a multivariate version of Polya’s Theorem, see, e.g., Bhattacharya & Rao (1986), to

establish

sup
x∈R2

∣∣∣P(T̃n ≤ x)−Φ(x; I2)
∣∣∣ P−→ 0.

Hence, if we can prove that

sup
x∈R2

∣∣∣P∗ (T̃ ∗n ≤ x)−Φ(x; I2)
∣∣∣ P−→ 0, (B.6)

then (B.5) follows by the triangle inequality. To show (B.6), rewrite T̃ ∗n as

T̃ ∗n = (Ω∗n(p, Z))−1/2
√
n

n∑
i=1

DiZ
∗
i =
√
n

n∑
i=1

z∗i ,

with z∗i ≡ (Ω∗n(p, Z))−1/2DiZ
∗
i where

Di = np/β−1
∣∣∣∆n,1

i Z
∣∣∣p( 1 0

0 1

)
and Z∗i =

(
|S∗i |

p − E∗[|S∗i |
p]∣∣S∗i + S∗i+1

∣∣p − E∗[
∣∣S∗i + S∗i+1

∣∣p]
)
.

Note thatZ∗i may be written asZ∗i = (|S∗i |p−µp(β̂(p)), |S∗i +S∗i+1|p−2p/β̂(p)µp(β̂(p))′, and, furthermore,

that Z∗i is a mean-zero and one-dependent vector.

Next, we follow Pauly (2011) and rely on a modified Cramer-Wold device to establish the bootstrap

central limit theorem. Let D = {λk : k ∈ N} be a countable dense subset of the unit circle of R2, then

this implies that for any λ ∈ D, we need to show λ′T̃ ∗n
d∗→ N(0, 1), in probability-P, as n → ∞. By
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Lemma 2, V∗[λ′T̃ ∗n ] = 1 for all n. Hence, we are left with showing that λ′T̃ ∗n is asymptotically normally

distributed conditional on the original sample and with probability-P approaching one. To account

for the vectors z∗i being one-dependent, we prove this using a large-block-small-block argument.5 In

particular, we rely on large blocks of Ln successive observations followed by a small block consisting of

a single element. Formally, let Ln be an integer such that Ln ∝ nα for 0 < α < δ
2(1+δ) some arbitrarily

small δ > 0, and let kn = b n
Ln+1c. Then, define the (large) blocks

Lj = {i ∈ N : (j − 1)(Ln + 1) + 1 ≤ i ≤ j (Ln + 1)− 1} where 1 ≤ j ≤ kn,

and Lkn+1 = {i ∈ N : kn(Ln + 1) + 1 ≤ i ≤ n}. Moreover, let U∗j =
∑

i∈Lj λ
′z∗i for j = 1, . . . , kn + 1,

such that we can make the decomposition

λ′T̃ ∗n =
√
n

kn+1∑
j=1

U∗j +
√
n

kn∑
j=1

λ′z∗j(Ln+1).

Next, we need to show that

(a)
√
n
∑kn

j=1 λ
′z∗j(Ln+1) = op∗(1) in probability-P, and

(b) for some δ > 0,
∑kn+1

j=1 E∗|
√
nU∗j |2+δ

P−→ 0,

since conditions (a)-(b), in conjunction with {U∗j }1≤j≤kn+1 being an independent array, conditionally

on the original sample, suffices to show that
√
n
∑kn+1

j=1 U∗j
d∗−→ N(0, 1), in probability-P.

For (a). Since E∗[z∗i ] = 0 for all i, it suffices to show that V∗[
√
n
∑kn

j=1 λ
′z∗j(Ln+1)] = op(1). This

simplifies since, for Ln ≥ 1 with n sufficiently large, the elements z∗j(Ln+1) are independent along j

conditional on the original sample such that

V∗
√n kn∑

j=1

λ′z∗j(Ln+1)

 = λ′ (Ω∗n(p, Z))−1/2 Λ∗n (Ω∗n(p, Z))−1/2 λ

where Λ∗n = V∗[
√
n
∑kn

j=1Dj(Ln+1)Z
∗
j(Ln+1)]. By the Cauchy-Schwarz inequality, it follows that∥∥∥∥∥∥V∗

√n kn∑
j=1

λ′z∗j(Ln+1)

∥∥∥∥∥∥ ≤ ‖λ‖2
∥∥∥(Ω∗n(p, Z))−1/2

∥∥∥2 ‖Λ∗n‖ .
Next, since Ω∗n(p, Z)

P−→ Ω∗(p, Z) by Corollary 2,∥∥∥(Ω∗n(p, Z))−1/2
∥∥∥2 = Tr

(
(Ω∗n(p, Z))−1

)
P−→ Tr

(
(Ω∗(p, Z))−1

)
=
∥∥∥(Ω∗(p, Z))−1/2

∥∥∥2
5See, e.g., the proof of Shao (2010, Theorem 1) for a similar approach.
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by the continuous mapping theorem where∥∥∥(Ω∗(p, Z))−1/2
∥∥∥2 = $1

(
(Ω∗(p, Z))−1

)
+$2

(
(Ω∗(p, Z))−1

)
= $−11 (Ω∗(p, Z)) +$−12 (Ω∗(p, Z))

with $−11 (Ω∗(p, Z)) +$−12 (Ω∗(p, Z)) = Op(1) since
∫ 1
0 |σs|

2p ds > 0 by Assumption 3 (a). For ‖Λ∗n‖,
we have

Λ∗n = n

kn∑
j=1

Dj(Ln+1)E
∗
[
Z∗j(Ln+1)Z

∗′
j(Ln+1)

]
D′j(Ln+1)

,

which implies

‖Λ∗n‖ = n

kn∑
j=1

∥∥Dj(Ln+1)

∥∥2 ∥∥∥E∗ [Z∗j(Ln+1)Z
∗′
j(Ln+1)

]∥∥∥
= n

kn∑
j=1

∥∥Dj(Ln+1)

∥∥2 ∥∥∥Σ(p, β̂(p), 0)
∥∥∥ ≤ K kn∑

j=1

n
∥∥Dj(Ln+1)

∥∥2
Since for any i, ‖Di‖2 = 2n2(p/β−1)|∆n,1

i Z|2p, it follows that

‖Λ∗n‖ ≤ Kn2p/β−1
kn∑
j=1

∣∣∣∆n,1
j(Ln+1)Z

∣∣∣2p = Op(kn/n),

which, using kn = b n
Ln+1c ≤

n
Ln

= n1−α, is Op(L
−1
n ) = Op(n

−α). Combining the asymptotic bounds

results for ‖Λ∗n‖ and ‖ (Ω∗n(p, Z))−1/2 ‖2 with α > 0 provides (a).

Next, we verify (b). For any 1 ≤ j ≤ kn + 1, it follows by the cr-inequality,

∣∣U∗j ∣∣2+δ =
∣∣∑
i∈Lj

λ′z∗i
∣∣2+δ ≤ L2+δ−1

n ‖λ‖2+δ
∥∥∥(Ω∗n(p, Z))−1/2

∥∥∥2+δ ∑
i∈Lj

‖Di‖2+δ ‖Z∗i ‖
2+δ .

Hence, we have

E∗
[∣∣U∗j ∣∣2+δ] ≤ L2+δ−1

n ‖λ‖2+δ
∥∥∥(Ω∗n(p, Z))−1/2

∥∥∥2+δ ∑
i∈Lj

‖Di‖2+δ E∗
[
‖Z∗i ‖

2+δ
]

≤ KL1+δ
n

∥∥∥(Ω∗n(p, Z))−1/2
∥∥∥2+δ ∑

i∈Lj

‖Di‖2+δ

since we may select δ > 0 arbitrarily small. Then, by arguments similar to those for (a),

kn+1∑
j=1

E∗
[∣∣√nU∗j ∣∣2+δ] ≤ Kn1+δ/2L1+δ

n

∥∥∥(Ω∗n(p, Z))−1/2
∥∥∥2+δ kn+1∑

j=1

∑
i∈Lj

‖Di‖2+δ
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= Kn1+δ/2L1+δ
n

∥∥∥(Ω∗n(p, Z))−1/2
∥∥∥2+δ kn+1∑

j=1

∑
i∈Lj

(
2n2(p/β−1)

∣∣∣∆n,1
i Z

∣∣∣2p) 2+δ
2

= KL1+δ
n n−δ/2

∥∥∥(Ω∗n(p, Z))−1/2
∥∥∥2+δ (np(2+δ)/β−1 n∑

i=1

∣∣∣∆n,1
i Z

∣∣∣p(2+δ)) ,
where ‖(Ω∗n(p, Z))−1/2‖2+δ = Op(1) since ($−11 (Ω∗(p, Z)) +$−12 (Ω∗(p, Z)))(2+δ)/2 = Op(1), as in the

proof of (a), and

np(2+δ)/β−1
n∑
i=1

∣∣∣∆n,1
i Z

∣∣∣p(2+δ) = Op(1)

by Lemma 1 (b) since δ > 0 is arbitrarily small. This implies that the whole term,

kn+1∑
j=1

E∗
[∣∣U∗j ∣∣2+δ] ≤ Op(L1+δ

n n−δ/2) = Op(n
α(1+δ)−δ/2)

P−→ 0

by α (1 + δ) − δ/2 < 0 or, equivalently, α < δ
2(1+δ) , providing condition (b). Hence, T̃ ∗n

d∗−→ N(0, I2)

with probability-P approaching one, which, in conjunction with a multivariate version of Polya’s The-

orem gives (B.6) and concludes the proof of Step 1.

Second, for Step 2, we may use the definitions of Ω̂∗n(p, Z), Ω∗n(p, Z), and (14) to write

T ∗n =
(
Ω̂∗n(p, Z)

)−1/2
(Ω∗n(p, Z))1/2 T̃ ∗n .

Hence, to obtain the desired central limit theory for T ∗n , using the result for T̃ ∗n in Step 1, it suffices

to show that (
Ω̂∗n(p, Z)

)−1
×Ω∗n(p, Z) =

(
(Ω∗n(p, Z))−1 × Ω̂∗n(p, Z)

)−1 P∗−→ I2. (B.7)

Corollary 2 directly implies that Ω∗n(p, Z)
P∗−→ Ω∗(p, Z) = Q(2p)M(p, β) since convergence in prob-

ability follows conditional on the original sample. Moreover, we have that the bootstrap variance

estimator decomposes Ω̂∗n(p, Z) = Q̂∗n(2p, β̂(p))M(p, β̂(p)) where M(p, β̂(p))
P∗−→M(p, β), similar to

Corollary 2. Consequently, (B.7) follows by the continuous mapping theorem if we can show that

Q̂∗n(2p, β̂(p)) = µ−22p (β̂(p))n2p/β̂(p)−1V ∗n (2p, Z, 1)
P∗−→ Q(2p) =

∫ 1

0
|σs|2pds. (B.8)

Here, we utilize the fact that convergence in L1 implies convergence in probability and that all elements

of the sum in the bootstrap power variation V ∗n (2p, Z, 1) are non-negative. In particular, we have

E∗ [|V ∗n (2p, Z, 1)|] =

n∑
i=1

|∆n,1
i Zi|2p × E∗

[
|S∗i |

2p
]

= µ2p(β̂(p))
n∑
i=1

|∆n,1
i Zi|2p

37



and, as a result,

E∗
[∣∣∣Q̂∗n(2p, β̂(p))

∣∣∣] = µ−12p (β̂(p))n2p/β̂(p)−1
n∑
i=1

|∆n,1
i Zi|2p

P−→
∫ 1

0
|σs|2pds,

which follows using Lemma 1 (a), Corollary 1, and the continuous mapping theorem. This verifies

condition (B.8) and concludes the proof of Step 2.

B.4 Proof of Theorem 3

By Theorem 2 and the delta method, we have

√
n
(

Ω̂∗β(p, Z)
)−1/2 (

β̂∗(p)− β̂(p)
)

d∗−→ N(0, 1), in probability-P,

where β̂∗(p) is defined in (17), β̂ (p) may be written as

β̂ (p) =
p ln(2)

ln (E∗[V ∗n (p, Z, 2)])− ln (E∗[V ∗n (p, Z, 1)])
1{E∗[V ∗n (p, Z, 2)] 6= E∗[V ∗n (p, Z, 1)]},

and where the variance Ω̂∗β(p, Z) follows as

Ω̂∗β(p, Z)

n2−2p/β̂(p)
=
(

(β̂∗(p))2

(p ln(2))V ∗n (p,Z,1)
−(β̂∗(p))2

(p ln(2))V ∗n (p,Z,2)

)
Ω̂∗n(p, Z)

 (β̂∗(p))2

(p ln(2))V ∗n (p,Z,1)
−(β̂∗(p))2

(p ln(2))V ∗n (p,Z,2)


=

(β̂∗(p))4

(p ln (2))2

(
1

V ∗n (p,Z,1)
−1

V ∗n (p,Z,2)

)
Ω̂∗n(p, Z)

(
1

V ∗n (p,Z,1)
−1

V ∗n (p,Z,2)

)

= Q̂∗n

(
2p, β̂(p)

) (β̂∗(p))4

(p ln (2))2

(
1

V ∗n (p,Z,1)
−1

V ∗n (p,Z,2)

)
M
(
p, β̂(p)

)( 1
V ∗n (p,Z,1)
−1

V ∗n (p,Z,2)

)

using the definition of Ω̂∗n(p, Z) in (15). Then, as M(p, β̂(p)) = (M(p, β̂(p))i,j)1≤i,j≤2 with elements

defined as in given in (15), see also Corollary 2, we may write

Ω̂∗β(p, Z) = (β̂∗(p))4 · (p ln(2))−2 · Q̂∗n(2p, β̂(p)) · ζ̂(p, Z, β̂(p)),

where ζ̂(p, Z, β̂(p)) is defined through

ζ̂(p, Z, β̂(p))

n2−2p/β̂(p)
=
M(p, β̂(p))1,1

(V ∗n (p, Z, 1))2
− M(p, β̂(p))1,2 +M(p, β̂(p))2,1

V ∗n (p, Z, 1)V ∗n (p, Z, 2)
+
M(p, β̂(p))2,2

(V ∗n (p, Z, 2))2
,

concluding the proof.
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C Algorithm for Numerical Implementation

We detail how the proposed local stable bootstrap procedure may be used to test whether Zt is a jump

diffusion or a pure-jump semimartingale. In particular, we test the null hypothesis H0 : β = 2 against

a one-sided alternative H1 : β < 2. In the following, B denotes the number of bootstrap replications

for each of the M Monte Carlo replications. Then, for a given equidistant partition of the normalized

time window [0, 1] with step length 1/n do the following:

Algorithm 3: The Local Stable Bootstrap Simulation for hypothesis testing

Step 1. Simulate n+ 1 ∈ N points of the process Zt under investigation (a pure-jump semimartingale

or a jump diffusion). For details on how to simulate tempered stable processes, see, e.g., Todorov

et al. (2014, Section 10) or, alternatively, the methodology by Rosinski (2007) based on a shot-

noise decomposition of the Lévy measure.

Step 2. Estimate the activity index β of the process Zt using the estimator β̂(p) in (5).

Step 3. Compute the studentized statistic

τn(2) ≡
√
n
(

Ω̂β(p, Z)
)−1/2 (

β̂(p)− 2
)

where Ω̂β (p, Z) is an consistent estimator of the asymptotic variance of β̂ (p). In particular,

Ω̂β(p, Z) =
µ2p(β̂(p))

µ2p(β̂(p))

n2p/β̂(p)−1Vn(2p, Z, 1)

n2p/β̂(p)−2 (Vn(p, Z, 1))2
× (β̂(p))4

µ2p(β̂(p))p2(ln(2))2
× Ξ̃

=
n

µ2p(β̂(p))
× Vn(2p, Z, 1)

(Vn(p, Z, 1))2
× (β̂(p))4

p2(ln(2))2
× Ξ̃, (C.1)

with Ξ̃ = Ξ̂1,1 − 21−p/βΞ̂1,2 + 2−2p/βΞ̂2,2 and the matrix Ξ̂ = (Ξ̂i,j)1≤i,j≤2 is given as

Ξ̂ = Σ(p, β̂(p), 0) + Σ(p, β̂(p), 1) + Σ(p, β̂(p), 1)′ (C.2)

where Σ(p, β̂(p), k) for k = 0, 1 are defined as in Sections 2.4 and 3.1.

Step 4. Generate an n + 1 sequence of identically and independently distributed 2-stable random

variables S∗1 , S
∗
2 , . . . , S

∗
n+1, whose characteristic function are defined as

lnE
[
eiuS

∗
i

]
= −|u|2/2, ∀i = 1, . . . , n+ 1. (C.3)

The observations S∗1 , S
∗
2 , . . . , S

∗
n+1 should be independent of observations generated in Step 1.

Step 5. Generate the local stable bootstrap observations under the restriction specified by H0 as
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follows,

∆n,υ
i Z∗ = ∆n,1

i Z ·
( υ∑
t=1

S∗i+t−1

)
, i = υ, . . . , n,

and compute the bootstrap activity index estimator,

β̂∗ (p) =
p ln(2)

ln (V ∗n (p, Z, 2))− ln (V ∗n (p, Z, 1))
1{V ∗n (p, Z, 2) 6= V ∗n (p, Z, 1)},

where V ∗n (p, Z, 1) and V ∗n (p, Z, 2) are defined in (12).

Step 6. Compute the studentized bootstrap statistic τ∗n(2) from Corollary 3.

Step 7. Repeat Steps 4-6 B times and keep the values of τ∗n(2, j), j = 1, . . . , B, where τ∗n(2, j) is given

as in Step 6. Then, sort τ∗n(2, 1), . . . , τ∗n(2, B) ascendingly from the smallest to the largest as

τ̄∗n(2, 1), . . . , τ̄∗n(2, B) such that τ̄∗n(2, i) < τ̄∗n(2, j) for all 1 ≤ i < j ≤ B.

Step 8. Reject H0 when τn(2) < q∗α where q∗α is the α quantile of the bootstrap distribution of τ∗n(2).

For example, if we let B = 999, then the 0.05-th quantile of τ∗n(2) is estimated by τ∗n(2, a) with

a = 0.05× (999 + 1) = 50.

Step 9. Repeat Steps 1-8 M times to get the size or power of the bootstrap test. In particular, if Zt

is simulated as a jump diffusion, then the size is given by M−1(# {τn(2) < q∗α}).
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