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Abstract

We study the directional predictability of monthly excess stock market

returns in the U.S. and ten other markets using univariate and bivariate

binary response models. Our main interest is on the potential benefits of

predicting the signs of the returns jointly, focusing on the predictive power

from the U.S. to foreign markets. We introduce a new bivariate probit model

that allows for such a contemporaneous predictive linkage from one market

to the other. Our in-sample and out-of-sample forecasting results indicate

superior predictive performance of the new model over the competing models

by statistical measures and market timing performance, suggesting gradual

diffusion of predictive information from the U.S. to the other markets.
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1 Introduction

There is a vast theoretical and empirical literature on asset return predictability.
The main focus in the literature on stock returns has been the predictability of
excess aggregate market returns (hereafter stock returns) by lagged financial and
macroeconomic predictive variables. Although the majority of research has con-
centrated on the U.S., there is an increasing string of research focusing on lead-lag
relationships in international asset markets. Rapach et al. (2005) examine the
predictability of stock returns in 12 industrialized countries and find that interest
rates are the most consistent and reliable predictors of stock returns. In the same
vein, Ang and Bekaert (2007) show that the dividend yields and short-term inter-
est rates are robust predictors for the stock returns in the U.S., U.K., France, and
Germany. Hjalmarsson (2010) examines return predictability in a larger dataset
comprising 40 developed international stock markets. Similarly as Rapach et al.
(2005) and Ang and Bekaert (2007), he finds that the short-term interest rate
as well as the term spread (the difference between the long-term and short-term
interest rates), are generally superior predictors across countries.

In their recent article, Rapach et al. (2013) study the importance of the U.S.
market movements in predicting international stock returns. Due to its major role
in the world economy, investors are likely to focus on the U.S. markets, poten-
tially creating spillovers of U.S. returns to other markets. The findings of Rapach
et al. (2013) do in fact indicate that lagged U.S. returns predict stock returns
in several other markets, which they link to the behavioral theory of Hong and
Stein (1999) based on the idea of gradual diffusion of information. In this theory,
limited investor attention and market participation causes information to diffuse
slowly across markets generating cross-predictability between them. In the subse-
quent research, Hong et al. (2007) examine the gradual diffusion of information in
monthly industry portfolio returns, while Menzly and Ozbas (2010) consider in-
dustries that have a supplier-customer relationship. Recently, Rizova (2013) have
linked information diffusion between markets to international trade flows.

Similarly to Rapach et al. (2013), we examine the interdependencies between
excess stock returns in the U.S. and ten other markets. Unlike them, however, we
concentrate on the directional component of stock returns, i.e. we are interested
in predicting the signs of the returns instead of the actual returns. In the previous
finance literature, including the studies mentioned above, a vast amount of research
effort has been put into the conventional predictive regression models and their

1



extensions, such as regime switching models, containing various different predictors
to examine whether there are statistically and economically significant (in- and
out-of-sample) predictive patterns in stock returns (see the survey of Rapach and
Zhou (2013)). A closely related and widely examined topic focuses on return and,
in particular, volatility transmission and spillover effects between markets (see,
e.g., the survey of Gagnon and Karolyi (2006)), where the role of the U.S. as a
driver of movements in international stock markets has often been emphasized.

In contrast to these established approaches, the directional predictability of
stock returns is, so far, a less covered topic although sign predictability is an
important issue in various financial applications. Forecasting the signs of stock
returns has often been motivated by its usefulness in market timing decisions (see,
e.g., Pesaran and Timmermann (2002)). Already in Merton’s (1981) classic mar-
ket timing model, fund managers are interested in the sign rather than the actual
value of the return when determining their asset allocations. A number of more
recent empirical studies also highlight the potential usefulness of sign predictability
in market timing, by showing that binary response models outperform the usual
real-valued predictive regression models in forecasting return signs, by both statis-
tical and economic goodness-of-fit measures (see, e.g., Leung et al. (2000), Nyberg
(2011) and Pönkä (2014)).

In addition to the market timing perspective, Christoffersen and Diebold (2006)
point out the presence of sign predictability in U.S. equity returns that may also
exist in the absence of mean predictability. Their argument is based on the fact
that predictable conditional volatility may be useful in forecasting the sign of the
return (see also the related findings of Christoffersen et al. (2007) in an interna-
tional setting and Chevapatrakul (2013) for the U.K.). Nyberg (2011) and Pönkä
(2014) show that the return signs are indeed predictable and that there are even
more useful predictors than the conditional volatility. In line with this evidence,
Anatolyev and Gospodinov (2010) propose a multiplicative model for the U.S.
stock returns decomposed into sign and absolute value components. They find
economically and statistically significant gains in the forecasting performance of
their model over and above conventional predictive regression models (see also
Rydberg and Shephard (2003) for a related decomposition model).

Our study contributes to the existing literature on sign predictability in a
number of ways. In particular, we examine an international dataset containing
11 industrialized countries, whereas the previous studies have concentrated al-
most exclusively on the U.S. stock market returns. Leung et al. (2000) consider
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an international dataset including the U.S., U.K. and Japan, but unlike us, they
do not explore international linkages between the markets but concentrate purely
on country-specific models. Furthermore, Anatolyev (2009) considers directional
cross-predictability of daily returns from three European markets, three Baltic
markets, and from two Chinese exchanges in a different multivariate model com-
pared to ours.

A further contribution of our study is the proposal of a new bivariate (two-
equation) probit model that facilitates studying the predictive role of the U.S.
market for the other markets in a new way. With this model, we can also cir-
cumvent problematic econometric issues related to generated regressors (see, e.g.,
Pagan (1984)). Overall, the previous econometric literature on bivariate and mul-
tivariate binary response time series models is very scant. Our model has some
similarities with Nyberg (2014) who studies business cycle linkages between the
U.S. and Germany, and finds that joint modeling of recession probabilities in these
two countries substantially increases predictive power compared to independent
univariate models. Our new bivariate model differs from that of Nyberg (2014),
as it allows for a contemporaneous predictive effect between the two markets.

Following the previous literature on examining the gradual diffusion of informa-
tion across markets (see Hong et al. (2007), Menzly and Ozbas (2010) and Rapach
et al. (2013)), we use monthly data in this study. Although we emphasize on the
role of the U.S., we are not explicitly considering the speed of information diffu-
sion between countries. Much of the relevant information is likely to be diffused
more rapidly than in monthly frequency. Instead, we are interested in studying
the role of the U.S. economic fundamentals (many of them not available in higher
frequencies) in predicting signs of returns in non-U.S. countries.

Our in-sample results based on univariate (single-equation) probit models sug-
gest that, in accordance with Rapach et al. (2013), the lagged excess U.S. stock
return is a useful predictor of the sign of excess returns in a number of other mar-
kets, supporting the leading role of the U.S. However, our new bivariate model
outperforms the univariate models in seven out of ten markets, suggesting that it
is not only the lags of U.S. returns that have predictive power. In other words,
it is advantageous to utilize the predictive power obtained for the U.S. market
movements to predict signs of returns in other markets. Out-of-sample forecasting
results generally confirm the in-sample findings: The new bivariate probit model
yields the most accurate forecasts in the majority of markets in terms of statistical
criteria. When examining the economic value of market timing decisions based
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on the sign predictions, the simple trading strategies yield higher returns than
those based on the univariate probit models and the passive buy-and-hold strat-
egy. This finding in turn complements the previous research on the economic value
of volatility timing for short-horizon asset allocation strategies (cf., e.g., Fleming
et al. (2001)).

The rest of the paper is organized in the following way. In Section 2, we
introduce the econometric framework, i.e. the univariate and bivariate probit
models. In Section 3, we describe the goodness-of-fit measures and statistical tests
used in evaluating sign predictions. Section 4 introduces the dataset, including the
predictive variables. In Sections 5 and 6, we report in-sample and out-of-sample
forecasting results, respectively, where in the latter we also study the economic
significance of out-of-sample forecasts in trading simulations. Finally, in Section 7
we conclude and discuss possible extensions of this study.

2 Sign Predictability

In the previous finance literature, a vast amount of research effort has been put into
the conventional predictive regression model for excess stock returns, containing
various different predictors (see, e.g., the survey of Rapach and Zhou (2013)). The
directional predictability of excess stock returns is a less covered topic, but it holds
potential for further research. As pointed out by Christoffersen and Diebold (2006),
sign predictability may exist even in the absence of mean predictability, which can
be particularly useful in terms of creating profitable investment strategies.

Throughout this paper, our focus is on the directional component of the excess
stock market return. Let us denote a one-month excess market return for market
j as rjt = rnjt− r

f
jt, where rnjt is the nominal portfolio return and rfjt is the risk-free

rate. When we use the word ’return’ in the remainder of the paper, we refer to
the excess stock return as defined here. The excess return can be transformed into
binary time series

yjt = 1(rjt > ζ), (1)

where 1(·) is the indicator function and ζ is a user-determined constant. Following
previous research (see, e.g., Leung et al. (2000), Christoffersen and Diebold (2006),
Anatolyev and Gospodinov (2010) and Nyberg (2011)), we consider the leading
case ζ = 0, i.e., yjt consists of the signs of the excess returns. Assuming ζ = 0,
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expression (1) can be rewritten as

yjt =

1, if the excess stock return rjt is positive,

0, otherwise,
(2)

for country j.
Let Et−1(·) and Pt−1(·) denote the conditional expectation and probability,

given information set Ωt−1, respectively. The information set includes all relevant
information, such as the past returns and the values of the predictive variables. As
yjt conditional on Ωt−1 follows a conditional Bernoulli distribution, the conditional
probability of a positive excess return pjt can be written as

pjt = Pt−1(yjt = 1) = Et−1(yjt). (3)

The conditional probability of a negative return (i.e. Pt−1(yjt = 0)) is then the
complement probability 1− pjt.

In order to study the predictability of the sign of the return yjt, we need to
specify a model for the probability of the positive return (3). In the previous liter-
ature, this has been carried out by examining univariate (single-equation) binary
response models with different predictive variables. Hence, these models are briefly
described next in Section 2.1 before turning to our main econometric contribution
related to bivariate (two-equation) probit models (Section (2.2)).

2.1 Univariate Probit Model

Univariate binary response models, such as logit and probit models, have previ-
ously been used to examine the sign predictability of excess stock returns. Leung
et al. (2000) find that classification-based models, including binary response mod-
els, outperform traditional predictive regressions in forecasting the direction of
stock markets in terms of statistical goodness-of-fit tests and profitability of in-
vestment strategies built on their forecasts. Their study covers the U.S., U.K.,
and Japanese stock markets. Nyberg (2011) uses dynamic probit models to pre-
dict the direction of monthly U.S. excess returns and finds evidence in favor of
sign predictability. Moreover, in line with Leung et al. (2000), his probit models
yield superior forecasts over traditional predictive regressions. Pönkä (2014) ex-
amines the directional predictability of excess U.S. stock market returns by lagged
excess returns on industry portfolios using dynamic probit models, and finds that
a number of industries lead the stock market and that binary response models
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outperform conventional predictive regressions in forecasting the direction of the
market return.

To determine the conditional probability of a positive excess stock return for
country j (see (3)), a univariate probit model is specified as

pjt = Pt−1(yjt = 1) = Φ(πjt), (4)

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution and πjt is a linear function of the variables in Ωt−1. The most commonly
used specification is the following

πjt = ωj + x′j,t−1βj, (5)

where βj is the coefficient vector of the lagged predictive variables included in the
vector xj,t−1 and ωj is a constant term for country j. In the subsequent analysis,
we also consider dynamic models where the lagged returns (rj,t−1) and the lagged
values of binary return indicators (1) are included in xj,t−1. The parameters of
these models can be estimated using the method of maximum likelihood (ML). For
more details on ML estimation and the computation of Newey-West type robust
standard errors (see Newey and West (1987)), we refer to Kauppi and Saikkonen
(2008) and de Jong and Woutersen (2011).

Overall, the presence of sign predictability culminates to whether we can find
predictors in (5) that contain statistically significant predictive power over and
above the constant term ωj. In this study, we consider the same international
dataset as Rapach et al. (2013), including various financial and macroeconomic
predictive variables for a number of markets. The dataset will be described more
detail in Section 4. As Rapach et al. (2013) do with conventional predictive re-
gression models for the returns rjt, we can examine the predictive power of the
U.S. stock market for the signs of the excess returns in the other markets by in-
cluding the lagged U.S. return in the univariate probit model along with the other
(domestic) predictors in xj,t−1.

Overall, due to high integration of the stock markets around the world, the
excess returns and their signs are rather highly correlated between different coun-
tries (see the descriptive statistics in Section 4). Thus, it seems highly reasonable
to consider the joint modeling of the direction of returns, which may well result
in superior forecasts compared with country specific univariate models. Based on
the results of Rapach et al. (2013), it is particularly interesting to include the U.S.
market in such models. However, instead of the lagged return, we could consider
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the effect of the U.S. probability forecast for the positive stock return on the other
markets, hence conditioning on a larger information set. This issue can be consid-
ered in a meaningful way with bivariate probit models, described in the following
section.

2.2 Bivariate Probit Model

The main interest in this paper is on bivariate binary response models, where
we examine pairwise directional predictability of stock returns in two markets.
This will, in particular, allow us to consider the effect of the U.S. stock market
to international markets concentrating on the directional component of the stock
returns.

Let us now consider the random vector (y1t, y2t) containing the binary time
series of the signs of the excess stock returns (2) in two markets of interest. Condi-
tional on the information set Ωt−1, the vector (y1t, y2t) follows a bivariate Bernoulli
distribution,

(y1t, y2t)|Ωt−1 ∼ B2(p11,t, p10,t, p01,t, p00,t), (6)

where the conditional probabilities of the different outcomes are

pkl,t = Pt−1(y1t = k, y2t = l), k, l = 0, 1,

and they sum up to unity

p11,t + p10,t + p01,t + p00,t = 1.

Following the bivariate probit model originally proposed by Ashford and Sow-
den (1970) (see also, Greene (2012), 778–781), we assume the joint probabilities
of the different outcomes of (y1t, y2t) to be determined as

p11,t = Pt−1(y1t = 1, y2t = 1) = Φ2(π1t, π2t, ρ),

p10,t = Pt−1(y1t = 1, y2t = 0) = Φ2(π1t,−π2t,−ρ)

p00,t = Pt−1(y1t = 0, y2t = 0) = Φ2(−π1t,−π2t, ρ) (7)

p01,t = Pt−1(y1t = 0, y2t = 1) = Φ2(−π1t, π2t,−ρ),

where Φ2(·) is the cumulative density function of the bivariate standard normal
distribution with zero means, unit variances and correlation coefficient ρ, |ρ| < 1.
Furthermore, similarly as in (5), πjt, j = 1, 2, are assumed to be linear functions
of the lagged stock returns (and their signs) and the other predictive variables
included in the information set at time t − 1. The conditional probabilities of
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positive excess returns for markets j = 1, 2 are the marginal probabilities of the
outcomes y1t = 1 and y2t = 1 equal to (cf. (4))

p1t = Pt−1(y1t = 1) = p11,t + p10,t, (8)

and
p2t = Pt−1(y2t = 1) = p11,t + p01,t. (9)

To complete the bivariate probit model, we need to determine the linear func-
tions πjt, j = 1, 2 (i.e. the dependence structures on the available predictive infor-
mation). In the simplest case, introduced by Ashford and Sowden (1970), similar
to univariate model (5),[

π1t

π2t

]
=

[
ω1

ω2

]
+

[
x
′
1,t−1 0

0 x
′
2,t−1

][
β1

β2

]
, (10)

where ω1 and ω2 are constant terms and β1 and β2 are the coefficient vectors of the
lagged predictive variables included in the vectors x1,t−1 and x2,t−1, respectively. In
model (10), the explanatory variables have an immediate effect on the conditional
probabilities (7) which, given the value of the correlation coefficient ρ, do not
change unless the values of the explanatory variables change.

In this study, we are interested in the information transmission between stock
markets in different countries and, especially, the possible leading role of the United
States. Rizova (2013) point out that as the larger stock markets are more widely
followed by investors, the cross-predictability caused by the gradual diffusion of
information in other markets is likely to be weaker for the major markets. Al-
though Rapach et al. (2013) find evidence that lagged U.S. returns significantly
predict returns in nine out of ten countries in their study, it is likely that there
are differences between the predictive role of the U.S. due to, e.g., the amount of
investor attention and the relative importance of the U.S. as a trading partner.
The literature on the influence of the U.S. on international markets via volatility
spillovers across markets has also pointed out the leading role of the U.S. (see, e.g.,
the survey of Gagnon and Karolyi (2006)).

Hereafter the U.S. is the first country (i.e. j = 1) in model (10). Then,
following Rapach et al. (2013), we include the lagged U.S. return in the vector
x2,t−1 for the second country to examine whether the U.S. return predicts the sign
of return in the other markets (j = 2). An alternative and more general approach
that we consider is to allow the linear function π1t related to the probability of
the positive excess return to have an effect on π2t. Specifically, we consider the
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following extension of model (10):[
1 0

−c 1

][
π1t

π2t

]
=

[
ω1

ω2

]
+

[
x
′
1,t−1 0

0 x
′
2,t−1

][
β1

β2

]
, (11)

where the coefficient c measures the contemporaneous effect from π1t to π2t. In the
context of our application, this means that we study the effect of the U.S. on the
other markets.1 Note that although in (11) π1t has a contemporaneous effect on
π2t, the predictive information in π1t is actually coming from the lagged predictors
in x1,t−1. In other words, the lagged U.S. return is not included as a predictor in
x2,t−1, but it has only an indirect effect on π2t via the coefficient c.

The linear function π2t does not contemporaneously help to predict the sign of
the return in market 1 (in the U.S.), while there is contemporaneous predictability
in the opposite direction, when c 6= 0. That is, when c 6= 0, the predictive power
obtained for the U.S. market is helpful in predicting the signs of the returns in
other markets, but not vice versa.2 Due to the nonlinear nature of model (11), we
can also statistically check this identification assumption by comparing the log-
likelihoods of two models where the matrix on the left hand side of (11) containing
the contemporaneous linkage should be lower or upper-diagonal (when the ordering
of the markets is given fixed).

In addition to the effect through π2t, the lagged U.S. excess return may have
an indirect effect on predictive power through the correlation coefficient ρ. The
interpretation of the correlation coefficient is, however, somewhat complicated as
it is related to the bivariate normal distribution used to obtain the response prob-
abilities (7), based on the linear functions πjt. Furthermore, as in Nyberg (2014),
it turns out in our empirical analysis that the effect of ρ on the sign probability
forecasts (7) is minor, although statistically significant. It is also worth noting
that if ρ = c = 0, the bivariate model reduces to two univariate probit models
without linkages between the markets.

In Appendix A, we will give details on the maximum likelihood estimation of
the new bivariate probit model introduced above. In particular, we derive the
formulae for the misspecification-robust standard errors of the bivariate probit
model (11) to take the potential misspecification of the model into account when

1It is noteworthy that (11) bears resemblance to the structural vector autoregressive (SVAR)
models commonly used in empirical macroeconomics and finance.

2 To identify model (11), as long as c 6= 0, the predictive variables (and their lags) in x1,t−1

and x2,t−1 cannot be the same. This is not a problem in our application, because we use only
domestic predictors for each country.
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interpreting the estimation results. An important advantage of the joint model
(11) is that it circumvents the well-known generated regressor problem (see, e.g.,
Pagan (1984)), as the effect of π1t on π2t is conveniently estimated within one
model.

3 Goodness-of-Fit Measurement and Sign Predictabil-

ity

We will employ a number of alternative measures to evaluate the in-sample and
out-of-sample predictive performance of the models. The need for different types
of measures to uncover different aspects of forecast quality of probability forecasts
of binary outcomes is discussed in detail by Lahiri and Wang (2013). In addi-
tion, we need to modify some measures to suit our bivariate model. We also use
some methods to evaluate directional predictability that have previously not been
applied to sign forecasts of stock returns.

Following the usual practice in finance, one of our measures is a counterpart of
the coefficient of determination (R2) designed for binary response models. Estrella
(1998) defined the pseudo-R2 (for univariate models) as

psR2 = 1−
( logLu
logLc

)−(2/T )logLc
, (12)

where logLu and logLc are the maximum values of the constrained and uncon-
strained log-likelihood functions respectively, and T is the length of the time series.
This measure takes on values between 0 and 1, and can be interpreted in the same
way as the coefficient of determination in the usual linear predictive regression
models. In Section 5, we also report its adjusted form (see Estrella (1998)) that
takes into account the trade-off between the improvement in model fit and the
number of estimated parameters.

Due to the form of (12), there is a linkage between to the pseudo-R2 and the
corresponding likelihood ratio test statistic testing the null hypothesis that the
included predictive variables do not have predictive power. In other words, under
the null hypothesis, the value of the log-likelihood function (logLc) is obtained
when only a constant term is included in the model. Hence, (12) measures the
predictive power obtained with the predictors included in xj,t−1. In the bivariate
probit model a nonzero correlation coefficient ρ poses a complication to this inter-
pretation, as its nonzero value implies predictive power not accounted for by the
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predictors. Therefore, for bivariate models with ρ 6= 0, we propose a modification
to (12)

psR2
ρ = 1−

( logLu
logLρc

)−(2/T )logLρc
, (13)

where logLρc denotes the value of the restricted log-likelihood function of the bivari-
ate probit model where β1 = β2 = 0 (and c = 0 in model (11)). In other words,
similarly as (12), expression (13) measures the predictive power of explanatory
variables, but as the expressions (12) and (13) differ, they are not comparable.

The problems with the pseudo-R2 statistics mean that we will also need to use
some other statistics that allow us to do make comparisons between different uni-
variate and bivariate probit models. Together with the pseudo-R2, the Quadratic
Probability Score

QPS =
1

T

T∑
t=1

2(yjt − pjt)2 (14)

is also commonly used to evaluate probability forecasts, and it can be seen as a
mean square error type of statistic for binary dependent variable models. The
value of the QPS ranges between 0 and 2, with score 0 indicating perfect accuracy.

As previously, e.g., in Nyberg (2011) and Pönkä (2014), we also report the
success ratio (SR), which is simply defined as the percentage of correct signal sign
forecasts. A signal forecast for the sign of the return yjt can be written as

ŷjt = 1(pjt > ξ), j = 1, 2, (15)

where pjt is the conditional probability of a positive excess return implied by a
univariate or bivariate probit model. If pjt is higher than the threshold ξ, the
signal forecast ŷjt = 1 (i.e. positive excess return), while ŷjt = 0 if pjt ≤ ξ. This
measure is useful in evaluating out-of-sample forecasts, but it can also be used in
in-sample evaluation.

An unfortunate feature of the success ratio is that its effectiveness depends on
the predefined probability threshold ξ. In this paper, following previous research,
we report the success ratios implied by ξ = 0.5. This is also in line with the sym-
metric selection ζ = 0 in (1) that the signal forecast (15) is the likeliest outcome
(i.e. positive or negative return). Related to the SR statistic, Pesaran and Tim-
mermann (1992) have proposed a statistical test of directional predictive accuracy
that measures the distance of the value of SR from the success ratio obtained when
the realized values yjt and the forecasts ŷjt are independent (see also Granger and
Pesaran (2000)). As an extension of the Pesaran-Timmerman (1992) test statistic
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allowing for serial correlation in ykt, Pesaran and Timmermann (2009) have sug-
gested another predictability test (denoted PT). The traditional test neglecting
autocorrelation suffer from the danger of finding spurious timing ability (see Chu
et al. (2009)) and, therefore, we prefer the PT test.

Although ξ = 0.5 is a commonly used natural threshold in (15), it is not an
innocent selection. It turns out that success ratios and market timing tests are
rather highly dependent on threshold selection. Therefore, it is reasonable to look
at an alternative approach to assess the accuracy of probability forecasts, namely
the Receiver Operating Characteristic (ROC) curve. ROC analysis has long been
used as a goodness-of-fit measure of classification accuracy in medical applications
and biostatistics, but it has also recently been used in a small but growing number
of economic applications (see, e.g., Berge and Jorda (2011); Lahiri and Wang
(2013); Christiansen et al. (2014)). Following the idea of signal forecasts (15), we
can define two widely used measures of classification accuracy, namely the true
positive rate (TP) and the false positive rate (FP):

TP (ξ) = Pt−1(pjt > ξ|yjt = 1) (16)

and
FP (ξ) = Pt−1(pjt > ξ|yjt = 0), (17)

for any threshold 0 ≤ ξ ≤ 1. The ROC curve is a mapping of the true positive
rate (16) and the false positive rate (17) for all possible thresholds ξ described
as an increasing function in the [0, 1] × [0, 1] space, with TP (ξ) plotted on the
Y -axis and FP (ξ) on the X-axis. A ROC curve above the 45-degree line indicates
forecast accuracy superior to a coin toss, whereas curves below it are considered
’perverse’ forecasts for which the optimal response is exactly the opposite of what
the forecast suggests.

In our application, it is reasonable to think that different agents (investors)
have their own risk profiles which can be interpreted in our framework as different
selections of ξ. In other words, one (risk-averse) investor may require a higher
probability of a positive return than another. The optimal threshold may also
be time-varying, complicating our analysis further. As there obviously is no clear
rule or reason to use a specific threshold, the ROC curve seems useful in assessing
overall predictive ability of a given model.

The area under the ROC curve (AUC) is a convenient measure to summarize
the predictive information contained in the ROC curve. The AUC is defined as
the integral of the ROC curve between zero and one. Therefore, the AUC also gets
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values between 0 and 1, with the value of 0.5 corresponding a coin toss and the
value 1 to perfect forecasts. The value of the AUC as such describes the overall level
of sign predictability: A value of AUC above 0.5 indicates statistical predictability,
i.e. successful market timing ability (with potential economic gains).

In a similar fashion as in the case of the traditional Pesaran-Timmermann mar-
ket timing tests described above, it is reasonable to ask whether we can statistically
test if the empirical AUC is greater than 0.5, implying sign predictability. How-
ever, in contrast to the testing procedures employed for cross-sectional datasets,
corresponding reliable test in the time series setting does not exist yet (see the
discussion in Hsu and Lieli (2014)). Thus, we use the AUC only as a device
to summarize the goodness-of-fit and forecast performance of the probit models
throughout this paper.

The complication of testing the statistical significance of the AUC at the mo-
ment partly points to the need for asset allocation experiments to examine the
economic value of our sign forecasts. It is also rather common that forecasting re-
sults deemed statistically insignificant by statistical measures are still economically
significant (see, e.g., Leitch and Tanner (1991) and Cenesizoglu and Timmermann
(2012)), which also highlights the need for market timing tests. In Section 6.2, we
thus motivate our forecasting models also in the trading strategy point of view to
study their economic performance in more detail.

4 Data and Descriptive Statistics

In finance, a large number of potential predictors of excess stock returns have been
considered in the linear predictive regression context (see the survey of Rapach and
Zhou (2013) and the references therein). Typically very little out-of-sample pre-
dictive power is found, if any (see Goyal and Welch (2008) and Campbell and
Thompson (2008)). In contrast to the usual predictive models, the previous re-
search on (out-of-sample) sign predictability is rather scant and, to the best our
knowledge, so far only Leung et al. (2000) and Anatolyev (2009) have examined
international datasets (containing only a few countries).

By traditional predictive regressions, Ang and Bekaert (2007) studied stock
return predictability in an international setting by three commonly used predictors;
the short term interest rate, the dividend yield, and the earnings yield. Rapach
et al. (2013) examined the effect of the U.S. stock market on international markets
by including the lagged U.S. return as a predictor in linear regression models. In
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our analysis, we consider the same international dataset as Rapach et al. (2013)3,
which facilitates examining to what extent potential differences in results can be
attributed to different forecasting methodologies. Rapach et al. (2013) examined
the results of traditional predictive regression for excess stock returns, while in
this paper we concentrate on sign predictability. The monthly dataset includes
Australia (AUS), Canada (CAN), France (FRA), Germany (GER), Italy (ITA),
Japan (JPN), the Netherlands (NED), Sweden (SWE), Switzerland (SUI), the
United Kingdom (U.K.), and the United States (U.S.). The sample period ranges
from February 1980 to December 2010.

In the dataset, the excess stock market returns (denoted by RM) are return
indices that take dividends into account. These returns are transformed to binary
return series (RMI) as in (1). In line with Rapach et al. (2013), our predictive
variables include the three-month short-term interest rate (TB) and dividend yield
(DY ) for each market. We also consider additional predictive variables that Ra-
pach et al. (2013) only used in their robustness checks. These variables include CPI
inflation (INF ), term spread (TS), the ten-year government bond yield (10Y ), as
well as the growth rates in the real exchange rate (REX), real oil price (OIL),
and industrial production (IP ).

The lagged values of RM and RMI are also included in the set of potential
predictive variables. This allows us to study the relative usefulness of the actual
lagged excess return RM and its sign component RMI. The use of the lagged
RMI as a predictor has previously been considered previously by Anatolyev and
Gospodinov (2010), Nyberg (2011) and Pönkä (2014) for U.S. data in different
dynamic probit models.

As we concentrate on bivariate models with the U.S. market always as one of
the two markets, it is useful to take a look at the correlations between the excess
returns in U.S. and the other markets. These statistics along with the means and
standard deviations of the excess returns are presented in Table 1. We also report
the counterpart of the correlation coefficient for the signs of the excess returns,
the so-called Φ-coefficient (mean square contingency coefficient) that is simply
the Pearson correlation coefficient of two binary time series. The correlations of
the returns with the U.S. return range from 0.417 (Italy) to 0.774 (Canada) for
different countries. The correlation coefficients for the return signs are generally
very similar although the values are lower than the correlations, due to properties

3 We would like to thank the authors of Rapach et al. (2013) for making the dataset available
at David Rapach’s website: sites.slu.edu/rapachde/home/research.
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of the statistic. The mean excess returns vary considerably across the markets; the
lowest monthly average return is reported for Japan (0.219%) and the highest for
Sweden (1.027%). The standard deviations range from 4.500 in the U.S. to 6.983
in Italy.

5 In-Sample Results

Before considering the out-of-sample predictive power of different models and pre-
dictive variables in Section 6, we first examine their in-sample performance in the
full sample period from 1980 to 2010.4 Following the typical convention in the
previous similar studies, we consider only the one-month-ahead forecast horizon
(h = 1) and the first lags of the predictors throughout in this section and Section
6.

In Section 5.1, we consider univariate models with the aim to find the best
predictors in sample. In the same spirit as Rapach et al. (2013), in Section 5.2 we
examine the potential predictive gains of including the lagged U.S. excess return
in the model. In Section 5.3, we consider the bivariate probit models, introduced
in Section 2.2, that facilitate examining the linkages between the U.S. and other
markets in more detail.

5.1 Univariate Models

In this section, we study the predictive power of a number of domestic variables
for the direction of the excess stock return separately in each of the eleven markets
in the univariate probit model defined in (4) and (5). We initially consider models
with the same two predictors, the dividend yield (DY ) and the three-month T-bill
(TB) rate, as Ang and Bekaert (2007) and Rapach et al. (2013) included in their
main models. The results for these baseline models are presented in Table 2.

It turns out that DY and TB are statistically significant predictors of the
direction of the U.S. return. The adjusted pseudo-R2 equals 0.016, which is in line
with a modest level of predictability typically found in previous studies. As far as
the overall predictive power in the other markets is concerned, the results are rather
similar for Canada and the Netherlands, although in the latter case the dividend
yield is not statistically significant. However, for most of the other markets, these

4 We also assessed the robustness of these results using a shorter in-sample period up to
1994M12, which is the endpoint before out-of-sample forecasting starts (see Section 6). The
results turned out to be essentially similar as those in Sections 5.1–5.3.
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two-predictor models have little or no predictive power, as the negative values of
the adjusted pseudo-R2 among other measures indicate.

The results on sign predictability presented in Table 2 are generally in line with
those of Rapach et al. (2013) based on traditional, linear predictive regressions.
In particular, the dividend yield does not seem to be a powerful predictor of stock
returns in an international context. Similar findings have also been reported by
Hjalmarsson (2010) who finds that while interest rate variables are rather robust
predictors of stock returns in developed markets, the dividend-price ratio has very
limited predictive ability in various international stock markets. The short-term
interest rate has somewhat higher predictive power, and its negative estimated
coefficient implies that higher interest rates decrease the probability of positive
stock return.

Due to the relatively weak predictive power of dividend yield (DY ) and short-
term interest rate (TB) considered above, we next try to find the best predictors
for each market by performing a model selection procedure that involves all the
domestic variables in our dataset. We use the Akaike information criterion (AIC)
as the model selection criterion. We first include each predictor separately in the
model and select the one that minimizes the value of the AIC. In the next stage,
we estimate all possible two-predictor models containing the selected variable and
again choose the model with the smallest AIC. We continue this process sequen-
tially and once we have found the optimal model (having the smallest value of the
AIC), we perform some sensitivity checks against other model specifications (with
the same number of predictors or less) to ensure robustness of our model selection
procedure.

The selected univariate probit models for the different markets are presented in
Table 3. For example, in the U.S. case the selected model contains five predictors,
whereas for the other markets a model with fewer variables is typically selected
(only one predictor for Australia and Japan). Also the model fit, measured by the
adjusted pseudo-R2, is higher for the U.S. than for the other countries (except for
Switzerland). A similar pattern can also be seen in the QPS and SR statistics. In
general, we obtain improvement in predictive power by allowing for a larger set of
predictors compared with the case of including only TB and DY (see Table 2).
The lagged domestic stock return (RM) and the real oil price (OIL) are the most
commonly selected predictors. Interestingly, in line with the findings of Nyberg
(2011), the lagged return (RM) is generally superior to the lagged sign of the
return (RMI). Overall, the values of the adjusted pseudo-R2 still remain rather
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modest, demonstrating statistically weak predictability, as is typical of predictive
models for stock returns in general.

In Tables 2 and 3, we also present results for the Pesaran and Timmermann
(2009) market timing test statistic (PT). In Table 2, we find a statistically sig-
nificant value of the PT statistic in only two out of the eleven models. We also
find that the values of the PT statistic are not all that well in line with the suc-
cess ratio (SR); for example, for the case of Japan the PT statistic is statistically
significant at the 10% level, while the success ratio is only as low as 0.524. It is
also worth noting that the PT statistic for the U.K. is not applicable, because the
model yields only positive signal forecasts (ŷjt = 1), i.e. the estimated probability
of positive return is higher than 50% all the time). This finding highlights the need
for other measures, such as the AUC, that is not dependent on only one specific
threshold selection, which is ξ = 0.5 for the PT statistic and success ratio.5 All
in all, the results of the PT statistics are in line with other measures by generally
indicating a higher level of predictability for the models presented in Table 3 than
in Table 2.

Due to the difficulties with the success ratio and the PT test, we emphasize the
AUC in describing the predictive ability of the probit models. The reported AUCs
also lend support to including a wider selection of domestic predictive variables. In
Table 2, the AUC values range from 0.524 for Japan to 0.589 for the Netherlands
for the models which we contain the domestic dividend yield and the three-month
interest rates as predictors. For the models in Table 3, the AUCs are actually
higher for all the countries than in the previous case, and lie between 0.576 for
Japan and 0.651 for Switzerland. This can be seen as further evidence in favor of
going beyond the dividend yield and short-term interest rate as predictors when
predicting the signs of the excess stock returns.

5.2 Univariate Models with the Lagged U.S. Return as a

Predictor

As we are especially interested in the possible leading role of the U.S. in inter-
national stock markets, we next study univariate models presented in Table 3
augmented with the lagged U.S. excess return (RMU.S.,t−1).6 The results of these

5We report the results for the natural threshold of ξ = 0.5 in the tables, but we also exper-
imented with alternative thresholds, which led to only minor changes compared to the results
presented here.

6 Hereafter we denote the market in the subscript.
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models are reported in Table 4. For three out of ten markets, the lagged U.S. re-
turn is statistically significant (at least) at the 10% level, indicating improvement
in predictive power. Interestingly, when we compare the AUC values between the
univariate models in Tables 3 and 4, we find improvement in seven out of ten cases
upon including RMU.S.,t−1 in the model. In some cases the improvement is rather
modest, but this finding is generally reconfirmed also by the adjusted pseudo-R2,
QPS, and the SR.7

Overall, our findings in the univariate probit models are in line with those of
Rapach et al. (2013) for traditional linear predictive models. The lagged value of
the U.S. excess return seems to contain useful additional predictive power to predict
return directions internationally. However, in contrast to the results reported by
Rapach et al. (2013), we have shown that the dividend yield and the lagged three-
month interest rate are not the best predictors of the sign of the excess return in
most of the markets considered. Instead, the lagged domestic excess stock return
and the change in the real oil price are typically among the best predictors in
sample.

5.3 Bivariate Models

In the previous section, we found that including the lagged U.S. return in the uni-
variate models (marginally) improves the in-sample fit in some of the markets. To
further explore the information diffusion from the U.S., in this section, we estimate
bivariate probit models for the U.S. and the ten other markets. In particular, we
want to examine whether including the combination of the U.S. predictors (i.e. π1t
in model (11)) can produce more accurate predictions for other markets over and
above including the lagged U.S. return only.

In this section, we consider four different bivariate probit models. The most
general model (Model 4) defined in equations (7) and (11) is based on the new
bivariate model allowing for the contemporaneous predictive linkage from the U.S.
to the other market. The examined models contain the following restrictions:

7As our aim is to test the predictive ability of the lagged U.S. return, we do not present detailed
results on how returns in other markets help predict the sign of the U.S. return. However, we
found that when we augment the model for the U.S. (see Table 3) with the lagged returns from
each individual country separately, only the lagged Swedish and Italian returns turn out to be
statistically significant predictors of the U.S. return. The finding that the foreign lagged returns
do not predict the U.S. return sign is in line with the results of Rapach et al. (2013) obtained
with the conventional predictive regression models for the actual return.
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Model 1: c = 0, ρ = 0,
Model 2: c = 0,
Model 3: ρ = 0,
Model 4: unrestricted.

Model 1 is the most restricted version of the general bivariate model (Model 4),
and it reduces to two univariate probit models considered already in Sections 5.1
and 5.2. Model 2 restricts c to zero, leaving out the contemporaneous linkage from
the U.S. to the other market; nevertheless the correlation coefficient ρ still has an
effect on the response probabilities (7). In Model 3, we restrict ρ to zero, but allow
for the contemporaneous effect through c.

In Section 5.1, we found that the fit of the univariate models is rather weak
when including only DY and TB as predictors. Hence, instead of relying on
these variables, we select the predictors for each market separately. The selection
of predictors for Model 1 is straightforward, as no contemporaneous effects are
allowed for between the two markets. Thus, we simply rely on the predictors
selected for the univariate models in Table 3. However, it is not evident that these
variables would be selected for Models 2–4. For example, when the parameter c
is not restricted to zero, the joint effect of the U.S. predictors might affect the
selection of explanatory variables for the other country. Nevertheless, for the sake
of comparability, we have chosen to include the same explanatory variables as in
Model 1 in all the models.

The main question of this study is whether there are benefits of using the
bivariate model setup and, in particular, whether we can find evidence of gradual
diffusion of predictive information from the U.S. to the other markets. We could
follow the approach of Rapach et al. (2013), in which foreign (U.S.) variables
are directly included in the univariate model for other markets. This is a good
way to study the explanatory power of additional variables, such as the lagged U.S.
market return, but our approach provides a more parsimonious way of studying the
combined effect based on the constructed linear function π1t behind the probability
of positive excess return in the U.S. The results for the univariate models in which
the lagged U.S. market return is included directly as a predictor for the direction
of excess return in the other markets (see Table 4) can be compared with findings
presented in this section.

As we have ten pairs of markets, we will not discuss the results for every pair
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in detail. Instead, we concentrate on three dissimilar cases that give a general
overview of our results, and summarize the rest of the findings. The countries
we focus on are the U.K., Canada, and Sweden. In addition to a few system-
wide measures, we report goodness-of-fit statistics for the markets separately, as
this allows us to compare the results with those of the univariate models and to
evaluate the predictive power coming from the U.S. to the market of interest.

The results of the bivariate models for the pair of the U.S. and the U.K. are
reported in Table 5. We first consider the case where we have two independent
univariate probit models. This allows us to later compare the potential benefits of
joint modeling of the markets. The parameter estimates of the bivariate indepen-
dent probit model (Model 1) in Table 5 are reproduced from Table 3. The value
of the log-likelihood function is the sum of those of the two univariate models (see
Appendix A). Furthermore, as discussed in Section 3, we cannot directly compare
pseudo-R2s between different models because the benchmark model (i.e. restricted
log-likelihood function) is different. In other words, the pseudo-R2 measures for
Model 2 and Model 4 (see (13)) are not directly comparable to those for Models
1 and 3 (see (12)). Similar argument applies also comparisons to the univariate
probit models reported in Tables 2–4. Thus, we rely on other measures, mainly
the AUC and the success ratio in comparing the different models.

[Table 5 here]

For RMIU.S., Models 1 and 2 in Table 5 (i.e. the models including the effect
of a nonzero ρ) yield rather similar results, whereas for RMIU.K. the estimated
parameter coefficients generally lose some of their statistical significance in Model
2. The parameter ρ is statistically highly significant, which suggest that there
are some benefits of joint modeling, but on the other hand we find little or no
improvement in predictive power measured by the success ratio and AUC.

With Model 3 (i.e. allowing for a nonzero parameter c) we do find that the
adjusted pseudo-R2 and the AUC clearly favor it over the independent model
(Model 1). The success ratio and AUC are also higher for Model 3 than for Model
2. The estimated value of c is positive, as expected, but interestingly statistically
insignificant at the 5% level even though the above-mentioned goodness-of-fit mea-
sures clearly demonstrate benefits when allowing for a contemporaneous predictive
relationship from the U.S. to the U.K. stock market.8

8 We also consider the possibility of effects running from other markets to the U.S., meaning
that we reverse the order of the countries in Models 3 and 4. The estimated values of the log-
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Overall, Model 3 appears the best according to the AUC and SR in spite of the
statistically insignificant coefficient for parameter c. The results of the unrestricted
bivariate model (Model 4) indicate that there is little or no benefit of allowing for
both nonzero c and ρ compared with Model 3 in terms of the predictability of
RMIU.K..

[Table 6 here]

In Table 6, we report the findings for the bivariate system of the U.S. and
Sweden. The small Swedish markets are more likely to be affected by events in
larger markets. The results indicate that the predictability of the direction of the
Swedish markets is indeed improved by modeling it together with the U.S. market.
In particular, the AUCs implied by Models 3 and 4 are greater than that implied
by Model 1. Also, the parameter c (expressing the linkage between the markets) in
Model 3 turns out statistically significant at the 10% level, and the improvement
compared with Models 1 and 2 is evident in terms of all goodness-of-fit measures.
This can be interpreted as clear evidence of gradual diffusion of information from
the U.S. to the Swedish markets, which could indicate that the small Swedish
markets that receive less investor attention are prone to be affected by the changes
in larger markets.

[Table 7 here]

In Table 7, we present the results of the bivariate models for the U.S. and
Canada. Interestingly, the transmission of stock returns and volatility between
the U.S. and Canada has previously been studied by e.g. Karolyi (1995), but this
is the first study focusing on the cross-predictability of the directional component
of the returns. It is perhaps not that surprising that we also find a predictive effect
from the U.S. to the Canadian market, as Canada is a relatively small economy
with strong ties to its neighbor. We find c highly statistically significant in Model
3 and, in fact, it remains statistically significant for Canada also in Model 4, while
for the other markets considered that is not the case. The differences in the AUCs
are also rather large compared to the specifications where c is restricted to zero.
Figure 1 illustrates the superior in-sample predictive ability presented in Table 7:
The ROC curve of Model 3 is almost exclusively above the ROC curve of Model
1, implying thus also higher AUC. Both ROC curves are also above the 45-degree
line implying useful predictive power.

likelihood functions show that the U.K. market hardly affects the U.S. market through parameter
c. Similar findings hold for the other markets as well.
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Figure 1: ROC curves of Models 1 and 3 for the Canadian stock return (see Table
7) .

For the remaining markets, the results are reported in Appendix B (see Tables
10–16). For five out of the ten markets we find c statistically significant at least
at the 10% level in Model 3. It is worth noting that the domestic variables for
both Australia and Japan turned out not rather poor predictors, and only a single
domestic variable ended up in the models selected by the AIC. It is also note-
worthy that for the large European markets, i.e. Germany, France, and the U.K.,
we find no significant effects through U.S. predictors. Also for two smaller Euro-
pean countries, namely the Netherlands and Switzerland, we have similar findings.
Moreover, allowing ρ to be nonzero generally weakens the statistical significance of
the other parameters, whereas it in itself is highly statistically significant in mod-
els for each of the markets. However, in line with Nyberg (2014), the statistical
significance of ρ does not imply an improvement in overall predictability measured
by, e.g., the AUC.

As a general finding among the bivariate models, the Model 3 specification
is strongly supported by the AUC. In seven out of the ten markets, the AUC is
highest for Model 3, and the independent model (Model 1) is preferred for the
German and Swiss markets. Only for Italy, does Model 4 yield the highest AUC.
As our findings indicate that Model 3 is generally the best bivariate model, in the
following sections we will mostly focus on it.9

9Reversing the order of the equations in Model 3, i.e., allowing for predictive effects from each
of the other markets on the direction of the U.S. return, we find the parameter c significant (at
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Altogether, the results for the univariate models (Table 4) indicated that the
lagged U.S. return (RMU.S.,t−1) is a statistically significant predictor in only three
out of the ten markets. In this section, we have found the parameter c statistically
significant in five out of the ten bivariate models when ρ is restricted to zero
(Model 3). This does not yet imply very strong support to the superiority of the
bivariate models, but according to the AUC statistics the bivariate model (Model
3) outperforms the univariate models in Table 4 for eight out of the ten markets,
with Australia and Switzerland being the only exceptions. The success ratio favors
the bivariate model (Model 3) in seven out of the ten cases over the univariate
model. Putting together all of this evidence we get relatively strong indication
that the bivariate modeling is competitive in sample and, especially, Model 3 is
found to work the best. In order to confirm these findings, we will examine the
out-of-sample forecasting performance of these models in the following section.

6 Out-of-Sample Forecasting Results

It is a typical convention in time series forecasting to examine out-of-sample pre-
dictive performance, as the in-sample findings do not often hold out of sample.
In particular, the commonly used in-sample goodness-of-fit measures are prone to
favor overparametrized models, whereas in out-of-sample forecasting more parsi-
monious models often outperform more complicated ones. In Section 5.3, we found
that the bivariate Model 3 (where c 6= 0 and ρ = 0) performed best. Thus, we will
compare the out-of-sample performance of this model with that of the univariate
model (i.e. Model 1) reported in Sections 5.1 and 5.2.

In line with the in-sample results, we consider one-month-ahead forecasts (h =

1) throughout this section for the forecasting period 1995M1–2010M12. Forecast
performance is evaluated by means of statistical measures (Section 6.1) as well
as simple asset allocation trading strategies to assess the economic value of the
forecasts (Section 6.2). The forecasts are computed following a rolling window
approach, where the estimation window is 15 years (i.e. 1980M01–1994M12 for the
first forecasts). Several previous studies have shown that the predictive relations
in asset markets may not be stable in time (see, e.g., Pesaran and Timmermann
(2002)). Therefore, the rolling window approach is often preferred, as it is able to
better take possible structural changes into account than the expanding window
approach. We also performed robustness checks based the expanding window and

the 10% level) only in the model for the bivariate case of Italy and U.S.
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a shorter 5-year rolling window, but the results remain essentially similar to those
presented below (available upon request).

6.1 Statistical Forecast Evaluation

The out-of-sample forecasting results of the different models and markets are pre-
sented in Table 8. We focus on two measures of statistical forecasting performance
that are easy to interpret and compare, i.e. the success ratio (SR) and the AUC.
We also considered a number of alternative measures (the results are available
upon request), including the Pesaran and Timmermann (2009) predictability test
and the out-of-sample pseudo-R2 and QPS. These measures indicate a low level
of out-of-sample predictability, as has typically been found in previous studies as
well. As discussed in Section 3, we believe that especially the AUC gives a better
description of the predictive performance of the models than the above-mentioned
measures and, hence, we emphasize that measure.

The results in Table 8 show that the out-of-sample success ratios and the AUCs
are, as expected, generally lower than their in-sample counterparts. Moreover, we
find that the univariate models where only the dividend yield and three-month
interest rate are included as predictors (not presented), perform poorly also out
of sample, and the AUCs for the models in which the model selection is done for
each market separately (denoted by UNI in Table 8), are higher in all eleven cases.
Furthermore, including the lagged U.S. return (RMU.S.,t−1) as a predictor in the
univariate model (model UNIRM) improves out-of-sample performance measured
by the AUC in six out of the ten non-U.S. countries.

In Section 5.3, we found that the bivariate probit model with the contempo-
raneous linkage via the parameter c (Model 3) outperforms the univariate model
containing the lagged U.S. return (RMU.S.,t−1) in sample. The out-of-sample evi-
dence is to some extent the same: The AUC is higher for six out of the markets.
Similarly the success rate (SR) is higher for eight out of the ten markets. Therefore,
we are able to conclude that the proposed bivariate model, where effects from the
U.S. to the other market via c are allowed for, is useful in predicting the direction
of excess stock returns in a number of international markets.

In Table 8, the bivariate model (Model 3) is also superior to the univariate
model that includes the lagged U.S. excess return as a predictor. This finding
gives further indication that the predictive power included in the U.S. economic
fundamentals is not completely captured by the lagged U.S. return. There are
some differences in results across the markets, but as a general finding, the role
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of the U.S. is, perhaps unsurprisingly, notable for countries such as Australia and
Italy where the domestic predictors have little predictive ability.

6.2 Market Timing Tests

In addition to statistical measures, the out-of-sample performance of the models
can also be assessed by the success of their implied trading strategies. This ap-
proach is partly motivated by Leitch and Tanner (1991), among others, who argue
that the models performing well according to statistical criteria might not be prof-
itable in market timing, and vice versa. As the central idea of this paper is to
study the predictive role of information originating from the U.S. on the excess
returns in other markets, it is also of interest to examine the economic significance
of this predictive linkage.

Following the idea of decomposing a stock return to sign and absolute value
(volatility) component (see, e.g., Anatolyev and Gospodinov (2010) and Rydberg
and Shephard (2003)), it is of interest to examine whether these two components,
and their potential predictability, have different consequences in terms of eco-
nomic value in market timing experiments. In the previous literature, Fleming
et al. (2001), among others, have considered the economic value of volatility tim-
ing where a variety of (generalized) autoregressive conditional heteroskedasticity
(G)ARCH models have been employed. Below, we complement that literature
concentrating on the economic value of sign predictability obtained above in terms
of statistical criteria.

We consider simple trading strategies between stocks and bonds similar to
those in Pesaran and Timmermann (1995), Leung et al. (2000), Guo (2006), and
Nyberg (2011), among others, based on the out-of-sample forecasts of the models
in Table 8 and explained more detail below. This facilitates a direct comparison of
trading returns of different models and commonly used benchmarks, such as the
buy-and-hold (B&H hereafter) strategy where the investor invests only in stocks
during the whole out-of-sample period.

We assume that an investor makes a decision on asset allocation at the begin-
ning of each month. The selection of assets consists of the stocks (risky assets)
and the three-month T-bill rate (risk-free asset). The investment decision is based
on the conditional probability of positive excess returns forecast by the models
and the probability threshold ξ that we set at 0.5. If the signal forecast (15) is
ŷjt = 1 (i.e. a positive return), the investor invests only in stocks. In our case this
is the market portfolio, which is assumed tradable through a hypothetical index
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fund. If the forecast model predicts a downward movement in the stock market
(ŷjt = 0), the investor allocates the whole portfolio value to the three-month T-bill.
We assume zero transaction costs and no short sales for the sake of simplicity.

In Table 9, we report the annualized average returns as well as the Sharpe
ratios that can take the riskiness of the portfolio into account. The latter is a
convenient tool in ranking portfolio performance, although its numerical value is
difficult to interpret. In Table 9, we compare the performance of the probit models
to the buy-and-hold strategy. The B&H strategy yields very different returns in
the different markets; whereas the annual return was 12.12% in Sweden, the return
in the Japanese stock market was actually negative (-1.92%) for the out-of-sample
period 1995M01-2010M12.

We find that the return implied by the strategy based on the forecasts of the
bivariate model (BIV, Model 3) is higher than that of the competing strategies in
eight out of the ten markets, and in the remaining two cases (Canada and Sweden),
the model augmented with the lagged U.S. excess return (UNIRM) performs the
best.10 The values of the Sharpe ratio confirm these findings for all the markets
except for Italy, where the Sharpe ratio is slightly higher for the univariate model
(UNIRM) despite the higher average return implied by the bivariate model. The
findings between the other strategies are less ambiguous; the buy-and-hold strategy
yields the lowest returns in six out of the ten cases, but in four cases the UNIRM
strategy performs the worst. Overall, the superiority of the bivariate model also in
the trading strategies lend further support to the prominent role of the U.S. stock
market in predicting the direction of returns in other markets.

7 Conclusions

We study the interrelationships between excess stock market returns in the U.S.
and ten other markets. In contrast to the usual predictive regression models for
actual returns, we focus on predicting the sign component of excess returns. The
previous research on the sign predictability in stock returns is rather limited, al-
though it is an important issue in various financial applications, such as market
timing decisions. In the spirit of the gradual diffusion of predictive information

10 We study the robustness of the results by considering an alternative strategy, where the
threshold ξ is set equal to the rolling average of realized past values of yjt. Findings in favor of
the bivariate model are weaker than those presented in Table 9, but the bivariate model (BIV,
Model 3) still performs the best.

26



across markets (see Hong and Stein (1999), Hong et al. (2007), Menzly and Ozbas
(2010) and Rizova (2013)), we explore whether the combined effect of the U.S.
market fundamentals (i.e. the predictive power obtained for the U.S. market) is
useful in predicting the signs of returns in a number of international markets. To
examine this potential leading role of the U.S., we introduce a new bivariate pro-
bit model, which adds to the previous scant econometric research on bivariate and
multivariate binary time series models.

Our results show that in the univariate probit model the lagged U.S. excess
stock return is a useful predictor of the sign of the excess return in a number
of other markets. This finding is consistent with the previous results of Rapach
et al. (2013), who study actual return predictability with conventional predictive
regressions. We also find that the lagged domestic stock return and the real oil
price are generally the best predictors of the sign of the return. In any case,
the new bivariate probit model, allowing for a contemporaneous predictive linkage
from the U.S. to the other market, outperforms the above-mentioned univariate
models containing the lagged U.S. return as a predictor in eight out of ten markets
supporting the gradual diffusion of directional predictive information from the U.S.
to the other markets. In particular, this suggest that the predictive power is not
restricted to just the lagged U.S. return. Instead, it is beneficial to use the obtained
predictive power of sign forecast for the U.S. in other countries. Our out-of-sample
forecasting results generally confirm these in-sample findings. Specifically, we find
that the bivariate model produces the best out-of-sample sign forecasts for the
majority of markets and, importantly, utilizing these forecasts result in higher
trading returns in simple asset allocation experiments than a number of competing
models.

This study could be extended in a number of ways. The possible time variation
in the parameters of binary response models has not been studied in the context
of sign predictability of returns although, e.g., Pesaran and Timmermann (2002)
have pointed out issues related to model instability. In terms of testing the gradual
diffusion of information across markets, the use of higher frequency data (such
as daily data) could also be considered with the new bivariate model suggested
in this study. Furthermore, more complicated (out-of-sample) trading strategies
might also be of interest, but this requires first a closer examination of the linkage
between the binary response models and portfolio optimization decisions, which
lies outside of the scope of this paper.
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Appendix A: Maximum likelihood estimation

This appendix shows how the log-likelihood function of the new bivariate probit
model (Model 4) are determined by equations (7) and (11). The restricted models
(Models 1–3) can be obtained by imposing suitable restrictions on Model 4. Special
attention below will be paid to the derivation of the robust standard errors of the
estimates of the parameters.

The notation closely follows Greene (2012), pp. 778–781 (see also Nyberg
(2014)). We start with the construction of the log-likelihood function. Suppose we
have observed a binary time series yjt, j = 1, 2, such as (2). Define qjt = 2yjt − 1

and µjt = qjtπjt, j = 1, 2, so that

qjt =

{
1 if yjt = 1,
−1 if yjt = 0,

and

µjt =

{
πjt if yjt = 1,
−πjt if yjt = 0.

Furthermore, set
ρ∗t = q1tq2tρ.

The conditional probabilities of the different outcomes of (y1t,y2t) given in (7) can
thus be expressed as

pij,t = Φ2(µ1t, µ2t, ρ
∗
t ), i, j = 0, 1,

where ρ is the correlation coefficient in the bivariate normal distribution function.

Let θ =
[
ω1 β1 ω2 β2 c ρ

]′
denote the vector of the parameters of the

bivariate probit model (11). The conditional log-likelihood function, conditional
on the initial values, is the sum of the individual log-likelihoods lt(θ),

l(θ) =
T∑
t=1

lt(θ) =
T∑
t=1

log
(

Φ2(µ1t, µ2t, ρ
∗
t )
)

=
T∑
t=1

(
y1ty2t log(p11,t) + y1t(1− y2t) log(p10,t) + (1− y1t)y2t log(p01,t)

+(1− y1t)(1− y2t) log(p00,t)
)
.

The maximization of l(θ) is clearly a highly nonlinear problem, but it can be
straightforwardly carried out by standard numerical methods.
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To obtain robust standard errors for the parameter coefficients, we need the
score of the log-likelihood function. The score vector is defined as

s(θ) =
T∑
t=1

st(θ) =
T∑
t=1

∂lt(θ)

∂θ
,

where

st(θ) =
∂lt(θ)

∂θ
=

1

Φ2(µ1t, µ2t, ρ∗t )

∂Φ2(µ1t, µ2t, ρ
∗
t )

∂θ
.

Split the parameter vector into three disjoint components, namely θ = [θ
′

1 θ
′

2 ρ]
′ ,

where the parameters in θ1 and θ2 are related to the specifications of π1t and π2t.
Note, however, that in contrast to the usual bivariate specification (Model 2), the
parameters θ1 and θ2 are not separable in Model 4 (and Model 3) as the linear
function π2t is dependent on π1t via the coefficient c and, thus, the estimates of θ1
are not necessarily the same as obtained with the univariate independent models
(Model 1).

Let us partition the score vector accordingly as

st(θ) =
[
s1t(θ1)

′
s2t(θ2)

′
s3t(ρ)

]′
.

The components of st(θj) with respect of θj, j = 1, 2,, can be written as

sjt(θj) =
1

Φ2(µ1t, µ2t, ρ∗t )

∂Φ2(µ1t, µ2t, ρ
∗
t )

∂θj

=
1

Φ2(µ1t, µ2t, ρ∗t )

[∂Φ2(µ1t, µ2t, ρ
∗
t )

∂µ1t

∂µ1t

∂π1t

∂π1t
∂θj

+
∂Φ2(µ1t, µ2t, ρ

∗
t )

∂µ2t

∂µ2t

∂π2t

∂π2t
∂θj

]
.

For Model 4, we obtain

∂π2t
∂θ1

=
[∂π2t
∂ω1

∂π2t
∂β1

]′
=
[
c x1,t−1c

]′
,

and
∂π1t
∂θ2

=
[∂π1t
∂ω2

∂π1t
∂β2

∂π1t
∂c

]′
= 0,

while for Model 2 the first derivative is also zero (when the contemporaneous link
does not exist (c = 0)).

Therefore, the first component, st(θ1), is

s1t(θ1) =
1

Φ2(µ1t, µ2t, ρ∗t )

[
φ(µ1t)Φ

(µ2t − µ1tρ
∗
t√

1− ρ∗2t

)
q1t
∂π1t
∂θ1

+ φ(µ2t)Φ
(µ1t − µ2tρ

∗
t√

1− ρ∗2t

)
q2t
∂π2t
∂θ1

]
,

and the second component is

s2t(θ2) =
1

Φ2(µ1t, µ2t, ρ∗t )
φ(µ2t)Φ

(µ1t − µ2tρ
∗
t√

1− ρ∗2t

)
q2t
∂π2t
∂θ2

,
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where φ(·) and Φ(·) are the density and cumulative distribution functions of the
standard normal distribution, respectively. In Model 4, the derivatives ∂π1t/∂θ1
and ∂π2t/∂θ2 equal

∂π1t
∂θ1

=
[

∂π1t
∂ω1

∂π1t
∂β1

]′
=
[

1 x1,t−1

]′
,

and

∂π2t
∂θ2

=
[

∂π2t
∂ω2

∂π2t
∂β2

∂π2t
∂c

]′
=
[

1 x2,t−1 π1t

]′
.

The values of sjt(θ1) depend on the realized values of y1t and y2t. For instance, if
y1t = 1 and y2t = 1, then by the definitions of µjt and q1t, we get

s1t(θ1) =
1

Φ2(π1t, π2t, ρ)

[
φ(π1t)Φ

(π2t − π1tρ√
1− ρ

)∂π1t
∂θ1

+ φ(π2t)Φ
(π1t − π2tρ√

1− ρ

)∂π2t
∂θ1

]
,

and

s2t(θ1) =
1

Φ2(π1t, π2t, ρ)
φ(π2t)Φ

(π1t − π2tρ√
1− ρ

)∂π2t
∂θ2

.

Following Greene (2012, pp. 780), the score with respect of the correlation
coefficient ρ becomes

s3t(ρ) =
∂lt(θ)

∂ρ
=

1

Φ2(µ1t, µ2t, ρ∗t )

∂Φ2(µ1t, µ2t, ρ
∗
t )

∂ρ∗t

∂ρ∗t
∂ρ

=
φ2(µ1t, µ2t, ρ

∗
t )

Φ2(µ1t, µ2t, ρ∗t )
q1tq2t.

As above, the value of s3t(ρ) depends on the realized values of the dependent
variables. For example, if y1t = 1 and y2t = 1, then we get

s3t(ρ) =
φ2(π1t, π2t, ρ)

Φ2(π1t, π2t, ρ)
,

and if y1t = 1 and y2t = 0,

s3t(ρ) = −φ2(π1t,−π2t,−ρ)

Φ2(π1t,−π2t,−ρ)
.

Maximization of the log-likelihood function yields the maximum likelihood es-
timate θ̂, which solves the first-order condition s(θ̂) = 0, where the score vector
is obtained above. At the moment there is no formal proof of the asymptotic
distribution of the maximum likelihood estimator θ̂. However, under appropriate
regularity conditions, including the stationarity of explanatory variables (xj,t−1)
and the correctness of the probit model specification, it is reasonable to assume
that the ML estimator θ̂ is consistent and asymptotically normal. This facilitates
the use of the conventional tests for the components of the parameter vector θ in
the usual way.
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Throughout this paper, the maximum likelihood estimator θ̂ is interpreted as a
quasi-maximum likelihood estimator (QMLE). Therefore, we consider the following
asymptotic distribution of θ̂

T 1/2(θ̂ − θ∗)
d−→ N

(
0, I(θ∗)

−1J (θ∗)I(θ∗)
−1
)
,

where the asymptotic covariance matrix consists of I(θ) = plimT−1
∑T

t=1(∂
2lt(θ)/∂θ∂θ

′
)

and J (θ) = plimT−1
∑T

t=1 st(θ)st(θ)
′ . In this expression, θ∗ is the value in the

parameter space of θ assumed to maximize the probability limit of T−1l(θ) (see,
e.g., Davidson (2000, Section 9.3) for details). If the model is correctly specified,
then I(θ) = J (θ).

Robust standard errors based on the QMLE (reported in the estimation results
in Sections 5 and 6) are obtained from the diagonal elements of the asymptotic
covariance matrix, where I(θ) and J (θ) are replaced by their sample analogues.
That is, we compute the diagonal elements of

Î(θ̂)−1Ĵ (θ̂)Î(θ̂)−1.

A consistent estimator of the matrix I(θ∗) is obtained as

Î(θ̂) = T−1
T∑
t=1

(∂2lt(θ̂)/∂θ∂θ
′
),

but the estimation of the matrix J (θ) is more complicated. Following the pro-
cedure proposed by Kauppi and Saikkonen (2008), applied to univariate probit
models in this paper, we use a general estimator given by

Ĵ (θ̂) = T−1

(
T∑
t=1

st(θ̂)st(θ̂)
′
+

T−1∑
j=1

wTj

T∑
t=j+1

(
st(θ̂)st−j(θ̂)

′
+ st−j(θ̂)st(θ̂)

′
)
,

)

where wTj = k(j/mT ) for an appropriate kernel function k(x). In our empirical
application, we use the Parzen kernel function (see Davidson (2000), p. 227) and,
similarly as Kauppi and Saikkonen (2008), the bandwidth mT is selected according
to the rule mT = floor(4(T/100)2/9), where the function floor(x) rounds x to the
nearest integer less than or equal to x.
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Tables

Table 1: Descriptive statistics for excess stock returns and their sign components.
U.S. AUS CAN FRA GER ITA JPN NED SWE SUI U.K.

Mean 0.547 0.353 0.303 0.495 0.511 0.422 0.219 0.677 1.027 0.551 0.497
St.dev 4.500 5.070 4.725 5.727 5.710 6.983 5.386 5.381 6.727 4.634 4.682
Correl 1.000 0.589 0.774 0.644 0.630 0.428 0.417 0.704 0.566 0.688 0.730
Φ-coeff. 1.000 0.458 0.594 0.480 0.402 0.368 0.263 0.547 0.372 0.452 0.490

Notes: This table reports descriptive statistics for monthly excess stock market returns (in
percentages) for the full sample period 1980M2–2010M12. The reported statistics include the
means, standard deviations and correlations with the U.S. excess return series. We also report
the Φ-coefficients for the binary time series extracted from the excess stock returns (see (2)).
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Table 5: In-sample estimation results for bivariate Models 1–4 for the U.S. and
the U.K. markets.

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.552*** 0.612*** 0.620**
(0.214) (0.239) (0.219) (0.283)

DYU.S.,t−1 0.449*** 0.402*** 0.430*** 0.466***
(0.120) (0.116) (0.136) (0.136)

RMU.S.,t−1 0.049** 0.027 0.057** 0.041
(0.024) (0.023) (0.025) (0.037)

RMIU.S.,t−1 -0.320 -0.133 -0.417* -0.253
(0.220) (0.193) (0.245) (0.338)

IPU.S.,t−1 0.161 0.108 0.184 0.152
(0.106) (0.084) (0.116) (0.129)

10YU.S.,t−1 -0.206*** -0.193*** -0.193*** -0.220***
(0.050) (0.046) (0.061) (0.056)

RMIU.K. CONST -0.149 -0.062 -0.174 -0.112
(0.266) (0.342) (0.243) (0.315)

DYU.K.,t−1 0.134* 0.111 0.113* 0.105
(0.069) (0.097) (0.067) (0.086)

INFU.K.,t−1 -0.391*** -0.384** -0.361** -0.364**
(0.148) (0.152) (0.154) (0.157)

ρ 0.721*** 0.719***
(0.014) (0.015)

c 0.405 0.284
(0.294) (0.289)

logL -485.160 -438.313 -483.855 -437.652
AIC 494.160 448.313 493.855 448.652
QPSU.S. 0.458 0.459 0.459 0.458
QPSU.K. 0.469 0.469 0.465 0.467
psR2 0.072† 0.074‡ 0.079† 0.078‡

adj.psR2 0.049† 0.048‡ 0.053† 0.049‡

SRU.S. 0.638 0.659 0.632 0.635
SRU.K. 0.614 0.614 0.622 0.597
AUCU.S. 0.620 0.624 0.615 0.623
AUCU.K. 0.581 0.584 0.601 0.598
PTU.S. 8.441*** 14.071*** 8.481*** 6.810***
PTU.K. 4.335** 4.470** 7.495*** 0.918

Notes: The table presents the in-sample estimation results for the different bivariate probit
models for the U.S. and the U.K. markets. Robust standard errors are reported in brackets. In
the table, *, **, and *** denote the statistical significance at the 10, 5 and 1% level,
respectively. Note that the psR2 and adj.psR2 values are only comparable between Models 1
and 3 (denoted by †), and Models 2 and 4 (denoted by ‡).
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Table 6: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Swedish markets.

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.603** 0.501** 0.578**
(0.214) (0.236) (0.238) (0.284)

DYU.S.,t−1 0.449*** 0.396*** 0.401*** 0.436***
(0.120) (0.153) (0.138) (0.162)

RMU.S.,t−1 0.049** 0.032 0.057** 0.053
(0.024) (0.026) (0.022) (0.035)

RMIU.S.,t−1 -0.320 -0.274 -0.294 -0.317
(0.220) (0.203) (0.215) (0.235)

IPU.S.,t−1 0.161 0.093 0.204** 0.183
(0.106) (0.129) (0.096) (0.162)

10YU.S.,t−1 -0.206*** -0.187*** -0.177*** -0.199**
(0.050) (0.071) (0.063) (0.079)

RMISWE CONST 0.070* 0.092 0.068 -0.027
(0.082) (0.082) (0.118) (0.144)

TSSWE,t−1 0.116** 0.091** 0.109** 0.086*
(0.044) (0.045) (0.047) (0.048)

OILSWE,t−1 -0.015** -0.013 -0.014* -0.012
(0.007) (0.009) (0.007) (0.008)

ρ 0.539*** 0.528***
(0.019) (0.022)

c 0.587* 0.500
(0.347) (0.477)

logL -488.845 -466.083 -486.266 -464.429
AIC 497.845 476.083 496.266 475.429
QPSU.S. 0.458 0.459 0.459 0.458
QPSSWE 0.479 0.480 0.470 0.473
psR2 0.077† 0.062‡ 0.090† 0.070‡

adj.psR2 0.054† 0.035‡ 0.065† 0.042‡

SRU.S. 0.638 0.646 0.641 0.641
SRSWE 0.565 0.570 0.608 0.605
AUCU.S. 0.620 0.621 0.619 0.621
AUCSWE 0.605 0.605 0.639 0.634
PTU.S. 8.441*** 6.735*** 12.410*** 11.093***
PTSWE 1.520 1.794 13.443*** 11.070***

Notes: See the notes to Table 5.
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Table 7: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Canadian markets.

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.587 0.546** 0.576
(0.214) (0.357) (0.216) (0.384)

DYU.S.,t−1 0.449*** 0.266** 0.410*** 0.425*
(0.120) (0.135) (0.146) (0.218)

RMU.S.,t−1 0.049** 0.017 0.054** 0.051
(0.024) (0.029) (0.022) (0.043)

RMIU.S.,t−1 -0.320 -0.219 -0.255 -0.266
(0.220) (0.224) (0.219) (0.358)

IPU.S.,t−1 0.161 0.102 0.151 0.152
(0.106) (0.099) (0.114) (0.168)

10YU.S.,t−1 -0.206*** -0.137** -0.189*** -0.197**
(0.050) (0.070) (0.060) (0.099)

RMICAN CONST 0.428** 0.433*** 0.095 0.099
(0.126) (0.183) (0.171) (0.196)

TBCAN,t−1 -0.44*** -0.44** -0.026 -0.024
(0.017) (0.024) (0.016) (0.019)

REXCAN,t−1 0.051 0.039 0.028 0.033
(0.033) (0.041) (0.039) (0.039)

ρ 0.806*** 0.799***
(0.020) (0.010)

c 0.883*** 0.835**
(0.329) (0.385)

logL -489.183 -424.031 -483.512 -419.470
AIC 498.183 434.031 493.512 430.470
QPSU.S. 0.458 0.463 0.459 0.458
QPSCAN 0.480 0.480 0.466 0.466
psR2 0.079† 0.051‡ 0.107† 0.074‡

adj.psR2 0.056† 0.024‡ 0.083† 0.046‡

SRU.S. 0.638 0.641 0.641 0.643
SRCAN 0.597 0.608 0.600 0.603
AUCU.S. 0.620 0.614 0.623 0.623
AUCCAN 0.588 0.583 0.634 0.634
PTU.S. 8.441*** 6.875*** 10.236*** 10.568***
PTCAN 2.450 6.687*** 5.508** 4.304**

Notes: See the notes to Table 5.
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Table 8: Out-of-sample forecasting results.

Model Statistic AUS CAN FRA GER ITA JPN NED SWE SUI U.K.

UNI SR 0.615 0.620 0.589 0.547 0.542 0.505 0.630 0.599 0.620 0.599
AUC 0.510 0.494 0.572 0.572 0.529 0.533 0.573 0.576 0.592 0.529

UNIRM SR 0.609 0.635 0.599 0.536 0.547 0.510 0.630 0.615 0.615 0.597
AUC 0.526 0.572 0.577 0.580 0.540 0.516 0.570 0.592 0.590 0.501

BIV SR 0.635 0.594 0.609 0.547 0.557 0.542 0.656 0.589 0.620 0.615
AUC 0.546 0.551 0.591 0.567 0.575 0.543 0.573 0.581 0.572 0.557

Notes: This table displays the out-of-sample forecasting results for the period 1995M01–
2010M12. The forecasts are based on the rolling estimation window of 15 years. Model UNI
refers to the univariate probit models that are selected separately for each country, UNIRM
refers to UNI models augmented with the U.S. lagged return (RMU.S.,t−1), and BIV refers to
the bivariate model with the contemporaneous linkage via the parameter c (Model 3).

Table 9: Out-of-sample market timing tests.

Model Statistic AUS CAN FRA GER ITA JPN NED SWE SUI U.K.

B&H RETURN 10.30% 9.77% 8.19% 7.04% 6.27% -1.92% 7.84% 12.12% 7.86% 7.95%
SHARPE 1.24 1.34 0.92 0.67 0.35 -0.42 0.81 1.37 1.39 0.76

UNI RETURN 10.30% 12.47% 8.72% 7.26% 7.99% -0.29% 11.37% 15.87% 7.77% 7.95%
SHARPE 1.24 2.13 1.18 0.73 0.96 -0.16 1.48 2.19 1.45 0.76

UNIRM RETURN 10.05% 14.00% 10.48% 6.57% 9.84% -0.03% 11.02% 17.13% 6.81% 7.74%
SHARPE 1.17 2.63 1.56 0.63 1.33 -0.09 1.41 2.63 1.21 0.71

BIV RETURN 11.30% 12.37% 10.74% 8.39% 10.03% 1.62% 14.18% 14.93% 8.61% 9.82%
SHARPE 1.60 2.38 1.67 0.94 1.32 0.41 2.16 2.01 1.66 1.29

Notes: This table displays average annual returns and Sharpe ratios of investment strategies
based on different forecasting models for the period 1995M01-2010M12. See also the notes to
Table 8.
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Appendix B: Estimation results of bivariate models

for other countries

Table 10: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Australia

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.652*** 0.521** 0.645***
(0.214) (0.222) (0.228) (0.239)

DYU.S.,t−1 0.449*** 0.392*** 0.419*** 0.465***
(0.12) (0.116) (0.146) (0.148)

RMU.S.,t−1 0.049* 0.041** 0.044* 0.048*
(0.024) (0.024) (0.026) (0.029)

RMIU.S.,t−1 -0.320 -0.412** -0.181 -0.371
(0.220) (0.203) (0.270) (0.281)

IPU.S.,t−1 0.161 0.105 0.178 0.153
(0.106) (0.100) (0.115) (0.139)

10YU.S.,t−1 -0.206*** -0.181*** -0.195*** -0.214***
(0.050) (0.050) (0.059) (0.066)

RMIAUS CONST 0.546*** 0.545*** 0.351* 0.423**
(0.193) (0.222) (0.189) (0.183)

10YAUS,t−1 -0.040*** -0.040** -0.32* -0.036**
(0.019) (0.019) (0.017) (0.016)

ρ 0.676*** 0.670***
(0.015) (0.017)

c 0.495* 0.343
(0.281) (0.304)

logL -490.660 -450.781 -488.798 -449.911
AIC 498.660 459.781 497.798 459.911
QPSU.S. 0.458 0.460 0.458 0.458
QPSAUS 0.484 0.484 0.478 0.481
psR2 0.063† 0.060‡ 0.073† 0.064‡

adj.psR2 0.042† 0.036‡ 0.050† 0.038‡

SRU.S. 0.638 0.627 0.643 0.643
SRAUS 0.559 0.562 0.597 0.584
AUCU.S. 0.620 0.611 0.621 0.618
AUCAUS 0.578 0.578 0.581 0.576
PTU.S. 8.441*** 4.489** 9.143*** 11.880***
PTAUS 0.018 0.315 1.858 0.036

Notes: See the notes to Table 5.
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Table 11: In-sample estimation results for bivariate Models 1–4 for the U.S. and
France

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.441** 0.662*** 0.495
(0.214) (0.224) (0.232) (0.324)

DYU.S.,t−1 0.449*** 0.468*** 0.406*** 0.490***
(0.120) (0.122) (0.154) (0.135)

RMU.S.,t−1 0.049** 0.028 0.056** 0.034
(0.024) (0.028) (0.026) (0.042)

RMIU.S.,t−1 -0.320 -0.162 -0.375 -0.210
(0.220) (0.201) (0.244) (0.300)

IPU.S.,t−1 0.161 0.107 0.183 0.129
(0.106) (0.104) (0.115) (0.148)

10YU.S.,t−1 -0.206*** -0.201*** -0.194*** -0.214***
(0.050) (0.056) (0.061) (0.069)

RMIFRA CONST 0.177*** 0.170** 0.098 0.136
(0.065) (0.078) (0.104) (0.121)

RMFRA,t−1 0.027** 0.029* 0.024** 0.029*
(0.011) (0.016) (0.011) (0.015)

IPFRA,t−1 0.127** 0.077 0.134** 0.080
(0.062) (0.061) (0.052) (0.062)

OILFRA,t−1 -0.015* -0.010 -0.014* -0.009
(0.008) (0.018) (0.008) (0.017)

ρ 0.711*** 0.709***
(0.022) (0.023)

c 0.321 0.134
(0.335) (0.387)

logL -485.672 -442.062 -484.871 -441.929
AIC 495.672 453.062 495.871 453.929
QPSU.S. 0.458 0.459 0.458 0.459
QPSFRA 0.471 0.472 0.469 0.472
psR2 0.087† 0.088‡ 0.091† 0.089‡

adj.psR2 0.062† 0.060‡ 0.064† 0.058‡

SRU.S. 0.638 0.630 0.643 0.635
SRFRA 0.595 0.608 0.597 0.597
AUCU.S. 0.620 0.621 0.617 0.620
AUCFRA 0.603 0.598 0.612 0.600
PTU.S. 8.441*** 2.312 13.078*** 5.306**
PTFRA 4.111** 7.290*** 5.492** 4.596**

Notes: See the notes to Table 5.
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Table 12: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Germany

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.635*** 0.555** 0.642**
(0.214) (0.241) (0.233) (0.260)

DYU.S.,t−1 0.449*** 0.419*** 0.440*** 0.463***
(0.120) (0.116) (0.124) (0.130)

RMU.S.,t−1 0.049** 0.040 0.051** 0.046
(0.024) (0.027) (0.024) (0.030)

RMIU.S.,t−1 -0.320 -0.315 -0.286 -0.323
(0.220) (0.217) (0.234) (0.238)

IPU.S.,t−1 0.161 0.111 0.177 0.145
(0.106) (0.096) (0.116) (0.125)

10YU.S.,t−1 -0.206*** -0.197*** -0.199*** -0.216***
(0.050) (0.053) (0.053) (0.058)

RMIGER CONST 0.016 0.076 -0.047 0.018
(0.111) (0.108) (0.118) (0.116)

RMGER,t−1 0.023* 0.024 0.020* 0.024
(0.012) (0.017) (0.011) (0.016)

TSGER,t−1 0.107* 0.063 0.099* 0.060
(0.059) (0.059) (0.060) (0.059)

OILGER,t−1 -0.011* -0.007 -0.010 -0.006
(0.007) (0.013) (0.007) (0.012)

ρ 0.605*** 0.603***
(0.019) (0.016)

c 0.304 0.254
(0.235) (0.231)

logL -488.466 -458.652 -487.673 -458.056
AIC 498.466 469.652 498.673 470.056
QPSU.S. 0.458 0.458 0.458 0.458
QPSGER 0.478 0.479 0.476 0.478
psR2 0.075† 0.068‡ 0.079† 0.071‡

adj.psR2 0.049† 0.039‡ 0.050† 0.040‡

SRU.S. 0.638 0.641 0.641 0.635
SRGER 0.614 0.608 0.595 0.586
AUCU.S. 0.620 0.620 0.620 0.621
AUCGER 0.605 0.582 0.598 0.588
PTU.S. 8.441*** 9.839*** 10.126*** 7.688***
PTGER 13.116*** 11.737*** 5.589** 3.258*

Notes: See the notes to Table 5.
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Table 13: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Italy

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.514** 0.643*** 0.610**
(0.214) (0.216) (0.229) (0.250)

DYU.S.,t−1 0.449*** 0.427*** 0.419*** 0.458***
(0.120) (0.108) (0.139) (0.133)

RMU.S.,t−1 0.049** 0.030 0.058*** 0.048
(0.024) (0.025) (0.025) (0.034)

RMIU.S.,t−1 -0.320 -0.192 -0.384* -0.311
(0.220) (0.216) (0.229) (0.268)

IPU.S.,t−1 0.161 0.138 0.158 0.161
(0.106) (0.098) (0.114) (0.121)

10YU.S.,t−1 -0.206*** -0.194*** -0.196*** -0.211***
(0.050) (0.050) (0.058) (0.060)

RMIITA CONST 0.054 0.053 -0.044 -0.036
(0.070) (0.075) (0.087) (0.094)

RMITA,t−1 0.015* 0.008 0.013 0.007
(0.009) (0.010) (0.009) (0.009)

OILITA,t−1 -0.024*** -0.022*** -0.023*** -0.021***
(0.008) (0.007) (0.008) (0.010)

ρ 0.552*** 0.547***
(0.017) (0.015)

c 0.393* 0.357
(0.226) (0.245)

logL -489.934 -466.167 -488.506 -465.014
AIC 498.934 476.167 498.506 476.014
QPSU.S. 0.458 0.458 0.458 0.458
QPSITA 0.482 0.483 0.478 0.479
psR2 0.084† 0.071‡ 0.092† 0.077‡

adj.psR2 0.062† 0.045‡ 0.066† 0.049‡

SRU.S. 0.638 0.654 0.638 0.638
SRITA 0.565 0.554 0.589 0.581
AUCU.S. 0.620 0.623 0.618 0.620
AUCITA 0.597 0.598 0.615 0.617
PTU.S. 8.441*** 9.352*** 10.276*** 8.379***
PTITA 5.776** 3.865** 11.139*** 8.783

Notes: See the notes to Table 5.
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Table 14: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Japan

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.633*** 0.495** 0.568**
(0.214) (0.203) (0.251) (0.255)

DYU.S.,t−1 0.449*** 0.410*** 0.437*** 0.462***
(0.120) (0.117) (0.124) (0.123)

RMU.S.,t−1 0.049** 0.040* 0.055** 0.053**
(0.024) (0.024) (0.022) (0.026)

RMIU.S.,t−1 -0.320 -0.278 -0.323* -0.332
(0.220) (0.212) (0.213) (0.221)

IPU.S.,t−1 0.161 0.114 0.199** 0.183
(0.106) (0.106) (0.097) (0.121)

10YU.S.,t−1 -0.206*** -0.196*** -0.188*** -0.206***
(0.050) (0.050) (0.060) (0.060)

RMIJPN CONST 0.056 0.053 0-0.071 -0.057
(0.066) (0.063) (0.101) (0.101)

RMJPN,t−1 0.030** 0.033* 0.028** 0.032*
(0.013) (0.019) (0.014) (0.018)

ρ 0.411*** 0.402***
(0.013) (0.015)

c 0.512* 0.445
(0.288) (0.296)

logL -493.174 -480.713 -491.014 -479.069
AIC 501.174 489.713 500.014 489.069
QPSU.S. 0.458 0.458 0.459 0.458
QPSJPN 0.490 0.490 0.484 0.485
psR2 0.067† 0.066‡ 0.078† 0.074‡

adj.psR2 0.046† 0.042‡ 0.055† 0.048‡

SRU.S. 0.638 0.649 0.630 0.632
SRJPN 0.543 0.546 0.559 0.541
AUCU.S. 0.620 0.622 0.616 0.618
AUCJPN 0.576 0.576 0.596 0.591
PTU.S. 8.441*** 10.902*** 6.897*** 7.054***
PTJPN 0.276** 0.397 2.311 0.422

Notes: See the notes to Table 5.
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Table 15: In-sample estimation results for bivariate Models 1–4 for the U.S. and
the Netherlands

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.554* 0.576** 0.562
(0.214) (0.307) (0.231) (0.362)

DYU.S.,t−1 0.449*** 0.436*** 0.427*** 0.442**
(0.120) (0.162) (0.145) (0.215)

RMU.S.,t−1 0.049** 0.026 0.056* 0.028
(0.024) (0.028) (0.029) (0.046)

RMIU.S.,t−1 -0.320 -0.202 -0.348 -0.210
(0.220) (0.233) (0.241) (0.313)

IPU.S.,t−1 0.161 0.094 0.187 0.099
(0.106) (0.106) (0.126) (0.150)

10YU.S.,t−1 -0.206*** -0.202*** -0.193*** -0.204**
(0.050) (0.069) (0.067) (0.097)

RMINED CONST 0.175 0.098 0.123 0.094
(0.166) (0.195) (0.151) (0.208)

TBNED,t−1 -0.079** -0.074* -0.063 -0.072
(0.033) (0.038) (0.043) (0.045)

DYNED,t−1 0.122** 0.133* 0.097 0.130
(0.060) (0.075) (0.073) (0.084)

OILNED,t−1 -0.015* -0.009 -0.014* -0.009
(0.008) (0.012) (0.008) (0.012)

ρ 0.770*** 0.770***
(0.015) (0.016)

c 0.280 0.032
(0.414) (0.564)

logL -484.313 -428.768 -483.859 -428.763
AIC 494.313 439.768 494.859 440.763
QPSU.S. 0.458 0.459 0.458 0.459
QPSNED 0.467 0.468 0.465 0.468
psR2 0.079† 0.071‡ 0.081† 0.071‡

adj.psR2 0.053† 0.042‡ 0.053† 0.039‡

SRU.S. 0.638 0.643 0.646 0.643
SRNED 0.619 0.616 0.624 0.614
AUCU.S. 0.620 0.624 0.619 0.624
AUCNED 0.611 0.604 0.619 0.605
PTU.S. 8.441*** 4.506** 13.253*** 4.506**
PTNED 3.641* 1.185 6.715*** 1.212

Notes: See the notes to Table 5.
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Table 16: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Switzerland

Dep. Exp. Model 1 Model 2 Model 3 Model 4

RMIU.S. CONST 0.600*** 0.533** 0.613*** 0.579***
(0.214) (0.233) (0.228) (0.266)

DYU.S.,t−1 0.449*** 0.435*** 0.443*** 0.468***
(0.120) (0.124) (0.124) (0.134)

RMU.S.,t−1 0.049** 0.039 0.051** 0.045
(0.024) (0.034) (0.024) (0.035)

RMIU.S.,t−1 -0.320 -0.243 -0.336 -0.283
(0.220) (0.225) (0.231) (0.252)

IPU.S.,t−1 0.161 0.139 0.164 0.155
(0.106) (0.101) (0.115) (0.118)

10YU.S.,t−1 -0.206*** -0.196*** -0.204*** -0.213***
(0.050) (0.057) (0.051) (0.062)

RMISUI CONST 0.349*** 0.371*** 0.305** 0.324**
(0.125) (0.136) (0.134) (0.162)

RMSUI,t−1 0.068*** 0.067 0.066*** 0.065
(0.021) (0.090) (0.021) (0.080)

RMISUI,t−1 -0.379** -0.377 -0.371* -0.373
(0.190) (0.405) (0.192) (0.371)

TSSUI,t−1 0.135*** 0.107 0.128** 0.102
(0.051) (0.124) (0.050) (0.116)

OILSUI,t−1 -0.013 -0.009 -0.012 -0.009
(0.009) (0.038) (0.009) (0.034)

ρ 0.657*** 0.658***
(0.060) (0.051)

c 0.180 0.200
(0.227) (0.354)

logL -479.037 -442.724 -478.742 -442.341
AIC 490.037 454.724 490.742 455.341
QPSU.S. 0.458 0.458 0.458 0.458
QPSSUI 0.454 0.455 0.453 0.455
psR2 0.103† 0.094‡ 0.105† 0.096‡

adj.psR2 0.076† 0.064‡ 0.075† 0.063‡

SRU.S. 0.638 0.643 0.641 0.635
SRSUI 0.627 0.595 0.624 0.603
AUCU.S. 0.620 0.623 0.619 0.622
AUCSUI 0.651 0.650 0.649 0.646
PTU.S. 8.441*** 8.456*** 9.997*** 7.554***
PTSUI 5.052** 0.315 4.781** 0.778

Notes: See the notes to Table 5.
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