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Abstract

In this paper we derive a space-time model for electricity spot prices. A general
spatial Durbin model that incorporates the temporal as well as spatial lags of spot
prices is presented. Joint modeling of space-time e�ects is necessarily important
when prices and loads are determined in a network of power exchange areas. We
use data from the Nord Pool electricity power exchange area bidding markets.
Di�erent spatial weight matrices are considered to capture the structure of the
spatial dependence process across di�erent bidding markets and statistical tests
show signi�cant spatial dependence in the spot price dynamics. Estimation of
the spatial Durbin model show that the spatial lag variable is as important as the
temporal lag variable in describing the spot price dynamics. We use the partial
derivatives impact approach to decompose the price impacts into direct and
indirect e�ects and we show that price e�ects transmit to neighboring markets
and decline with distance. In order to examine the evolution of the spatial
correlation over time, a time varying parameters spot price spatial Durbin model
is estimated using recursive estimation. It is found that the spatial correlation
within the Nord Pool grid has been increasing over time which we interpret as
evidence for an increasing degree of market integration.
JEL classi�cation: C32; C33
Keywords: Autoregressive; Spatial-Time series; Spatial dependence

1 Introduction

Whilst there is much research on the temporal dynamics of electricity spot prices (see e.g.,
E�mova and Serletis 2014; Haldrup et al. 2010; Haldrup and Nielsen 2006; Park et al.
2006 and Huisman and Mahieu 2003), less attention has been paid to the role of spatial
dynamics of electricity spot prices. However, such dynamics are necessarily important
when prices and loads are determined in a network grid of power exchange.

A number of previous studies recognize the importance of spot price interdependencies
in a grid of electricity areas. Park et al. (2006), for example, point out how US regional
spot market prices are characterized by spatial price interdependence. In particular, for
highly interconnected transmission systems, temporal demand and supply imbalances and
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possible transmission congestion may result in spatial price dependence across markets.
Measurement problems in spot prices may also result in spot price spatial dependence. In
deregulated electricity markets, price competition among the di�erent markets will result
in high spatial price dependence. This implies that a spot price observed in a particular
market is determined (in part at least) by what happens elsewhere in the system. When
forecasting spot prices in a given market, it is thus helpful to know if past and current spot
prices in other markets can improve forecasts. Joint modeling of space-time e�ects can
help investigating the dynamics of spot prices in integrated physically connected markets.
Accordingly, a simultaneous space-time model of electricity prices is called for.

In time series models, temporally lagged values of the dependent variable are often
included to describe the price dynamics. A similar motivation can be used to account for
spatially lagged variables in electricity spot price dynamics. In deregulated electricity price
markets, for example, when congestion transmission problems exist, power �ows from the
low price area towards the high price area. This indicates that the spot price of a particular
area depends on the nearby market bidding area prices as well implying the need to account
for spatial interaction e�ects.1

Despite the key importance of the spatial element in electricity price dynamics, spatial
econometric modeling of electricity prices is rare in the literature. An exception is Douglas
and Popova (2011) who estimate a spatial error model for twelve US spot market regions
and show that spatial patterns play a signi�cant role in electricity price dynamics. Congestion
problems in the transmission system together with grid networks provide the framework
for spatial patterns of price dynamics. One of the problems in Douglas and Popova (2011)
is that they consider spatial interactions among the error terms, but not spatial interaction
e�ects among the dependent variable and the independent variables in their model. The
spatial econometrics literature stresses that ignoring spatial dependence in the dependent
variable and/or in the independent variables result in biased and inconsistent coe�cient
estimates for the remaining variables (see e.g., LeSage and Pace 2009 and Elhorst and
Yesilyurt 2014). This is a standard result in econometrics namely that if one or more
relevant explanatory variables are omitted from a regression equation, then, in general
the estimator of the coe�cients for the remaining variables is biased and inconsistent. In
contrast, ignoring spatial dependence in the error terms, if present, will only cause a loss
of e�ciency. Anselin (1988) also notes that when the focus of interest is to examine the
existence and strength of spatial interactions, a model that includes the spatial lag of the
dependent variable is more appropriate than a spatial error model. Elhorst (2010) and
LeSage and Pace (2009) also recommend a spatial Durbin model (SDM) that incorporates
the spatial lags of both dependent and independent variables.

The purpose of this paper is to develop a space-time model of electricity spot prices. In
contrast to Douglas and Popova (2011), we derive and estimate a more �exible SDM that
encompasses spatial dependence both in the dependent and independent variables of spot
prices. Because the SDM nests the spatial error model as a special case, error dependence
is also accounted for in the variance-covariance matrix. One of the key features of the SDM
is that it produces unbiased coe�cient estimates, also if the true data generating process
is a spatial lag or spatial error model (see e.g., Elhorst 2010; LeSage and Fischer 2008).
This is because the SDM nests the spatial lag and spatial error models as special cases.

1Modeling spatial interaction e�ects in mainstream economics has got wide applications recently (see e.g., Conley and
Topa 2002 for unemployment dynamics, Fernandez 2011 for stock market linkages and Ertur and Koch 2007 for growth
convergence), among others.
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For a spatial regression model, a change in the explanatory variable of a particular unit
not only a�ects the dependent variable of that particular unit itself (direct e�ect) but
also the dependent variables in other units (i.e, indirect/spatial spillover e�ects). As a
result, LeSage and Pace (2009) suggest a partial derivatives impact approach because the
standard point estimates of spatial regression model speci�cations may lead to inconsistent
coe�cient estimates. We use partial derivative impacts approach and decompose the price
impacts into direct and indirect e�ects. Another feature of the spatial Durbin model is
the ability to capture such direct and indirect e�ects. This model does not impose prior
restrictions on the magnitude of the spatial spillover e�ects which is usually the main
focus of empirical spatial econometrics. In contrast, in the spatial error model, these
spatial spillover e�ects are set to zero by construction which implies that this model is less
appropriate in applications, see Elhorst (2012) for details.

Daily spot prices from 13 bidding areas in the Nord Pool power market are used in
the empirical study. The Nord Pool power grid provides an ideal candidate for spatial
econometric modeling of the electricity spot price dynamics. In our empirical section, we
begin by estimating the non spatial electricity spot price model using standard ordinary
least squares (OLS). In order to capture weather e�ects on spot price dynamics, we include
temperature variables as additional controls. The coe�cients of the temporal lags of the
spot price and temperature variables support the theoretical predictions. Unlike Douglas
and Popova (2011), we apply classic Lagrange Multiplier (LM) tests for spatial panel data
designed by Anselin (1988) and robust LM tests designed by Elhorst (2010) in order to
test whether spatial interaction e�ects need to be accounted for in electricity spot price
dynamics. We consider di�erent spatial weight matrices for the LM tests and a detailed
discussion on di�erent properties of spatial weight matrices is presented. We use di�erent
spatial weight matrices, namely a) a spatial weight matrix constructed from transmission
capacity of 13 bidding areas, b) a geographical contiguity weight matrix and c) a �oat
weight matrix. The latter weight matrix is constructed based on the observation that when
the power connection capacity across exchange areas allows a free �oat of electricity for a
given hour, then prices appear to be identical across neighbor areas. On the other hand,
when the capacity is insu�cient, congestion will occur and prices tend to di�er, see e.g.
Haldrup and Nielsen (2006) and Haldrup et al. (2010). The weight matrix is constructed
by calculating the fraction of hours over the entire sample period where prices are identical
and hence indicates the fraction of hours with non-congestion. When a fraction is relatively
high it indicates a connection that is relatively well connected in terms of power capacity.
On the other hand, a small fraction indicates that the connection is relatively often subject
to congestion. The classic and robust LM tests indeed indicate a highly signi�cant spatial
dependence in spot prices under all the spatial weight matrix speci�cations.

A general spatial Durbin model that incorporates the temporal as well as spatial lags of
spot prices and weather variables is estimated using quasi Maximum likelihood estimation.
We quantify and show the role of spatially lagged dependent and independent variables in
spot price dynamics. The joint space-time modeling of electricity spot prices is believed to
be important for di�erent reasons. From a spot price modeling perspective, it indicates that
current and past spot prices in other markets are important variables in determining current
spot prices of a particular bidding market. Thus, joint modeling of space-time e�ects in
spot prices can help improve forecasts. Giacomini and Granger (2004), for example, show
that ignoring spatial correlation, even when it is weak, leads to highly inaccurate forecasts.
From an econometric modeling point of view, appropriate space-time modeling of spot
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price dynamics can help avoid omitted variable bias problems, see also Case (1991).
Finally, we recursively estimate a time varying coe�cients spot price SDM and examine

the evolution of spot prices over time and across bidding markets and hence can provide
a time varying measure of the degree of spatial correlation. We �nd that the spatial price
correlation within the Nord Pool grid has been steadily increasing over time which we
interpret as a measure of increasing degree of market integration.

The remainder of the paper is organized as follows. Section 2 provides a brief overview of
the Nord Pool power market. Section 3 presents a spatial Durbin model for spot electricity
prices. Section 4 presents the data used in the empirical study along with the spatial weight
matrices and the main results are presented in section 5. The �nal section concludes.

2 The Nordic Power System

The Nordic countries Denmark, Finland, Norway and Sweden have deregulated their power
markets in the early 1990s and have cooperated to provide an e�cient power supply, see
e.g., Nord Pool (2004) and Haldrup and Nielsen (2006) for brief details. Nord Pool Spot
was established as a company in 2002 as the world's �rst market for trading power. Today
it is also the world's largest market of its kind, and provides the leading market for buying
and selling power in the Nordic and Baltic regions.

The Nord Pool Spot exchange area is divided into a number of bidding areas. In 2011,
the Nord Pool Spot market had four bidding areas in Sweden (SE1, SE2, SE3, SE4), two
bidding areas in Denmark (DK1, DK2), �ve bidding areas in Norway (NO1, NO2, NO3,
NO4, NO5) and Estonia (EE), Finland (FI), Lithuania (LT) and Latvia (LV) constitute
one bidding area each.

The di�erent bidding areas help e�cient distribution of power within the transmission
system, and ensure that area market conditions are optimally re�ected in the price. If
grid bottlenecks exist, bidding area prices may be di�erent (called area prices) and if there
are no grid bottlenecks across neighboring interconnectors, there will be a single price
across the bidding areas. When there are constraints in transmission capacity between two
bidding areas, the power will always go from the low price area to the high price area.
This principle is based on the law of one price: the power �ow will move towards the
high price area with excessive demand. This system also secures that no market members
are assigned privileges on any bottleneck which is an important feature of a deregulated
liberalized market.

In terms of generating capacity, the Nord Pool power is generated from di�erent sources.
In 2012, for example, over 70% of power supply in Denmark is generated from thermal
plants and approximately 29% of power supply is generated from wind turbines (see Nord
Pool 2013). Over 43% of power supply in Sweden is generated from hydropower while over
65% of power supply in Finland is generated from thermal power and 95% of power supply
in Norway is generated from hydropower plants.

The Nordic market participants trade power contracts for next-day physical delivery at
the elspot market and trading is based on an auction trade system for each hour of the
following day. Day ahead power prices, known as elspot are determined based on supply
and demand for every hour the following day. The Nord pool intraday market, known as
elbas, helps secure the necessary balance between supply and demand in the power market.
The day-ahead and intraday prices supplement each other, with the latter market acting
as a balancing market to the former. The power prices considered in the present paper are
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average daily elspot prices for regions within the power grid.

3 Spatial modeling of spot prices

3.1 Spatial and temporal price dependence

Highly interconnected transmission systems, temporal demand and supply imbalances and
transmission congestion in electricity spot prices may result in spatial price dependence
across markets. Park et al. (2006), for example, point out that because of limited storability
and cross-grid transmission, price interdependency among neighboring markets are the
typical features of electricity spot prices. Unobserved features such as production capacity
and maintenance problems are also likely to result in spatial spot price dependence. This
implies that a spot price observed at a particular market is determined by what happens
elsewhere in the system.

Consider a spot price pt observed in three neighboring bidding markets, i − 1, i and
i+1.2 Because of the spatial proximity/and or interconnected transmission in the bidding
markets, it can be assumed that the spot price at time t in market i depends on the spot
prices at all three markets at time t−1, and the spot prices at two markets at time t. This
can be visualized as

pi−1, t pi+1, t pi, t−1 pi+1, t−1 pi−1, t−1
↘ ↘ ↓ ↙ ↙

pi, t

Suppose this dependence is captured by

pi, t = βpi, t−1 + ρ1pi−1, t + ρ2pi+1, t + γ1pi−1, t−1 + γ2pi+1, t−1 + c+ εi, t (1)

The �rst term on the right hand side of equation (1) is the �rst temporal lag of the spot
price in market i, the second term is the current spot price in market i− 1, the third term
is the current spot price in market i + 1, the fourth term is the �rst temporal lag of spot
price in market i− 1, the �fth term is the �rst temporal lag of spot price in market i+ 1,
c is a constant and the last term is a white noise error process.

Under the assumption of no spatial price dependence among bidding markets (ρ1 = ρ2 =
γ1 = γ2 = 0), and equation (1) produces the conventional autoregressive (AR(1)) spot price
process. In a highly interconnected transmission system with deregulated markets like the
Nord Pool, nearby market prices still a�ect each other.

Using a spatial connectivity weight matrix wij connecting bidding markets i and j (j =
i− 1, i+1), we can aggregate (see also Giacomini and Granger 2004) the process given in
(1) as

pit = βpit−1 + ρ

i+1∑
j=i−1

wijpjt + γ

i+1∑
j=i−1

wijpjt−1 + c+ εit (2)

2Note that we will use bidding markets and bidding areas interchangeably.
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where ρ is a parameter measuring the strength of spatial (contemporaneous) dependence
between bidding markets, wij is a spatial weight coe�cient, γ is a coe�cient measuring
lagged spatial dependence and εit is a white noise process. It is clear from (2) that a spatial
lag is a distributed lag, rather than a shift in a given direction like in the time series case.
Here each spatial weight wij to be discussed latter re�ects the spatial in�uence of bidding
market j on bidding market i. Note that we consider temporal as well as spatial lags to
be of �rst order for simplicity.

Equation (2) can be generalized (in matrix form) as

pt = ρWpt + βpt−1 + γWpt−1 + Ztθ1 +WZtθ2 + c+ εt (3)

where pt is an Nx1 vector of spot prices during the sample period time t, W is an
NxN spatial weight matrix connecting bidding areas i and j, β, θ1 and θ2 are associated
parameters, Zt is a set of control (e.g., weather conditions, time dummies etc.) variables,
and εt is a white noise vector process. The model given in (3) is known as the spatial
Durbin model (SDM) as it includes the spatial lags of both the dependent and independent
variables. In section 4.2 we will discuss the design of the weight matrix W in more detail.

The spot price pt is related to spot prices in neighboring bidding markets in the current
time period Wpt, previous periods spot prices pt−1, previous periods spot prices from
neighboring bidding markets Wpt−1, a set of control variables in the current period Zt as
well as a set of control variables from neighboring marketsWZt which are thought to exert
in�uence on current spot prices.

LeSage and Pace (2009) explicitly discuss a number of theoretical econometric as well
as economic motivations for incorporating spatial lag variables in a regression framework.
In our particular case the model in (3) captures the possible spatial interaction e�ects that
may arise in the system grid.

One of the distinctive features of the SDM in (3) is that it nests various models as a
special case. Under the assumption of no spatial interactions, ρ = 0, γ = 0 and θ2 = 0,
produces the conventional spot price time regression model. Imposing the restriction that
γ = 0 and θ2 = 0 produces the spatial autoregressive (SAR) model of the form

pt = ρWpt + βpt−1 + Ztθ1 + c+ εt

The SAR model contains linear combinations of the dependent variable as additional
explanatory variables but excludes the spatial lags of the independent variables. This
model assumes that exogenous factors (e.g., weather conditions and previous periods spot
prices) observed in neighboring areas do not have direct e�ect on spot prices of a particular
bidding market. In the standard spatial econometrics literature, the restriction γ = 0 and
θ2 = 0 is used to test the hypothesis whether the SDM can be reduced to the spatial lag
model.

Similarly, imposing the restrictions γ+ ρβ = 0, and θ2+ ρθ1 = 0, equation (3) produces
the spatial error model (SER) of the form

pt = βpt−1 + θ1Zt + (I − ρW )−1(c+ εt) (4)

These restrictions also allow to test the hypothesis whether the SDM can be reduced
to the spatial error model. The SER speci�cation implies that spatial interaction e�ects
occur through spatial propagation of unobserved disturbances.

Consider the SER model in (4) rewritten as

6



pt = βpt−1 + θ1Zt + c′ + µt

where c′ = (I − ρW )−1c, µt = (I − ρW )−1εt or µt = ρWµt + εt. This speci�cation shows
that the scalar error process µit in a particular bidding market i at time t is a weighted
average of the errors in neighboring bidding markets and its own local disturbance εit.

Using (I − ρW )−1 = I +
∑∞

k=1(ρW )k, we can write µt as

µt = (I + ρW + ρ2W 2 + ...)εt

If the error vector process εt is i.i.d, the variance-covariance matrix of the local disturbance
(see e.g., Kapoor et al. 2004) is given as

E(µtµ
′
t) = σ2

ε(I − ρW )−1(I − ρW )−1
′

= σ2
ε [I + ρ(W +W ′) + ρ2(W 2 +WW ′ +W ′2) + ...]

The variance-covariance matrix implies that if | ρ |< 1, the equilibrium disturbances are
correlated with each other but closer neighbors are more correlated than distant neighbors.

Douglas and Popova (2011) state that the SER model is more appropriate to model
electricity prices because it is relatively convenient to estimate using panel data sets. As
stated earlier, when the interest is to examine spatial interactions, a full model speci�cation
of the spatial interaction process is more appropriate than the SER model. The SDM which
is more �exible than the SER model produces unbiased coe�cient estimates even if the
true DGP is SER. This is because the SER model is nested within the SDM, and as a
result error dependence is accounted for the variance-covariance matrix. In our empirical
section too, a test on parameter restrictions shows that both the SAR and SER model are
rejected in favor of the SDM.

4 Empirical results

4.1 Data

Daily spot market electricity prices for 13 bidding areas during the period 1 January 2012
to 31 August 2014 (a total of 12,662 observations) from the Nord Pool power market are
used. The spot market bidding areas include four regions from Sweden (SE1, SE2 SE3,
SE4), one region from Finland (FI), two regions from Denmark (DK1, DK2), �ve regions
from Norway (NO1, NO2, NO3, NO4, NO5), and one region from Estonia (EE). See �gure
2 for locations of the bidding areas. Data for the bidding areas in Estonian-Latvian border,
Latvia and Lithuania, is not included because complete spot price data is not available for
the years 2012 and 2013.
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Figure 1: Map of the Nord Pool bidding areas: Numbers are transmission capacities

Source: Nord Pool 2014

The data series are plotted in �gure 3 for each of the 13 bidding markets where it can
be seen that, in general, the spot prices show huge �uctuations.

Whereas bidding areas from Sweden (SE1, SE2, SE3, SE4), Norway (NO1, NO2, NO3,
NO4, NO5) and Finland (FI) tend to show similar spot price patterns, the bidding areas
in Denmark (DK1 and DK2) also show a similar pattern while the spot price pattern in
Estonia (EE) is rather di�erent.
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Figure 2: Daily spot prices for 13 bidding markets in Nord Pool: 1 January 2012-31 August
2014
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The descriptive statistics of daily spot prices for each of the 13 Nord Pool spot markets
are also reported in table 1. The mean spot price for the 13 bidding markets is more or
less the same across di�erent markets. The mean spot price ranges from its maximum
5.680 in EE to its minimum 5.397 in NO3. The daily spot prices also show similar patterns
in standard deviation across di�erent bidding areas.3 The lowest standard deviation is
observed in EE while the highest standard deviation is observed in DK1.4

Average cooling degree days (CDD) and average heating degree days (HDD)5 that
capture daily weather e�ects in electricity spot prices are calculated using approximate
weather locations for each of the 13 bidding areas.

Table 1: Spot price descriptive statistics in 13 Nord Pool bidding areas
SE1 SE2 SE3 SE4 FI DK1 DK2 NO1 NO2 NO3 NO4 NO5 EE

Min 4.005 4.005 4.005 4.005 4.005 0 0 3.949 4.067 3.556 4.005 4.005 5.116
Mean 5.502 5.503 5.512 5.539 5.608 5.524 5.569 5.409 5.407 5.397 5.497 5.489 5.680
Max 6.607 6.607 6.624 6.624 6.624 8.087 6.624 6.568 6.568 6.568 6.607 6.607 6.835

Std.dev 0.315 0.315 0.321 0.318 0.306 0.439 0.375 0.351 0.331 0.369 0.311 0.307 0.196

4.2 Spatial weight matrix for spot prices

The speci�cation of the spatial weight matrix W is a very important issue in spatial
econometrics. However, typically there is little guidance in the choice of the correct
spatial weight matrix in empirical applications. The usual tradition in constructing the
spatial weight matrix has been geographical distance. However, it is not obvious that
geography is the most relevant factor in spatial interactions between the economic units
under consideration (Case et al., 1993). The weight matrix represents the in�uence process
assumed to be present in the network and hence the choice of the weight matrix is supposed
to represent the theory a researcher has about the structure of the in�uence of the processes
in the network, see also Leenders (2002).

Figure 3: Four hypothetical neighboring electricity bidding markets

In the spatial econometric model (2), each spatial weight wij re�ects the spatial in�uence
of bidding market j on bidding market i. Consider, for example, four hypothetical neighboring
bidding markets M1, M2, M3 and M4 displayed as in �gure 3. Bidding market M1 is neighbor

3A wide range of unit root tests were conducted and they all strongly reject the unit root hypothesis.
4We have 3 negative prices in DK1 and 2 negative prices in DK2 and treat them as missing observations when taken in

log terms.
5Weather Underground (http://www.degreedays.net/) provides world wide cooling and heating degree days for many

weather locations in the world. We used approximate city weather locations in the calculation of the CDD and HDD for each
of the 13 bidding areas.
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to M2, M3 and M4 (considering �rst and second order neighborhood) whereas bidding market
M2 is also �rst order neighbor to bidding markets M3 and M4. Then, a �rst order binary
contiguity weight matrix W (1 if two bidding markets are neighbors to each other and 0
otherwise) and its square W 2 can be speci�ed as

W =


M1 M2 M3 M4

M1 0 1 0 0
M2 1 0 1 1
M3 0 1 0 0
M4 0 1 0 0

 and W 2 =


M1 M2 M3 M4

M1 1 0 1 1
M2 0 3 0 0
M3 1 0 1 1
M4 1 0 1 1


The weights are assumed to be non-stochastic and exogenously given with the properties;

(i) wij > 0, (ii) wij = 0 if i = j, for any i = 1, ..., N. The second property implies that no
bidding markets are considered neighbors to themselves. Note that the square matrix W 2

re�ects second order contiguity neighbors (that are neighbors to the �rst order neighbors).
Because second order neighbor to a particular observation i includes observation i itself,
W 2 has non zero diagonal elements, see LeSage and Pace (2009) for details. Sometimes

the weight matrix is normalized such that
∑N

j 6=iwij = 1, for i = 1, ..., N.
In order to capture the electrical transmission capacity of bidding areas, we follow

Douglas and Popova (2011) to construct the transmission weight matrix. We construct the
transmission weight matrix in table 2 using the transmission capacity available for each of
the 13 Nord Pool bidding markets. The elements of the weight matrix are row normalized
transmission capacities (in megawatts) available between each bidding market. If there is
no transmission capacity between bidding areas, the element of the weight matrix is zero.
We assume the transmission capacity available is constant over the sample period.

The transmission capacity between any two bidding areas (how much power can be
transmitted in the grid) captures the possible spatial interactions between these areas. If
the spot prices di�er between two areas, then the transmission capacity across these areas
is fully utilized towards the area with the higher price. If the capacity between two areas
is not fully utilized the prices in these two areas will be equal.

Table 2: Transmission weight matrix for the 13 Nord Pool bidding areas
SE1 SE2 SE3 SE4 FI DK1 DK2 NO1 NO2 NO3 NO4 NO5 EE

SE1 0 0.133 0 0 0.669 0 0 0 0 0 0.199 0 0

SE2 0.325 0 0.572 0 0 0 0 0 0 0.079 0.0246 0 0

SE3 0 0.504 0 0.297 0.083 0.047 0 0.069 0 0 0 0 0

SE4 0 0 0.606 0 0 0 0.394 0 0 0 0 0 0

FI 0.328 0 0.362 0 0 0 0 0 0 0 0 0 0.309

DK1 0 0 0.425 0 0 0 0 0 0.575 0 0 0 0

DK2 0 0 0 1 0 0 0 0 0 0 0 0 0

NO1 0 0 0.409 0 0 0 0 0 0.427 0.036 0 0.128 0

NO2 0.194 0 0 0 0 0.299 0 0.478 0 0 0 0.029 0

NO3 0 0.400 0 0 0 0 0 0 0 0 0.600 0 0

NO4 0.750 0.250 0 0 0 0 0 0 0 0 0 0 0

NO5 0 0 0 0 0 0 0 0.872 0.128 0 0 0 0

EE 0 0 0 0 1 0 0 0 0 0 0 0 0

Bidding markets corresponding to columns and rows are from Sweden (SE1, SE2, SE3, SE4), from Finland (FI),

from Denmark (DK1, DK2), from Norway (NO1, NO2, NO3, NO4, NO5) and from Estonia (EE).

If there is insu�cient transmission capacity between the two areas bottlenecks occur and
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price di�erences will naturally arise. The surplus area will have a lower price than the de�cit
area as more power is available compared to consumption. Consider, for example, two
bidding areas with SE1 as a lower price area and SE2 a high price area. If no transmission
lines were available between the two areas they would have di�erent prices. Assume there is
a capacity of K megawatt (MW) available between SE1 and SE2. The price in SE2 would
then move towards a lower price due to additional supply and the price in SE1 would move
towards a higher price due to higher demand. The available transmission capacity is used
to level out price di�erences as much as possible.

When the power connection capacity across exchange areas allows a free �oat of electricity
for a given hour, then prices appear to be identical across neighbor areas. On the other
hand, when the capacity is insu�cient congestion will occur and prices tend to di�er, see
e.g., Haldrup and Nielsen (2006) and Haldrup et al. (2010). An alternative weight matrix
we consider is based on this observation. It is constructed by calculating the fraction of
hours over the entire sample period where prices are identical and hence indicates the
fraction of hours with non-congestion. When a fraction is relatively high it indicates a
connection that is relatively well connected in terms of power capacity. On the other hand,
a small fraction indicates that the connection is relatively often subject to congestion. The
fraction in each cell in table 3 represents the fraction of hours where prices are identical
between bidding markets to the total number of hours in the sample period. SE1 and SE2,
for example, have a fraction of 0.992 and hence indicates an exchange point with an almost
free �oat and hence a high degree of spatial dependence. We will refer to the weight matrix
de�ned in this fashion as a ��oat weight matrix�.

Table 3: Float weight matrix
SE1 SE2 SE3 SE4 FI DK1 DK2 NO1 NO2 NO3 NO4 NO5 EE

SE1 0 0.992 0.962 0.897 0.655 0.552 0.688 0.523 0.462 0.868 0.833 0.488 0.511
SE2 0.992 0 0.971 0.904 0.656 0.530 0.557 0.530 0.469 0.859 0.825 0.495 0.442
SE3 0.962 0.971 0 0.929 0.676 0.577 0.714 0.535 0.473 0.836 0.805 0.498 0.458
SE4 0.897 0.904 0.929 0 0.629 0.595 0.759 0.507 0.448 0.779 0.750 0.477 0.435
FI 0.655 0.656 0.676 0.629 0 0.405 0.498 0.373 0.332 0.574 0.562 0.344 0.721
DK1 0.552 0.530 0.577 0.595 0.405 0 0.789 0.385 0.395 0.483 0.467 0.362 0.276
DK2 0.688 0.557 0.714 0.759 0.498 0.789 0 0.409 0.385 0.603 0.587 0.382 0.346
NO1 0.523 0.530 0.535 0.507 0.373 0.385 0.409 0 0.892 0.492 0.483 0.897 0.229
NO2 0.463 0.469 0.473 0.448 0.332 0.395 0.386 0.892 0 0.435 0.425 0.822 0.208
NO3 0.868 0.859 0.836 0.778 0.574 0.483 0.603 0.492 0.435 0 0.935 0.460 0.379
NO4 0.833 0.825 0.805 0.750 0.562 0.467 0.587 0.483 0.425 0.935 0 0.453 0.370
NO5 0.488 0.495 0.498 0.477 0.344 0.362 0.382 0.897 0.822 0.460 0.452 0 0.212
EE 0.511 0.442 0.458 0.435 0.721 0.276 0.346 0.229 0.208 0.379 0.370 0.215 0

Bidding markets corresponding to columns and rows are from Sweden (SE1, SE2, SE3, SE4), from Finland (FI), from

Denmark (DK1, DK2), from Norway(NO1, NO2, NO3, NO4, NO5) and from Estonia (EE).

We also consider a contiguity weight matrix as an alternative speci�cation, where the
elements of the contiguity weight matrix are 1 if two bidding markets are neighbors to each
other and zero otherwise.

4.3 Quasi-maximum likelihood estimation of the SDM

Any of the spatial econometric models we discussed in section (3) can be estimated
by maximum likelihood (ML) (Anselin 1988), quasi-maximum likelihood (QML) (Lee
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2010), instrumental variables (IV) (Anselin 1988), generalized method of moments (GMM)
(Kelejian and Prucha 1999), or by Bayesian Markov Chain Monte Carlo methods (Bayesian
MCMC) (LeSage 1997). One advantage of QML estimators is that they do not rely on the
assumption of normality of the disturbances. One disadvantage of the IV/GMM estimators
is the possibility of ending up with a coe�cient estimate for the spatial autoregressive
coe�cient outside its parameter space.

Following Lee and Yu (2008) we use the quasi maximum likelihood to estimate our
SDM. Consider the SDM

pt = ρWpt + βpt−1 + γWpt−1 + θ1Zt + θ2WZt + c+ εt (5)

Denote ψ = (δ′, ρ, σ2)′ and ς = (δ′, ρ, c′)′ where δ = (β, γ, θ′1, θ
′
2)
′. At the true value,

ψ0 = (δ′0, ρ0, σ
2
0)
′ and ς0 = (δ′0, ρ0, c

′
0)
′ where δ0 = (β0, γ0, θ01, θ

′
02)
′. The likelihood

function of (5) is (Lee 2004)

lnL(ψ, c) = −NT
2
ln(2π)− NT

2
ln(σ2) + T ln | I − ρW | − 1

2σ2

T∑
t=1

[ε′t(ς)εt(ς)]
′

(6)

where εt(ς) = S(ς)pt − βpt−1 − γWpt−1 − Ztθ1 − ZtWθ2 − c, and S(ς) = I − ρW . Thus
εt(ς) = εt(ς0).

The QMLEs ψ̂ and ĉ are the extreme estimators derived from the maximization of
equation (6). When the disturbances εt are normally distributed, ψ̂ and ĉ are the MLEs.

But when the disturbances εt are not normally distributed, ψ̂ and ĉ are QMLEs. Lee
(2010) and Lee and Yu (2008) show that the QMLEs have the usual asymptotic properties
including (consistency, normality and e�ciency) for dynamic spatial econometric models

5 Results and testing for spatial interaction e�ects

Before we estimate the SDM given in (3), we estimate the non-spatial version of equation
(3) assuming ρ = 0, γ = 0 and θ2 = 0. Schwarz loss, Akaike loss and Hannan and Quinn's
phi measures all suggest that the 4th lag is the optimal temporal lag length. Day-of week
dummies were also included as additional covariates in the model. Table 4 contains the
OLS estimation results of model (3) without spatial interaction e�ects. The coe�cient of
the �rst, second and fourth temporal lag price are positive and signi�cant. The heating
degree variable enters with a signi�cant coe�cient estimates re�ecting that electricity is a
signi�cant energy source for heating in the Nordic countries.

In order to test whether spatial interaction e�ects need to be accounted for in electricity
spot price dynamics, we apply classic Lagrange Multiplier (LM) tests for panel data
designed by Anselin (1988) and robust LM tests designed by Elhorst (2010). The LM
test statistics for spatial interaction e�ects among the dependent variable is known as the
spatial lag model. The LM test among the error terms, on the other hand, is known as
the spatial error model. Both the LM lag and LM error tests which are based on the
residuals of the non-spatial model are asymptotically distributed as χ2(1). These test
the null hypothesis of no spatial interactions against the alternative hypothesis of spatial
interactions. Anselin (1988) points out that since both tests can have power against the
other alternative, it is important to take account of possible spatial lag dependence when
testing for spatial error dependence and the vice versa. The robust LM test takes into
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account such misspeci�cation of the other forms, see Anselin et al. (1996) for technical
details.

Table 4: Estimation results: The non spatial model with tests for dynamics using
transmission, contiguity and �oat weight matrices.
Model

Constant 1.721[0.031 ]***
pt−1 0.574[0.009]***
pt−2 0.069[0.010]***
pt−3 -0.012[0.010]
pt−4 0.038[0.008]***
CDD 0.0001[0.002]
HHD 0.001[0.001]***
Mon 0.031[0.007]***
Tue 0.204[0.008]***
Wed 0.116[0.008]***
Thu 0.126[0.008]***
Fri 0.102[0.008]***
Sat 0.082[0.007]***

Transmission W Contiguity W Float W

LM test: no spatial lag 803.85[0.000]*** 882.77[0.000]*** 1942.49[0.000]***
Robust LM test: no spatial lag 2020.85[0.000]*** 2856.35[0.000]*** 2579.09[0.000]***
LM test: no spatial error 7.61[0.000]*** 54.66[0.0000]*** 1.27[0.259]
Robust LM test: no spatial error 1224.61[0.000]*** 2028.22[0.000]*** 637.8788[0.000]***
No. Obs. 12662 12662 12662
Notes: *** (**, *) denotes signi�cance at 1% (5%, 10%) level. Standard errors are in parenthesis for model results and

p-values are in parenthesis for LM test results.

The LM test results under the di�erent weight matrices namely the transmission,
contiguity and �oat weight matrix are reported in the lower panel of table 4. Note that
all the di�erent weight matrices are used in row normalized form. When using the classic
LM test under the transmission weight matrix, both the hypothesis of no spatially lagged
dependent variable and no spatially lagged error term must be rejected. The robust LM
tests also reject both the hypothesis of no spatially lagged dependent variable and no
spatially lagged error term. This indicates that the non-spatial model is rejected in favor
of either the spatial lag or spatial error model implying the need to account for spatial
interaction e�ects.6

When using the contiguity weight matrix, both the classic and the robust LM tests reject
the hypothesis of both no spatially lagged dependent variable and no spatially lagged error
term. The LM test results under the �oat weight matrix also produce more or less similar
results. Elhorst and Yesilyurt (2014) and LeSage and Pace (2009) recommend that when
both the classic and robust LM tests reject the non-spatial model in favor of either to the
spatial lag or spatial error model, one better adopts the SDM. We, thus proceed to the
estimation of the SDM.

Prior to the SDM estimation, it is of interest to examine the simple cross-correlation of
spot prices in the 13 bidding areas. Table 5 contains cross-correlations of the residuals of
the 13 bidding areas of the Nord Pool power market. The bidding areas show an average
cross-correlation of 0.694 between each other. The residuals of bidding areas from Sweden

6Anselin (1988) illustrates that when both the classic LM lag and LM error tests give similar results, one better considers
the robust LM speci�cation tests.

14



(SE1, SE2, SE3, SE4), Norway (NO1, NO2, NO3, NO4, NO5) and Finland (FI) show
strong correlations between each other. This correlation also captures the pattern of spot
prices displayed in �gure 2. Residuals in bidding markets from Denmark (DK1, DK2)
on the other hand, show relatively weak correlation with the above bidding markets but
exhibit strong correlation between themselves. Whereas the strongest cross-correlation of
residuals is observed between SE1 and SE2, the weakest cross-correlation of residuals is
observed between DK1 and NO3.

Table 5: Cross-bidding market correlation (mean= 0.694) of spot prices
SE1 SE2 SE3 SE4 FI DK1 DK2 NO1 NO2 NO3 NO4 NO5 EE

SE1 1 0.999 0.984 0.921 0.799 0.358 0.434 0.862 0.839 0.823 0.981 0.971 0.639
SE2 1 0.985 0.922 0.799 0.359 0.435 0.861 0.839 0.822 0.979 0.969 0.638
SE3 1 0.938 0.812 0.369 0.446 0.848 0.823 0.809 0.963 0.952 0.643
SE4 1 0.769 0.391 0.484 0.788 0.765 0.749 0.899 0.891 0.601
FI 1 0.354 0.398 0.678 0.661 0.637 0.781 0.776 0.728
DK1 1 0.865 0.290 0.294 0.277 0.348 0.339 0.305
DK2 1 0.353 0.346 0.334 0.422 0.414 0.341
NO1 1 0.979 0.963 0.888 0.894 0.566
NO2 1 0.959 0.867 0.873 0.575
NO3 1 0.853 0.858 0.543
NO4 1 0.988 0.624
NO5 1 0.626
EE 1

Column (1) of table 6 shows the estimation results of the SDMwhen using the transmission
weight matrix. The estimated coe�cient on the spatially lagged dependent variableWpt is
signi�cant and expresses strong spatial dependence. This result indicates some important
implications in spot price modeling. From a spot price modeling perspective it shows
that current spot prices in other markets are important variables in determining current
spot prices of a particular bidding market. Thus, joint modeling of space-time e�ects in
spot prices can help improve forecasts. From an econometrics point of view, appropriate
consideration of the spatial lag variables can help avoid omitted variable bias problem.
The di�erence found in the coe�cient estimates of pt−1, for example, in table (4) and (6)
might re�ect the size of omitted variable bias problem.

The estimation results of the SDM when using �oating weight matrix are shown in
column (3) of table 6. As shown in the table the estimation results produce more or less
similar results in column (1). The spatially lagged current spot price has a signi�cant
positive coe�cient estimate. Similar results are obtained when using a contiguity weight
matrix, see column (2) in table 6.

These results support the hypothesis that a spot price observed at a particular market
is determined by what happens elsewhere in the system. This is intuitive since highly
interconnected transmission systems, temporal demand and supply imbalances, price competition
and transmission congestion in electricity spot prices may result in spatial price dependence
between markets. Unobserved features such as generating production capacity and maintenance
problems are also likely to result in spot price spatial dependence.
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Table 6: Estimation results of the SDM
Model Transmission W Contiguity W Float W

Constant 0.661[0.218]*** 0.434 [0.091]*** 0.422[0.129]***
pt−1 0.379[0.053]*** 0.409[0.065]*** 0.391[0.059]***
pt−2 0.159[0.009]*** 0.158[0.0213]*** 0.169[0.013]***
pt−3 0.057[0.016]*** 0.121[0.019]*** 0.069[0.014]***
pt−4 0.124[0.010]*** 0.125[0.012]*** 0.138[0.008]***
HDD 0.0001[0.001] -0.0001 [0.000] -0.00008[0.001]
CDD 0.0013[0.002] -0.0004[0.001] 0.002[0.002]
Mon 0.006[0.009] 0.008[0.009] 0.007[0.010]
Tue 0.069[0.029]** 0.051[0.016]** 0.046[0.023]**
Wed 0.029[0.016]** 0.028[0.011]* 0.021[0.013]
Thu 0.044[0.025]** 0.031[0.012]*** 0.028[0.021]
Fri 0.036[0.022]** 0.025[0.009]** 0.022[0.018]
Sat 0.029[0.017]** 0.021[0.010]** 0.019[0.014]
W ∗ pt(ρ) 0.643[0.074]*** 0.765[0.035]*** 0.773[0.029]***
W ∗ pt−1 -0.148[0.087]* -0.269[0.051]*** -0.242[0.068]***
W ∗ pt−2 -0.164[0.011]*** -0.149[0.027]*** -0.174[0.019]***
W ∗ pt−3 -0.064[0.013]*** -0.128[0.026]*** -0.073[0.014]***
W ∗ pt−4 -0.111[0.017]*** -0.116[0.013]*** -0.132[0.015]***
W ∗HDD 0.0002[.001] 0.0003[0.0001]** 0.0003[0.001]
W ∗ CDD -0.002[0.001] 0.0003 [0.001] -0.002[0.001]**
Wald test spatial lag 76.67[0.000]*** 52.97[0.000]*** 335.07[0.000]***
Wald test spatial error 522.09[0.000]*** 129.06[0.000]*** 253.46[0.000]***
R2 0.583 0.583 0.585
Notes: *** (**, *) denotes signi�cance at 1% (5%, 10%) level. Standard errors are in parenthesis

for estimation results and p-values for Wald tests.

One can perform a Wald test to examine if the SDM reduces to either the spatial lag
or spatial error model. The Wald test of restrictions on the SDM are reported in the
lower panel of table 6. Accordingly, the hypothesis of the SDM can be simpli�ed to either
the spatial lag or spatial error model is rejected by the Wald test, respectively, (76.67,
p=0.00) and (522.09, p=0.00) given that the transmission weight matrix is used. A similar
conclusion holds under the contiguity and �oat weight matrices.

5.1 Direct and Indirect e�ects

The spatial spot price model in (3) provides very rich own and cross-partial derivatives
that quantify the magnitude of direct and indirect or spatial spillover e�ects which arise
from changes in bidding area i's characteristics such as weather conditions and previous
spot prices, for instance. A change in a single observation of an explanatory variable
will a�ect the bidding area spot price itself (the direct e�ect) and potentially a�ect all
other bidding areas indirectly (the indirect e�ect/spatial spillover e�ects). The direct and
indirect e�ects are the logical consequence of the SDM, since the model takes into account
other bidding markets dependent and independent variables through the introduction of the
spatially lagged dependent and spatially lagged independent variables. In fact, LeSage and
Pace (2009) note that the ability of spatial regression models to capture these interactions
represents an important aspect of spatial econometric models.

Taking the SDM in (3) as a point of departure, it can be rewritten as

pt = (I − ρW )−1(βpt−1 + γWpt−1 + θ1Zt + θ2WZt + εt)
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TheNxN matrix of partial derivatives of the spot price pt with respect to an explanatory
variable, pt−1, for example, for all spatial units i = 1, ..., N is

[
∂pt

∂p1t−1
. . . ∂pt

∂pNt−1

]
= (I − ρW )−1


β w12γ . . . w1Nγ

w21γ β . . . w2Nγ
. . . . . .
. . . . . .
. . . . . .

wN1γ wN2γ . . . β


where wij is the (i, j)th element of the weight matrix W . The direct e�ect is measured
by the average of the diagonal elements while the indirect (or spatial) spillover e�ect is
measured by the average of either the row or column sums of the non-diagonal elements.
However, the numerical magnitudes of the row and column sums of the indirect e�ects
are the same implying that it does not matter which one is used (LeSage and Pace 2009
and Elhorst 2010). A general SDM model with k explanatory variables, leads to kxN2

partial derivatives. See Elhorst (2010) for a detailed illustration of direct and indirect
e�ects decomposition.

Table 7 reports the direct, indirect and total e�ects estimation results of the spatial
Durbin spot price model. Because the direct and indirect e�ects are composed of di�erent
coe�cient estimates, LeSage and Pace (2009) suggest simulating the distribution of the
direct and indirect e�ects using the variance-covariance matrix implied by the maximum
likelihood estimates in order to draw inferences about the statistical signi�cance of the
direct and indirect e�ects.

To conserve space, we do not report the coe�cient estimates of the dummy variables.
Since the direct and indirect e�ects results are similar when using transmission, contiguity
and �oat weight matrices, only the results for transmission weight matrix are reported. As
shown in the table, both the direct and indirect e�ects of the �rst temporal lag coe�cient
are signi�cant. The signi�cant negative indirect e�ect shows that nearby prices spillover
to closer bidding market regions.

Table 7: E�ects decomposition of spot price dynamics
Model Direct e�ect Indirect e�ect Total e�ect

pt−1 0.408[0.008]*** 0.235[0.018]*** 0.643[0.019]***
pt−2 0.142[0.011]*** -0.149[0.021]*** -0.008[0.023]
pt−3 0.048[0.010]*** -0.075[0.025]*** -0.027[0.029]
pt−4 0.115[0.009]*** -0.075[0.019]*** 0.039[0.021]*
HDD 0.0005[0.0003]** 0.0007[0.0003]** 0.0012[0.0006]**
CDD 0.0008[0.001] 0.001[0.002] 0.002[0.003]
W ∗ pt(ρ) 0.643[0.006]***
No. Obs. 12662
Wald test spatial lag 369.29[0.000]***
Wald test spatial error 1183.89[0.000]***
Notes: *** (**, *) denotes signi�cance at 1% (5%, 10%) level. Standard errors are in parenthesis for model

results and p-values are in parenthesis for Wald test results. Transmission weight matrix is used in the

direct anb indirect e�ects estimation.

5.2 A time-varying coe�cients SDM

The Nordic power grid and the associated power market has experienced signi�cant deregulation
over the past 15 years. This concerns both the design of the auction market conditions and

17



improvements in the physical power transmission system. The purpose of such deregulation
and liberalization has been to improve the general competitive market environment for
power. Intuitively, such deregulation should increase spatial price correlation across power
grid points and hence considering the spatial correlation �xed for a long sample period is
questionable.

In this section, we estimate our SDM using recursive estimation to examine the evolution
of the coe�cient estimates of the spot price SDM over time and with particular focus on
the spatial correlation. To this end, we use a somewhat longer time series for spot prices
data that covers the period 1 January 2000 to 18 October 2014. Because longer time series
observations of data are not available for all 13 bidding markets, we consider only 9 bidding
markets for which we have daily spot price data covering the entire sample period. We use
one bidding market in Sweden, �ve bidding markets in Norway, the two bidding markets
in Denmark and one bidding market in Finland. We employ 2 months rolling window
recursive estimation of the SDM.

The evolution of time varying coe�cient of the spatially lagged dependent variable
implied by the spatial Durbin model is displayed in �gure 4. The recursive estimates of
the spatial correlation coe�cient are shown (red line), together with 95% con�dence bands
(blue lines).

Figure 4: Time varying spatial correlation coe�cient

As seen the spatial correlation exhibits certain jumps in the sample period, particularly
in January 2010. These jumps are caused by extreme price spikes in the Nordic power
area that consequently were scrutinized by the regulatory authorities, see e.g. NordReg
(2011). The jumps are caused by circumstances that can be considered unusual and hence
can be expected to result in instability of the empirical estimates. Notwithstanding, it is
very obvious that over the sample period considered, there has been an increasing trend
in the spatial correlation within the Nord Pool grid. We interpret this empirical �nding as
rather strong evidence of increased market integration and competition across the bidding
areas.
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6 Conclusion

Spatial panel econometric models are becoming important to describe many observed
economic processes. We use tools from spatial econometrics to examine the spatio temporal
patterns of electricity spot prices within the Nord Pool power grid. A spatial Durbin model
that incorporates space-time e�ects in the dynamics of electricity spot prices is developed.

Our general spatial Durbin model enables analysis of the dynamics of electricity spot
prices both across regions and over time. Because the spatial Durbin model nests spatial
error and spatial lag models as a special case, it produces unbiased coe�cient estimates,
also if the true model is a spatial lag or spatial error model.

Di�erent spatial weight matrices such as weight matrix constructed from transmission
capacities, geographical contiguity weight matrix and �oat weight matrix are considered
to capture the structure of the spatial interaction among di�erent Nord Pool electricity
spot price regions. Di�erent statistical tests show that the non spatial spot price model is
rejected in favor of a space-time e�ects model.

Estimation of the spatial Durbin model shows that the spatial dimension plays a signi�cant
role in describing electricity spot price dynamics. This is particularly important when prices
and loads are determined in a network grid of power exchange regions.

For a dynamic spatial Durbin model, a change in the explanatory variable (e.g., previous
period spot prices) of a particular region not only a�ects the current spot price of that
particular region (the direct e�ect) but also the current spot prices in other regions
(the indirect e�ects). Using LeSage and Pace's (2009) partial derivatives approach, we
decompose the price impacts into direct and indirect e�ects and we show that price e�ects
transmit to neighboring markets and decline with distance

In order to examine the evolution of the spatial correlation coe�cient over time, we
estimate a time varying spot price spatial Durbin model. We �nd that the spatial price
correlation coe�cient within the Nord Pool grid has been increasing remarkably over time
which we interpret as a measure of increasing degree of market integration for the sample
period considered.

This paper opens up for some future research directions in electricity price modeling
and forecasting. It is obvious from the empirical �ndings of the current paper that spatial
e�ects are extremely important in describing the electricity price dynamics. However,
when moving on to analyze high frequency hourly electricity price data (rather than daily
average prices), the possibility of congestion and non-congestion episodes across regions
becomes important. The building of empirical models that can capture such (spatial)
regime switching price behavior is a challenging modeling task that can contribute further
to better understand the complex spatio-temporal dynamics of power prices.
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