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Abstract

The main contribution of this paper is to establish the formal validity of Edgeworth expansions
for realized volatility estimators. First, in the context of no microstructure effects, our results rig-
orously justify the Edgeworth expansions for realized volatility derived in Gonçalves and Meddahi
(2009). Second, we show that the validity of the Edgeworth expansions for realized volatility may
not cover the optimal two-point distribution wild bootstrap proposed by Gonçalves and Meddahi
(2009). Then, we propose a new optimal nonlattice distribution which ensures the second-order
correctness of the bootstrap. Third, in the presence of microstructure noise, based on our Edge-
worth expansions, we show that the new optimal choice proposed in the absence of noise is still valid
in noisy data for the pre-averaged realized volatility estimator proposed by Podolskij and Vetter
(2009). Finally, we show how confidence intervals for integrated volatility can be constructed using
these Edgeworth expansions for noisy data. Our Monte Carlo simulations show that the intervals
based on the Edgeworth corrections have improved the finite sample properties relatively to the
conventional intervals based on the normal approximation.

Keywords: Realized volatility, pre-averaging, bootstrap, Edgeworth expansions, confidence in-
tervals.

JEL Classification: C15, C22, C58

1 Introduction

The increasing availability of complete transaction and quote records for financial assets has spurred
a literature seeking to exploit this information in estimating the current level of return volatility. An
early popular estimator of integrated volatility is to compute the sum of squared increments of the log
price process, i.e. the realized volatility.1 An important characteristic of high-frequency financial data
is the presence of market microstructure effects: prices are observed with contamination errors (the
so-called noise) due to the presence of bid-ask bounce effects, rounding errors, etc., which contribute

∗We would like to thank Anders Bredahl Kock, Śılvia Gonçalves and Mark Podolskij for many useful comments
and discussions on the first version of the paper. We acknowledge support from CREATES - Center for Research in
Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research Foundation.
†Department of Economics and Business, Aarhus University, Denmark. Email: uhounyo@econ.au.dk.
‡Department of Economics and Business, Aarhus University, Denmark. Email: bveliyev@econ.au.dk.
1See e.g. the early work by Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Comte and Renault

(1998), Jacod and Protter (1998), Meddahi (2002), Barndorff-Nielsen et al. (2006) and see Andersen et al. (2010) and
Barndorff-Nielsen and Shephard (2007) for reviews.
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to a discrepancy between the latent efficient price process and the price observed by the econome-
trician. This issue has received a fair amount of attention in the recent literature. Indeed, realized
volatility is not consistent for integrated volatility under the presence of market microstructure noise.
This has motivated the development of alternative estimators. Currently, there are four main ap-
proaches to quadratic variation estimation, namely linear combination of realized volatilities obtained
by subsampling (Zhang et al. (2005), and Zhang (2006)), kernel-based autocovariance adjustments
(Barndorff-Nielsen et al. (2008)), the pre-averaging method (Podolskij and Vetter (2009), and Jacod
et al. (2009)), and the maximum likelihood-based approach (Xiu (2010)).

Recently, Gonçalves and Meddahi (2009) (henceforth GM (2009)) have shown that under gen-
eral conditions on the price and volatility processes (but excluding microstructure noise), using the
bootstrap for inference on volatility could help having better performance than standard asymptotic
inference. In particular, GM (2009) have proposed a theoretical justification for using bootstrap for
realized volatility. Their simulations confirm the better behavior of the bootstrap method than the
asymptotic based approach. Based on Edgeworth expansions, they also provide higher-order refine-
ments of the bootstrap that explain these findings under a stricter set of assumptions that rules out
drift, leverage effects and market microstructure effects. However, they do not prove the theoretical
validity of their Edgeworth expansions (see GM (2009), footnote 3 on p. 289).

In this paper, we establish the theoretical validity of their Edgeworth expansions. In addition, we
show that the validity of the Edgeworth expansions for realized volatility may not cover the optimal
two-point distribution wild bootstrap proposed by Gonçalves and Meddahi (2009). Then, we suggest
a new optimal external random variable with a density which yields the second-order accuracy of the
bootstrap.

Gonçalves et al. (2014) have shown that the wild bootstrap procedure applied on the non-
overlapping pre-averaged returns (as originally proposed by Podolskij and Vetter (2009)) estimates
the asymptotic variance as well as the asymptotic mixed normal distribution of the pre-averaged real-
ized volatility estimator. However, for this relatively simple statistic we can simply use, for instance,
the consistent variance estimator proposed by Podolskij and Vetter (2009). Hence, the additional
effort required for the bootstrap is justified if the resulting approximation to the distribution of the
statistic is better than the one relying on the asymptotic normality. With no noisy data, the wild
bootstrap studied by GM (2009) indeed has this property. In this paper, we show that this is also
true for the wild bootstrap method applied to the non-overlapping pre-averaged returns. Specifically,
in the presence of microstructure noise, based on our Edgeworth expansions, we show that the new
optimal external random variable with a nonlattice distribution proposed in the absence of noise is
still valid in noisy data for the pre-averaging estimator of Podolskij and Vetter (2009).

The main reason for the second-order correctness of the bootstrap procedure in Gonçalves et al.
(2014) is the asymptotically correct skewness of the bootstrap distribution. Indeed, an important
characteristic of the pre-averaged realized volatility estimator of Podolskij and Vetter (2009) (see also
Jacod et al. (2009)) is that it entails an analytical bias correction term. Jacod et al. (2009) have shown
that this bias correction is only important for the proper centering of the confidence intervals and does
not impact the variance of the estimator. This has motivated Gonçalves et al. (2014) to resample
the pre-averaged returns and then to construct bootstrap t-statistic without any bias correction term
(see also Hounyo et al. (2013) and Hounyo (2013) for closely related proposals for bootstrapping noisy
high-frequency financial data). In this paper, we formally show that up to o

(
n−1/4

)
(where n is the

sample size), the bias correction term does not impact the first three cumulants of the studentized
statistic, in particular the skewness of the estimator. As a consequence, the bootstrap method in
Gonçalves et al. (2014) does not suffer from the absence of a bias correction term in the bootstrap
t-statistic at least to consistently estimate the skewness, and more generally in its ability to match
the first and third cumulants of pre-averaged realized volatility up to o

(
n−1/4

)
(small enough error to

yield a second-order refinement).
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Building on Edgeworth expansions for studentized statistics based on the pre-averaged realized
volatility estimator, we also propose confidence intervals for integrated volatility that incorporate
an analytical correction for skewness as an alternative method of inference. Our approach extends
the results in Gonçalves and Meddahi (2008) (henceforth GM (2008)) by allowing for microstructure
noise. As in GM (2008), we also find that in a framework where there exist market microstructure
effects and the computational burden imposed by the bootstrap is high, using Edgeworth expansions
is superior to using the normal approximation derived by Podolskij and Vetter (2009). Our Monte
Carlo simulations show that the bootstrap outperforms the Edgeworth corrected intervals. Recently,
Zhang et al. (2011) also allow microstructure effects and provided Edgeworth corrections of the nor-
malized statistic (where the denominator equals variance of the estimator in population) rather than
studentized statistic (where the denominator is a consistent estimator of the estimator’s variance) for
several realized measures, including the realized volatility and the noise robust two time scale realized
volatility estimator as a mean to improve upon the first order asymptotic. The main reason why we
only focus on studentized statistics is because in practice the variance of realized volatility estimators
is usually unknown, then studentized statistics are more used. In addition, in the simple framework
without market microstructure noise, GM (2008) proved that Edgeworth corrections based on nor-
malized statistic are worse than the asymptotic theory. Edgeworth expansions for realized volatility
are also developed by Lieberman and Phillips (2006) for inference on long memory parameters.

A nice side result, which may be useful in other contexts, is that we derive the second-order
Edgeworth expansion of a certain form of studentized statistic, where observations are independent
but not identically distributed. In particular, observations have a specific heterogeneity properties,
which to the best of our knowledge are not covered by other works in the literature. This can be found
in Proposition 6.1 in the Appendix.

The remainder of the paper unfolds as follows. The next section briefly introduces the theoretical
framework, and the main assumptions. We also review the existing asymptotic theory of realized
volatility, in particular, the pre-averaged realized volatility estimator of Podolskij and Vetter (2009).
In Section 3, we establish the formal validity of Edgeworth expansions for realized volatility estimators.
Section 4 contains Monte Carlo results while Section 5 concludes. All proofs are relegated to the
Appendix.

2 Framework and review of the literature

We focus on a single asset traded in a liquid financial market. Let X denote the latent efficient log-
price process defined on a probability space (Ω,F , P ) equipped with a filtration (Ft)t≥0 . We assume
that the sample-path of X is continuous and determined by the stochastic differential equation

dXt = bdt+ σtdWt, t ≥ 0, (1)

where σ = (σt)t≥0 is an adapted càdlàg volatility process, b is a constant drift term and W = (Wt)t≥0 is
a standard Brownian motion. By assumption Wt and σt are independent, thus excluding the leverage
effect.

The object of interest is the integrated volatility of X, i.e. the process

Γt =

∫ t

0
σ2
sds.

Without loss of generality, we let t = 1 and define Γ = Γ1 =
∫ 1

0 σ
2
sds as the integrated volatility of X

over the period [0, 1] , which is thought as a given day.
The availability of market frictions such as bid-ask spreads, price discreteness, rounding errors,

etc, hamper us from observing the efficient price process X. Instead, we observe a noisy price process
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Y , observed at time points t = i
n for i = 0, . . . , n, via

Yt = Xt + εt, (2)

from which we compute n intraday returns given by

∆n
i Y ≡ Y i

n
− Y i−1

n
, i = 1, . . . , n. (3)

where εt represents the noise term that collects all the market microstructure effects. We impose:

Assumption 1. We suppose that

(i) εt is i.i.d. with mean 0 and variance ω2. Also, E
[
|εt|2(6+δ)

]
<∞ for some δ > 0.

(ii) εt is independent of the latent log-price Xt.

This assumption is standard in the literature related to the noise robust estimators of integrated
volatility (see, among others, Zhang et al. (2005), and Barndorff-Nielsen et al. (2008)). However,
empirically a decomposition into independent components as in (2) and i.i.d. assumption on noise
do not always describe the dynamics of the observed price processes. These assumptions may be too
strong especially at the highest frequencies. See e.g. Hansen and Lunde (2006) and Aı̈t-Sahalia et al.
(2011) for more on this issue. Most of what we do here could be extended to allow for dependent noise
following the details discussed in Gonçalves et al. (2014). But, an exploration of this extended setting
is left for future research.

Next, we introduce an additional regularity condition on the volatility path. In particular, we follow
Barndorff-Nielsen and Shephard (2003), see also GM (2009), and make the following assumption.

Assumption 2. The volatility σ is a càdlàg process, bounded away from zero, and satisfies

lim
n→∞

n−1/2
n∑
i=1

∣∣σrηi − σrξi∣∣ = 0,

for some r > 0 and for any ηi and ξi with 0 ≤ ξ1 ≤ η1 ≤ n−1 ≤ ξ2 ≤ η2 ≤ 2n−1 ≤ . . . ≤ ξn ≤ ηn ≤ 1.

Assumption 2 is stronger than required to prove the central limit theorem for the integrated
volatility estimator, but it is a convenient assumption to derive Edgeworth expansions. Relaxing this
assumption is beyond the scope of this paper. In view of footnote 2 in Barndorff-Nielsen and Shephard
(2003), we note that if Assumption 2 holds for some r > 0, then it holds for any r > 0.

In the following, we denote by Γ̂n a consistent estimator of the integrated volatility Γ such that a
central limit theorem holds with the convergence rate of τn. In particular, we have as n→∞

Tn ≡
τn

(
Γ̂n−Γ

)
√
V̂n

d→ N(0, 1), (4)

where V̂n is a consistent estimator of the asymptotic variance V of τnΓ̂n. As statistics of interest in
this paper, we focus on the realized volatility and the pre-averaging estimator of Podolskij and Vetter
(2009).

We first review the existing results. While in the paper we also analyzed finite sample behavior of
the pre-averaging estimator based on data at the highest frequency, the setting of moderate frequencies
serves as an important benchmark. We start with this benchmark case due to its relative simplicity.
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2.1 Realized volatility estimator

In this subsection, we consider the simple case where no market microstructure noise exists (ε ≡ 0). It
follows that Y = X, where X follows (1). In applied work, this refers to a situation where the sampling
frequencies are low enough for the effects of market microstructure to be negligible, e.g. 5, 10, or 30
minutes. In this relatively simple scenario, a popular consistent estimator of integrated volatility is the
realized volatility (see e.g. Barndorff-Nielsen and Shephard (2002)). Barndorff-Nielsen et al. (2006)
derived a feasible central limit theorem for realized volatility defined by

Γ̂n =
n∑
i=1

(∆n
i Y )2 . (5)

They showed that, as n → ∞, (4) holds, under very general conditions which allow the presence of
time varying drift as well as leverage effects, for the statistic Tn defined as

Tn =

√
n
(∑n

i=1 (∆n
i Y )2−Γ

)
√

2
3n
∑n

i=1 (∆n
i Y )4

. (6)

We can use this feasible asymptotic distribution result to build confidence intervals for integrated
volatility. In particular, the conventional 100(1−α)% level one-sided confidence interval for Γ is given
by:

ICAT−1
Feas,1−α =

(
−∞, Γ̂n − τ−1

n

√
V̂nzα

)
, (7)

whereas a two-sided symmetric feasible 100(1− α)% level interval for Γ is given by:

ICAT−2
Feas,1−α =

(
Γ̂n − z1−α/2τ

−1
n

√
V̂n, Γ̂n + z1−α/2τ

−1
n

√
V̂n

)
, (8)

where z1−α/2 is such that Φ
(
z1−α/2

)
= 1 − α/2, and Φ (·) is the cumulative distribution function of

the standard normal distribution. For instance, z0.05 = −1.645 and z0.975 = 1.96 when α = 0.05. As
GM (2009) have shown, in finite sample, this approach can lead to important coverage distorsions. As
a remedy, GM (2008) suggested to use Edgeworth corrected confidence intervals for realized volatility.
Whereas, GM (2009) proposed confidence intervals based on bootstrap methods for Γ̂n. In particular,
following GM (2008) we can obtain, for instance, an improved symmetric confidence interval for Γ
relying on Edgeworth expansion of Tn. We will study these intervals in detail in Section 3. For the
bootstrap, GM’s (2009) wild bootstrap method for realized volatility resamples as follows

∆n
i Y
∗ = ∆n

i Y · vi, i = 1, . . . , n. (9)

where the external random variable vi is an i.i.d. random variable independent of the data and whose
moments are given by a∗q ≡ E∗ [|vi|q]. As usual in the bootstrap literature, P∗, E∗ and V ar∗ denote the
probability measure, expected value and variance induced by the bootstrap resampling, conditional on
a realization of the original time series, respectively. In addition, for a sequence of bootstrap statistics

Z∗n, we write Z∗n = op∗ (1) in probability, or Z∗n
P∗→ 0, as n→∞, in probability, if for any ε > 0, δ > 0,

limn→∞ P [P∗ [|Z∗n| > δ] > ε] = 0. Similarly, we write Z∗n = Op∗ (1) as n → ∞, in probability if for all

ε > 0 there exists a Mε <∞ such that limn→∞ P [P∗ [|Z∗n| > Mε] > ε] = 0. Finally, we write Z∗n
d∗→ Z

as n → ∞, in probability, if conditional on the sample, Z∗n converges weakly to Z under P∗, for all
samples contained in a set with probability P converging to one.
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Then, based on bootstrap returns ∆n
i Y
∗, GM (2009) defined the bootstrap realized volatility

analogue of Γ̂n as Γ̂∗n =
∑n

i=1 (∆n
i Y
∗)2. They showed that, as n→∞

T ∗n ≡

√
n
(

Γ̂∗n−a∗2Γ̂n

)
√
V̂ ∗n

d∗→ N(0, 1), (10)

where V̂ ∗n =
(a∗4−a∗22 )

a∗4
n
∑n

i=1 (∆n
i Y
∗)4. This result justifies constructing bootstrap percentile-t (boot-

strap studentized statistic) intervals. In particular, a 100 (1− α) % one sided bootstrap percentile-t
interval for integrated volatility is given by

IC∗B−1
perc-t,1−α =

(
−∞, Γ̂n − τ−1

n

√
V̂nz

∗B−1
α

)
, (11)

whereas a 100 (1− α) % symmetric bootstrap percentile-t interval for integrated volatility is given by

IC∗B−2
perc-t,1−α =

(
Γ̂n − z∗B−2

1−α τ−1
n

√
V̂n, Γ̂n + z∗B−2

1−α τ−1
n

√
V̂n

)
, (12)

where z∗B−1
α is the α-quantile of the bootstrap distribution of T ∗n whereas z∗B−2

1−α is the (1− α)-quantile
of the bootstrap distribution of |T ∗n |. Next we review the existing results of Podolskij and Vetter’s
(2009) pre-averaged realized volatility estimator.

2.2 The pre-averaged estimator and its asymptotic theory

We now turn to the case where market microstructure effects are not negligible (ε 6= 0). Given that
Y = X + ε, we can write

∆n
i Y =

(
X i

n
−X i−1

n

)
+
(
ε i
n
− ε i−1

n

)
≡∆n

i X + ∆n
i ε,

where ∆n
i X denotes the 1

n -frequency return on the efficient price process. Under Assumption 1, the or-
der of magnitude of ∆n

i ε is Op (1) . In contrast, ∆n
i X is asymptotically uncorrelated and heteroskedastic

with (conditional) variance given by
∫ i/n

(i−1)/n σ
2
sds. Thus, its order of magnitude is Op

(
n−1/2

)
. This

decomposition shows that the noise completely dominates the observed return process as n → ∞,
implying that the usual realized volatility estimator is biased and inconsistent. See, e.g., Zhang et al.
(2005) and Bandi and Russell (2008).

As mentioned in the introductory section, there are several estimators of realized volatility that ex-
plicitly take microstructure noise effects into account. We consider the non-overlapping pre-averaging
estimator of Podolskij and Vetter (2009). To describe this approach, let kn be a sequence of integers
which will denote the window length over which the pre-averaging of returns is done. Similarly, let

g be a weighting function on [0, 1] such that g (0) = g (1) = 0 and
1∫
0

g (s)2 ds > 0, and assume g

is continuous and piecewise continuously differentiable with a piecewise Lipschitz derivative g′. An
example of a function that satisfies these restrictions is g (x) = min (x, 1− x) . We also introduce

ψkn1 = kn

kn∑
i=1

(
g

(
i

kn

)
− g

(
i− 1

kn

))2

and ψkn2 =
1

kn

kn∑
i=1

g2

(
i

kn

)
. (13)

These quantities have the following limits

ψkn1 = ψ1 + o(n−1/4) and ψkn2 = ψ2 + o(n−1/4), (14)
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where

ψ1 =

1∫
0

(
g′ (s)

)2
ds and ψ2 =

1∫
0

(g (s))2 ds.

For instance, for g (x) = min (x, 1− x), we have that ψ1 = 1 and ψ2 = 1/12.
For i = 0, . . . , n−kn+ 1, the pre-averaged returns Ȳi are obtained by computing the weighted sum

of all consecutive 1
n -horizon returns over each block of size kn,

Ȳi =

kn∑
j=1

g

(
j

kn

)
∆n
i+jY.

The aim of pre-averaging is to control the stochastic orders of the pre-averaged terms via kn. In
particular, we get

X̄i =

kn∑
j=1

g

(
j

kn

)(
X i+j

n
−X i+j−1

n

)
= Op

(√
kn√
n

)
,

and

ε̄i =

kn∑
j=1

g

(
j

kn

)(
ε i+j

n
− ε i+j−1

n

)
= Op

(
1√
kn

)
.

Thus, the impact of the noise is reduced the larger kn is. We put the following condition on kn :

Assumption 3. We suppose that

(i) There exists θ ∈ (0,∞) such that

kn√
n

= θ + o
(
n−1/4

)
. (15)

(ii) For any n ≥ 1, kn divides n.

Assumption 3(i) is standard in the literature (see Jacod et al. (2009)). This choice implies that
the orders of the terms X̄i and ε̄i are balanced and equal to Op

(
n−1/4

)
. An example that satisfies

(15) is kn = [θ
√
n] . Assumption 3(ii) is imposed in this work to deal with the Edgeworth expansion.

Podolskij and Vetter (2009) propose the following estimator of integrated volatility:

Γ̂n =
1

ψkn2

dn−1∑
m=0

Ȳ 2
mkn︸ ︷︷ ︸

RV -like estimator

− ψkn1

2k2
nψ

kn
2

n∑
i=1

(∆n
i Y )2

︸ ︷︷ ︸
bias correction term

, (16)

where dn ≡ n/kn and ψkn1 , ψkn2 are as in (13).
The pre-averaging estimator is then simply the analogue of the realized volatility but based on

pre-averaged returns and an additional term to remove the bias due to noise. As discussed in Jacod
et al. (2009) and Gonçalves et al. (2014), this bias term does not contribute to the asymptotic variance
of Γ̂n. One of our contributions is to show that at second-order this bias term does not impact the
asymptotic distribution of Γ̂n but possibly at third-order its impact may be important.

Under Assumptions 1 and 3, Podolskij and Vetter (2009) show that Γ̂n given by (16) satisfies a
central limit theorem as in (4) with τn =n1/4. In particular, the t-staistic is

Tn =
n1/4(Γ̂n − Γ)√

V̂n
(17)
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where the asymptotic conditional variance V and V̂n (an estimator of V ) are respectively given by

V =
2

θψ2
2

∫ 1

0

(
θψ2σ

2
s +

ψ1

θ
ω2

)2

ds, and V̂n =
2
√
n

3
(
ψkn2

)2

dn−1∑
m=0

Ȳ 4
mkn . (18)

Recently, Gonçalves et al. (2014) have shown that a wild bootstrap procedure applied to the non-
overlapping pre-averaged returns Ȳmkn estimates the asymptotic variance V as well as the asymptotic
mixed normal distribution of the pre-averaged realized volatility estimator Γ̂n. More specifically,
Gonçalves et al. (2014) suggested to resample as follows

Ȳ ∗mkn = Ȳmkn · vm, m = 0, . . . , dn − 1.

where the external random variable vm is an i.i.d. random variable independent of the data and whose
moments are given by a∗q = E∗ [|vm|q]. Then based on bootstrap pre-averaged returns Ȳ ∗mkn , Gonçalves

et al. (2014) defined the bootstrap pre-averaged realized volatility estimator as Γ̂n∗ = 1

ψkn
2

dn−1∑
m=0

Ȳ ∗2mkn .

They show that, as n→∞

T ∗n ≡
n1/4

(
Γ̂∗n−E∗

(
Γ̂∗n

))
√
V̂ ∗n

d∗→ N(0, 1), (19)

where E∗
(

Γ̂∗n

)
=

a∗2
ψkn
2

dn−1∑
m=0

Ȳ 2
mkn

and V̂ ∗n =
(a∗4−a∗22 )
a∗4(ψ

kn
2 )

2

√
n
dn−1∑
m=0

Ȳ ∗4mkn . This justifies constructing bootstrap

percentile-t intervals for integrated volatility in the presence of noise.
Note that although in (16) Γ̂n contains a bias correction term, it is not the case for Γ̂n∗. As they

argue, this is because the bias correction term by definition does not affect at first order the asymptotic
variance of Γ̂n. In the next section we will investigate the impact of the bias correction term on the
first three cumulants of studentized statistic up to o

(
n−1/4

)
.

3 Edgeworth expansion for realized volatility

Here we establish the validity of formal Edgeworth expansions for Γ̂n, where Γ̂n is given either by (5)
or (16). Our results apply to the t-statistic Tn and the bootstrap t-statistic T ∗n defined above. We
start by studying the no noise case.

3.1 Edgeworth expansion without noise

To describe the Edgeworth expansion, we need to introduce additional notation. To facilitate compar-

ison, we keep the notation of GM (2009) whenever possible. For any r, s > 0, we let Rr,s = Rr/R
r/s
s

and σr,s = σr/ (σs)r/s where

Rr = n
r
2
−1

n∑
i=1

|∆n
i Y |

r and σr =

∫ 1

0
σrt dt. (20)

Similarly, we let ar,s = ar/a
r/s
s where as = E[|U |s] such that U ∼ N(0, 1).

Theorem 3.1. Suppose (1) holds with b = 0. Under Assumption 2, conditionally on σ, the second-
order Edgeworth expansions of the studentized statistics Tn and T ∗n defined in (6) and (10), respectively,
are given by
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(1)

P[Tn ≤ x] = Φ(x) + n−1/2q1 (x)φ(x) + o
(
n−1/2

)
, (21)

where

q1 (x) =

(
A1

2
− 1

6
(B1 − 3A1)(x2 − 1)

)
σ6,4, (22)

with

A1 =
a6 − a2a4

a4(a4 − a2
2)1/2

=
4√
2

and B1 =
a6 − 3a2a4 + 2a3

2

(a4 − a2
2)3/2

=
4√
2
.

(2) In addition, suppose that
{

∆n
j Y
∗ = ∆n

j Y · vj , j = 1, . . . , n
}

, where vj ∼ i.i.d. whose moments

are given by a∗s = E∗|vj |s with a∗2(6+δ) <∞ for some δ > 0 and vj’s satisfy Cramer’s condition.

That is, for all r > 0, there exists Mr ∈ (0, 1) such that

|φn,j(t)| ≤Mr for all ‖t‖ ≥ r and n ≥ 1, 1 ≤ j ≤ n, (23)

where φn,j is the characteristic function of
(
n|∆n

j Y |
2v2
j , n

2|∆n
j Y |

4v4
j

)′
under P∗. Then

P∗[T ∗n ≤ x] = Φ(x) + n−1/2q∗1 (x)φ(x) + op

(
n−1/2

)
, (24)

where

q∗1 (x) =

(
A∗1
2
− 1

6
(B∗1 − 3A∗1)(x2 − 1)

)
R6,4,

with

A∗1 =
a∗6 − a∗2a∗4

a∗4(a∗4 − a∗22 )1/2
and B∗1 =

a∗6 − 3a∗2a
∗
4 + 2a∗32

(a∗4 − a∗22 )3/2
.

We note that these results are derived under the same assumptions as in Proposition 4.1 of GM
(2009). Since we have shown the validity of our Edgeworth expansions in this paper, our results justify
GM’s (2009) Proposition 4.1. In contrast to GM (2009) (cf. footnote 3 on p. 289), we do not assume
the existence of Edgeworth expansions derived in (21) and (24), rather we formally verify conditions
under which these Edgeworth expansions exist (since some cumulants may be infinite).

Remark 1. Unfortunately, the best existing choice of vj (i.e, the optimal two-point distribution)
suggested in Proposition 4.5 of GM (2009) does not satisfy condition (23) in part (2) of Theorem
3.1 and hence it is unlikely that the second-order Edgeworth expansions of the bootstrap studentized
statistic T ∗n exists for this choice.

In view of above remark, we suggest a distribution that has a density.

Proposition 3.1. Let Tn and T ∗n be defined as in (6) and (10), respectively. Morover, v1, . . . , vn as
defined in (9) be i.i.d. with vi =

√
ηi where ηi has the gamma density

f (x) =
βα

Γ (α)
xα−1 exp (−βx) I(x>0)

with α = β = 25
6 . Suppose (1) holds with b = 0. Under Assumption 2, conditionally on σ, as n→∞

sup
x∈R
|P∗ [T ∗n ≤ x]− P [Tn ≤ x]| = op

(
n−1/2

)
.

9



Remark 2. The square root term in the optimal choice of the external random variable in Proposition
3.1 suggests the following modification of the wild bootstrap procedure proposed by GM (2009). We
propose to resample directly the square returns (∆n

i Y )2 instead of the raw returns ∆n
i Y :

(∆n
i Y
∗)2 = (∆n

i Y )2 · |ηi| , i = 1, . . . , n, (25)

where as before the external random variable ηi is an i.i.d. random variable independent of the data and
whose moments are given by a∗q = E∗ [|ηi|q]. For the second-order accuracy of the bootstrap, GM(2009)
imposed conditions on the first even moments (a∗2, a

∗
4 and a∗6) of the external random variable v,

whereas with the new wild bootstrap we require conditions on the first three moments (a∗1, a
∗
2 and a∗3)

of ηi. Then, the gamma distribution choice of ηi defined in Proposition 3.1 provides a second-order
asymptotic refinement.

So far we have focused on the case b = 0. In the following remark, we allow a non-zero drift term.

Remark 3. Suppose (1) holds with b 6= 0. Under Assumption 2, conditionally on σ, the second-order
formal Edgeworth expansion of the studentized statistic Tn defined in (6) (assuming the corresponding
Edgeworth expansion exists) is given by

P[Tn ≤ x] = Φ(x) + n−1/2q1 (x)φ(x) + o
(
n−1/2

)
, (26)

where

q1 (x) =

(
A1

2
− 1

6
(B1 − 3A1)(x2 − 1)

)
σ6,4 −

b2

σ̄4
, (27)

with A1 and B1 defined as in Theorem 3.1, in particular A1 = B1 = 4/
√

2.

Assuming that the corresponding Edgeworth expansions exist, Remark 3 emphasized that the
effect of the drift on Tn is not negligible at second-order. In particular, a comparison of equations (22)

and (27) shows that an additional term − b2

σ̄4
shows up in (27) when b 6= 0. At first-order one can show

that the effect of the drift on Tn is Op
(
n−1/2

)
, that is negligible.

Remark 4. As highlighted in GM (2009), results in Theorems 3.1 are not special cases of Liu (1988).
She derived the second-order Edgeworth expansions of the studentized statistic defined by

Tn =

√
n
(
n−1

∑n
i=1Zi−n−1

∑n
i=1 E [Zi]

)√
V̂n

,

where Z1, . . . ,Zn are a set of independent but not identical random observations with the sample
variance V̂n = n−1

∑n
i=1Z2

i −
(
n−1

∑n
i=1Zi

)2
. She also showed the second-order properties of Wu’s

(1986) weighted bootstrap, the so called wild bootstrap procedure. The differences between Liu’s (1988)
work and results in Theorem 3.1 are at least twofold. First, her results apply to t and bootstrap t
statistics that are both studentized by the sample variance. In particular, in part (1) of Theorem 3.1,
we would be able to use Liu’s (1988) results in the context of realized volatility (with no noise), if
instead of using the studentized statistics t defined in (6) we have considered the following t statistic:

Tn =

√
n (R2−Γ)√
R4 −R2

2

, (28)

where Rr (with r = 2, 4) is given by (20). It is easy to see that, letting Zi ≡ n|∆n
i Y |

2, we can write
R2 = n−1

∑n
i=1Zi and the sample variance estimator of

√
nR2, V̂n = R4 − R2

2 = n−1
∑n

i=1Z2
i −(

n−1
∑n

i=1Zi
)2

. Unfortunately, we cannot use R4−R2
2 to studentize realized volatility when volatility

10



is time-varying. Second, Liu’s (1988) wild bootstrap is applied on centered observations. In particular,
in order to use Liu’s (1988) second-order Edgeworth expansions for the bootstrap t statistic, the wild
bootstrap observations should be resampled as follows

Z∗i = n−1
n∑
i=1

Zi −

(
Zi − n−1

n∑
i=1

Zi

)
vi, i = 1, . . . , n,

where Zi = n|∆n
i Y |

2 and vi ∼ i.i.d with mean 0 and variance 1. We observe that this is different from
GM’s (2009) wild bootstrap method suggested for realized volatility. The t-statistics defined in (6) and
(10) are our statistics of interest here and these are not covered by results in Liu (1988).

3.2 Edgeworth expansion for the pre-averaging estimator

First, we introduce notations. For any r, s > 0, we let R̃r,s = R̃r/R̃
r/s
s and σ̃r,s = σ̃r/ (σ̃s)r/s where

R̃r =
1(

ψkn2

)r/2n r
4
− 1

2

dn−1∑
m=0

∣∣Ȳmkn∣∣r, and σ̃r =

∫ 1

0

(
σ2
t +

ω2ψ1

θ2ψ2

)r/2
dt. (29)

Furthermore, we denote

s2
i ≡

kn−1∑
j=1

g2

(
j

kn

)∫ (i−1)kn+j
n

(i−1)kn+j−1
n

σ2
t dt. (30)

Note that, conditionally on σ, s2
i is the expectation of

(
X̄(i−1)kn

)2
. We also let

Zdn,i =
dn

ψkn2

(
Ȳ(i−1)kn

)2
, µdn,i =

dn

ψkn2

(
s2
i +

ψkn1 ω2

kn

)
, Bdn,i =

ψkn1 dn

2k2
nψ

kn
2

ikn−1∑
j=(i−1)kn+1

(∣∣∆n
j ε
∣∣2 − 2ω2

)
.

To state our Edgeworth expansion results for pre-averaged realized volatility, we require a slightly
stronger condition on the volatility σ than Assumption 2. Specifically, we impose:

Assumption 4. The volatility σ is a càdlàg process, bounded away from zero, and satisfies the fol-
lowing regularity condition: For some δ > 0, we have

1

ψkn2

dn∑
i=1

s2
i −

∫ 1

0
σ2
t = O

(
n−1/2−δ

)
.

To ensure this assumption, one can for example suppose that σt is pathwise Lipschitz continuous.
Next, we also require Cramer’s condition for Ãm,i. In particular, we assume:

Assumption 5. For all r > 0, there exists Mr ∈ (0, 1) such that

|φdn,i(t)| ≤Mr for all ‖t‖ ≥ r and dn ≥ 1, 1 ≤ i ≤ dn,

where φdn,i is the characteristic function of (Zdn,i − µdn,i −Bdn,i, Z2
dn,i
− E[Z2

dn,i
])′.

Under above conditions, the following theorem holds true.

Theorem 3.2. Suppose (1) holds with b = 0. Under Assumptions 1, 3, 4 and 5 and conditionally
on σ, the formal second-order Edgeworth expansions of the studentized statistics Tn and T ∗n defined in
(17) and (19), respectively, are given by

11



(1)

P[Tn ≤ x] = Φ(x) + n−1/4q1 (x)φ(x) + o
(
n−1/4

)
, (31)

where

q1 (x) =

(
A1

2
− 1

6
(B1 − 3A1)(x2 − 1)

)
σ̃6,4

with A1 and B1 defined as in Theorem 3.1, in particular A1 = B1 = 4/
√

2.

(2) In addition, suppose that
{
Ȳ ∗mkn = Ȳmkn · vm, m = 0, . . . , dn − 1

}
, where vm ∼ i.i.d whose mo-

ments are given by a∗s = E∗ [|vm|s] with a∗2(6+δ) < ∞ for some δ > 0 and vm’s satisfy Cramer’s

condition. Namely, for all r > 0, there exists Mr ∈ (0, 1) such that

|φdn,m(t)| ≤Mr for all ‖t‖ ≥ r and dn ≥ 1, 0 ≤ m ≤ dn − 1,

where φdn,m is the characteristic function of
(
dn|Ȳmkn |

2
v2
m, d

2
n|Ȳmkn |

4
v4
m

)′
under P∗. Then

P∗[T ∗n ≤ x] = Φ(x) + n−1/4q∗1 (x)φ(x) + op

(
n−1/4

)
, (32)

where

q∗1 (x) =

(
A∗1
2
− 1

6
(B∗1 − 3A∗1)(x2 − 1)

)
R̃6,4

with A∗1 and B∗1 defined as in Theorem 3.1.

Theorem 3.2 extends Proposition 4.1 of GM (2009) to the noisy setting by utilizing the pre-averaged
realized volatility estimator of Podolskij and Vetter (2009). In contrast to the no noise case, we require
the Cramer’s condition for the validity of Theorem 3.2 in addition to the regularity conditions on σ.
The verification of this Cramer’s condition under even the i.i.d. noise assumption as in Assumption
1 may involve nontrivial technical work. The added challenge is readily illustrated by computing the
distribution of Zm,i − Bm,i in a toy model where εt is i.i.d. N(0, ω2). It is easy to see that in this

case Zm,i
d
= µm,i · χ2 (1) where χ2 (1) denotes the standard chi-squared distribution with 1 degree of

freedom. Whereas Bm,i
d
=

(
ψkn
1 dn

2k2nψ
kn
2

ω2

)
·
kn−1∑
i=1

Ũ2
i , where (Ũi)

kn−1
i=1 are one-dependent standard normal

random variables with Cov
(
Ũi, Ũi−1

)
= −1. In addition, Zm,i and Bm,i are dependent. Thus, in

this relatively simple context one could ensure the validity of the Cramer’s condition by showing
that Zm,i − Bm,i have a nonlattice distribution, something we have not attempted to prove in this
paper. In presence of noise, it would clearly be desirable to have a formal proof of the verification of
Cramer’s condition, but this is beyond the scope of this paper. In this section, our approach is similar
to those used, e.g., by Mammen (1993), Davidson and Flachaire (2001) and GM (2009). Our main
focus is on using formal Edgeworth expansions to explain the superior finite sample properties of the
wild bootstrap procedure applied on the non-overlapping pre-averaged returns as recently studied by
Gonçalves et al. (2014). Note however that in contrast to GM (2009) (under no noise), we explicitly
provide (high level) sufficient conditions that ensure the validity of our Edgeworth expansions in the
noisy setting.

Corollary 3.1. Let Tn and T̃n be defined as

Tn =
n1/4

(
Γ̂n−Γ

)
√
V̂n

and T̃n =
n1/4

(
Γ̂n + b̃n−

(
Γ+b̃

))
√
V̂n

,
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where Γ̂n and V̂n are given by (16) and (18), respectively and b̃n =
ψkn
1

2k2nψ
kn
2

n∑
i=1

(∆n
i Y )2, b̃ = ψ1

θ2ψ2
ω2.

Suppose (1) holds with b = 0. Under Assumptions 1, 3, 4 and 5, and conditionally on σ, the formal
second-order Edgeworth expansions of the studentized statistics Tn and T̃n are exactly the same.

Remark 5. The bias term in the pre-averaging estimator does not impact the second-order Edgeworth
expansion. Here, we provide the main idea behind this via a toy example involving normalized i.i.d.
statistics. Let (Mn,i)

n
i=1, (Nn,i)

n
i=1 be two triangular arrays of row-wise i.i.d. random variables with

mean zero and order O(1). Let σ2
n = E[M2

n,1] and µn,3 = E[M3
n,1]. Define

Sn =
1

σn
√
n

n∑
i=1

Mn,i, and Un =
1

σn
√
n

n∑
i=1

(
Mn,i +

1√
n
Nn,i

)
.

It is well-known that, under the existence of third moments and Cramer’s condition, the second-order
Edgeworth expansion of Sn is

Φ(x) +
1√
n

µn,3
6σ3

n

φ(x),

where Φ(x) and φ(x) are the distribution and the density functions of the standard normal. It turns
out that the term Un has also the same Edgeworth expansion if Mn,i and Nn,i are “weakly” correlated.
Let’s assume that E[Mn,1Nn,1] = O(n−1/2). Then

s2
n ≡ V ar(Mn,1 + n−1/2Nn,1) = σ2

n + 2n−1/2E[Mn,1Nn,1] + n−1E[N2
n,1] = σ2

n +O(n−1). (33)

Now, we decompose Un as

Un =
1

sn
√
n

n∑
i=1

(
Mn,i +

1√
n
Nn,i

)
+

(
1

σn
√
n
− 1

sn
√
n

) n∑
i=1

(
Mn,i +

1√
n
Nn,i

)
≡ Ûn +Rn.

We note that the term Rn does not contribute to the second-order Edgeworth expansion of Un due to
(33). And Ûn has the same form as Sn (i.e., a normalized statistic) and hence possesses the same
second-order Edgeworth expansion in view of

E
[(
Mn,1 + n−1/2Nn,1

)3
]

= µn,3 +O(n−1/2) and s3
n = σ3

n +O(n−1/2).

Proposition 3.2. Let Tn and T ∗n be defined as in (17) and (19), respectively. Suppose that vi has the
same distribution as in Proposition 3.1 and (1) holds with b = 0. Under Assumptions 1, 3, 4 and 5,
conditionally on σ, as n→∞, we get

sup
x∈R
|P∗ [T ∗n ≤ x]−P [Tn ≤ x]| = op

(
n−1/4

)
.

Proposition 3.2 shows the second-order validity of the wild bootstrap method in the noisy setting
and hence extends the result obtained in Proposition 3.1.

3.3 Edgeworth corrected interval for realized volatility estimators

Our aim in this section is to explain how one can use the Edgeworth expansions derived in Sections
3.1 and 3.2 to construct valid confidence intervals for integrated volatility with improved coverage
probabilities. Our approach follows Hall (1992), see also GM (2008). In particular, based on Edgeworth
expansions of Γ̂n, we define confidence intervals for Γ corrected by these Edgeworth expansions. Here,
we consider one-sided Edgeworth expansion corrected intervals for Γ.
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One can show that (see, e.g., Podolskij and Vetter (2009)), as n→∞

R̃r,s
P→ ar,sσ̃r,s.

Thus, when the log price process follows (1) with b = 0, we propose the following feasible (empirical)
version of q1 (x),

q̂1 (x) =
4(2x2 + 1)a−1

6,4R̃6,4

6
√

2
. (34)

A one-sided feasible Edgeworth expansion corrected 100(1− α)% level interval for Γ is given by:

ICEE−1
feas,1−α =

(
−∞, Γ̂n − τ−1

n

√
V̂nzα + τ−2

n

√
V̂nq̂1 (zα)

)
. (35)

In contrast to the conventional intervals based on the normal approximation, this interval contains a

skewness correction term equal to τ−2
n

√
V̂nq̂1 (zα) . Here, we do not pursue the derivation of a two-sided

symmetric feasible Edgeworth expansion corrected 100(1− α)% level interval for Γ. The main reason
is because for this interval, in contrast to ICEE−1

feas,1−α would involve in addition to a skewness term a

kurtosis correction term which is not available under results derived in Theorems 3.1 and 3.2.2

Remark 6. Our setting rules out leverage effects, which is the case when σ and W are correlated.
Indeed, under no leverage assumptions, it is possible for us to condition on the path of σ and then
use the independence of increments. However, if σ and W are correlated, we only have a martingale
difference sequence instead of the independence property and hence this approach breaks down. Recent
work of Yoshida (2013) develops a general theory to deal with Edgeworth expansions involving mixed
normal limits. We note that this work relies on very technical tools from Malliavin calculus which are
beyond the scope of this paper. Podolskij and Yoshida (2014) apply this theory within the framework
of power variations of diffusion processes. Although the last work allows leverage effects, it is assumed
that σ is driven (only) by the original Brownian motion W, thereby excluding stochastic volatility
models. While these works are limited to the setting of continuous volatility, our setting allows (in
particular, in the no noise case) discontinuous volatility paths.

4 Monte Carlo simulations

Our aim here is to compare the finite sample performance of the Edgeworth expansion corrected
intervals in comparison to the feasible asymptotic theory-based intervals and the bootstrap method of
Gonçalves et al. (2014) using noisy diffusion model. The design of our Monte Carlo study is roughly
identical to that used by Gonçalves et al. (2014) with some minor differences. In particular, we only
consider the two-factor stochastic volatility (SV2F) model analyzed by Gonçalves et al. (2014) since
it is more empirically relevant and exhibits overall larger coverage distortions than the one-factor
stochastic volatility model. Here we briefly describe the Monte Carlo design we use.

2We refer to Hall (1992), GM (2008) and Zhang et al. (2011) for further details that explain why these intervals are
expected to outperform the conventional intervals based on the normal approximation. In the context of no noise, GM
(2008) also derived a two-sided symmetric feasible Edgeworth expansion corrected interval for Γ.
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To simulate log-prices we consider the following SV2F model, where3

dXt = bdt+ σtdWt,

σt = s-exp (β0 + β1τ1t + β2τ2t) ,

dτ1t = α̃1τ1tdt+ dB1t,

dτ2t = α̃2τ2tdt+ (1 + φτ2t) dB2t,

corr (dWt, dB1t) = ϕ1, corr (dWt, dB2t) = ϕ2.

Our baseline model sets b = 0 and ϕ1 = ϕ2 = 0 which is compatible with the assumption of no leverage
and no drift. While the theory of the Edgeworth expansion developed in this paper does not allow the
leverage effect, we have also studied this setup which is nevertheless an obvious interest in practice
and set b = 0.03 and ϕ1 = ϕ2 = −0.3. In both cases, we follow Huang and Tauchen (2005) and set
β0 = −1.2, β1 = 0.04, β2 = 1.5, α̃1 = −0.00137, α̃2 = −1.386, and φ = 0.25. We initialize the two
factors at the start of each interval by drawing the persistent factor from its unconditional distribution,

τ10 ∼ N
(

0, −1
2α̃1

)
, and by starting the stronlgly mean-reverting factor at zero. For i = 1, . . . , n, we

let the market microstructure noise be defined as ε i
n
∼ i.i.d.N

(
0, ω2

)
. The size of the noise is an

important parameter. We follow Barndorff-Nielsen et al. (2008) and model the noise magnitude as

ξ2 = ω2/
√∫ 1

0 σ
4
sds. We fix ξ2 equal to 0.0001, 0.001 and 0.01 and let ω2 = ξ2

√∫ 1
0 σ

4
sds. These values

are motivated by the empirical study of Hansen and Lunde (2006), who investigate 30 stocks of the
Dow Jones Industrial Average.

We simulate data for the unit interval [0, 1] and normalize one second to be 1/23400, so that [0, 1]
is thought to span 6.5 hours. The observed Y process is generated using an Euler scheme. We then
construct the 1

n -horizon returns ∆n
i Y ≡ Yi/n − Y(i−1)/n based on samples of size n.

The pre-averaging approach requires the choice of the window length kn = θ
√
n over which the

pre-averaging of returns is done. In our simulations, we follow Christensen et al. (2010) and use a
conservative choice of kn (this corresponds to let θ = 1). We also follow the literature and use the
weight function g (x) = min (x, 1− x) to compute the pre-averaged returns. In order to reduce finite
sample biases associated with Riemann integrals, we follow Jacod et al. (2009) and Hautsch and
Podolskij (2013) and use the finite sample adjustments version of the pre-averaged realized volatility
estimator,

Γ̂n =

(
1− ψkn1

2nθ2ψkn2

)−1(
1

ψkn2

dn−1∑
m=0

Ȳ 2
mkn −

ψkn1

2k2
nψ

kn
2

n∑
i=1

(∆n
i Y )2

)
,

where ψkn1 = kn
kn∑
i=1

(
g
(
i
kn

)
− g

(
i−1
kn

))2
and ψkn2 = 1

kn

kn∑
i=1

g2
(
i
kn

)
.

Tables 1 gives the actual rates of 95% one-sided confidence intervals of integrated volatility for
the SV2F model, computed over 10,000 replications. Results are presented for eight different samples
sizes: n = 23400, 11700, 7800, 4680, 1560, 780, 390 and 195, corresponding to “1-second”, “2-second”,
“3-second”, “5-second”, “15-second”, “30-second”, “1-minute” and “2-minute” frequencies. In our
simulations, bootstrap intervals use 999 bootstrap replications for each of the 10,000 Monte Carlo
replications. We consider one-sided bootstrap percentile-t interval computed at the 95% level given
by (11). To generate the bootstrap data we use two different external random variables.

WB1 The two point distribution initially proposed by GM (2009), where vj ∼ i.i.d. such that:

vj =

{
1
5

√
31 +

√
186, with probability p = 1

2 −
3√
186

−1
5

√
31−

√
186, with probability 1− p

,

3The function s-exp is the usual exponential function with a linear growth function splined in at high values of its
argument: s-exp(x) = exp(x) if x ≤ x0 and s-exp(x) = exp(x0)

x0

√
x0 − x2

0 + x2 if x > xo, with x0 = log(1.5).
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for which we have µ∗2 = 1 and µ∗4 = 31/25.

WB2 A two point distribution vj ∼ i.i.d. such that:

vj =


(

2
3

)1/4 −1+
√

5
2 , with probability p =

√
5−1

2
√

5(
2
3

)1/4 −1−
√

5
2 , with probability 1− p =

√
5+1

2
√

5

,

for which µ∗2 = 2
√

2/3 and µ∗4 = 10/3.

WB3 The new optimal nonlattice distributiont vj ∼ i.i.d. with the same distribution as in Proposition
3.1.

Note that all of these choices of vj are asymptotically valid when used to construct bootstrap
percentile-t intervals. As we formally show in this paper, the choice of WB3 is still optimal to provide
a second-order asymptotic refinement for the wild bootstrap method applied on the non-overlapping
pre-averaged returns. The wild bootstrap based on WB1 is able to match the first and third cumulants
of pre-averaged realized volatility, but as a lattice distribution may not satisfy the Cramer’s condition.
Based on simulations results, Gonçalves et al. (2014) advocated the use of WB2. In Table 1, “CLT”
refers to the value predicted by the normal asymptotic, “EE-est” refers to the value based on Edgeworth
expansion corrected intervals, whereas “WB1”, “WB2” and “WB3” refer to the value predicted by
the bootstrap method based on external random variable WB1, WB2 and WB3, respectively.

Starting with the baseline model: no leverage and no drift, an inspection of Table 1 suggests that
all intervals tend to undercover. The degree of undercoverage is especially large for smaller values of n,
when sampling is not too frequent. Results seem to be not very sensitive to the noise magnitude. One-
sided confidence intervals based on the asymptotic normal theory (without higher order correction) is
not adequate to capture the skewness in the t statistics (as confirmed by simulations not reported here).
Hounyo et al. (2014) (cf. Session 3) also found similar pattern for symmetric two-sided confidence
intervals. See Hounyo et al. (2014) for more results on the comparison between this model from the
viewpoint of skewness and kurtosis.

Overall, the WB2 does very well for small samples (n = 195, 390 and 780) whereas WB1 and
WB3-based intervals do very well for large samples (n = 11700 and 23400). For instance, when
ξ2 = 0.0001, WB2 has a coverage probability equal to 86.87% when n = 195, whereas WB1 and WB3
cover integrated volatility only 77.56% and 80.06% of the time, respectively. These rates increase to
93.59%, 95.90% and 92.41%, respectively, for n = 23400. Results also confirm that, our expansion
theory provides a good approximation of the small sample distribution of Podolskij and Vetter’s (2009)
pre-averaged realized volatility estimator. In particular, for all sample sizes consider here, the intervals
based on the Edgeworth corrections (EE-est) have improved properties relatively to the conventional
intervals based on the normal approximation. Contrary to the bootstrap, the Edgeworth approach
is an analytical approach that is easily implemented, without requiring any resampling of one’s data.
A comparison between the bootstrap (WB1, WB2 and WB3) and the Edgeworth expansion shows
that the bootstrap outperforms the Edgeworth corrected intervals. For instance, when ξ2 = 0.001,
and we resample every 5-second (n = 4680), the CLT-based interval has a coverage probability equal
to 84.82%, whereas EE-est based interval covers integrated volatility 89.51% of the time. For the
bootstrap, these rates increase to 93.59%, 92.27% and 90.09% for WB1, WB2 and WB3, respectively.

Notice, however that results based on WB1 and WB3 intervals are close, but slightly different
especially for small samples (n = 195, 390 and 780). This observation suggests that, the dominance
of WB1 by WB2 for n small is not due to the possibly non invalidity of the Edgeworth expansions for
realized volatility based on WB1, i.e. the optimal two-point distribution wild bootstrap. The good
performance of WB2 over WB1 and WB3 in smaller sample size is similar to the superior performance
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of the i.i.d. bootstrap over the optimal two-point distribution WB1 in GM (2009). Indeed, Monte Carlo
simulations in GM (2009) show that despite the fact that the i.i.d. bootstrap does not theoretically
provide an asymptotic refinement for one-sided confidence intervals when the volatility is stochastic,
this latter outperforms WB1. Accordingly, it would be useful to develop a new theory that provides a
more reliable guide to gauge the finite sample performance of the bootstrap for financial high-frequency
data.

A similar pattern is observed for all intervals in presence of drift and leverage effects. For all
methods, results are robust to drift and leverage effects. In particular, despite the fact that our
Edgeworth expansion corrected intervals do not theoretically take into account these effects, EE-est
outperform the CLT-based intervals in presence of drift and leverage effects.
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Table 1. Coverage rate of nominal 95 %

n No Leverage and No Drift With Leverage and Drift
CLT EE-est WB1 WB2 WB3 CLT EE-est WB1 WB2 WB3

ξ2 = 0.0001

195 67.98 76.32 77.56 86.87 80.06 68.77 76.23 77.98 86.84 80.45
390 76.07 82.83 85.71 90.01 85.17 76.01 83.05 86.16 90.24 85.50
780 78.44 85.11 88.65 90.64 86.13 77.98 84.51 88.22 90.33 87.10
1560 83.21 88.72 92.32 92.42 89.56 83.63 88.78 92.54 92.52 89.57
4680 84.73 89.37 93.37 92.19 90.20 84.65 89.47 93.50 92.46 90.41
7800 86.31 90.60 94.42 93.05 91.29 86.32 90.63 94.47 93.06 91.57
11700 87.07 91.44 95.17 93.47 91.87 87.70 91.69 95.10 93.79 92.05
23400 88.26 91.86 95.90 93.59 92.41 88.43 92.04 95.85 93.80 92.16

ξ2 = 0.001

195 68.20 76.71 78.13 86.98 80.42 68.76 76.60 78.67 87.08 80.42
390 76.21 83.20 85.86 89.88 85.36 76.06 83.40 86.19 90.11 85.58
780 78.71 85.19 88.85 90.69 86.16 77.86 84.59 88.30 90.28 86.97
1560 83.39 88.67 92.24 92.34 89.65 83.55 88.82 92.53 92.75 89.85
4680 84.82 89.51 93.59 92.27 90.09 84.69 89.77 93.58 92.65 90.36
7800 86.38 90.93 94.37 93.16 91.25 86.31 90.66 94.46 93.10 91.76
11700 87.16 91.39 95.10 93.32 91.94 87.66 91.65 95.10 93.79 92.15
23400 88.40 91.89 95.70 93.58 92.36 88.40 91.89 95.80 93.82 92.10

ξ2 = 0.01

195 70.55 78.70 81.07 87.61 81.11 70.21 78.66 80.65 87.09 81.25
390 77.63 84.36 87.64 90.46 86.24 77.35 84.14 87.88 90.42 86.65
780 79.84 86.12 89.98 91.16 86.56 79.21 85.22 89.29 90.13 87.13
1560 84.09 89.24 92.98 92.49 90.48 84.00 89.33 93.15 92.54 90.45
4680 85.31 90.18 94.18 92.87 90.54 85.43 90.20 94.35 93.02 90.88
7800 86.82 91.02 94.88 93.23 91.53 86.81 90.60 94.56 92.94 91.59
11700 87.59 91.35 95.23 93.35 92.20 88.05 91.72 95.05 93.50 92.38
23400 88.76 92.05 95.87 93.53 92.86 89.01 92.47 95.95 94.02 92.43

Notes: CLT-intervals based on the Normal; EE-est refers to the value based on Edgeworth expansion corrected
intervals; WB1 wild bootstrap intervals based on the external random variable WB1; WB2 wild bootstrap
intervals based on the external random variable WB2; WB3 wild bootstrap intervals based on the external
random variable WB2. Ten thousand Monte Carlo trials with 999 bootstrap replications each.
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5 Conclusion

The main contribution of this paper has been to establish the theoretical validity of the Edgeworth
expansions for realized volatility estimators. Furthermore, we propose a new optimal nonlattice dis-
tribution for the wild bootstrap suggested by GM (2009) is able to provide a second-order asymptotic
refinement. In the presence of microstructure noise, based on our Edgeworth expansions, we show that
the new optimal choice proposed in the absence of noise is still valid in noisy data for the pre-averaged
realized volatility estimator proposed by Podolskij and Vetter (2009). Finally, we also propose con-
fidence intervals for integrated volatility that incorporate an analytical correction for skewness as
alternative method of inference. Thus, we extend existing results in GM (2008) by allowing for mi-
crostructure noise. The results of our Monte Carlo study show that the Edgeworth-based coverage
probabilities provide very accurate approximations to the sample ones, compared to the normal based
coverage probabilities. A comparison between the bootstrap and the Edgeworth expansion shows that
the bootstrap-based intervals outperform the Edgeworth corrected intervals.

In the process of developing the expansions for realized volatility estimators, we also shows how
to derive the second-order Edgeworth expansions of a certain form of studentized statistic t, where
observations are independent but not identically distributed with a specific heterogeneity properties
(Proposition 6.1 in the Appendix). This result should have applications to other situations.

Establishing the validity of the Edgeworth expansions for realized volatility estimators under gen-
eral conditions which allow drift and leverage effects as for instance in Barndorff-Nielsen, Graversen,
Jacod, and Shephard (2006) is a promising extension of this work. Another important extension is to
prove similar results for others existing noise and/or jump robust realized volatility measures. These
extensions are left for future research.

6 Appendix: proofs of the validity of Edgeworth expansion

6.1 Auxiliary results

The main goal of this section is to prove Proposition 6.1. In Section 6.2, we will show that the main
results of this paper belong to the framework of Proposition 6.1.

In this section, we deal with 2-dimensional random vectors. We denote transposes by ′ and for
x = (x1, x2)′ ∈ R2 and ν = (ν1, ν2)′ ∈ N2 we use the notations

‖x‖ =
√
x2

1 + x2
2 and xν = (x1)ν1(x2)ν2 .

For the mean zero triangular array (Am,i), m ≥ 1, 1 ≤ i ≤ m and p ≥ 2, we denote

ρm,p = m−1
m∑
i=1

E[‖Am,i‖p].

Below we provide sufficient conditions for the validity of the Edgeworth expansion.

Assumption 6. Let (Am,i)
m
i=1,m ≥ 1, be row-wise independent triangular array of 2-dimensional

random vectors with mean zero such that

(i) For all m ≥ 1, we have

1

m

m∑
i=1

E[Am,iA
′
m,i] = I2.

(ii) There exists δ > 0 and C > 0 such that E[‖Am,i‖3+δ] ≤ C for all i, m.
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(iii) There exists M ∈ (0, 1) such that

|φm,i(t)| ≤M for ‖t‖ ≥ (16ρm,3)−1 and m ≥ 1, 1 ≤ i ≤ m,

where φm,i is the characteristic function of Am,i.

We note that some initial Hermite polynomials are given by

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x.

For 1 ≤ i ≤ m, and ν ∈ N2 we define

χν,i = E [(Am,i)
ν ] and χ̄mν = m−1

m∑
i=1

χν,i.

We recall that the 2-dimensional polynomial appearing in the second-order Edgeworth expansion is
given by (see Section 7 in Bhattacharya and Rao (1986))

p1(t, s) =

3∑
j=0

χ̄m(3−j,j)H3−j(t)Hj(s)

(3− j)! j!
. (36)

Now, we are ready to state the following classical result on Edgeworth expansions.

Lemma 6.1. Suppose that the 2-dimensional random vectors (Am,i)
m
i=1 satisfy Assumption 6. Let

Sm =
1√
m

m∑
i=1

Am,i.

Then, the second-order Edgeworth expansion of Sm is given by

P [Sm ∈ (−∞, y]× (−∞, z]] =

∫ y

−∞

∫ z

−∞

(
1 +m−1/2p1(t, s)

)
φ(s, t)dsdt+ o(m−1/2)

uniformly in x.

Proof. The result follows from Theorem 6.2 in Lahiri (2003) as it is easy to show that Assumption 6
satisfies the conditions of Theorem 6.2 in Lahiri (2003).

Now, we are ready to describe the form of the t-statistic. We define

tm =

1√
m

∑m
i=1(Zm,i − µm,i −Bm,i) + 1√

m
bm

√
Vm

(37)

with

Vm =
a4 − a2

2

a4

1

m

m∑
i=1

Z2
m,i,

where the structure of Zm,i, µm,i, Bm,i, bm and as are provided below. To prove the Edgeworth
expansion for tm, we need the following conditions.

Assumption 7. We suppose that tm in (37) satisfies
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(i) For each m ≥ 1, the random vectors (Zm,i, Bm,i)
m
i=1 are independent and Zm,i has the represen-

tation Zm,i = (αm,ium,i + βm,i)
2 , where αm,i and βm,i are real triangular arrays and um,i ∼ U

for all i, m. We denote as = E[|U |s] and impose a2 > 0. In addition, we have E[Bm,i] = 0 for
all i, m.

(ii) Let’s denote µm,i ≡ E [Zm,i] . There exists C > 0 such that for all i and m, we obtain∣∣∣∣E[Z2
m,i]−

a4

a2
2

µ2
m,i

∣∣∣∣+

∣∣∣∣E[Z3
m,i]−

a6

a3
2

µ3
m,i

∣∣∣∣+ |E[Zm,iBm,i]|+
∣∣E[Z2

m,iBm,i]
∣∣ ≤ C

m

and
E[|Zm,i|2(3+δ)] + E[|

√
mBm,i|3+δ] ≤ C.

(iii) For all r > 0, there exists Mr ∈ (0, 1) such that

|φm,i(t)| ≤Mr for all ‖t‖ ≥ r and m ≥ 1, 1 ≤ i ≤ m,

where φm,i is the characteristic function of (Zm,i − µm,i −Bm,i, Z2
m,i − E[Z2

m,i])
′.

(iv) There exists ν > 0 such that for all m ≥ 1 we have

ν ≤ 1

m

m∑
i=1

E[Z2
m,i] and ν ≤ min(v2

m, w
2
m − u2

m)

where

v2
m =

1

m

m∑
i=1

V ar(Zm,i − µm,i −Bm,i), Em =
1√
mvm

m∑
i=1

(Zm,i − µm,i −Bm,i),

Fm =
a4 − a2

2

a4

1√
m

m∑
i=1

(
Z2
m,i − E[Z2

m,i]
)
, um = Cov(Em, Fm), w2

m = V ar(Fm).

(v) There exists b̂ ∈ R and C > 0 such that the real sequence (bm)m≥1 satisfies∣∣∣∣ bmvm − b̂
∣∣∣∣ ≤ C√

m
.

Note that when um,i ∼ N(0, 1), first few even moments of um,i are given by a2 = 1, a4 = 3 and
a6 = 15. We will also use analogous results with the proposition below for the bootstrap, which may
have different moments as.

Before we state the main result we need a final notation. For each p ≥ 1, we denote

κm,p =
1

m

m∑
i=1

(µm,i)
p.

Proposition 6.1. Under Assumption 7, we obtain

P [tm ≤ x] = Φ(x) +m−1/2

[(
A1

2
− 1

6
(B1 − 3A1)(x2 − 1)

)
κm,3

(κm,2)3/2
− b̂

]
φ(x) + o(m−1/2)

uniformly in x, where

A1 =
a6 − a2a4

a4(a4 − a2
2)1/2

and B1 =
a6 − 3a2a4 + 2a3

2

(a4 − a2
2)3/2

.
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Proof. It will be convenient to write the studentized statistic in the following way:

tm =
Em +m−1/2bm/vm√

Vm/v2
m

≡ Ẽm√
Vm/v2

m

.

Using Taylor’s series for f(x) = x−1/2 of Vm/v
2
m around 1, we obtain

1√
Vm/v2

m

= 1− Vm − v2
m

2v2
m

+
3

8(ξm)5/2

(Vm − v2
m)2

v4
m

where ξm is between 1 and Vm/v
2
m. Next, we observe that Assumption 7(ii) implies∣∣∣∣(Vm − v2

m

)
− 1√

m
Fm

∣∣∣∣ ≤ C

m
(38)

for some C > 0. Using above identities and Assumption 7(v), we may decompose:

tm = Um +m−1/2b̂+Rm (39)

where the leading term is

Um = Em −
1

2
√
m

EmFm
v2
m

,

whereas the remainder term is given by

Rm =
−Ẽm
2v2
m

(
Vm − v2

m −
1√
m
Fm

)
+

3Ẽm

8(ξm)5/2

(Vm − v2
m)2

v4
m

+

(
1√
m

(
bm
vm
− b̂
)
− bmFm

2mv3
m

)
≡ R(1)

m +R(2)
m +R(3)

m . (40)

It suffices to show

P [Um ≤ x] = Φ(x) +m−1/2

(
A1

2
− 1

6
(B1 − 3A1)(x2 − 1)

)
κm,3

(κm,2)3/2
φ(x) + o(m−1/2), (41)

P[tm ≤ x] = P[Um +m−1/2b̂ ≤ x] + o(m−1/2), (42)

uniformly in x, as the expansion in (41) easily implies that the expansion for Um + m−1/2b̂ is the
one stated in Proposition 6.1. First, we prove (41). Note that we can not apply Lemma 6.1 di-
rectly to (Em, Fm), because it may not possess I2 covariance. For this purpose, we apply a certain
transformation and denote

Gm =
−umEm + Fm√

w2
m − u2

m

.

We want to use Lemma 6.1 with (Em, Gm) and thus need to show that Assumption 6 is satisfied. We
easily observe that parts (i) and (ii) are satisfied. Concerning part (iii), we note that the components
of (Em, Gm) can be written in the form C̃m(Zm,i − µm,i −Bm,i, Z2

m,i − E[Z2
m,i])

′ where

C̃m =

( 1
vm

0
−um

vm
√
w2

m−u2m

a4−a22
a4
√
w2

m−u2m

)
.

Also, given (3 + δ) moments of Z2
mi

and Bm,i in Assumption 7(ii), we get (16ρm,3)−1 ≥ r1 > 0 where
ρm,3 belongs to (Em, Gm). Now, let t21 + t22 ≥ r2

1. The structure of above matrix and Assumption
7(iii),(iv) imply that it suffices to find some r2 > 0 such that

(t1 + t2ηm)2 + γ2
mt

2
2 ≥ r2

2
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where |ηm| ≤ η uniformly and |γm| ≥ γ > 0. We choose ∆ such that 0 < ∆ < 1 and ∆η < 1. Then
r2 = r1 min(

√
1−∆2η2,∆γ). This is easily seen by conditioning on |t2| ≥ ∆r1 and |t2| < ∆r1. Thus,

we obtain

P [Em ≤ y,Gm ≤ z] =

∫ y

−∞

∫ z

−∞

(
1 +m−1/2p1(t, s)

)
φ(s, t)dsdt+ o(m−1/2).

Note that
Um = Em +m−1/2[EmGm]Lm[EmGm]′

where

Lm =
−1

2v2
m

(
um

1
2

√
w2
m − u2

m
1
2

√
w2
m − u2

m 0

)
≡
(
cm bm/2
bm/2 0

)
.

We get

P[Um ≤ x] =

∫ ∫
{t+m−1/2(cmt2+bmts)≤x}

(
1 +

p1(t, s)√
m

)
φ(t, s)dsdt+ o

(
1√
m

)
.

To compute above integral, we rely on Lemma 5 in Babu and Singh (1983) (the proof of this result is
provided on pp. 228-229 of Babu and Singh (1984)). Although these results mention only the existence
of a certain polynomial, a careful inspection of the proof yields an explicit polynomial in our setting.
That is

P[Um ≤ x] =

∫ x

−∞

∫ (
1 +

p1(v, s)√
m

)(
1− 2vcm + bms√

m

)(
1 +

v(cmv
2 + bmvs)√
m

)
φ(v, s)dsdv

+ o

(
1√
m

)
.

Recalling (36), we observe that several terms cancel in above expression which leads to

P[Um ≤ x] = Φ(x) +
φ(x)√
m

(
2cm − cm(2 + x2) +

χm(3,0)(1− x
2)

6

)
+ o

(
1√
m

)

= Φ(x) +
φ(x)√
m

(
−cmx2 +

χm(3,0)(1− x
2)

6

)
+ o

(
1√
m

)
.

Note that Assumption 7 implies

E[(Zm,i − µm,i −Bm,i)3] = (a6 − 3a2a4 + 2a3
2)µ3

m,i +O(m−1),

V ar(Zm,i − µm,i −Bm,i) = (a4 − a2
2)µ2

m,i +O(m−1)

uniformly in i. Hence, we obtain

χm(3,0) =
1

mv3
m

m∑
i=1

E[(Zm,i − µm,i −Bm,i)3] = B1
κm,3

(κm,2)3/2
+O(m−1),

cm =
Cov(Em, Fm)

−2v2
m

= −A1

2

κm,3

(κm,2)3/2
+O(m−1).

By plugging these values we finish the proof of (41). To prove (42), we note that it suffices to show

P
[
|Rm| ≥ m−a

]
= o(m−1/2) (43)
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for some a > 1/2 (that will be chosen later). Indeed, using (43) and the fact that the Edgeworth
expansion of Um +m−1/2b̂ holds uniformly in x, we obtain

P[tm ≤ x] ≤ P
[
Um +m−1/2b̂ ≤ x+m−a

]
+ P

[
|Rm| ≥ m−a

]
= P

[
Um +m−1/2b̂ ≤ x

]
+ o(m−1/2).

Similarly, we show

P[tm ≤ x] ≥ P
[
Um +m−1/2b̂ ≤ x

]
+ o(m−1/2)

and thus obtain (42). To prove (43), we recall the decomposition in (40):

Rm = R(1)
m +R(2)

m +R(3)
m .

We observe that R
(2)
m (and thus Rm) may not have moments. So, we can not show (43) with a plain

application of Markov’s inequality. Due to (38) and Assumption 7(iv),(v) we obtain

E
[(
R(1)
m +R(3)

m

)2
]
≤ C

m2
(44)

for some C > 0. Remembering the constant ν in Assumption 7(iv), we define ν̃ =
a4−a22
a4

ν
2 . Note that

P [Vm < ν̃] = P

[
1

m

m∑
i=1

Z2
m,i <

ν

2

]

≤ P

[
1

m

m∑
i=1

(
Z2
m,i − E

[
Z2
m,i

])
<
−ν
2

]

≤ P

[∣∣∣∣∣ 1

m

m∑
i=1

(
Z2
m,i − E

[
Z2
m,i

])∣∣∣∣∣ > ν

2

]
≤ C/m

for some C > 0 using Markov’s inequality. With rm ≡ (ν̃/v2
m)5/2 < 1 and κ > 1, this last result

together with Hölder’s inequality and (38) imply

P
[∣∣∣R(2)

m

∣∣∣ > 1

2
m−a

]
≤ P

[
3 |Em|

4

(Vm − v2
m)2

v4
m

> rmm
−a
]

+ P
[
(ξm)5/2 < rm

]
≤ CmκaE

[
|Em|κ|Vm − v2

m|2κ
]

+ P [Vm < ν̃]

≤ CmκaE [|Em|κp]1/p E
[
|Vm − v2

m|2κq
]1/q

+ o(m−1/2)

≤ O(m−κ(1−a)) + o(m−1/2) = o(m−1/2)

by choosing p = 4, q = 4/3, κ = 9/8 and a ∈ (1/2, 10/18). The last result combined with (44) imply
(43) and we are done.

6.2 Proofs of the main results

Recalling (20) and (29), for r > 0, we denote

σrn =
1

n

n∑
i=1

(
n

∫ i
n

i−1
n

σ2
t dt

)r/2
,

σ̃rn =
1

n/kn

n/kn∑
i=1

(
s2
i

n

knψ
kn
2

+
ψkn1 ω2n

ψkn2 k2
n

)r/2
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where s2
i was defined in (30). Having defined the necessary notations, we state the following preliminary

result.

Lemma 6.2. For r = 2, 4, 6, we have

σrn − σr = o(n−1/2),

σ̃rn − σ̃r = o(n−1/4).

Proof. The first result follows from Lemma 2 in Barndorff-Nielsen and Shephard (2003) and is omitted.
We apply similar arguments and prove the second result. In view of the binomial theorem and

(14), it suffices to show

1

n/kn

n/kn∑
i=1

(
s2
i

n

knψ
kn
2

)p
−
n/kn∑
i=1

∫ ikn
n

(i−1)kn
n

σ2p
t = o(n−1/4). (45)

We define
mn
i = inf

(i−1)kn
n
≤t≤ ikn

n

σt and Mn
i = sup

(i−1)kn
n
≤t≤ ikn

n

σt.

By definitions of the related terms above, we easily observe that

(mn
i )2 ≤ s2

i

n

knψ
kn
2

≤ (Mn
i )2 and

kn
n

(mn
i )2p ≤

∫ ikn
n

(i−1)kn
n

σ2p
t ≤

kn
n

(Mn
i )2p .

Then, we observe that the abolute value of the expression in (45) may be bounded by

Bn ≡
1

n/kn

n/kn∑
i=1

(Mn
i )2p − (mn

i )2p .

Since σ is pathwise bounded, we easily get

Bn ≤
C

n/kn

n/kn∑
i=1

(Mn
i −mn

i ) .

By definition of the supremum/infimum, there exists tni and sni in [(i− 1)kn/n, ikn/n] such that

(Mn
i −mn

i ) ≤
∣∣σtni − σsni ∣∣+ 2/n.

Now, since kn divides n, Assumption 2 implies that Bn = o(
√
kn/n) which finishes the proof.

We are now ready to prove the main theorems in this paper.

Proof of Theorem 3.1. We start with the proof of part (1) of Theorem 3.1. We recall Y = X with
the drift b = 0 for this theorem and note that we may write the t-statistic in (6) for the realized
volatility as in (37) by choosing m = n, Bn,i = 0 and

Zn,i = |
√
n∆n

i X|2 = (αm,ium,i + βm,i)
2

where un,i ∼ N(0, 1), βm,i = 0 and

µn,i = E [Zn,i] = α2
n,i = n

∫ i
n

i−1
n

σ2
t dt.
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We intend to utilize Proposition 6.1 and observe that Assumption 7(i),(ii), (iv), (v) are obviously
satisfied under Assumption 2. Concerning 7(iii), we have

(Zm,i − µm,i −Bm,i, Z2
m,i − E[Z2

m,i]) = (α2
n,i(u

2
n,i − 1), α4

n,i(u
4
n,i − 3)).

The result follows since α2
n,i ≥ α > 0 for all n and i under Assumption 2.

Having verified the conditions, we look at the expansion in Proposition 6.1 and observe that

κn,3

(κn,2)3/2
=

σ̄6
n

(σ̄4
n)3/2

.

Then, we apply Lemma 6.2 and finish the proof with

σ̄6
n

(σ̄4
n)3/2

= σ6,4 + o(n−1/2).

Similar arguments apply to results in part (2) of Theorem 3.1 i.e., the bootstrap part. Given that
in the statement of part (2) of Theorem 3.1) we supposed that the Cramer’s condition is satisfied,
we only need to verify Assumptions 7(i), (ii), (iv) and (v). It is easy to see that it is the case. In
particular, note that we may write the bootstrap t-statistic in (10) as in (37) form by choosing m = n,
Bm,i = 0 and

Zm,i = (αm,ium,i + βm,i)
2 ,

where αm,i =
√
n∆n

i Y, um,i = vi and βm,i = 0 such that the bootstrap external random variable
vi ∼ i.i.d. with moments given by a∗s = E∗|vi|s.

Proof of Proposition 3.1. Let vi =
√
ηi ∼ i.i.d. with the same distribution as in Proposition 3.1.

Since ηi (and thus vi) has a density, Cramer’s condition for v is satisfied. The discussion before
Proposition 4.5 in GM(2009) means that the following moment conditions are sufficient for a second-
order asymptotic refinement:

E
[
v2
]

= 1, E
[
v4
]

=
31

25
, and E

[
v6
]

=
31

25

37

25
.

We note that E[v2r] = E[ηr] for r = 1, 2, 3. For the gamma distribution with parameters α > 0 and
β > 0, it is well-known that

E [η] =
α

β
, E

[
η2
]

=
α (α+ 1)

β2
and E

[
η3
]

=
α (α+ 1) (α+ 2)

β3
.

Solving these equations in α and β leads to α = β = 25
6 .

Proof of Remark 3 . We proceed as in the proof of part (1) of Theorem 3.1. In particular, we recall
Y = X for this case and note that we may write the t-statistic in (6) for the realized volatility as in
(37) by choosing m = n, Bn,i = 0 and

Zn,i = |
√
n∆n

i X|2.

Since
√
n∆n

i X is normally distributed, we obtain

µn,i ≡ E [Zn,i] = n

∫ i
n

i−1
n

σ2
t dt+

b2

n
.

We intend to utilize Proposition 6.1 and observe that Assumption 7(i),(ii), (iv) are obviously satisfied.
Concerning 7(v), we observe that bn = b2 and v2

n = σ̄4
n+O(n−1/2). Hence, Lemma 6.2 yields b̂ = b2/σ̄4.

Since we assume the existence of the expansions, we will not verify the Cramer’s condition stated in
Assumption 7(iii).
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Next, we move to the proof of the result for the pre-averaging estimator.

Proof of Theorem 3.2. For the proof of part (1) of this theorem, our first aim is to write the main
part of the pre-averaging estimator in the form given by (37). For this purpose, we denote m = n/kn
and recalling (30), we write

Zm,i =
n

knψ
kn
2

(
Ȳ(i−1)kn

)2
, µm,i =

n

knψ
kn
2

(
s2
i +

ψkn1 ω2

kn

)
,

Bm,i =
n

kn

ψkn1

2k2
nψ

kn
2

ikn−1∑
j=(i−1)kn+1

(∣∣∆n
j ε
∣∣2 − 2ω2

)
.

Then,
Tn = tm +Rn

where Tn and tm were defined in (17) and (37), respectively, and the reminder term Rn is given by

Rn = R̃n/

√
V̂n (46)

with

R̃n = n1/4

(
1

ψkn2

dn∑
i=1

s2
i −

∫ 1

0
σ2
t dt

)
− n1/4ψkn1

2k2
nψ

kn
2

 n∑
i=1

(
|∆n

i Y |
2 − |∆n

i ε|
2
)

+

dn∑
j=1

(∣∣∆n
jknε

∣∣2 − 2ω2
)

≡ R̃(1)
n + R̃(2)

n .

First, assume that we can apply Proposition 6.1 for tm (we will later show that Rn is negligible).
Proceeding as in the proof of Theorem 3.1, we get

κn,3

(κn,2)3/2
=

σ̃6
n

(σ̃4
n)3/2

.

Then, we will be done due to Lemma 6.2. Now, we verify that the assumptions of Proposition 6.1 are
satisfied. Clearly, Assumptions 7(i), (iii), (iv) and (v) hold true. Next, we check Assumption 7(ii).
Since X̄(i−1)kn and ε̄(i−1)kn are independent and have 0 means, we get

E
[(
Ȳ(i−1)kn

)4]
= E

[(
X̄(i−1)kn

)4]
+ 6E

[(
X̄(i−1)kn

)2]E [(ε̄(i−1)kn

)2]
+ E

[(
ε̄(i−1)kn

)4]
Since the term X̄(i−1)kn is normally distributed with mean 0 and variance s2

i , its moments are well-
known. However, the term ε̄(i−1)kn may not be normally distributed and needs a careful treatment. To
deal with the moments of the noise term, we define h(j/kn) = g((j+1)/kn)−g(j/kn) for 1 ≤ j ≤ kn−1.
It is easy to see that

ε̄i =

kn−1∑
j=0

−h(j/kn)ε i+j
n
.

For p = 4, 6, let’s denote

ψknp = kp−1
n

kn−1∑
j=0

h(j/kn)p.
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We note that since g is Lipschitz continuous, we have ψnp = O(1) for p = 4, 6. Let’s also denote p-th
absolute moment of ε i

n
with mp. A simple calculation shows that

E[(ε̄i)
4] =

3(ψkn1 )2ω4

k2
n

+
(m4 − 3ω4)ψkn4

k3
n

. (47)

At this stage, we easily get

E[Z2
m,i] =

n2

(kn)2(ψkn2 )2
E
[(
Ȳ n

(i−1)kn

)4
]

=
3n2

(kn)2(ψkn2 )2

(
s2
i +

ψkn1 ω2

kn

)2

+
3n2(m4 − 3)ψkn4

k5
n(ψkn2 )2

and, due to m = n/kn, this leads to ∣∣∣∣E [Z2
m,i

]
− a4

a2
2

µ2
m,i

∣∣∣∣ ≤ C

m
.

Similarly, it is possible to show the assumption related to

E[Z3
m,i] =

n3

(kn)3(ψkn2 )3
E
[(
Ȳ(i−1)kn

)6]
.

In this case, crucial steps are to use (47) and

E[(ε̄i)
6] =

15(ψkn1 )3ω4

k3
n

+
(m6 − 15ω4)ψkn6

k5
n

+
O(1)

k5
n

.

Concerning the condition for E[Zm,iBm,i], we observe that

E[Zm,iBm,i] =
n2ψkn1

2k4
n

(
ψkn2

)2

ikn−1∑
j=(i−1)kn+1

E
[
(ε̄(i−1)kn)2

((
∆n
j ε
)2 − 2ω2

)]
.

To compute this expression, for each j in above range, we find that

E
[(
ε̄(i−1)kn

)2 ((
∆n
j ε
)2 − 2ω2

)]
=
(
h (j/kn)2 + h ((j − 1)/kn)2

)
(m4 − ω4)

+ 4h (j/kn)h ((j − 1)/kn)ω4 = O(1/k2
n)

where we exploited the Lipschitz continuity of g. This easily leads to E[Zm,iBm,i] = O(1/kn) = O(1/m).
Lastly, we get

E[Z2
m,iBm,i] =

n3ψkn1

2k5
n

(
ψkn2

)3

ikn−1∑
j=(i−1)kn+1

E
[{

6(X̄(i−1)kn)2(ε̄(i−1)kn)2 + (ε̄(i−1)kn)4
}((

∆n
j ε
)2 − 2ω2

)]
In this case, the condition is verified by noting that the additional term satisfies

E
[(
ε̄(i−1)kn

)4 ((
∆n
j ε
)2 − 2ω2

)]
= O(1/k3

n).

Next, we show that the remainder term defined in (46) does not influence the Edgeworth expansion

of Tn. We deal with this term similar to (40). Assumption 4 implies R̃
(1)
n = O

(
n−1/4−δ) for some δ > 0.

Moreover, we have

E
[(
R̃(2)
n

)2
]
≤ C/n
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for some C > 0. Combining these results leads to

P
[
|Rn| > n−1/4−δ/2

]
= o(n−1/4).

This implies that Rn has no effect on the Edgeworth expansion of Tn.
For the proof of results in part 2) of Theorem 3.2, similar arguments as in the bootstrap part of

Theorem 3.1 (no noise case) apply. In particular, one can see that, here we may write the bootstrap
t-statistic in (19) as in (37) form by choosing m = n/kn, Bm,i = 0 and

Zm,i = (αm,ium,i + βm,i)
2 ,

where αm,i =

(
n

knψ
kn
2

)1/2

Ȳikn , um,i = vi and βm,i = 0 such that the bootstrap external random

variable vi ∼ i.i.d. with moments given by a∗s = E∗|vi|s. In particular, µm,i = a2
n

knψ
kn
2

Ȳ 2
ikn
. This

complete the proof.

Proof of Corollary 3.1. Immediate given Proposition 6.1 and the proof of part a) of Theorem
3.2.

Proof of Proposition 3.2. Result follows given part a) of Theorem 3.2 in conjunction with Corol-
lary 3.1 by applying Proposition 3.1.
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