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Abstract

The paper introduces the generalised partial autocorrelation (GPAC) coefficients of a stationary

stochastic process. The latter are related to the generalised autocovariances, the inverse Fourier transform

coefficients of a power transformation of the spectral density function. By interpreting the generalised

partial autocorrelations as the partial autocorrelation coefficients of an auxiliary process, we derive their

properties and relate them to essential features of the original process.

Based on a parameterisation suggested by Barndorff-Nielsen and Schou (1973) and on Whittle like-

lihood, we develop an estimation strategy for the GPAC coefficients. We further prove that the GPAC

coefficients can be used to estimate the mutual information between the past and the future of a time

series.
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1 Introduction

The spectral density of a covariance stationary process subsumes all the information that is needed for best

linear prediction of the future process realisations. In this paper, we consider a class of spectral estimates

that is based on a generalised power autoregressive scheme, depending on a finite dimensional parameter

set and on a power transformation parameter, which can encompass different spectral estimation methods,

among which autoregressive and moving average estimation.

In an earlier paper (Proietti and Luati, 2015), spectral estimation was performed by a generalised set of

Yule-Walker equations, based on the generalised autocovariance function, the inverse Fourier transform of a

power transformation of the spectrum, which was estimated non-parametrically by a power transformation

of the periodogram.

In this paper, we consider a parameterisation of spectral models based on a set of unrestricted coefficients

taking values in the interval (−1, 1), that are interpretable as generalised partial autocorrelations (GPAC).

The GPAC are then related to the mutual information between past and future, a measure of uncertainty

about the future based on knowledge of the past, considered in Ibragimov and Rozanov (1978), and recently

revisited by Li and Xie (1996) and Li (2005). The novelty here is in the estimation of the mutual information

based on the GPAC, via the Whittle likelihood. The computation of the mutual information between past and

future entails the availability of the full partial autocorrelation sequence, unless the process is autoregressive,

in which case the partial autocorrelation is truncated. Our approach amounts to determining a scale, implied

by the power transformation parameter, along which the GPAC sequence is finite.

The paper is organised as follows. Section 2 reviews the generalised autocovariance function and in-

troduces the GPAC as the partial autocorrelation coefficients of an auxiliary power process. The relation

between the GPAC and the mutual information between the past and the future is established in section 4,

along with an optimality property of the class of generalised spectral autoregressive models, formerly intro-

duced in section 3 and parameterised by the GPAC, based on Barndorff-Nielsen and Schou (1973). Whittle

likelihood estimation is dealt with in section 5. An illustration featuring the time series of the U.S. monthly

inflation rate, levels and first differences, is reported in section 6. Finally, section 7 draws some conclusions.

2 Generalised autocovariances

Let {xt}t∈T be a stationary zero-mean stochastic process indexed by a discrete time set T , with spectral

density function f(ω) such that
∫ π
−π log f(ω)dω > −∞, and

∫ π
−π f(ω)

pdω <∞, p ∈ R.

The generalised autocovariance (GACV) function is defined (Proietti and Luati, 2015) as the inverse
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Fourier transform of the p-th power of the spectral density function,

γpk =
1

2π

∫ π

−π
[2πf(ω)]p cos(ωk)dω, (1)

for k = 0, 1, . . . and γp,−k = γpk. The discrete Fourier transform of γpk gives

[2πf(ω)]p = γp0 + 2

∞∑
k=1

γpk cos(ωk).

The coefficients γpk depend on two arguments, the integer lag k and the real power p. As a matter of fact,

for p = 1, γ1k = γk, the autocovariance of the process at lag k; for p = 0, γ0k = 0, for k ̸= 0 and γ00 = 1,

up to a constant, the autocovariance function of a white noise process; for p = −1, γ−1k = γik, the inverse

autocovariance function (Cleveland, 1972; see also Battaglia, 1983).

The function γpk lends itself to a further interpretation as the autocovariance function of an auxiliary

process derived from xt. This interpretation turns out to be useful in the derivation of the analytic form of

γpk, as a function of the parameters that govern the process dynamics, by evaluating an expectation in the

time domain, rather than solving (1) directly. In addition, the generalised partial autocorrelation function of

xt will be directly defined based on the auxiliary process.

Assuming that {xt}t∈T is purely non-deterministic, its Wold representation is written as

xt = ψ(B)ξt, (2)

where ξt ∼ WN(0, σ2) and ψ(B) = 1 + ψ1B + ψ2B
2 + · · · , with coefficients satisfying

∑∞
j=0 ψ

2
j < ∞,

and such that all the roots of the characteristic equation ψ(B) = 0 are in modulus greater than one; here,

WN(0, σ2) denotes a white noise process, a sequence of zero mean and uncorrelated random variables with

constant variance σ2 and B is the backshift operator, Bkxt = xt−k. The autocovariance function of the

linear process (2) is γk = σ2
∑∞

j=0 ψjψj+k for k = 0, 1, . . . , and γ−k = γk.

Let us consider the power-transformed process:

upt =

{
ψ(B)pξt = ψ(B)pψ(B)−1xt, for p ≥ 0

ψ(B−1)pξt = ψ(B−1)pψ(B)−1xt, for p < 0.
(3)

For a real p > 0, the power of ψ(B) in (3) is still a power series,

ψ(B)p =

∞∑
j=0

φjB
j ,

with coefficients given by the recursive relation

φj =
1

j

j∑
h=1

[h(p+ 1)− j]ψhφj−h, j > 0, φ0 = 1 (4)
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(Gould, 1974). When p < 0, the coefficients of ψ(B−1)p =
∑∞

j=0 φjB
−j are also given by (4).

The spectral density of upt is fu(ω) = (2π)−1|ψ(eıω)|2pσ2, and satisfies

2πfu(ω)(σ
2)p−1 = [2πf(ω)]p . (5)

Equation (5) establishes the relation between the spectrum of the original process and that of the power

process upt.

It follows from (1) and (5) that the generalised autocovariance function of xt can be interpreted as the

autocovariance function of the process upt, denoted as γu,

γpk = (σ2)p−1γu.

It is then straightforward to compute the GACV of xt as the autocovariance of a linear process,

γpk = σ2p
∞∑
j=0

φjφj+k.

The generalised variance γp0 is related to the variance profile, defined in Luati, Proietti and Reale (2012)

as the Hölder, or power, mean of the spectrum of xt:

vp =

{
1

2π

∫ π

−π
[2πf(ω)]p

} 1
p

.

Specifically, for p ̸= 0, vp = γ
1
p

p0. As a particular case, v−1 = γ−1
−1,0 is the interpolation error variance

Var(xt|F\t), where F\t is the past and future information set excluding the current xt; this is also interpreted

as the harmonic mean of the spectrum. The limit of vp for p → 0 yields the prediction error variance,

limp→0 vp = σ2, which is the geometric average of the spectral density, σ2 = exp
{

1
2π

∫ π
−π log 2πf(ω)dω

}
,

i.e. the Szegö-Kolmogorov formula.

By dividing the generalised autocovariance by the generalised variance, one gets the generalised auto-

correlation function (GACF), taking values in [−1, 1],

ρpk =
γpk
γp0

, k = 0,±1, . . . .

If the GACV of xt is proportional to the autocovariance function of the auxiliary process upt, the GACF

is equal to the ACF of the auxiliary process. The same holds for the generalised partial autocorrelation

coefficients of xt that are defined here as the sequence of the partial autocorrelation coefficients of upt and

are denoted as πpk.
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3 Generalised autoregressive spectral models

The generalised partial autocorrelations are central for estimating the spectral density of a stochastic process

according to the following class of models,

2πf(ω) =

[
σ2p

ϕp(e−ıω)ϕp(eıω)

] 1
p

(6)

where ϕp(e−ıω) = 1 − ϕp1e
−ıω − ϕp2e

−ıω2 − · · · − ϕpKe
−ıωK . As p varies, (6) defines a set of spectral

models encompassing the AR(K) case (p = 1), the MA(K) case (p = −1), as well as the fractional case

(consider, for instance, the combination K = 1, p = 1/d and ϕp1 = 1).

The coefficients {ϕpk, k = 1, . . . ,K} satisfy the following moment conditions (Yule Walker equations):

Γp,Kϕp,K = γp,K , where Γp,K denotes the Toeplitz matrix, formed from the GACV, with generic element

γp,|h−k|, h, k = 0, . . . ,K − 1, γp,K = (γp1, . . . , γpK)′, and ϕp,K = (ϕp1, . . . , ϕpK)′; moreover, σ2p =

γp0 − ϕ′p,Kγp,K .

For p > 0, the polynomial ϕp(B) = 1 − ϕp1B − · · ·ϕpKBK characterises the AR approximation of

the process upt, and provides the spectral factorisation [2πf(ω)]p = σ2p[ϕp(e
−ıω)ϕp(e

ıω)]−1. By equations

(3)-(5), we obtain the AR approximation of the original process, π(B)xt = ξt, π(B) = [ϕp(B)]1/p, or,

equivalently, the moving average representation xt = ψ(B)ξt, ψ(B) = [ϕp(B)]−1/p. For p < 0, the

polynomials are in the forward operator B−1.

According to this parameterisation, the GPAC forms a finite sequence. Moreover, as will be stated

formally in section 4, processes having spectrum specified as in (6) are optimal with respect to a mutual

information criterion.

For a given p, the model (6) featuresK+1 parameters, which can be estimated by maximising the Whittle

likelihood (see details on section 5), under the restriction that the spectral density [2πf(ω)]p is bounded away

from zero and infinity at all frequencies. This is achieved by enforcing the constraints 0 < |ϕp(e−ıω)|2 <∞,

∀ω ∈ (−π, π) or, equivalently, that the roots of the lag polynomials ϕp(B) do not lie on the unit circle.

Hence, for the purpose of estimation, we reparameterise the AR coefficients in terms of partial auto-

correlations (Barndorff-Nielsen and Schou, 1973). This is done by a recursive algorithm: letting πpk, k =

1, . . . ,K denote K coefficients, such that |πpk| < 1, then for k = 1, . . . ,K and j = 1, . . . , k − 1, compute

ϕ
(k)
pj = ϕ

(k−1)
pj − πpkϕ

(k−1)
p,k−j , ϕ

(k)
pk = πpk. (7)

The final iteration returns coefficients that are in the stationary region.

The coefficients πpk, that are constrained in the range (-1,1), are in turn obtained as the Fisher inverse

transformations of unconstrained real parameters ϑpk, k = 1, . . . ,K, e.g. πpk =
exp(2ϑpk)−1
exp(2ϑpk)+1 for k =

1, . . . ,K. Also, we set ϑp0 = ln(σ2p).
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4 Mutual information between past and future

The generalised partial autocorrelation coefficients play a role in the estimation of the mutual information

between the past and the future of a stationary Gaussian time series. The latter, denoted as Ip−f , is a measure

of uncertainty about the future Ft, the sigma-algebra generated by {xt+1, xt+2, . . . }, when the past Pt, the

sigma-algebra generated {xt, xt−1, . . . }, is known.

More formally, let us consider two stochastic processes, {xt}t∈T and {ys}s∈S , defined on a probability

space (Ω,F , P ), and denote as S1 and S2 the minimal sigma-algebra generated by {xt}t∈T and {ys}s∈S ,

respectively. The amount of information of the random process {xt}t∈T given by the process {ys}s∈S is

(see Ibragimov and Rozanov, 1978, chapter IV),

I(x, y) = sup
∑

P (Ai ∩Bj) ln
P (Ai ∩Bj)

P (Ai)P (Bj)
, (8)

where the supremum is taken over all the possible finite partitions of Ω in the non intersecting events

(Ai)i=1,...,n, (Bj)j=1,...,m, where Ai ∈ S1 for all i = 1, . . . , n and Bj ∈ S2 for all j = 1, . . . ,m.

It is easy to verify that the following properties hold: I(x, y) ≥ 0, with I(x, y) = 0 when the sigma-

algebra S1 is independent of S2; I(x, y) = I(y, x), which motivates the name of mutual information for the

quantity in equation (8). An important concept related to mutual information is the information regularity

of a stochastic process. A stationary random process is said to be information regular if

Iτ = I({xt}t<s, {xt}t≥s+τ ) → 0, τ → ∞.

The value Iτ is sometimes referred to as the information regularity coefficient and I0 is the mutual informa-

tion between past and future, that we shall denote here as Ip−f .

For Gaussian processes, Ip−f may be defined in terms of the cepstral coefficients,

ck =
1

2π

∫ π

−π
ln[2πf(ω)] cos(ωk)dω, k = 1, 2, . . . (9)

as (Li, 2005)

Ip−f =
1

2

∞∑
k=1

kc2k (10)

and a necessary condition for information regularity is
∑∞

k=1 kc
2
k < ∞. Li (2005) also shows that the fol-

lowing relation holds between cepstral coefficients and the partial autocorrelation coefficients, {πk}k=1,2,...,

the so called reflectrum identity
∞∑
k=1

kc2k = −
∞∑
k=1

k ln(1− π2k) (11)

and c0 = ln γ0 +
∑∞

k=1 ln(1− π2k), the latter being a consequence of the Kolmogorov-Szegö formula.
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It is shown in Proietti and Luati (2014) that the cepstral coefficients are related to the GACV via

ck = lim
p→0

γpk
p
, k = 1, 2, . . . .

The next theorem shows that the mutual information can be written as a function of the generalised

partial autocorrelation coefficients.

Theorem 1 Let πpk denote the generalised partial autocorrelations of the stationary process {xt}t∈T . The

mutual information between past and future is

Ip-f = − 1

2p2

∞∑
k=1

k ln(1− π2pk)

and the equality holds for all p.

Proof Let us denote as Iup−f the mutual information between past and future of the process upt, defined

by equation (3), having spectrum 2πfu(ω) = [2πf(ω)]p(σ2)1−p, as in (5), and prediction error variance σ2.

By (10), Iup−f may be written as a function of the cepstral coefficients of upt, denoted here as cuk, the

inverse Fourier coefficients of the logarithm of the spectral density function of upt, see equation (9),

log 2πfu(ω) = cu0 + 2
∞∑
k=1

cuk cos(ωk). (12)

It follows from (5) that log 2πfu(ω) = p log 2πf(ω) + (1− p) log σ2 and, from (9),

log 2πfu(ω) = p

(
c0 + 2

∞∑
k=1

ck cos(ωk)

)
+ (1− p) log σ2. (13)

Combining (12) and (13), and noticing that cu0 = c0 = log σ2, we get the relation between the cepstral

coefficients of the original process and the auxiliary process

cuk = pck

which clearly implies that
∑∞

k=1 kc
2
uk =

∑∞
k=1 kp

2c2k and p2Ip−f = Iup−f . By the reflectrum identity

applied to the process upt, we are able to conclude that

p2Ip−f = −1

2

∞∑
k=1

k ln(1− π2pk)

which completes the proof of the theorem. �
The computation of Ip−f entails the availability of the full partial autocorrelation sequence, unless the

process is autoregressive, in which case the partial autocorrelation is truncated at K. The approach followed
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in this paper amounts to determining a scale, determined by the transformation parameter p, along which

the GPAC sequence is finite. The following theorem, that generalises theorem 3.1 of Li and Xie (1996),

establishes the optimality of the generalised spectral autoregressive models (6) with respect to the minimum

mutual information principle.

Theorem 2 A process with given generalised autocovariances γpk, k = 0, 1, . . . ,K, p ̸= 0 and minimal

information between past and future belongs to the class of spectral models (6).

Proof The theorem follows straightforwardly from theorem 3.1 of Li and Xie (1995), who state and

prove that given K + 1 autocovariances forming a positive definite sequence, a Gaussian process achieves

the minimum information Ip−f when it follows an AR(K) model. The theorem directly applies to an AR(K)

auxiliary process with prediction error variance equal to σ2p whose first K + 1 autocovariances are γpk,

k = 0, 1, . . . ,K. �
In the case when p = 0, the process with minimal mutual information belongs to the class of EXP(K)

models of Bloomfield (1973), obtained by truncating to the lag K the Fourier expansion of the logarithm of

the spectral density function (see Li and Xie, 1995).

Model selection by the minimum mutual information (MMI) principle is one of the applications of Ip−f

traced by Li and Xie (1995). As a matter of fact, MMI is related to the maximum entropy principle, by

means of the complementarity of Ip−f and the entropy rate of a regular stationary and Gaussian process (see

equation (9) in Li, 2005). Once the class of fitting models is selected through the MMI, a penalised criterion

based on Ip−f , called LIC, has been proposed by Li and Xie (1995) to select the order of the fitting model.

Other applications of the mutual information between past and future arise in connection with the equiv-

alent concept of excess entropy, an intuitive measure of memory stored in a stochastic process: fractional

ARMA processes have infinite mutual information. Recently, Hidden Markov models with infinite mutual

information between past and future have been investigated and examples of processes with an infinite num-

ber of countable states are presented with reference with modelling texts in natural language and complex

system analysis (Debowski, 2014).

5 Estimation

The main tool for estimating the spectral density function and its functionals is the periodogram.

Let {xt, t = 1, 2, . . . , n} denote a time series, which is a sample realisation from a stationary Gaussian

process, and let ωj =
2πj
n , j = 1, . . . , [n/2], be the Fourier frequencies, where [·] denotes the integer part of

the argument.
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The periodogram (sample spectrum) is defined as

I(ωj) =
1

2πn

∣∣∣∣∣
n∑

t=1

(xt − x̄)e−ıωjt

∣∣∣∣∣
2

,

where x̄ = n−1
∑

t xt.

The following large sample distributional result holds in the short memory case (Brockwell and Davis,

1991, ch. 10):
I(ωj)

f(ωj)
∼ IID

1

2
χ2
2, 0 < ωj < π

whereas I(ωj)
f(ωj)

∼ χ2
1, ωj = 0, π, where χ2

r denotes a chi-square random variable with r degrees of freedom;

equivalently, I(ωj) is exponentially distributed with mean f(ωj).

For a given transformation parameter p, the log-likelihood function of the unconstrained parameters ϑpk,

k = 1, . . . ,K based on the exponential density for I(ωj), for 0 < ωj < π and j = 1, . . . , N where

N = [(n− 1)/2], is

ℓ(ϑp,K) = −
N∑
j=1

(
ln f(ωj) +

I(ωj)

f(ωj)

)
The latter can be maximised with respect to the unconstrained parameter vector ϑp,K by a quasi-Newton

optimisation algorithm, using numerical first and second derivatives. The GPAC πpk and the parameters

ϕp1, . . . ϕpK lying in the stationary region are then obtained by (7).

The spectral models for different combinations of K and p can be compared using an information crite-

rion, such as AIC or BIC.

As long as the summability conditions for the GPAC is satisfied,
∑∞

k=1 k ln(1− π2pk) < ∞, i.e. as long

as the mutual information as in theorem 1 is finite, the strong Szegö theorem holds (see Bingham, 2012) and

under the usual regularity conditions on the parameter space and the spectral density function, theorems 2.1

and 2.2 on chapter 2 of Dzhaparidze (1986) hold, which imply that ϑ̃p,K →p ϑp,K and
√
n(ϑ̃p,K−ϑp,K) →d

N(0, Vp) where

V −1
p =

1

4π

∫ π

−π

1

[2πf(ω)]2p
z(ω)z(ω)′dω

with z(ω) = [1, 2 cos(ω), 2 cos(2ω), . . . , 2 cos(Kω)]′. Given that the function that maps the partial autocor-

relation coefficients to the model parameters is one to one and smooth (see Barndorff-Nielsen and Schou,

1973, Theorem 2), the asymptotic properties of the Whittle estimator continue to hold in the reparameterized

model.
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Figure 1: U.S. monthly inflation rate (annualised rate). Plot of the series (top left). Periodogram and

fitted GAR spectrum with p = 2.4,K = 1 (top right). Values of the AIC as a function of p for values

of K = 1, 2, 3, 4 (bottom left). Mutual information estimates as a function of p for different values of K

(bottom right).
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6 Illustration

Our illustration deals with the estimation of the mutual information between past and future for the monthly

U.S. inflation rate. The latter is computed as the logarithmic change over the previous month of the Con-

sumer Price Index (CPI), multiplied by 1200, and is considered for the period running from January 1960

to December 2012, for a total of 624 observations. The plot of the series is available in the top right panel

of figure 1. A widely debated issue deals with the covariance stationarity of the underlying generating pro-

cess, as the evidence arising from either unit root and stationarity tests is not clear cut. The periodogram,

displayed in the right top plot of figure 1, takes very large values around the zero frequency.

The left bottom graph displays the behaviour of the Akaike’s information criterion, AIC = −2ℓ(ϑ̃p,K)+

2K, where ϑ̃p,K is the Whittle likelihood estimator of the parameters of the generalised AR spectral model

(6) fitted to the series for different values of p and K. In particular, for K ranging from 1 to 4, it displays
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the pattern of the AIC for values of p in the interval [-2, 2.5]. The AIC is similar for the values of K

considered for p in the range [2, 2.5]; when K = 1, the estimated generalised autoregressive parameter

is equal to 1 for p in this range; similarly, for higher values of K, the generalised polynomial ϕp(z) has

a unit root. The combination of values minimising the AIC is K = 4, p = 2.3; the estimated GAR

polynomial is ϕ̃p(e−ıω) = 1−1.0383e−ıω+0.2028e−2ıω+0.0251e−3ıω−0.1896e−4ıω; the corresponding

GPACs are π̃p1 = 0.9999, π̃p2 = −0.0612, π̃p3 = 0.1782, π̃p4 = 0.1896. Notice that if ϕp(e−ıω) =

(1 − e−ıω)ϕ∗p(e
−ıω)), where |ϕ∗p(e−ıω)|2 is bounded away from zero and finite, and p > 2, yt is long

memory process, with a spectral density being O(|ω|−2d) as |ω| → 0, with d = 2/p. The fitted spectral

density is superimposed to the periodogram in the top left panel. As a result, likelihood inference points

decisively towards a nonstationary or a long memory model. Although the AIC is concave in p and has a

minimum within the assumed range, the properties of the estimate of p cannot be ascertained. The bottom

right graph displays the pattern of the estimated Ip−f as p varies in its range and for the same values of K.

The plot highlights a neat discontinuity occurring at around p = 2, which is a reflection of the fact that the

estimated model is long memory.

We then turn our attention to the first differences of the monthly inflation rates, which are plotted in figure

in the top left panel of figure 2. Model selection performed according to the AIC leads to choosing the GAR

specification with p = −0.8 and K = 3 (see the bottom left plot which depicts the AIC as a function of p

for K = 1, 2, 3, 4, 5). The selected values of p is not significantly different from -1, which in turn leads to

a moving average model for the spectrum of the time series. The fitted spectral density has a low dynamic

range and is superimposed to the periodogram of the series in the top right plot. It can be seen from the

same plot that the spectral fit arising from the AR spectrum of the same order, i.e. p = 1,K = 3, is likely to

overfit some features of the periodogram. The estimated GAR polynomial is ϕ̃p(e−ıω) = 1− 0.5419e−ıω −
0.1989e−2ıω − 0.0960e−3ıω; the corresponding GPACs are π̃p1 = 0.7583, π̃p2 = 0.2532, π̃p3 = 0.0960.

The behaviour of the estimated mutual information between past and future is displayed in the bottom

right panel as p varies in [-2, 2] and for K = 1, . . . , 5. The estimates are rather insensitive to p in the

negative range (in fact, also the AIC is almost constant), hovering around 0.5.

We conclude this section with a remark on the estimation of Ip−f based on the GPAC. When a generalised

spectral AR model is fitted to a series, the selection the best pair (p,K) in terms of minimum AIC implies

that the estimation of Ip−f is based on a finite number of generalised partial autocorrelation coefficients,

π̃p1, . . . , π̃pK . Except in the case when p = 1, which identifies a pure autoregressive model in the general

class (6), the computation of Ip−f based on the ordinary partial autocorrelations or cepstral coefficients

involves an infinite number of coefficients and its estimation necessarily requires a truncation of the infinite

sequence.
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Figure 2: Changes in U.S. monthly inflation rate (first differences). Plot of the series (top left). Periodogram

and fitted GAR spectrum with p = 2.4,K = 1 (top right). Values of the AIC as a function of p for values

of K = 1, 2, 3, 4, 5 (bottom left). Mutual information estimates as a function of p for different values of K

(bottom right).
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7 Conclusions

In this paper we have introduced the generalised partial autocorrelation function. This can be useful for

parameterising a model for the spectrum of a time series, which encompasses autoregressive and moving

average spectral estimation, and for characterising the properties of a random stationary process. We have

considered in particular its use for computing (and estimating from a sample time series) the mutual in-

formation between the past and the future. The latter is an interesting concept which complements the

traditional one step ahead prediction error variance, looking at the joint predictability at the different many

horizons that arise for the future.
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