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Abstract

This paper introduces a new estimator of the fractional cointegrating vector between stationary
long memory processes that is robust to low-frequency contamination such as level shifts, i.e.,
structural changes in the means of the series, and deterministic trends. In particular, the proposed
medium band least squares (MBLS) estimator uses sample dependent trimming of frequencies in
the vicinity of the origin to account for such contamination. Consistency and asymptotic normality
of the MBLS estimator are established, a feasible inference procedure is proposed, and rigorous
tools for assessing the cointegration strength and testing MBLS against the existing narrow band
least squares estimator are developed. Finally, the asymptotic framework for the MBLS estimator
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1 Introduction

The introduction of cointegration by Granger (1981) and Engle & Granger (1987) has changed the

way we think of, and make inference on, co-movements among persistent time series. Motivated, in

part, by a large number of applications in macroeconomics and finance, it has inspired decades of

theoretical developments in the econometrics- and time series literatures. While most analyses have

been concerned with linear combinations of I(1) variables that themselves are I(0), the framework has

later been generalized to fractionally integrated time series, i.e., to processes that are I(d) where d is

allowed to take non-integer values, nesting d = 0 and d = 1 as special cases.

For specificity, let vt be an I(0) process. Then zt is said to be I(d) if (1 − L)dzt = vt where L is

the lag operator and (1− L)d is a fractional filter, defined through the binomial expansion

(1− L)d =

∞∑
i=0

ψiL
i, where ψi =

Γ(i− d)

Γ(−d)Γ(j + 1)

with Γ(·) denoting the gamma function.1 The properties of zt depend critically on the value of d.

In this paper, we shall mainly be concerned with the stationary case 0 ≤ d < 1/2, which exhibits

long memory whenever d > 0 and is characterized by, among others, hyperbolically decaying autoco-

variances. However, we will also make reference to the nonstationary case, d ≥ 1/2. For fractionally

integrated processes, and as will be formalized below, cointegration exists when a linear combination of

I(d) variables is fractionally integrated of strictly lower order than the original series, say I(dε), where

d > dε. This concept has been used to shed new light on topics ranging from purchasing power parity

(Cheung & Lai 1993) to exchange rate dynamics (Baillie & Bollerslev 1994), bond rates (Duecker &

Startz 1998), return volatility forecasting, see, e.g., Bandi & Perron (2006), Christensen & Nielsen

(2006), and Andersen & Varneskov (2014), and risk-return modeling, see, for example, Christensen &

Nielsen (2007) and Bollerslev, Osterrieder, Sizova & Tauchen (2013).

While early studies of fractional cointegration have been carried out using parametric techniques,

Robinson (1994) shows that conventional estimators of the cointegrating vector, such as OLS, are

inconsistent when dε > 0, that is, when the cointegrating relation does not completely purge the

regression errors of memory. As an alternative, he introduces the semiparametric narrow band least

squares (NBLS) estimator and establishes its consistency in a framework that allows the regression

errors to be endogenous, for example as a result of cointegration. Furthermore, all components of the

system can exhibit arbitrary short memory dynamics, which may be left unspecified. The asymptotic

central limit theory for the NBLS estimator has later been developed for sub-cases of nonstationary

fractional cointegration, d + dε > 1/2, in Robinson & Marinucci (2003), and for stationary fractional

cointegration, d + dε < 1/2, in Christensen & Nielsen (2006).2 Recently, Johansen & Nielsen (2012)

1Strictly speaking, this definition is only valid when d < 1/2. For d ≥ 1/2, fractional integration is defined either by
initialization or by considering partial sums. See, e.g., Robinson (2005) and Shimotsu & Phillips (2006) for discussions
of the relative advantages and disadvantages of different fractional models.

2Other notable developments are Lobato (1997), who establishes consistency for the multiple regressor case, and Nielsen
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have introduced the fractionally cointegrated VAR, or FCVAR, model as a fully parametric alternative

to NBLS. Moreover, they develop the necessary asymptotic central limit theory for maximum likelihood

(ML) based inference such that the model may be formally analyzed.

Meanwhile, for the univariate case, a parallel literature has documented the presence level shifts

(or structural changes) and other deterministic trends in various time series. For example, Perron

(1989) finds evidence of level shifts in the Nelson-Plosser data set, which is comprised of several

macroeconomic indicators; Garcia & Perron (1996) find level shifts in U.S. real interest rate series;

and Qu (2011) rejects the null hypothesis of stationary short- or long memory dynamics against the

alternative of level shifts or deterministic trends, possibly in conjunction with short memory dynamics,

for a U.S. inflation rate series. Moreover, for example, Granger & Hyung (2004), Mikosch & Stărică

(2004), Stărică & Granger (2005), Lu & Perron (2010), Perron & Qu (2010), and Varneskov & Perron

(2015) provide evidence of level shifts in different asset return volatility series. Together with related

work of, e.g., Bhattacharya, Gupta & Waymire (1983), Diebold & Inoue (2001), Hillebrand (2005),

McCloskey & Perron (2013), and McCloskey & Hill (2014), this literature further demonstrates -

empirically, theoretically and through simulations - that the presence of level shifts or deterministic

trends in an otherwise stationary short memory process will bias log-periodogram- and local Whittle

estimates, respectively, of the integration order upward, toward indicating fractional integration, and

unit root tests toward non-rejection, thereby introducing “spurious persistence” in the series.3 Similar

results are obtained when fitting GARCH, stochastic volatility, or fractional ARIMA models to said

processes. This effect arises because level shifts and deterministic trends induce hyperbolically decaying

autocovariances and a spectral density pole in the vicinity of the origin, similar to that arising with

long memory processes and hence “contaminating” the low-frequency signal in the series.

Despite the devastating impact of low-frequency contamination on various statistical tools that are

frequently used for univariate time series analysis, the same problem has received scant attention in

the multivariate literature.4 Hence, the present paper partially fills this void by analyzing estimation

of the cointegrating vector for stationary fractionally cointegrated series that may be contaminated by

a broad class of processes, covering, for example, level shifts, certain deterministic trends, and outliers,

and whose exact form need not be specified. Specifically, we introduce the medium band least squares

(MBLS) estimator, which, similarly to NBLS, is a frequency domain least squares estimator using

an asymptotically degenerating frequency band. However, unlike NBLS, the MBLS estimator uses

sample dependent trimming of the frequencies in the vicinity of the origin to asymptotically eliminate

the impact of low-frequency contamination, utilizing the difference between the stochastic orders of

the latent fractional signals and the contamination terms.

We establish consistency and asymptotic normality of the new MBLS estimator. In particular, the

& Frederiksen (2011), who relax an assumption of zero coherence between the regressors and regression errors in the
vicinity of the origin and propose a fully-modified NBLS estimator in the spirit of Phillips & Hansen (1990).

3See also the review Haldrup, Kruse, Teräsvirta & Varneskov (2013).
4Among the few exceptions are Campos, Ericsson & Hendry (1996), Gregory & Hansen (1996), and Johansen, Mosconi
& Nielsen (2000), who analyze aspects of I(1)-I(0) cointegration, along with Chen & Hurvich (2003) and Robinson &
Iacone (2005), who consider fractional cointegration analysis in the presence of polynomial trends.
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asymptotic normal distribution is shown to be the same as that enjoyed by the NBLS estimator in

the absence of contamination. In general, however, we show that NBLS is inconsistent in the present

framework with low-frequency contamination (see Corollary 1 below), and a similar result will hold

for the FCVAR approach. Hence, to consistently analyze the FCVAR model, one would have to

correctly specify the low-frequency “contaminating” component, in addition to cointegrating relations

and short-memory dynamics, which can be complicated even for simple specifications of deterministic

trends. As a result, even researchers interested in parametric modeling of fractional cointegration

may find our MBLS estimator useful as a complementary diagnostic tool to ensure low-frequency

contamination-consistent estimation of the cointegrating relations in the model.

Our solution is related to those in McCloskey & Perron (2013) and McCloskey & Hill (2014), who,

in univariate settings, consider log-periodogram estimation of the fractional integration order and

frequency domain quasi ML estimation of parametric short memory models, respectively, and achieve

robustness to low-frequency contamination by using trimmed estimators. However, when taking the

analysis to the multivariate framework, with the objective to analyze cointegration among stationary

long memory processes, we find that the required tool, i.e., our proposed MBLS estimator, including

the derived trimming conditions, is distinctively different from previous estimators in the literature.

Furthermore, we develop a rigorous feasible inference procedure, along with two empirical diagnostics;

a test of cointegration strength and a test of consistency of NBLS inference. Hence, we are able to

robustly assess whether the basic assumption of cointegration among the latent fractional signals is

satisfied, and test whether low-frequency contamination does, in fact, exert an impact on existing

estimators of the cointegrating vector.

We illustrate the use of the MBLS approach by analyzing volatility factors for S&P 500 equities

using a long-span data set of realized variance estimates. In particular, we specify a discrete time

stochastic volatility model with two factors and an arbitrary vector of low-frequency contamination,

encompassing many stochastic volatility models from different branches of the literature. Motivated

by arbitrage pricing theory, we propose to link the most persistent volatility factor of the individual

equities to the corresponding factor in market portfolio volatility by a linear fractional cointegrating

relation. Using the MBLS approach, we uncover some novel results. First, we provide statistically

significant evidence in favor of said specification, and demonstrate that the corresponding NBLS

inference procedure fails to detect any significant cointegrating relation, thus “rejecting” the model.

Second, we show that the estimated cointegrating vector is significantly larger for MBLS than for

NBLS. Hence, only with the former can we adequately measure the degree of volatility dissemination

from market volatility to individual equity volatility. Finally, using our empirical diagnostic tools, we

formally show that the NBLS inference procedure is inconsistent in the our empirical example.

The outline of the paper is as follows. Section 2 introduces the estimation problem and the notion of

low-frequency contamination. Section 3 motivates the MBLS estimator and establishes its consistency

for the cointegrating vector. Section 4 provides a central limit theorem and develops feasible inference

procedures, along with empirical diagnostic tools. Section 5 contains implementation details and the
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empirical analysis. Section 6 concludes. The appendix contains proofs of the main asymptotic results

in the paper. The following notation is used throughout: O(·), o(·), Op(·), op(·) denote the usual

(stochastic) orders of magnitude, which sometimes refer to matrices, vectors, and scalars; “∼” means

that the ratio of the left- and right-hand side tends to one in the limit; “
D∼” means distributed as; ‖ · ‖

is the Euclidean matrix norm; “→ ”, “
P−→”, and “

D−→” indicate the limit, convergence in probability, and

convergence in distribution, respectively.

2 The Estimation Problem

In this section, we introduce the stationary fractional cointegration setting that will be the focal point

of our analysis. We highlight the estimation problem that arises when the fractional, or long memory,

signal in the variables of interest is measured with low-frequency contamination. Furthermore, we

clarify which processes classify as low-frequency contamination in our multivariate setting.

2.1 Fractionally Cointegrating Regressions

Suppose we observe a p× 1 vector zt = (yt,x
′
t)
′, t = 1, . . . , n, which is characterized by the decompo-

sition

zt = c+ z∗t + ut, (1)

where c is a p× 1 vector of constants, ut is a vector consisting of low-frequency contamination, and,

finally, z∗t ∈ I(d1, . . . , dp) is a vector of stationary fractionally integrated variables, i.e., di ∈ (0, 1/2),

i = 1, . . . , p, for which we wish to draw inference on linear cointegrating relations. We will adopt

formal assumptions on both ut and z∗t below. For specificity, we are interesting in inference on the

(p− 1)× 1 vector β from the (latent) regression relation

y∗t = α+ β′x∗t + ε∗t , (2)

where ε∗t ∈ I(dε) with 0 ≤ dε < mini=1,...,p di, that is, elements of z∗t are stationary fractionally

cointegrated. However, the regression relation we immediately observe is, instead, of the form,

yt = a+ b′xt + et. (3)

As such, this looks similar to the classical errors-in-variables (EIV) estimation problem, but the present

challenge is distinct and, in fact, more complicated, because the persistence of the “errors” affects

estimates of the long-run relation between y∗t and x∗t . In this situation, it is well-acknowledged that

OLS is inconsistent. However, we emphasize the more subtle point that methods developed specifically

for measuring and drawing inference on long-run relations among fractionally integrated processes,

such as the narrow-band least squares (NBLS) estimator, cf. Robinson (1994), Robinson & Marinucci

(2003), and Christensen & Nielsen (2006), will not work, either. This specific problem of estimating
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cointegrating relations of stationary fractionally integrated processes in the presence of low-frequency

contamination is what we address in this paper.

Remark 1. Beside the classical EIV problem, (2) and (3) also relate to the distinction between de-

terministic and stochastic cointegration, see Campbell & Perron (1991). Specifically, we allow the

low-frequency contaminating components to include both deterministic and stochastic terms, and to

cointegrate. While this may be of separate interest, the presence of contamination in the observable

regression (3) prevents us from directly observing the stochastic cointegrating relation in (2), on which

we seek to draw inference.

2.2 Low-frequency Contamination

To characterize the low-frequency contaminating component, we use a multivariate extension of Mc-

Closkey & Perron (2013, Assumption A.1), see also McCloskey (2013) and McCloskey & Hill (2014).

Before proceeding, however, let

wh(λj) =
1√
2πn

n∑
t=1

hte
itλj

be the discrete Fourier transform for a generic vector time series, ht, t = 1, . . . , n, where i =
√
−1

and λj = 2πj/n are the Fourier frequencies. Furthermore, let kt be another (compatible) vector time

series. Then

Ihk(λj) = wh(λj)w̄k(λj) = <(Ihk(λj)) + i=(Ihk(λj))

defines the cross-periodogram, with w̄k(·) indicating complex conjugation of wk(·), and <(·) and =(·)
the real and imaginary parts, respectively. We then characterize the low-frequency contaminating

component ut in (1) using the following high-level assumption:

Assumption 1. ut ⊥⊥ z∗s ∀t, s, E [Iuu(λj)] = O(n/j2), and limn→∞V
[
(j2/n)‖Iuu(λj)‖

]
<∞ ∀j 6= 0.

Example 1 (Bivariate Random Level Shifts). Consider a bivariate random level shift process (u1,t, u2,t),

t = 1, . . . , n, defined as

u1,t =
t∑

j=1

πn,j,1ηj,1 +
t∑

j=1

πn,j,3ηj,3, u2,t =
t∑

j=1

πn,j,2ηj,2 +
t∑

j=1

πn,j,3ηj,3

where, for q = 1, 2, 3, πn,j,q
D∼ i.i.d.Bernoulli(pq/n) where 0 < pq < n is fixed, ηj,q

D∼ i.i.d.(0, σ2η,q), and

the components πn,j,q and ηj,q are independent for all combinations of j and q.

Lemma 1. Suppose u1,t and u2,t follow the data generating process of Example 1. Then, for j =

1, . . . , bn/2c, it follows that

(1) limn→∞ E[(j2/n)Iu1(λj)] = (p1σ
2
η,1 + p3σ

2
η,3)/(4π

3) and limn→∞V[(j2/n)Iu1(λj)] <∞.

(2) limn→∞ E[(j2/n)Iu2(λj)] = (p2σ
2
η,2 + p3σ

2
η,3)/(4π

3) and limn→∞V[(j2/n)Iu2(λj)] <∞.
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(3) limn→∞ E[(j2/n)Iu1u2(λj)] ≤ (p1σ
2
η,1 + p3σ

2
η,3)

1/2(p2σ
2
η,2 + p3σ

2
η,3)

1/2/(4π3) and the limiting vari-

ance satisfies limn→∞V[(j2/n)Iu1u2(λj)] <∞.

Proof. The results follow directly from repeated use of Perron & Qu (2010, Proposition 3) and the

Cauchy-Schwarz inequality.

Example 1, along with Lemma 1, illustrates an important case that satisfies the high-level Assump-

tion 1. In particular, it demonstrates that our framework includes the case of a bivariate low-frequency

contamination process consisting of individual and common structural breaks. Along the same lines, a

Cauchy-Schwarz inequality argument in conjunction with results from the univariate literature shows

that Assumption 1 is satisfied when the low-frequency contamination process contains deterministic

level shifts (Mikosch & Stărică (2004) and McCloskey & Perron (2013)), deterministic trends (Qu 2011),

fractional trends, and outliers (Iacone 2010).5 In addition, we note that Assumption 1 is sufficient,

but not always necessary, for all these forms of contamination, and it may be relaxed for special cases.

However, its general form allows us to remain agnostic regarding the specification of contamination in

the series, e.g., different series may be afflicted by different forms of contamination.

3 Consistency

In this section, we motivate and introduce our medium band least squares estimator of the cointegrating

vector β in the latent regression relation of interest (2), and we establish its consistency. To this end,

we introduce the following assumptions in order to derive the theoretical results.

Assumption 2. The vector process z∗t , t = 0,±1, . . . , is covariance stationary with spectral density

matrix satisfying f∗zz(λ) ∼ ΛGΛ̄ as λ→ 0+ where G is a p×p real symmetric matrix whose lower right

(p − 1) × (p − 1) submatrix has full rank and Λ = diag[λ−d1eiπd1/2, . . . , λ−dpeiπdp/2] for di ∈ (0, 1/2),

i = 1, . . . , p. However, there exists a (p− 1)× 1 vector β 6= 0 and a constant g ∈ (0,∞) such that

(1,−β′)f∗zz(λ)(1,−β′)′ = fε(λ) ∼ gλ−2dε , as λ→ 0+,

where 0 ≤ dε < d⊥, d⊥ = mini=1,...,p(di). Define also d> = maxi=1,...,p(di).

Assumption 3. z∗t admits the Wold representation

z∗t = µ∗z +
∞∑
j=0

A∗jvt−j ,
∞∑
j=0

‖A∗j‖2 <∞,

where the innovations vt satisfy E[vt|Ft−1] = 0, E[vtv
′
t|Ft−1] = Σ, a.s., and vtv

′
t are uniformly

integrable. Here, µ∗z = E[z∗0 ], Σ is a constant matrix of full rank, and Ft = σ(vs, s ≤ t) is the σ-field

genereated by the innovations vs, s ≤ t.

5Robinson (1997) also shows that a similar assumption holds for a class of nonparametric mean functions.
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Assumptions 2 and 3 are similar to those provided in Robinson & Marinucci (2003, Assumptions 1

and 2) and Christensen & Nielsen (2006, Assumptions A and B), but they are stated in terms of the

latent process of interest, z∗t , rather than the observable zt in (1), consistent with the nature of the

estimation problem at hand. Furthermore, Assumption 2 generalizes the corresponding assumption

in the two earlier articles by using the spectral representation analyzed by, e.g., Shimotsu (2007) and

Robinson (2008) in the context of local Whittle estimation for multivariate stationary fractionally

integrated processes. For example, this allows the latent process of interest z∗t to exhibit vector

fractional ARIMA dynamics with non-zero coherence between its individual elements at the origin.

The potential presence of low-frequency contamination in our case, however, induces a bias of the

(co-)peridogram in the close vicinity of the origin, which is highlighted by the decomposition

Izz(λj) = I∗zz(λj) + Iuu(λj) + 2I∗zu(λj) = Op((n/j)
2d>) +Op(n/j

2) +Op((n/j)
1+d>n−1/2) (4)

as λj → 0+, where the (∗) superscript is used as generic notation for a (co-)periodogram or spectral

density for the latent z∗t . The component ut, thus, dominates the peridogram for frequencies λj such

that j = o(n(1−2d>)/(2−2d>)) and vice versa for jn(2d⊥1)/(2−2d⊥) →∞, see McCloskey & Perron (2013)

for a detailed discussion. We note, however, that since the impact of low-frequency contamination

tapers off more rapidly as j increases than the signal from the latent fractionally integrated variables

of interest, we may identify and estimate the cointegration vector β in (2) by carefully selecting

which frequency ordinates to include in the analysis. Finally, we should, strictly speaking, make

distinctions between the asymptotic order of the low-frequency contamination bias for each entry of

Izz(λj), depending on the size of di ∈ (0, 1/2), i = 1, . . . , p. However, as the bias is strictly decreasing

in di, we will use the generic notation d⊥ and d> to indicate the largest bias since we seek to eliminate

the impact of low-frequency contamination for all elements of Izz(λj).

From (4), as the bias due to low-frequency contamination is particularly pronounced for frequencies

in the close vicinity of the origin, this motivates the introduction of the trimmed discretely averaged

co-periodogram,

F̂hk(`,m) =
2π

n

m∑
j=`

<(Ihk(λj)), 1 ≤ ` ≤ m ≤ n, (5)

which we use to define our trimmed narrow-band least squares (NBLS) estimator, labelled the medium

band least squares (MBLS) estimator, as

β̂(`,m) = F̂xx(`,m)−1F̂xy(`,m). (6)

The trimming function, `, is crucial for selecting the frequency range where Izz(λj) is asymptotically

free from low-frequency contamination bias, such that we may consistently estimate β, and form

asymptotically normal inference. While NBLS is recovered as the special case ` = 1, we note that,

in general, more sophisticated conditions on the trimming function are required to obtain consistency
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and asymptotic normality. These will be stated formally below.6

Finally, let us introduce the continuously averaged spectral density matrix F ∗zz(λ) =
∫ λ
0 <(f∗zz(s))ds,

which is important for establishing our asymptotic results below, and appears in a scaled version in

the asymptotic variance of the MBLS estimator in our central limit theorem in Section 4. Under

Assumptions 2 and 3, and from the results, e.g., in Robinson & Marinucci (2003) and Shimotsu

(2007), the local asymptotic behavior of this integral satisfies

F ∗zz(λ) ∼ G(λ) as λ→ 0+,

where G(λ) has (i, k)-th element G(λ, i, k) = Gi,kλ
1−di−dk/(1 − di − dk)Ci,k, with Gi,k the (i, k)-th

element of G and Ci,k = cos(π(di − dk)/2) an adjustment factor for the case di 6= dk, reflecting the

possibility of a complex component in the spectral density matrix at the origin. We are now ready to

establish consistency of the MBLS estimator:

Theorem 1. Under Assumptions 1-3, and with m = m(n) and ` = `(n) positive sequences of integers

satisfying 1/m+m/n+ `/m→ 0 as n→∞, we have

(a) |F̂zz(`,m)−G(λm)| ≤ Op
(
(`/n)1−2d>

)
+Op

(
`−2
)

+ op
(
(m/n)1−2d>

)
.

(b) If additionally 1/`→ 0, then β̂(`,m)
P−→ β.

Proof. See Appendix A.1.

Theorem 1 shows that if the trimming function ` → ∞, but more slowly than the bandwidth, m,

then the MBLS estimator is consistent for β. Indeed, trimming is necessary, as highlighted by the

following corollary:

Corollary 1. Under the conditions of Theorem 1 (a), if ` = O(1) and β 6= b, then β̂(`,m) is

inconsistent for β .

Corollary 1 highlights the general inconsistency of NBLS in the presence of low-frequency contami-

nation, and similarly holds for the band spectrum regression estimators in Engle (1974) and Yamamoto

& Perron (2013), even though they discard a fixed, respectively, increasing number of frequencies in the

vicinity of the origin. For the former, this is immediately evident, as the estimator dictates ` = O(1)

and m/n = O(1). The trimmed band spectrum regression estimator in the latter, on the other hand,

allows 1/` → 0 and `/m → 0, but also requires m/n = O(1) within each frequency range for its

asymptotic results to hold. Furthermore, neither of the two frameworks accommodates the presence

of fractional integration in the latent process, z∗t , nor cointegration among its elements.

The condition β 6= b rules out the case where the low-frequency contamination is “cointegrated”

in exactly the same way as the latent fractional signals. The decomposition of errors in Theorem 1

(a) reflects the tradeoff that arises from trimming frequencies. The first term measures the loss of

6Formally, β̂(1,m) ≡ β̂NBLS , and OLS is algebraically equivalent to β̂(1, n− 1) ≡ β̂OLS .
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information, and the second term the bias from low-frequency contamination. The third term mirrors

the error in the uncontaminated case considered by Robinson & Marinucci (2003). The second term

in the decomposition, thus, corroborates the heuristic arguments made above by highlighting the

importance of trimming frequencies to avoid the bias from low-frequency contamination, manifesting

itself in the discretely averaged co-periodogram and causing inconsistency of NBLS.

Remark 2. The fact that we need the trimming parameter ` to diverge is consistent with the findings

of Iacone (2010), McCloskey & Perron (2013), McCloskey & Hill (2014), and McCloskey (2013), who

consider estimation of the fractional integration order, parametric short memory models, and long

memory stochastic volatility models in univariate settings with low-frequency contamination.

4 Asymptotic Normality

We proceed with our analysis and establish asymptotic normality of our MBLS estimator of the

cointegrating vector, β, in the presence of low-frequency contamination. For simplicity, and in the

remainder of the paper, we will impose equality of the integration orders for the variables in z∗t ,

that is, di = d ∈ (0, 1/2), i = 1, . . . , p, and subsequently discuss our reasoning behind this. As

in the frameworks without contamination, e.g., Lobato (1999), Robinson & Marinucci (2003), and

Christensen & Nielsen (2006), we will strengthen our assumptions on the latent variables and restate

them in terms of w∗t = ((x∗t )
′, ε∗t )

′ instead of z∗t . Finally, we define the collective memory of the system

as dc = d+ dε, which plays an important role in the derivation of the asymptotic results.

Assumption 2’. The vector process w∗t , t = 0,±1, . . . , is covariance stationary with spectral density

matrix satisfying f∗ww(λ) ∼ ΛGΛ as λ→ 0+. In particular, Λ = diag[λ−d, . . . , λ−d, λ−dε ] is p×p with

0 ≤ dε < d, there exists a ϕ ∈ (0, 2] such that |f∗ww(λ, i, k) − Gi,kλ−2d| = O(λϕ−2d) as λ → 0+ for

i, k = 1, . . . , p − 1, where f∗ww(λ, i, k) is the (i, k)-th element of f∗ww(λ), |f∗ww(λ, p, p) − Gp,pλ−2dε | =

O(λϕ−2dε) as λ→ 0+, and |f∗ww(λ, i, p)−Gi,pλ−dc | = O(λϕ−dc) as λ→ 0+. Finally, Gi,p = Gp,i = 0,

and the remaining terms Gi,k, i, k = 1, . . . , p − 1, and Gp,p correspond to the (i, k)-elements of G,

which has the same properties as in Assumption 2.

Assumption 3’. w∗t is a linear process, w∗t = µw +
∑∞

j=0A
∗
jvt−j, with square summable coefficients,∑∞

j=0 ‖A∗j‖2 < ∞, the innovations satisfy, almost surely, E[vt|Ft−1] = 0, E[vtv
′
t|Ft−1] = Ip, and the

matrices E[vt ⊗ vtv′t|Ft−1], E[vtv
′
t ⊗ vtv′t|Ft−1] are nonstochastic, finite, and do not depend on t, with

Ft = σ(vs, s ≤ t). There exists a random variable ζ such that E[ζ2] < ∞ and for all c and some C,

P[‖w∗t ‖ > c] ≤ CP[|ζ| > c]. Finally, let the periodogram of vt be denoted by J(λ).

Assumption 4. For A∗(λ, i), the i-th row of A∗(λ) =
∑∞

j=0A
∗
je

ijλ, we have ‖∂A∗(λ, i)/∂λ‖ =

O(λ−1‖A∗(λ, i)‖) as λ→ 0+, for i = 1, . . . , p.

Assumption 5. The bandwidth m and trimming ` satisfy

1

m
+
m1+2ϕ

n2ϕ
+

`

m
+

n1−dc

m1/2−dc
1

`2
+

`1+dc+ϕ

m1/2+dcnϕ
→ 0 as n→∞.
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Assumptions 2’, 3’, and 4 resemble the assumptions in Christensen & Nielsen (2006), and they share

similarities with those in Robinson (1995a) and Lobato (1999), who analyze uni- and multivariate local

Whittle estimation of the fractional integration order. In particular, we note that for a special case of

the smoothness condition in Assumption 2’, ϕ = 2, w∗t follows a vector fractional ARIMA process.

The zero-coherence condition Gi,p = Gp,i = 0 in Assumption 2’ is important for our central limit

theorem below, and to maintain this, we need equality of integration orders, as emphasized by, e.g.,

Shimotsu (2007) and Nielsen & Frederiksen (2011).7 Intuitively, it requires the latent fractional sig-

nals of the regressors and cointegration residuals to be uncorrelated at frequencies in the vicinity of

the origin. However, we do allow them to correlate at medium- and short-run frequencies, and the

individual latent regressors may correlate at all frequencies. Furthermore, we allow the observable

regressors and cointegration errors to exhibit co-dependencies at the long-run frequencies through the

low-frequency contamination component, e.g., common breaks (see Example 1), common determinis-

tic trends, and similar behavior of the observed series, which by Corollary 1 leads to inconsistency of

standard estimators of the fractional cointegration vector. Finally, we emphasize that the assumption

of equality of memory is common to the literature testing for fractional cointegration rank, see, e.g.,

Robinson & Yajima (2002) and Nielsen & Shimotsu (2007).

While the first two terms in Assumption 5 are well-known from NBLS estimation, the last three

terms are caused by the added challenge of asymptotically eliminating the impact of low-frequency

contamination, and thus specific to the MBLS estimator. Similarly to Theorem 1 (a), the fourth term

reflects the bias from low-frequency contamination, imposing a lower bound on the required rate at

which 1/`→ 0, and the fifth term the loss of information from trimming frequencies. We defer specific

recommendations for the selection of ` and m to Section 5.1.

Before proceeding to the result, let us write Gxx = {Gi,k}p−1i,k=1 for the (p − 1) × (p − 1) leading

submatrix of G from Assumption 2’ and define the transformations

Hxx(λ) =
λ1−2d

1− 2d
Gxx, Hxx = Hxx(λ)λ2d−1, Jxx =

1

2(1− 2dc)
Gxx. (7)

Theorem 2. Under Assumptions 1, 2’, 3’, 4, and 5 along with 0 ≤ dε < dc < 1/2,

√
mλdε−dm

(
β̂(`,m)− β

)
D−→ N

(
0, Gp,pH

−1
xx JxxH

−1
xx

)
.

Proof. See Appendix A.2.

Theorem 2 demonstrates that in the presence of low-frequency contamination, and under mild

conditions on ` and m, the MBLS estimator enjoys the same asymptotic normal distribution that, in

7Too see this, note that when comparing the cross-spectral densities at the origin in Assumptions 2 and 2’, it follows
by setting di = d ∈ (0, 1/2) and Gi,p = Gp,i = 0 for all i elements that the (complex-valued) representation in the
former becomes real-valued and equivalent to the corresponding representation in the latter. Hence, in this case, the
implicit requirement in Assumption 2’ that cross-autocorrelations are symmetric with respect to time is consistent with
the one-sided moving average representations of the latent series in both Assumptions 3 and 3’.
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the absence of contamination, is achieved by the NBLS estimator, see Christensen & Nielsen (2006,

Theorem 2). We note that the absence of contamination is a special case of the current framework,

and this is generally the only case in which the constant α in the latent regression relation (2) may be

identified. Moreover, rewriting the scaled asymptotic variance of the MBLS estimator from Theorem

2 as

Gp,pH
−1
xx JxxH

−1
xx =

(1− 2d)2

2(1− 2dc)
Gp,pG

−1
xx

illustrates how the accuracy of the MBLS inference procedure depends on the noise-to-signal ratio of

the latent long-run variance of (1−L)dεε∗t , L being the lag operator, to the latent long-run covariance

matrix of (1−L)dx∗t . Apart from the scalar (1−2d)2/2(1−2dc), the asymptotic variance resembles that

derived by Brillinger (1981, Chapter 8) for a different class of band spectrum estimators. However,

the result in the latter is established under much stricter assumptions than in the present paper,

for example, without consideration of low-frequency contamination in the observed series, and with

neither fractional integration nor cointegration.

Remark 3. Despite the fact that we need the trimming parameter ` to diverge for consistency and

asymptotic normality, similarly to, e.g., McCloskey (2013) and McCloskey & Hill (2014), the rate

requirement for Theorem 2 differs quite suggestively from corresponding rates in the literature. To see

this, suppose ` = nν and m = nκ. Then Assumption 5 dictates

(1− dc)(1− κ)/2 + κ/4 < ν < min {(ϕ+ κ(1/2 + dc))/(1 + dc + ϕ), κ} ,

thus with lower- and upper bounds that depend on the size of the bandwidth, κ, and the collective

memory of the system, dc. Notice that the trimming requirement (i.e., the lower bound) is generally

decreasing in both κ and dc. The corresponding bounds in McCloskey (2013) and McCloskey & Hill

(2014) are ν ∈ (1/2, 4/5) and ν ∈ (1/2, 1), respectively. While the upper bounds demonstrate the

difference between estimation of parametric models in the former and a semiparametric estimate of the

cointegration vector in the present setting, the derived trimming requirement for the MBLS estimator

is particularly illustrative of the problem at hand, since it not only depends on the fractional integration

order of the input-variables of the multivariate system, but also on the cointegration strength, both of

which are reflected in the collective memory parameter dc. Similar comparisons can be made with the

univariate estimators in Iacone (2010) and McCloskey & Perron (2013). This is carried out implicitly,

however, as part of our discussion of feasible inference procedures next.

4.1 Robust Feasible Inference

So far, we have assumed that d and dε are known. However, knowledge of the lower and upper bounds

on the rate of required trimming, along with feasible inference on the MBLS estimator in Theorem

2, depend on consistent estimates of these fractional integration orders. For this purpose, we apply

the trimmed local Whittle (LW) estimator introduced by Iacone (2010), and refined in McCloskey
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& Perron (2013), to each element of the multivariate process zt separately, to obtain estimates d̂i,

i = 1, . . . , p, and then compute the average d̂ = p−1
∑p

i=1 d̂i as a global estimate, following Robinson

& Yajima (2002) and Nielsen & Shimotsu (2007). In particular, for a generic univariate series zt in

the vector zt, where z∗t ∈ I(d), the trimmed LW estimator is defined by

dLW(z, `1,m1) = argmin
δ∈[0,1/2)

log Ĝ(δ, z, `1,m1)−
2δ

m1 − `1 + 1

m1∑
j=`1

log λj , (8)

where

Ĝ(δ, z, `1,m1) =
1

m1 − `1 + 1

m1∑
j=`1

λ2δj < (Izz(λj)) , (9)

writing m1 and `1 for the bandwidth and trimming parameters used for the LW estimator to distinguish

them from the corresponding m and ` used for our MBLS estimator. Furthermore, to ease exposition

and clarify the role of the different bandwidth and trimming parameters introduced in this and the

previous section, an overview of them all is provided in Table 1, including sufficient conditions for both

consistency and asymptotic normality of the estimators.

4.1.1 Estimation of d

Despite our assumptions being stated in a multivariate framework, careful inspection shows that they

imply that each element of zt satisfies the conditions of Iacone (2010, Theorems 2 and 3), suggesting

that, under suitable conditions on m1 and `1, we may apply the trimmed LW estimator, along with

its asymptotic results, directly in our framework. Formally,

Assumption 5-LW. The bandwidth m1 ∝ nκ1 and trimming `1 ∝ nν1 satisfy either

(a) 0 < ν1 < κ1 < 1 and 1− 2d < κ1/(1− ν1), or

(b) 0 < ν1 < κ1 < 2ϕ/(1 + 2ϕ) and 2(1− 2d) < κ1/(1− ν1).

Lemma 2. Under Assumptions 1, 2’, 3’, and 4, then if additionally

(1) Assumption 5-LW (a) or (b) holds, dLW(z, `1,m1)
P−→ d.

(2) Assumption 5-LW (b) holds, m
1/2
1 (dLW(z, `1,m1)− d)

D−→ N(0, 1/4).

Proof. Under the stated assumptions, the results follow by Iacone (2010, Theorems 2 and 3).

In Assumption 5-LW, we state conditions on `1 and m1 in polynomial terms for comparability

with Iacone (2010). Notice, in particular, that the required trimming decreases in d since the signal

becomes more detectable the higher its fractional integration order. From Lemma 2, the trimmed LW

estimator is both consistent and asymptotically normal under mild conditions. While we only require

consistency for feasible inference, we note that asymptotic normality is important for our derivation

of a test for fractional cointegration strength which is robust to low-frequency contamination, and of

a test for (in)consistency of the NBLS inference procedure, both in Section 4.2 below.
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4.1.2 Estimation of dε

In addition to estimating d, we also need a consistent estimate of dε. This is more challenging, as the

observable residuals from (3),

êt = yt − β̂(`,m)′xt, (10)

differ from the true errors, ε∗t , not only due to low-frequency contamination in yt and xt, but also

since the MBLS estimate, β̂(`,m), may differ from the true β in finite samples. The same problem

is studied by Nielsen & Frederiksen (2011) in the absence of low-frequency contamination, and their

analysis motivates the additional restrictions we impose on the tuning parameters.

Assumption 5-LW’. Whereas the bandwidth m and trimming ` for the MBLS estimator satisfy

Assumption 5, the bandwidth m1 ∝ nκ1 and trimming `1 ∝ nν1 for the LW estimator applied to the

observable residuals (10) satisfy either

(a) Assumption 5-LW (a) and (log n)4(logm1)(m/m1)
d−dε → 0, or

(b) Assumption 5-LW (b), (a), and (m/m1)
2(d−dε)m

1/2
1 /m→ 0, as n→∞.

Since d > dε, Assumption 5-LW’ (a) is essentially satisfied if the bandwidth for the LW estimate, m1,

diverges faster than the corresponding bandwidth for the MBLS estimator, m, as n→∞. Assumption

5-LW’ (b) slightly strengthens the requirement on the rate at which this occurs. In particular, it

imposes an upper bound on κ1, which, however, as explicated in Table 1, is rarely binding in practice.

Theorem 3. Under Assumptions 1, 2’, 3’, and 4, then if additionally

(1) Assumption 5-LW’ (a) or (b) holds, dLW(ê, `1,m1)
P−→ dε,

(2) Assumption 5-LW’ (b) holds, m
1/2
1 (dLW(ê, `1,m1)− dε)

D−→ N(0, 1/4).

Proof. See Appendix A.3.

Theorem 3 shows that the results of Lemma 2, i.e., of Iacone (2010), carry over to the case where the

input series is the residuals from a fractionally cointegrated relation where the cointegration vector

is consistently pre-estimated. In comparison with Nielsen & Frederiksen (2011), we show that the

fractional integration order of the residuals from a consistent first-stage frequency domain least squares-

type analysis can be estimated consistently and with an asymptotic normal distribution in the presence

of low-frequency contamination. As such, Theorem 3 may seem like a small extension of Lemma 2 on

the surface. However, we emphasize that exactly this result allows us to introduce a testing procedure

for whether standard NBLS inference is inconsistent in Section 4.2.2 below.
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4.1.3 Estimation of Gxx and Gp,p

As a final step in developing feasible inference procedures for Theorem 2, we also need consistent

estimates of Gxx and Gp,p. Hence, we generalize the representation in (9) to accommodate a generic

vector time series, ht, t = 1, . . . , n, with fractional integration order dh ∈ [0, 1/2), i.e.,

Ĝ(dh,h, `2,m2) =
1

m2 − `2 + 1

m2∑
j=`2

λ2dhj < (Ihh(λj)) , (11)

where we write m2 and `2 for the bandwidth and trimming parameters to distinguish them from those

used for the MBLS and LW estimators. Again, we refer to Table 1 for an overview of the tuning

parameters, their restrictions, and their cross-restrictions.

Assumption 5-G. The bandwidth m2 and trimming `2 satisfy either

(a) (logm2)
2/m2 + (m2/n)ϕ(logm2) + 1/`2 + `2/m2 + (n/`2)

1−2d(`2m2)
−1 → 0, or

(b) (logm2)
2/m2 + (m2/n)ϕ(logm2) + 1/`2 + `2/m2 + (n/`2)

1−2dε(`2m2)
−1 → 0, or

(c) Assumption 5-G (b) and (log n)4(logm2)(m/m2)
d−dε → 0, as n→∞.

Assumption 5-G imposes mild restrictions on the required trimming, `2, which depends on the

memory of the underlying process. The extra condition in Assumption 5-G (c) relative to 5-G (b)

corresponds to the one imposed in Assumption 5-LW’ (a), that is, we need an additional restriction

on the bandwidth parameter m2 to account for the pre-estimated cointegrating vector. The split into

Assumptions 5-G (b) and 5-G (c) reflects our use of an intermediate step in establishing consistency

of Ĝ(dε, ê, `2,m2) for Gp,p. First, we establish consistency of Ĝ(dε, ε, `2,m2) for Gp,p using the latent

variable εt = yt − β′xt, which differs from the observable êt by not having the cointegrating vector,

β, consistently pre-estimated. The final step is, then, provided using arguments similar to those for

Theorem 3 to account for the additional sampling errors in êt .

Theorem 4. Under Assumptions 1, 2’, 3’, and 4, then if additionally

(a) Assumption 5-G (a) holds, then Ĝ(d,x, `2,m2)
P−→ Gxx.

(b) Assumption 5-G (b) holds, then Ĝ(dε, ε, `2,m2)
P−→ Gp,p.

(c) Assumption 5-G (c) holds, then Ĝ(dε, ê, `2,m2)
P−→ Gp,p.

Proof. See Appendix A.4.

Hence, we can estimate d and dε consistently by Lemma 2 and Theorem 3, along with Gxx and Gp,p

using Theorem 4, and thereby obtain consistent estimates of Hxx and Jxx in (7) by the continuous

mapping theorem. This enables us to perform feasible inference for the MBLS estimator in the presence

of low-frequency contamination using Theorem 2.
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4.2 Empirical Diagnostic Tools

In developing the low-frequency contamination robust MBLS methodology described above, we have

assumed the existence of a stationary fractional cointegrated equilibrium. In this section, we present

new diagnostic tools, not only for assessing this assumption, but also for testing whether NBLS esti-

mation is, in fact, affected by low-frequency contamination.

4.2.1 Testing Cointegration Strength

We are interested in assessing the basic fractional cointegration assumption that a linear combination

of stochastic processes is of strictly lower order of fractional integration than the processes themselves.

In our setting, this amounts to testing a null hypothesis of the form

H0 : d− dε = b for b ∈ (0, d],

where, again, z∗t ∈ I(d) and ε∗t ∈ I(dε), and the test should account for the fact that these are latent

processes. When testing H0, two possible outcomes would be indicative of fractional cointegration.

First, failure to reject is consistent with fractional cointegration of strength b > 0. Second, rejection

in favor of d − dε > b > 0 indicates a stronger fractional cointegrated relation. Ideally, we would like

to test H0 for the case b = 0, that is, the case of no cointegration. However, our proposed testing

procedure below relies on consistency of MBLS at an appropriate rate, as provided by the CLT in

Theorem 2, and orthogonality of x∗t and ε∗t , which hold only under fractional cointegration, and thus

requires b > 0 (Assumption 2’ would be violated for b = 0). Informally, failure to reject for a very

small value of b could provide indicative evidence against cointegration.

For ease of exposition, we introduce the shorthand notation d̂M = dLW(z, `1,m1) and d̂ε,M =

dLW(ê, `1,m1) for the trimmed LW estimators of the fractional integration orders of z∗t and ε∗t , re-

spectively, using the MBLS residuals. By Lemma 2 and Theorem 3, both are robust to low-frequency

contamination. Hence, we may introduce the following test.

Corollary 2. Under Assumptions 1, 2’, 3’, 4, and 5-LW’,

tb = m
1/2
1 2(d̂M − d̂ε,M − b)

D−→ N(0, 1). (12)

We assess the power properties of this test for different values of b, cointegration strength d − dε,
bandwidth, and sample size in Section 5.1. Furthermore, we illustrate how the test may be applied as

a diagnostic tool in our empirical analysis in Section 5.3 below.

4.2.2 Testing Consistency of NBLS

As motivation for our simple Hausman-type test, recall the fundamental cointegrating condition from

Assumption 2,

(1,−β′)f∗zz(λ)(1,−β′)′ = fε(λ) ∼ gλ−2dε , as λ→ 0+, (13)
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for 0 ≤ dε < d. Since f∗zz is positive definite and the lower (p − 1) × (p − 1) submatrix of G is

of full rank, the full reduction in memory from d to dε is achieved by a consistent estimate of the

unique cointegrating vector β. An inconsistent estimator of β will, thus, lead to an upward bias in

the estimate of dε. Therefore we can reduce the multi-dimensional problem of testing consistency of

the NBLS estimator of β to a univariate problem based solely on the estimated fractional integration

order of the residuals. Since MBLS is consistent both with and without low-frequency contamination,

and NBLS is consistent in the latter case, the residual memory estimators from the two methods are

expected to be close in the absence of low-frequency contamination. In the presence of contamination,

however, the residual memory parameter estimate from NBLS is expected to be higher than for MBLS

due to inconsistency of the procedure, thus suggesting a one-sided test.

Next, to obtain a non-degenerate test statistic, we propose implementing the LW estimator with

a bandwidth cm1, for some c ∈ (0, 1), when estimating the fractional integration order of the NBLS

residuals, while keeping the bandwidth m1 in the trimmed LW estimator applied to the MBLS residuals

unchanged. Formally, we write d̂ε,N (1, c) for the resulting estimator.

Corollary 3. Under Assumptions 2’, 3’, 4, 5-LW’ and ut = 0 ∀t = 1, . . . , n,

td(c) = m
1/2
1 (d̂ε,N (1, c)− d̂ε,M )

D−→ N(0, (1/c− 1)/4).

Corollory 3 highlights the importance of slowing down the rate of convergence of d̂ε,N (c) by using

a fixed proportion of the band to obtain a non-degenerate test statistic. In the presence of low-

frequency contamination, however, td(c) diverges due to the inconsistency of the NBLS methodology.

From equation (13), one source of inconsistency arises from NBLS being inconsistent for β. Another

source is from LW estimation of the residual memory parameter in the presence of low-frequency

contamination. While the former induces a positive bias, the direction of bias stemming from the

latter is not necessarily clear, as it depends on the specific form of low-frequency contamination. For

example, random and deterministic level shifts are known to bias the LW estimator upward, see, e.g.,

Mikosch & Stărică (2004) and Perron & Qu (2010), while outliers are known to generate the opposite

effect, see Haldrup & Nielsen (2007). Hence, to segregate the two sources of inconsistency, we also

implement the testing procedure using a trimmed LW estimator to determine the fractional integration

order of the NBLS residuals, denoted d̂ε,N (`1, c), in place of d̂ε,N (1, c), as follows.

Corollary 4. Under Assumptions 2’, 3’, 4, 5-LW’ and ut = 0 ∀t = 1, . . . , n,

t̃d(c) = m
1/2
1 (d̂ε,N (`1, c)− d̂ε,M )

D−→ N(0, (1/c− 1)/4).

Finally, notice the size-power tradeoff that comes with the selection of c; a high value of c leads to

high power of the tests, but also to size distortions, and vice versa for a small value of c. A detailed

assessment of this issue, however, is deferred to Section 5.1.
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5 Implementation and Application

In this section, we first discuss implementation details for the MBLS framework, including specific

choices of tuning parameters and applications of the testing procedures introduced in Section 4.2.

This is followed by an empirical analysis where we provide new perspectives on volatility factors using

long-span realized variance series for S&P 500 equities.

5.1 Implementation

So far, we have provided sufficient conditions on the divergence rates of the bandwidth- and trimming

functions for the asymptotic theory developed in the previous sections to hold. These are summarized

in Table 1. However, to implement the MBLS estimator, the trimmed local Whittle estimator, and

Ĝ(dh,h, `2,m2) from (11), we need to provide some more specific guidelines for their selection.

5.1.1 Discussion of Tuning Parameters

First, let m = nκ, m1 = nκ1 , and m2 = nκ2 . That is, all three bandwidths are assumed to diverge at

polynomial rates as n → ∞. For simplicity of exposition, we let κ1 = κ2. The asymptotic theory, cf.

Assumption 5-LW’ for Theorem 3, then dictates the bound κ < κ1 < 2ϕ/(1+2ϕ). The latter simplifies

by assuming that the latent process of interest w∗t , whose properties are formalized in Assumptions 2’,

3’ and 4, follows a vector fractional ARIMA process, since this implies a spectral density smoothness

of ϕ = 2 in the vicinity of the origin and, hence, 2ϕ/(1 + 2ϕ) = 4/5.

Second, let similarly ` = nν , `1 = nν1 , and `2 = nν2 for the three trimming functions, respectively,

and simplify by taking ν1 = ν2. We then need ν < κ and ν1 < κ1, with both ν and ν1 satisfying

additional restrictions, depending either explicitly on d and dε, or implicitly through dc. We select the

trimming rate for the local Whittle estimator according to the simple, and conservative, rule-of-thumb

ν1 = 1/2 + ζ, ζ = 0.05, proposed and extensively studied by McCloskey & Perron (2013), which is

valid irrespectively of the value of d ∈ (0, 1/2). This implies κ1 ∈ (κ ∧ 0.55, 4/5).

Finally, we note that for ϕ = 2, the upper bound on ν is always determined by κ.8 The lower

bound, on the other hand, is strictly decreasing in both κ and dc. For the boundary cases dc = 0 and

dc = 1/2, it is equal to (1 − κ/2)/2 and 1/4, respectively. If, for example, we select κ = 3/5, as we

will do later in the empirical analysis, this implies a conservative restriction ν > 0.35.

5.1.2 Size and Power of Empirical Diagnostic Tools

We investigate the size and power characteristics of the two testing procedures introduced in Section

4.2 by simulating the empirical rejection rates of the tests statistics in Corollary 2 and 3, respectively,

according to the theoretical properties of d̂M , d̂ε,M , and d̂ε,N (1, c).

8This follows since 2+κ(1/2+dc)
3+dc

> 2+κ/2
3

> κ whenever κ < 4/5, as required by the bandwidth restriction when ϕ = 2.
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First, for the test of cointegration strength, tb from Corollary 2, we simulate the empirical memory

gap as

d̂M − d̂ε,M = d− dε +m
1/2
1 /2η1 −m1/2

1 /2η2,

for sample sizes n ∈ {500, 2000}, a bandwidthm1 = nκ1 for which κ1 ∈ {0.6, 0.7, 0.8}, and cointegration

strength d − dε ∈ {0.05, 0.1, 0.2, 0.4}, where η1 and η2 denote two independent standard Gaussian

random variables. The choices of sample size correspond well with the monthly and weekly series,

respectively, used in the empirical analysis below, and κ1 with the bounds on the bandwidth parameter

discussed above, which suggest κ1 ∈ (0.6, 0.8) when κ = 0.6. Finally, the memory gaps cover both the

case of a fairly strong cointegration, d − dε = 0.4, and almost no cointegration, d − dε = 0.05. The

latter is representative of the empirically relevant case where failure to reject tb for a small value of b

may provide indicative evidence against cointegration. We have divided and displayed the simulated

empirical rejection rates for two different intervals, b ≤ d − dε and b ≥ d − dε, in Figures 1 and 2,

respectively. Rejection of the former is of particular interest, as it provides evidence of a stronger

fractionally cointegrated relation, assuming b > 0. Finally, note that the x-axis in each figure has been

normalized by d− dε, and that rejection is for a two-sided test at a 5% significance level.

From Figure 1, we observe, not surprisingly, that the empirical rejection rates are uniformly in-

creasing as the relative distance b/(d − dε), measured on the x-axis, decreases, since b moves further

below the true cointegration strength. Moreover, it illustrates that for a fixed ratio, b/(d − dε), the

power of the test is uniformly increasing in d − dε. Similarly, in Figure 2, we observe that power is

increasing in (b− (d−dε))/dU , with dU = 0.49 fixed as the upper bound on d, since b increases relative

to the true cointegration strength d−dε. In contrast to Figure 1, however, for a fixed (b−(d−dε))/dU ,

the power of the test is uniformly decreasing in d − dε. Collectively, this demonstrates that the test

performs better the larger the distance between b and d− dε, and it suggests lower power for rejecting

the boundary hypotheses d− dε − b > 0 when d− dε is small and d− dε − b < 0 when d− dε is large.

Finally, we observe from both figures that the empirical rejection rates are increasing in both n and

κ1. This is not surprising, as both increase the effective sample size m1 = nκ1 .

We perform a similar size and power analysis for the consistency test of NBLS inference, td(c) from

Corollary 3, by simulating the empirical memory gap as

d̂ε,N (1, c)− d̂ε,M = dε,N − dε,M + (cm1)
1/2/2η1 −m1/2

1 /2η2,

where m1 is chosen as above, dε,N − dε,M ∈ {0, 0.05, 0.1, 0.2}, and c ∈ (0, 1). In particular, we consider

the empirical rejection rate from implementing a one-sided test at a 5% significance level as a function

of c in Figure 3. Thus, the results for dε,N − dε,M = 0 show the size of the test statistic td(c), and

dε,N − dε,M > 0 the power.

Figure 3 clearly illustrates the size-power tradeoff induced by c; the power curves increase uniformly

as c increases, but so do size distortions. Hence, the researcher must choose c to strike a balance

between the two different rejection rates. Intuitively, this suggests maximizing the distance between
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the size and power curves in Figure 3. Hence, from an informal gauge, we select c ∈ {0.5, 0.7} for the

empirical analysis, but emphasize that conclusions must be interpreted with care, since this procedure

is slightly liberal on size. Finally, once more, the properties of the test improve as κ1 and n are

increased.

5.2 A Market Volatility Factor Model

The presence of long memory in stock market volatility has long been recognized in the financial

econometrics literature, see, e.g., Baillie, Bollerslev & Mikkelsen (1996), Granger & Ding (1996),

Andersen, Bollerslev, Diebold & Ebens (2001), and Andersen, Bollerslev, Diebold & Labys (2001) for

a few early references. Moreover, volatility is often suggested to have two, or more, factors driving its

dynamics, to capture both persistent movements and instantaneous innovations to its path.9 A similar

factor decomposition arises from a different literature, which considers estimation of continuous time

diffusion models based on discrete time data.10 However, as outlined in the introduction, an increasing

body of work suggests that persistence in asset return volatility may alternatively be explained by

random level shifts in the mean of the process, that is, by a type of low-frequency contamination.

With Vi,t denoting the log-variance for asset i, we may write

Vi,t = ci + Vi,t,1 + Vi,t,2 + ι′ui,t (14)

as an encompassing discrete time stochastic volatility model. The model has a two-factor structure,

with Vi,t,1 ∈ I(di) being the most persistent factor (hence, for Vi,t,2 ∈ I(di,2), we have di > di,2), and it

includes ui,t as a τ × 1 vector containing different forms of low-frequency contamination. Finally, ι is

a τ × 1 vector of ones. If we consider the range of processes satisfying Assumption 1, like the various

univariate processes in, for example, McCloskey & Perron (2013) and McCloskey & Hill (2014), we see

that ui,t not only accommodates features such as random level shifts and deterministic trends in the

log-variance process, but also many types of finite activity Lévy innovations, which have been shown

to improve the volatility model fit in, e.g., Eraker, Johannes & Polson (2003) and Todorov (2011).

Next, let us combine the insights from (14) with those from an arbitrage pricing theory (APT)

factor model in the spirit of Ross (1976), which suggests writing the returns on asset i as ri,t =

αi + λirM,t + Λ′ift + ηi,t, with rM,t the excess return on the market portfolio, ft a k × 1 vector of

additional pricing factors orthogonal to rM,t, ηi,t the idiosyncratic shock for asset i, and (αi, λi,Λ
′
i)
′

the corresponding (k+ 2)× 1 parameter vector. Hence, the variance of ri,t is expected to be an affine

9This is, for example, the case when fitting fractional ARIMA models to the volatility series, e.g., Andersen, Bollerslev,
Diebold & Labys (2003), Koopman, Jungbacker & Hol (2005), Christensen & Nielsen (2007), Chiriac & Voev (2011),
Varneskov & Voev (2013), and Andersen & Varneskov (2014), when fitting HAR models, e.g., Corsi (2009), Andersen,
Bollerslev & Diebold (2007), and Busch, Christensen & Nielsen (2011), or discrete time stochastic volatility models with
long memory, e.g., Breidt, Crato & de Lima (1998), Hurvich, Moulines & Soulier (2005), and Deo, Hurvich & Lu (2006).

10See, among others, Gallant, Hsu & Tauchen (1999), Bates (2000), Duffie, Pan & Singleton (2000), Chernov, Gallant,
Ghysels & Tauchen (2003), Christoffersen, Heston & Jacobs (2009), Todorov, Tauchen & Grynkiv (2011), Andersen,
Fusari & Todorov (2014), and many references therein.
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function of the factor- and idiosyncratic variances. This decomposition in terms of factor variances

motivates the alternative volatility model

Vi,t = ci + βiVM,t,1 + Vi,t,2 + ι′ui,t, (15)

where VM,t,1 is the most persistent volatility factor of the market portfolio returns, and Vi,t,2 captures

the idiosyncratic volatility for asset i. The parameter βi is of particular interest as it measures how

much persistent innovations to market volatility disseminate to the volatility of individual equities,

that is, how much they are affected by prolonged periods of high, or low, market volatility. Besides

the affine dependence on VM,t,1, the model (15) shares all the generic features of (14). Moreover, the

framework suggests that Vi,t,1 and βiVM,t,1 form a fractionally cointegrating relation, where βi may

be estimated consistently by a linear projection of Vi,t on VM,t if the selected estimator is able to

accommodate a second volatility factor and low-frequency contamination in both series.

5.3 Empirical Analysis of Volatility Factors

We analyze MBLS and NBLS estimation of βi in (15) using a long-span data set of daily observations

from 1975 through August 2014 on International Business Machines Corporations (IBM), Coca Cola

Company (KO), Walmart Inc. (WMT), and the S&P 500 as a proxy for the market portfolio. From

the daily log-returns we construct weekly and monthly (four weeks) realized variance series, then log-

transform them, thus generating two different samples of sizes n = 2068 and n = 516, respectively.

Despite being comprised of fewer observations, the monthly realized variance series has the advantage

of being less prone to measurement errors. We will, thus, focus on this series throughout, and include

the weekly series as a robustness check.

Initially, we gauge the properties of the monthly realized variance series by depicting them and

their autocorrelation functions (ACF’s) in Figure 4. The series for the three individual stocks are

seen to exhibit strong co-movements with the corresponding S&P 500 series, in addition to outliers

and prolonged periods of high- and low volatility. As emphasized above, the latter may be caused

by either a persistent long memory component, a combination of structural breaks and short memory

dynamics, or both. Hence, it is not surprising that all series display slowly decaying ACF’s. We proceed

by considering standard descriptive statistics of the series, provided in Table 2. These demonstrate

that the logarithmic transformation has alleviated the large skewness and excess kurtosis usually found

in realized variance series in levels. In addition, Table 2 displays the results from applying LW and

trimmed LW estimators to the series, using bandwidth configurations κ1 ∈ {0.7, 0.75}. The resulting

estimates illustrate that each volatility series contains a fractionally integrated component and, for

most series, that reliance on the (untrimmed) LW estimator will overstate its persistence due to the

presence of low-frequency contamination. In particular, when choosing κ1 = 0.7, thereby reducing

the impact of short memory dynamics, we find d to be in interval 0.25-0.35 rather than d ≈ 0.45,

which is usually found in the literature (and is also obtained by the LW estimator). These results
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corroborate the findings in McCloskey & Perron (2013) and Varneskov & Perron (2015) for realized

variance-style series, and they illustrate the need for a low-frequency contamination-robust estimator

of the cointegrating vector.

Next, we estimate the dissemination parameter, βi, from (15) for each of the three stocks, using both

NBLS with a bandwidth κ = 0.6 and MBLS with an additional trimming parameter, ν. Specifically,

we consider three different selections, ν ∈ {1/3 + ζ, 2/5 + ζ, 1/2 + ζ}, ζ = 0.05, which all satisfy the

conservative restriction ν > 0.35. Moreover, we set κ1 = 0.7 and implement the feasible inference pro-

cedure for both MBLS and NBLS, using the global estimate d̂ = p−1
∑p

i=1 d̂i for each bivariate pairing

with the S&P 500 log-realized variance series. Whereas feasible inference for the MBLS estimates is

carried out as described in Section 4.1, the corresponding procedure for NBLS is implemented without

any trimming of frequencies in the vicinity of the origin, i.e., with ν = ν1 = ν2 = 0. Similarly, the

tests of cointegration strength and consistency of NBLS inference are also implemented using global

estimates of d and without trimming for NBLS. To avoid problems with multiple testing across a large

set of values for b when implementing the test of cointegration strength, tb, we utilize the empirically

estimated cointegration strength, d̂− d̂ε, and the asymptotic distribution from Corollary 2 to back out

the upper (right-tail) critical values of b at the 10%, 5%, and 1% significance levels. A critical value

greater than zero indicates fractional cointegration at the associated significance level. The results of

this exercise are reported in Tables 3 and 4 for the monthly and weekly series, respectively.

Table 3 contains several interesting results. First, the MBLS estimates of βi are uniformly above

the corresponding NBLS estimates for all three equities and often by more than two standard errors,

judging by the MBLS inference.11 Hence, low-frequency contamination introduces a downward bias

in the NBLS estimator, understating the magnitude of market volatility spillover into the individual

equities. This may have dramatic consequences, e.g., for an investor holding a portfolio of individual

equities and seeking to hedge its volatility exposure against persistent movements in market volatility.

In this case, he or she will generally be under-hedged. Second, we find substantial differences in the

estimates of the residual integration order and, as a consequence, the estimated cointegration strength.

Whereas the latter is large and positive based on MBLS, indicating the presence of cointegration, it

is small and close to zero when using NBLS, suggesting the opposite conclusion. These estimates also

show that the condition d̂+d̂ε < 1/2 is violated for NBLS, which is the reason for not reporting standard

errors with the NBLS estimates. Third, the critical values of b, backed out from the corresponding

empirical estimates, substantiate the claim of cointegration based on the MBLS results, as they are

positive at the 1% significance level for IBM and KO, and at the 10% level for WMT. Fourth, we

strongly reject consistency of the NBLS inference procedure at all conventional significance levels,

the smallest value of td(c) being larger than 7. Hence, even if the size of the test is slightly liberal,

this provides compelling evidence in favor of applying the proposed MBLS inference procedure to

analyze volatility coherence. Finally, when decomposing the source of NBLS inconsistency using the

11We have also run the corresponding OLS regressions. The results are highly similar to the NBLS results and are therefore
omitted for brevity.
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trimmed LW estimator to estimate the respective fractional integration orders for t̃d(c), as described

in Corollary 4, the evidence against consistency of the NBLS estimates of βi remains strong.

In sum, we find compelling evidence of fractional cointegration between the realized variance of

individual equities and the S&P 500 using the MBLS approach. Furthermore, we show that this is not

detectable using the existing NBLS inference procedure, where point estimates are downward biased

and residual-based tests fail to detect cointegration. In contrast, our MBLS inference suggests that the

dissemination of market volatility to individual equity volatility is significantly stronger than suggested

by NBLS. Hence, our analysis of the proposed volatility model (15) provides new perspectives on the

(co-)persistence of volatility factors, which may have important implications for risk management.

Moreover, these are only detectable using a low-frequency robust approach to fractional cointegration

such as MBLS. Finally, in Table 4, we obtain similar results for the weekly realized variance series,

adding robustness to the conclusions. The most noteworthy discrepancies between the results for the

weekly and monthly series are that the fractional integration order seems to differ slightly more across

assets in the weekly case, and that here, the condition for inference, d̂ + d̂ε < 1/2, is violated in all

cases. Hence, no standard errors are reported. However, Theorem 1 demonstrates that the MBLS

estimates remain consistent in this case. Furthermore, based on the point estimates, all qualitative

conclusions pertain to the weekly series, as well.

6 Conclusion

This paper introduces the medium band least squares (MBLS) estimator of the cointegrating vector

between stationary long memory processes. The estimator is robust to low-frequency contamination

such as level shifts and deterministic trends. It uses sample dependent trimming of frequencies in the

vicinity of the origin to asymptotically eliminate the impact from low-frequency contamination. We

show that the MBLS estimator is consistent and enjoys an asymptotic normal distribution mirroring

that achieved by the narrow band least squares (NBLS) estimator in the absence of contamination.

Furthermore, we develop a rigorous feasible inference procedure and two empirical diagnostic tools; a

test of cointegration strength and a test of inconsistency of NBLS inference.

We illustrate the use of the MBLS approach by analyzing volatility factors for S&P 500 equities us-

ing a long-span data set of realized variance estimates. We show that only by using the low-frequency

contamination robust MBLS approach can we uncover a fractional cointegrating relation between the

most persistent volatility factor in market volatility and individual equity volatility. Moreover, the

MBLS estimator is required in order to adequately measure the resulting degree of volatility dissem-

ination, or spillover, from market volatility into individual equity volatility. The use of traditional

estimators in this empirical example, such as OLS or NBLS, leads to inconsistent inference.
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Parameter Restrictions: Consistency

Specification Lower Bound Upper Bound Cross Estimator

MBLS bandwidth m = nκ 0 < ν < κ κ < 1 -

MBLS trimming ` = nν 0 < ν ν < κ -

LW’ bandwidth m = nκ1 0 < ν1 < κ1 κ1 < 1 κ < κ1

LW’ trimming ` = nν1 max
{

0, 1− κ1

1−2d

}
< ν1 ν1 < κ1 -

Gxx bandwidth m = nκ2 0 < ν2 < κ2 κ2 < 1 -

Gxx trimming ` = nν2 max
{

0, 1−2d−κ2

2(1−d)

}
< ν2 ν2 < κ2 -

Gp,p bandwidth m = nκ2 0 < ν2 < κ2 κ2 < 1 κ < κ2

Gp,p trimming ` = nν2 max
{

0, 1−2dε−κ2

2(1−dε)

}
< ν2 ν2 < κ2 -

Parameter Restrictions: Asymptotic Normality

Specification Lower Bound Upper Bound Cross Estimator

MBLS bandwidth m = nκ 0 < ν < κ κ < 2ϕ/(1 + 2ϕ) -

MBLS trimming ` = nν (1−dc)(1−κ)
2 + κ

4 < ν ν < min
{
ϕ+κ(1/2+dc)

1+dc+ϕ
, κ
}

-

LW’ bandwidth m = nκ1 0 < ν1 < κ1 κ1 < 2ϕ/(1 + 2ϕ) κ < κ1

LW’ trimming ` = nν1 max
{

0, 1− κ1

2(1−2d)

}
< ν1 ν1 < κ1 -

Table 1: Parameter restrictions for a full MBLS analysis. This table provides an overview of the parameter
restrictions required on the bandwidths and trimming functions for consistency, asymptotic normality, and for
feasible inference on the cointegrating vector, β, all robust to low-frequency contamination. Here, the conditions
implied by Assumption LW’ are explicated instead of those for Assumption LW since the former are slightly stronger.
Moreover, recall that ϕmeasures the smoothness of the spectral density matrix of the latent signal, w∗t , in the vicinity
of the origin, see Assumption 2’, and dc = d+ dε is the collective fractional integration order of the system. Finally,
note that Assumption 5-LW’ imposes one additional cross estimator restriction on the bandwidth parameters κ
and κ1 for asymptotic normality; (κ − κ1)(d − dε − 1/2) < κ1/4. However, this is left out of the table for ease
of exposition since it is never binding for realistic values values of κ, κ1, d and dε. For example, in our empirical
section, we typically have κ − κ1 = 6/10 − 7/10 = −1/10, d = 3/10 and dε = 0, leaving the left-hand-side of the
inequality approximately of size 1/50, which is much smaller than the right-hand-side term.
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κ1 = 0.6, n = 500 κ1 = 0.6, n = 2000

κ1 = 0.7, n = 500 κ1 = 0.7, n = 2000

κ1 = 0.8, n = 500 κ1 = 0.8, n = 2000

Figure 1: Size and power for the cointegration strength test when b ≤ d− dε. This figure illustrates the

empirical rejection rates for the test statistic suggested in Corollary 2 when b ≤ d− dε and the estimated memory

gap is simulated as d̂M − d̂ε,M = d− dε +m
−1/2
1 /2η1 −m−1/2

1 /2η2 for sample size n ∈ {500, 2000}, m1 = nκ1 , and

d − dε ∈ {0.05, 0.1, 0.2, 0.4} where η1 and η2 are independent standard Gaussian random variables. In particular,

the y-axis displays rejection rates, whereas the x-axis has b/(d− dε) for b ∈ (0, d− dε], i.e., the strength normalized

by the memory gap. The test is implemented using a two-sided 5% significance level and 10000 replications.
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κ1 = 0.6, n = 500 κ1 = 0.6, n = 2000

κ1 = 0.7, n = 500 κ1 = 0.7, n = 2000

κ1 = 0.8, n = 500 κ1 = 0.8, n = 2000

Figure 2: Size and power for the cointegration strength test when b ≥ d − dε. This figure illustrates

empirical rejection rates for the test statistic suggested in Corollary 2 when b ≥ d− dε and the estimated memory

gap is simulated as d̂M − d̂ε,M = d− dε +m
−1/2
1 /2η1 −m−1/2

1 /2η2 for sample size n ∈ {500, 2000}, m1 = nκ1 , and

d − dε ∈ {0.05, 0.1, 0.2, 0.4} where η1 and η2 are independent standard Gaussian random variables. In particular,

the y-axis displays rejection rates, whereas the x-axis has (b − (d − dε))/dU for b ∈ [d − dε, dU ) where dU = 0.49,

i.e., the strength normalized by the memory gap. The test is implemented using a two-sided 5% significance level

and 10000 replications.
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κ1 = 0.6, n = 500 κ1 = 0.6, n = 2000

κ1 = 0.7, n = 500 κ1 = 0.7, n = 2000

κ1 = 0.8, n = 500 κ1 = 0.8, n = 2000

Figure 3: Size and power for consistency test of NBLS inference. This figure illustrates the empirical

rejection rates for the Hausman-type test statistic suggested in Corollary 3 when the “estimated” memory gap is

simulated as d̂ε,N (1, c) − d̂ε,M = dε,N − dε,M + (cm1)−1/2/2η1 − m−1/2
1 /2η2 for n ∈ {500, 2000}, m1 = nκ1 , and

dε,N − dε,M ∈ {0, 0.05, 0.1, 0.2} where η1 and η2 are independent standard Gaussian random variables. The y-axis

displays rejection rates, whereas the x-axis has the tuning parameter c ∈ (0, 1), i.e., the scale of the bandwidth to

achieve a non-degenerate distribution. The test is implemented using a one-sided 5% significance level and 10000

replications.
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S&P 500, RV series S&P 500, RV ACF

S&P 500 vs. IBM, RV series IBM, RV ACF

S&P 500 vs. KO, RV series KO, RV ACF

S&P 500 vs. WMT, RV series WMT, RV ACF

Figure 4: Realized variance series and ACF’s. We depict the monthly log-realized variance series for S&P

500 alone and together with the corresponding series for the three equities IBM, KO, and WMT, using data from

1975 through August 2014, amounting to n = 516 observations. Furthermore, we illustrate the respective empirical

ACF’s for the first 250 lags.
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Full Sample Summary Statistics

Mean Std. Dev. Skewness Ekurtosis d̂(0, 0.7) d̂(ν1, 0.7) d̂(0, 0.75) d̂(ν1, 0.75)

Monthly RV

IBM -3.0558 0.9489 1.3746 5.6017 0.4660
(0.0563)

0.3297
(0.0662)

0.4009
(0.0481)

0.2001
(0.0539)

KO -3.2228 0.8698 0.4843 2.5914 0.4768
(0.0563)

0.3983
(0.0662)

0.4570
(0.0481)

0.3789
(0.0539)

WMT -2.7493 1.0603 1.0988 4.2249 0.4588
(0.0563)

0.2552
(0.0662)

0.4471
(0.0481)

0.3200
(0.0539)

S&P 500 -4.0114 0.8587 0.8332 1.6812 0.4636
(0.0563)

0.3760
(0.0662)

0.4898
(0.0481)

0.5159
(0.0539)

Weekly RV

IBM -3.3095 1.1389 0.3138 2.6419 0.4178
(0.0346)

0.3086
(0.0392)

0.3879
(0.0286)

0.2830
(0.0310)

KO -3.4729 1.1268 -0.0398 0.9382 0.4442
(0.0346)

0.4108
(0.0392)

0.4051
(0.0286)

0.3242
(0.0310)

WMT -3.0378 1.2301 0.0983 4.0948 0.4255
(0.0346)

0.2524
(0.0392)

0.3742
(0.0286)

0.1957
(0.0310)

S&P 500 -4.2070 1.0808 0.1874 1.1449 0.4947
(0.0346)

0.5076
(0.0392)

0.4644
(0.0286)

0.4238
(0.0310)

Table 2: Full sample summary statistics for RV measures. We report summary statistics for the full
samples of monthly and weekly log-realized variance estimates of sizes n = 516 and n = 2068, respectively. Here,
“Ekurtosis” measures the excess kurtosis relative to three. Furthermore, d̂(0, 0.7) and d̂(ν1, 0.7) indicate the LW and
the trimmed LW estimator, respectively, which are implemented with a bandwidth m = nκ1 , for κ1 = 0.7, and a
trimming function ` = nν1 for ν1 = 1/2 + ζ, ζ = 0.05.
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A Proofs

This section contains the proofs of the main asymptotic results in the paper. Before proceeding,

however, let us introduce some notation. For a generic vector V let V (i) index the i-th element,

and, similarly, let M(i, q) denote the (i, q)-th element of a matrix M . F ∗zz(`,m) and I∗zz(λj) are the

trimmed discretely averaged co-periodogram and the co-periodogram, respectively, of z∗. Similarly,

we use F̂ ∗xε(`,m) to denote the vector F̂x∗ε∗(`,m). Moreover, K ∈ (0,∞) is a generic constant, which

may take different values in different places. Finally, we remark that sometimes the (stochastic) orders

refer to scalars, sometimes to matrices. We refrain from making distinctions.

A.1 Proof of Theorem 1

First, for (a), to establish a bound for |F̂zz(`,m)−G(λm)|, use Assumption 1 to decompose

F̂zz(`,m)− F̂ ∗zz(1,m) = −2π

n

 m∑
j=1

<(I∗zz(λj))−
m∑
j=`

<(I∗zz(λj))

+
2π

n

m∑
j=`

Op

(
n

j2

)

= −F̂ ∗zz(1, `− 1) + 2π

m∑
j=`

Op
(
j−2
)
, (A.1)

and define E(`) = 2π
∑m

j=`Op(j
−2). Then, since 2 > 1, trivially, we may invoke Varneskov (2014,

Lemma C.4) to show that |E(`)| ≤ Op(`
−2). Next, we seek to connect the two quantities F̂ ∗zz(1,m)

and G(λm) using the continuously averaged spectral density F ∗zz(λm). Similar to the steps used by

Robinson & Marinucci (2003, p. 361), see also Lobato (1997), this involves establishing stochastic

orders for the remaining two terms in (A.1), that is, for

ΛmΛ−1m

(
F̂ ∗zz(1,m)− F ∗zz(λm)

)
Λ̄−1m Λ̄m −Λ`Λ

−1
` F̂

∗
zz(1, `− 1)Λ̄−1` Λ̄` (A.2)

since Assumption 2 immediately provides

F ∗zz(λm, i, k) ∼ Gi,kλ1−di−dkm /(1− di − dk)<(eiπ(di−dk)/2)

∼ Gi,jλ1−di−dkm /(1− di − dk) cos(π(di − dk)/2) (A.3)

as λm → 0 when m/n → 0, ∀(i, k) ∈ (1, . . . , p)2 elements. For the first of the two terms in (A.2), it

follows by Assumption 2, and using <(eiλz) = 1 +O(λ2), =(eiλz) = O(λ) as λ→ 0+ for any z ∈ R in

conjunction with Robinson (1994, Theorem 1) along with Lobato (1997, Theorem 1), that

Λ−1m (F̂ ∗zz(1,m)− F ∗zz(λm))Λ−1m = op
(
λm(1 + λm + λ2m)

)
= op(λm), (A.4)

uniformly, as λm → 0 when m/n→ 0 since <(ei(π−λm)(di−dj)/2) = <(eiπ(di−dj)/2)(1+λm+λ2m) induces

only an additional lower order approximation error for F̂ ∗zz(1,m). See also the corresponding result
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in Robinson & Marinucci (2003, (A.3)). Hence,

|F̂ ∗zz(1,m)−G(λm)| ≤ op((m/n)1−2d>) (A.5)

gives the upper bound for the stochastic order of the approximation error. By the same arguments, it

follows for the second term in (A.2) that

F̂ ∗zz(1, `− 1) = G(λ`) + op((`/n)1−2d>) ≤ Op((`/n)1−2d>), (A.6)

uniformly, thus providing the final result (a).

Second, for the consistency result in (b), we know from (a) that |F̂xx(`,m) −Gxx(λm)| = op(1)

where Gxx(λm) is the lower (p− 1)× (p− 1) submatrix of G(λm). Next, decompose F̂xy(`,m) as

F̂xy(`,m) = F̂xy∗(`,m) + F̂xu1(`,m) = F̂xx∗(`,m)β + F̂xε∗(`,m) + F̂xu1(`,m)

= F̂ ∗xx(`,m)β + F̂ ∗xε(`,m) + F̂u2u1(`,m) + op(1) (A.7)

where u1 indexes the first element of the low-frequency contamination vector u, and u2 the vector

with the remaining p − 1 elements. The last equality follows immediately since x∗t ⊥⊥ us ∀t, s by

Assumption 1. For the terms F̂ ∗xx(`,m) and F̂u2u1(`,m), we establish the following uniform bounds

using the same arguments as in the proof of (a),

|F̂ ∗xx(`,m)−Gxx(λm)| ≤ Op((`/n)1−2d>) + op((m/n)1−2d>), |F̂u2u1(`,m)| ≤ Op(`−2). (A.8)

Finally, as |F̂ ∗xε(`,m, i)| ≤ (F̂ ∗xx(`,m, i, i)F̂ ∗εε(`,m))1/2 for all i = 1, . . . , p − 1 elements of the cross-

product vector F̂ ∗xε(`,m, i) by the Cauchy-Schwarz inequality and

F̂ ∗εε(`,m) ≤ (1,−β′)F̂ ∗zz(1,m)(1,−β′)′ = (1,−β′)(F ∗zz(λm) + op(F
∗
zz(λm)))(1,−β′)′ = Op(λ

1−2dε
m ),

using (a) and Assumption 2, the final consistency result follows using the same arguments provided

by Robinson & Marinucci (2003, pp. 361-362) in conjunction with (a).

Remark 4. We use the maximal inequality from Varneskov (2014, Lemma C.4) to bound the low-

frequency contamination. The result is originally derived to quantify the impact of market microstruc-

ture noise in the context of kernel-based estimation of the quadratic variation of Brownian semimartin-

gales. However, close inspection shows that it applies directly in the present context as well.

A.2 Proof of Theorem 2

Lemma 3. Under the conditions of Theorem 2, λ2d−1m F̂xx(`,m)
P−→Hxx.
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Proof. The stated assumptions allows us to invoke Theorem 1 (a), providing

F̂xx(`,m) = Hxx(λm) +Op((`/n)1−2d) +Op(`
−2) + op((m/n)1−2d).

As λ2d−1m Hxx(λm) = Hxx by definition in (7), Op(λ
2d−1
m (`/n)1−2d) = Op((`/m)1−2d)

P−→ 0 as `/m→ 0

and d ∈ (0, 1/2), and, finally, Op(λ
2d−1
m `−2) = Op((n/m)1−2d`−2)

P−→ 0 where the last convergence

result is guaranteed by the (fourth) regularity condition m1/2(n/m)1−dc`−2 → 0 in Assumption 5.

First, use the decomposition in (A.7) to write

√
mλdε−dm β(`,m) =

√
mλdε−dm F̂−1xx (`,m)F̂ ∗xx(`,m)β + (λ1−2dm F̂−1xx (`,m))(

√
mλdc−1m Fu2u1(`,m))

+ (λ1−2dm F̂−1xx (`,m))(
√
mλdc−1m F ∗xε(`,m)) + op(1)

≡ (E.1) + (E.2) + (E.3) + op(1).

Then, for the term (E.1), we may use (A.1) to show that F̂xx(`,m) = F̂ ∗xx(`,m) +Op(`
−2). Hence, as

`→∞, we have
√
mλdε−dm F̂−1xx (`,m)F̂ ∗xx(`,m)β =

√
mλdε−dm β(1 + op(m

−1/2λd−dεm )) by the continuous

mapping theorem such that

√
mλdε−dm (β(`,m)− β) = (E.2) + (E.3) + op(1).

Next, we may use Lemma 3, in conjunction with the continuous mapping theorem, and (A.8) to show,

(E.2) ≤H−1xx
√
mλdc−1m Op(`

−2) = Op(m
1/2(n/m)1−dc`−2)

P−→ 0

where the final convergence result follows by the (fourth) regularity condition in Assumption 5. For

the last term, (E.3), we may write

√
mλdc−1m F ∗xε(`,m) =

√
mλdc−1m F ∗xε(1,m)−

√
mλdc−1m F ∗xε(1, `− 1).

Hence, it suffices to show
√
mλdc−1m F ∗xε(1, `− 1) = op(1) since, in this case, we may invoke Christensen

& Nielsen (2006, Theorem 2) for
√
mλdc−1m F ∗xε(1,m) and use this in conjunction with Lemma 3 and

the continuous mapping theorem to prove the final central limit theorem. To show the former, we use

the Cramér-Wold Theorem, cf. Davidson (2002, Theorem 25.5), for an arbitrary (p− 1)× 1 vector, ψ,

ψ′
√
mλdc−1m F ∗xε(1, `− 1) =

p−1∑
i=1

ψi
√
mλdc−1m F ∗xε(1, `− 1, i)

=

p−1∑
i=1

ψi
√
mλdc−1m

2π

n

`−1∑
j=1

< (I∗xε(λj , i))

=

p−1∑
i=1

ψi
√
mλdc−1m

2π

n

`−1∑
j=1

<
(
I∗xε(λj , i)−A∗(λj , i)J(λj)Ā

∗(λj , p)
)
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+

p−1∑
i=1

ψi
√
mλdc−1m

2π

n

`−1∑
j=1

<
(
A∗(λj , i)J(λj)Ā

∗(λj , p)
)

≡ (E.3.1) + (E.3.2)

where, for (E.3.1), we may use summation by parts and Lobato (1999, C.2) to show

(E.3.1) ≤ Op

(
p−1∑
i=1

ηi
√
mλdc−1m λ−dc`

1

n

[
`1/3(log `)2/3 + log `+ `1/2/n1/4

])

= Op

((m
`

)dc [ `1/3
m1/2

(log `)2/3 +
log `

m1/2
+

(
`

m

)1/2 1

n1/4

])

= Op

((
`

m

)1/2−dc
[

(log `)2/3

`1/6
+

log `

`1/2
+

1

n1/4

])
P−→ 0

since dc ∈ (0, 1/2) and `/m → 0 as n → ∞. Last, for (E.3.2), since vt is a martingale difference

sequence with finite fourth moment, ‖J(λj)‖ ≤ K <∞, j = 1, . . . , `− 1,

(E.3.2) ≤ K
p−1∑
i=1

ψi
√
mλdc−1m

2π

n

`−1∑
j=1

<
(
A∗(λj , i)Ā

∗(λj , p)
)

≤ K
√
mλdc−1m

2π

n
sup

i=1,...,p−1

`−1∑
j=1

|f∗ww(λj , i, p)| = O

(√
mλdc−1m

`

n
λϕ−dc`

)
= O

(
`1+dc+ϕ

m1/2+dcnϕ

)
,

which is op(1) using Assumption 2’ for the first equality, since Gi,p = 0 ∀i = 1, . . . , p− 1, and the fifth

condition of Assumption 5 for the final convergence result, concluding the proof.

A.3 Proof of Theorem 3

First, rewrite the observable residuals from a first-stage MBLS regression as

êt = yt − β(`,m)′xt = α+ ε∗t + (β − β(`,m))′x∗t + ũt

where ũt = u1,t − β(`,m)′u2,t. Without loss of generality we have set c = 0 in (1), since a constant

vector is a special case of the low-frequency contamination in Assumption 1. Since x∗t ⊥⊥ us ∀t, s, we

may write

Iêê(λj) = I∗εε(λj) + Iũũ(λj) + (β − β(`,m))′<(I∗xx(λj))(β − β(`,m))

+ 2(β − β(`,m))′<(I∗xε(λj)) + op(1)

where I∗εε(λj) + Iũũ(λj) correspond to the periodogram analyzed in the objective function by Iacone

(2010) and McCloskey & Perron (2013) since ũt = (1,−β)ut(1 + op(1)) is simply a linear combination
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of low-frequency contamination and dε ∈ [0, dc). The last two terms are the additional errors from

having estimated β in the first stage. Define c1(λj) = (β − β(`,m))′<(I∗xx(λj))(β − β(`,m)) and

c2(λj) = 2(β − β(`,m))′<(I∗xε(λj)), then since Assumptions 2’, 3’, 4, and 5-LW’ (a), respectively,

(b) satisfy the conditions for consistency, respectively, asymptotic normality in Nielsen & Frederiksen

(2011, Theorem 2.2), it suffices to show

(E.4) =
G−1p,p

m1 − `1 + 1

m1∑
j=`1

λ2δ+2dε
j c1(λj) ≤ Op

( G−1p,p
m1 − `1 + 1

m1∑
j=1

λ2δ+2dε
j c1(λj)

)
, (A.9)

(E.5) =
G−1p,p

m1 − `1 + 1

m1∑
j=`1

λ2δ+2dε
j c2(λj) ≤ Op

( G−1p,p
m1 − `1 + 1

m1∑
j=1

λ2δ+2dε
j c2(λj)

)
, (A.10)

for δ = 0, that is, for the highest asymptotic order of the bias, to invoke their theorem and eliminate

the additional errors from the first-stage estimation of β. The scaling with G−1p,pλ
2dε
j follows by Nielsen

& Frederiksen (2011, (A.15)). First, for condition (A.9), the bound is immediate as c1(λj) ≥ 0

∀j = 1, . . . , bn/2c. Next, for condition (A.10), we may write,

(E.5) =
2G−1p,p

m1 − `1 + 1
(β − β(`,m))′

(m1∑
j=1

λ2dεj <(I∗xε(λj))−
`1−1∑
j=1

λ2dεj <(I∗xε(λj))
)
.

Hence, as in the proof of Theorem 2, we may use the Cramer-Wold Theorem for an arbitrary (p−1)×1

vector, ψ, on this decomposition such that verifying condition (A.10) amounts to showing

O

∣∣∣p−1∑
i=1

ψi

`1−1∑
j=1

λ2dεj <(I∗xε(λj , i))
∣∣∣
 ≤ O

∣∣∣p−1∑
i=1

ψi

m1∑
j=1

λ2dεj <(I∗xε(λj , i))
∣∣∣
 . (A.11)

Let us introduce the generic notation s1 = {`1− 1,m1}. Then, under the stated assumptions, we may

invoke Lobato (1999, (C.4)) and Nielsen & Frederiksen (2011, Lemma B1(c)), which, in conjunction

with Gi,p = Gp,i = 0, i = 1, . . . , p− 1, provides the bound,

∣∣∣p−1∑
i=1

ψi

s1∑
j=1

λ2dεj <(I∗xε(λj , i))
∣∣∣ = Op

(
λdε−ds1

[
s1+ϕ1 n−ϕ + s

1/2
1 (log s1)

])
.

This result, since s1+ϕ−d+dε1 and s
1/2−d+dε
1 are strictly increasing in s1, shows that the sum with

s1 = m1 is of a strictly higher stochastic order than the corresponding sum with s1 = `1 − 1 as

`1/m1 ∝ nν1−κ1 → 0 when n → ∞, thus verifying condition (A.11) and thereby (A.10). Hence,

we invoke Nielsen & Frederiksen (2011, Theorem 2.2) to asymptotically eliminate the right-hand-side

errors in conditions (A.9) and (A.10) and use Lemma 2 to complete the proof.
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A.4 Proof of Theorem 4

Let Iεε(λj) be the periodogram of εt = yt − β′xt at frequency ordinate λj . Note that this is not to

be confused with I∗εε(λj), the periodogram of ε∗t = y∗t − β′x∗t , but merely used to establish the desired

consistency result for êt = yt − β(`,m)′xt in Theorem 4 (c).

Lemma 4. Under Assumptions 1, 2’, 3’, and 4, and for any sequence of positive integers j = j(n)

such that j/n→ 0 as n→∞, then uniformly

(a) E
[
λ2dj Ixx(λj)

]
= Gxx

[
1 +O

(
log j/j + (j/n)ϕ + j2d−2n1−2d

)]
,

(b) E
[
λ2dεj Iεε(λj)

]
= Gp,p

[
1 +O

(
log j/j + (j/n)ϕ + j2dε−2n1−2dε

)]
.

Proof. Since z∗t satisfies the conditions of Robinson (1995b, Theorem 2(a)) and since (1,−β)ut form

a linear combination of low-frequency contamination for εt, we may invoke the former to provide the

first two asymptotic orders for the latent fractional signal, and use it in conjunction with McCloskey

& Perron (2013, Theorem 1 (i)) and the Cauchy-Schwarz inequality to provide the asymptotic order

for low-frequency contamination, concluding the proof.

For (a), the decomposition in Lemma 4 (a) provides us with three errors of stochastic orders

(E.6.1) = Op

(
m−12

m2∑
j=`2

(log j)j−1
)
, (E.6.2) = Op

(
m−12

m2∑
j=`2

(j/n)ϕ
)
, (E.6.3) = Op

(
m−12

m2∑
j=`2

n1−2d

j2−2d

)
,

respectively. First, as in the proof of Theorem 1 (a), the bound (E.6.3) ≤ Op(m−12 n1−2d`2d−22 ) follows

using Varneskov (2014, Lemma C.4). Next, to bound the two remaining terms, we may use Nielsen &

Frederiksen (2011, (A.17)), which states that

sup
−1≤τ≤K

∣∣∣m−τ−12 (logm2)
−1

m2∑
j=1

jτ
∣∣∣ = O(1), for K ∈ (1,∞). (A.12)

This immediately gives the bound

(E.6.1) ≤ Op(m−12 (logm2)

m2∑
j=1

j−1) ≤ Op
(
(logm2)

2m−12

)
and, similarly, (E.6.2) ≤ Op(m−12 n−ϕ

∑m2
j=1 j

ϕ) ≤ Op ((m2/n)ϕ(logm2)). Lastly, the final convergence

result follows by imposing the rates stated in Assumption 5-G (a). (b) follows by the same arguments.

For (c), we know from the proof of Theorem 3 above and the proof of Nielsen & Frederiksen (2011,

Theorem 2.2) that the condition (log n)4(logm2)(m/m2)
d−dε → 0 as n → ∞ suffices to eliminate the

additional errors from having estimated β in the first stage when establishing consistency using the

scaled periodogram G−1p,pλ
2dε
j Iêê(λj). Hence, the result follows by (b).
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