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Abstract
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1 Introduction

This paper introduces the Markov chain estimator of multivariate volatility. Our analysis builds on

the results by Hansen and Horel (2009) who proposed the univariate Markov chain estimator. The

multivariate extension poses new challenges related to asynchronicity and the potential need to enforce

the estimator to be positive semidefinite.

The availability of high-frequency financial data has made it possible to estimate volatility over rela-

tively short periods of time, such as an hour or a day. The main obstacle in obtaining precise estimators

is the fact that high-frequency returns do not conform with conventional no-arbitrage models. The rea-

son is that there is a great deal of autocorrelation in tick-by-tick returns. The apparent contradiction

can be explained by market microstructure noise, which gives rise to the notion that the observed price

is a noisy measure of the efficient price. In this paper, we introduce a multivariate volatility estimator

that is built on the theory of Markov chains. The estimator utilizes the discreteness of high-frequency

data, and the framework implicitly permits a high degree of serial dependence in the noise as well as

dependence between the efficient price and the noise.

The use of high-frequency data for volatility estimation has been very active over the past two

decades, since Andersen and Bollerslev (1998) used the realized variance to evaluate GARCH models.

The realized variance is simply the sum of squared intraday returns, and its properties were detailed in

Barndorff-Nielsen and Shephard (2002), for the case where the semimartingale is observed without noise,

which was extended to the multivariate context in Barndorff-Nielsen and Shephard (2004). The noise

in high-frequency returns motivated a number of robust estimators, including the two-scale estimator

by Zhang et al. (2005), the realized kernels by Barndorff-Nielsen et al. (2008), and the pre-average

estimator by Jacod et al. (2009). Empirical features of the market microstructure noise were detailed in

Hansen and Lunde (2006), which documented that the noise is both serially dependent and endogenous,

in the sense that there is dependence between the underlying semimartingale and the noise. These

empirical features motivated the development of the multivariate realized kernel in Barndorff-Nielsen

et al. (2011a), which is an estimator that permits the noise to have both of these features.

An attractive feature of the Markov framework is that serially dependent and endogenous noise is

a natural part of the framework. Moreover, the Markov chain estimator is simple to compute and the

same is the case for the estimator of its asymptotic variance. It only takes basic matrix operations to

compute the estimator and its confidence intervals.

To illustrate our estimator consider the case with two assets. The bivariate sequence of high-

frequency returns is denoted by {∆Xt}ni=1, and we define the S × 2 matrix x, where S is the number of
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states for ∆Xt, and each row of x corresponds to a possible realization of ∆Xt. For instance, the s-th

row of x may equal xs,· = (2,−1) that is the state where the first asset increased by 2 units, while the

second asset went down by one unit. The S×S transition matrix, P, for a Markov chain of order k = 1

is given by

Pr,s = Pr (∆Xt+1 = xs,·|∆Xt = xr,·) , r, s = 1, . . . , S,

and its stationary distribution, π = (π1, . . . , πS)′, is characterized by π′P = π′. We define Λπ =

diag(π1, . . . , πS) and the fundamental matrix Z = (I − P + Π)−1 where Π = ιπ′ with ι = (1, . . . , 1)′ ∈

RS . Let π̂ and Ẑ be estimates of π and Z, then the multivariate Markov chain estimator is given by

MC = nD−1
{
x′(Λπ̂Ẑ + Ẑ ′Λπ̂ − π̂π̂′ − Λπ̂)x

}
D−1,

where D = diag (δ1, δ2) and δ2
j = n−1

∑n
t=1X

2
j,t is the sample average of the squared price of the j-th

asset, j = 1, 2. The expression inside the curly brackets is the estimator of the long-run variance of a

finite Markov chain, see Hansen and Horel (2014). The scaling involving D, is a transformation needed

for the estimator to be an estimator of volatility of logarithmic prices. The scaling with the sample size,

n, relates to the local-to-zero asymptotic scheme that arises under in-fill asymptotics.

Hansen and Horel (2009) showed that filtering can resolve the problems caused by market microstruc-

ture noise under weak assumptions that essentially amounts to the noise process to be ergodic with finite

first moment. This result is theoretical in nature, because the ideal filter requires knowledge about the

data generating process. In order to turn the theoretical filtering result into an actual estimator, one

needs to adopt a statistical model, and our approach is to model the increments of the process with a

Markov chain model, which is a natural starting point given the discrete nature of high-frequency data.

The discreteness of financial data is a product of the so-called tick size, which defines the coarseness

of the grid that prices are confined to. For example, the tick-size is currently 1 cent for most of the

stocks that are listed on the New York Stock Exchange. The implication is that all transaction and

quoted prices are in whole cents. The Markov estimator can also be applied to time series that do not

live on a grid, by forcing the process onto a grid. While this will introduce rounding error, it will not

affect the long-run variance of the process. Delattre and Jacod (1997) studied the effect of rounding on

realized variances for a standard Brownian motion, and Li and Mykland (2006) extended this analysis

to log-normal diffusions.

The present paper adds to a growing literature on volatility estimation using high-frequency data,

dating back to Zhou (1996, 1998). Well known estimators include the realized variance, see Andersen,
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Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen et al. (2008); the two-scale and multi-

scale estimators, see Zhang et al. (2005) and Zhang (2006); the realized kernels, see Barndorff-Nielsen

et al. (2008, 2011). The finite sample properties of these estimators are analyzed in Bandi and Russell

(2006, 2008), and the close relation between multi-scale estimators and realized kernels is established

in Barndorff-Nielsen et al. (2011b). Other estimators include those based on moving average filtered

returns, see Andersen, Bollerslev, Diebold and Ebens (2001), Maheu and McCurdy (2002), and Hansen

et al. (2008); the range-based estimator, see Christensen and Podolskij (2007); the pre-averaging esti-

mator, see Jacod et al. (2009); the quantile-based estimator Christensen et al. (2008); and the duration-

based estimator, see Andersen et al. (2008).

The stochastic properties of market microstructure noise are very important in this context. Esti-

mators that are robust to iid noise can be adversely affected by dependent noise. Hansen and Lunde

(2006) analyzed the empirical features of market microstructure noise and showed that serial depen-

dence and endogenous noise are pronounced in high-frequency stock prices. Endogenous noise refers

to the dependence between the noise and the efficient price. A major advantage of the Markov chain

estimator is that dependent and endogenous noise is permitted in the framework. In fact, dependent

and endogenous noise arises naturally in this context, see Hansen (2014). Thus estimation and inference

are done under a realistic set of assumptions in regard to the noise.

The present paper is an extension of Hansen and Horel (2009) to the multivariate context. This

extension posed new challenges that are specific to the multivariate context. For instance, different

assets are typically not traded at synchronous times. This non-synchronicity leads to the so-called Epps

effect, which manifests itself by a bias towards zero for the realized covariance as the sampling frequency

increases. See Renò (2003) for a study of the determinants of the Epps effect. Another issue that may

arise in the multivariate context is a need for the estimator to be positive semidefinite, which is not

guaranteed by all multivariate estimators. The asynchronicity poses few obstacles for the Markov chain

estimator, albeit a large order of the Markov chain, or another remedy, may be needed if an illiquid

asset is paired with a liquid asset.

The outline of this paper is as follows. The Markov chain framework is presented in Section 2, and

the estimator in Section 3. In Section 4 we present two composite estimators that estimate every element

of the matrix separately. In Section 5 we propose a novel projection methods that may be needed to

ensure that the composite estimators are positive semidefinite. The properties of the estimators are

evaluated in Section 6 with a simulation study, and an empirical application to commodity prices is

presented in Section 7.
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2 The Markov Chain Framework

Let {Xt} denote a d-dimensional process, whose returns ∆Xt can take S distinct values in Rd. For

notational convenience we take ∆Xt to be a row-vector. The possible states for the k-tuple, ∆Xt =

{∆Xt−k+1, . . . ,∆Xt}, are indexed by s = 1, . . . , Sk, where the s-th state corresponds to the case where

∆Xt = xs, which is an 1× kd vector. See the example below.

We make the following assumption about the increments of the process.

Assumption 1. The increments {∆Xt}nt=1 are ergodic and distributed as a homogeneous Markov chain

of order k <∞, with S <∞ states.

The homogeneity assumption is unlikely to be valid in the context of high-frequency data. Fortu-

nately the assumption is not critical for our results, because by increasing the order, k, of the homo-

geneous Markov chain that is imposed on the high-frequency returns, the resulting estimator becomes

robust to inhomogeneity, see Hansen and Horel (2009). This feature of the Markov chain estimator is

demonstrated in our simulation study in Section 6.

The transition matrix, P , is given by

Pr,s = Pr(∆Xt+1 = xs|∆Xt = xr), for r, s = 1, . . . , Sk,

and the corresponding stationary distribution, π ∈ RSk
, which is unique under Assumption 1, is defined

by π′P = π′. The fundamental matrix by Kemeny and Snell (1976) is defined by

Z = (I − P + Π)−1,

where Π = ιπ′ with ι = (1, . . . , 1)′ ∈ RSk so that each row of Π is simply π′.

The Sk × d matrix, f, is defined to be the last d columns of x. So fs is the value that (the latest

observation of) ∆Xt has in state s. (Recall that a state represents a realization of k consecutive returns.)

Finally, we define the diagonal matrix Λπ = diag(π1, . . . , πSk).

The following example illustrates the multivariate Markov chain estimation in the case where d = 2

and S = 2, and k = 1, 2.

Example 1. Suppose that we have two assets and that all price changes are up or down by a single

unit. If the order of the Markov chain is k = 1, then the transition matrix, P, is a 4× 4 matrix, and we
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can define the state matrix as

x = f =


1 1

1 −1

−1 1

−1 −1


.

If, instead, the order is k = 2, then we have S2 = 16 states, and consequently P will be an 16 × 16

matrix and f an 16 × 2 matrix. For instance, we may order the states as below, so that a row of x
corresponds to a state value for (∆Xt−1,∆Xt) and the corresponding row of f will have just the state
value for ∆Xt:

x =



1 1 1 1

1 1 1 −1

1 1 −1 1

1 1 −1 −1

1 −1 1 1

1 −1 1 −1

1 −1 −1 1

1 −1 −1 −1

−1 1 1 1

−1 1 1 −1

−1 1 −1 1

−1 1 −1 −1

−1 −1 1 1

−1 −1 1 −1

−1 −1 −1 1

−1 −1 −1 −1



f =



1 1

1 −1

−1 1

−1 −1

1 1

1 −1

−1 1

−1 −1

1 1

1 −1

−1 1

−1 −1

1 1

1 −1

−1 1

−1 −1



.

Although the transition matrix is a 16× 16 matrix, it has at most four non-zero elements in each row.

The reason is that many transitions are impossible. For, instance if ∆Xt = {(1, 1), (1, 1)} then the next

state will have to be {(1, 1), (∗, ∗)}, and a transition to, {(−1,−1), (1, 1)} say, is impossible, and thus

have probability zero. So the transition matrix, P , will be increasingly sparse as k increases.

The underlying idea of the Markov chain estimator is a martingale decomposition of

Xt = Yt + µt + Ut,

where {Yt,Ft} is a martingale with increments ∆Y ′t = e′stZf − e
′
st−1

PZf , µt = tµ with µ = E(∆Xt),

and Ut is a stationary ergodic bounded process.
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The asymptotic scheme that will be used in the present context is the following:

f = n−1/2ξ, with ξ ∈ RS
k×d fixed. (1)

This local-to-zero asymptotic scheme is similar to those used in Delattre and Jacod (1997) and Li and

Mykland (2006), and is natural under in-fill asymptotics. In the present context, it guarantees almost

sure convergence of the estimator.

Under this scheme, it follows from Hansen and Horel (2014) (and the ergodic theorem) that

Proposition 1. Suppose that Assumption 1 holds, then under the asymptotic scheme (1), we have

n∑
t=1

∆Yt∆Y
′
t
a.s.→ ξ′Z ′(Λπ − P ′ΛπP )Zξ = ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ,

as n→∞.

Proof. By Assumption 1 it follows that ϑ′t = e′stZξ − e
′
st−1

PZξ is an ergodic Markov chain (of order

k + 1) with

Eϑtϑ
′
t = ξ′Z ′(Λπ − P ′ΛπP )Zξ = ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ,

where the first identity follows from Hansen (2014, theorem 2) and the second from Hansen and Horel

(2014, lemma 1). By the ergodic theorem it follows that 1
n

∑n
t=1 ϑtϑ

′
t =

∑n
t=1 ∆Yt∆Y

′
t converges to

ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ almost surely (and in mean).

An implication of Proposition 1 is that

Σ# = ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ,

is the quadratic variation of the martingale component. The same quantity is also the long-run variance

of ∆X ′t in the sense that

var(X ′n −X ′0) = var(

n∑
t=1

∆X ′t)→ Σ#, as n→∞.

There are different ways to construct a multivariate volatility estimator using Markov chain methods,

and we shall present three distinct estimators and highlight each of their advantages.
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3 The Markov Estimator

Let P̂ be the maximum likelihood estimator of P and let π̂ be its corresponding eigenvector, π̂′P̂ = π̂′.

Furthermore, let Π̂ = ιπ̂′ and Ẑ = (I − P̂ + Π̂)−1. The expression for the long-run variance of the

Markov chain motivates the estimator

MC# = nf ′(Λπ̂Ẑ + Ẑ ′Λπ̂ − π̂π̂′ − Λπ̂)f,

for which we have the following asymptotic distribution.

Proposition 2. Suppose that Assumption 1 holds, then under the asymptotic scheme (1), we have

n1/2(MC# − Σ#)
d→ N(0,Ω),

where the asymptotic covariance between the (i, j)th and (l,m)th elements is

Ωij,kl =
∑
r,s,v

[V (r)]s,v[Ξ(r, s)]i,j [Ξ(r, v)]l,m, (2)

with V (s) = 1
πr

(Λe′rP − P
′ere

′
rP ) and

Ξ(r, s) = πrξ
′Z ′(Λzs − P ′ΛzsP )Zξ

+πrξ
′(ππ′ − 2πz′s − 2zsπ

′)ξ + ξ′[ΛπZerz
′
s + zse

′
rZ
′Λπ]ξ,

and where z′s = e′sZ is the s-th row of Z.

Proof. Follows from Hansen and Horel (2014, theorem 2) by adapting their expressions (substitute ξ

for f and ξ′π for µ).

Remark. We note that in the univariate case, MC# simplifies to nf ′Λπ̂(2Ẑ − Π̂ − I)f, which was the

estimator proposed by Hansen and Horel (2009).

3.1 Volatility of logarithmic prices

The object of interest is, typically, the volatility of log-prices, rather than Σ#, which is the volatility

of the price process in levels. An exact estimator can be obtained with the Markov framework, by first

extracting the Martingale component of Xt, however, for the univariate case Hansen and Horel (2009)
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show that the following estimator,

MC =
MC#

1
n

∑n
t=1X

2
Tt

,

is virtually identical to the realized variance of the filtered logarithmic prices that are deduced from the

estimated Markov chain. The resulting approximate estimator of the quadratic variation has several

advantages, such as computational simplicity. In the present multivariate context, we adopt the following

estimator:

MC = D−1MC#D−1, (3)

with D = diag (δ1, . . . , δd) and δ2
j = n−1

∑n
t=1X

2
j,t j = 1, . . . , d. Our simulation in Section 6 shows that

this approximate estimator is more accurate than other realized measures.

Alternatively one could use the estimator MC#
i,j/

1
n

∑n
t=1Xi,tXj,t, for i, j = 1, . . . , d, but we prefer

(3) because positively definiteness of MC# is passed onto MC, and in practice δiδj ' 1
n

∑n
t=1Xi,tXj,t

because the prices do not vary much in relation to their average level over the estimation window, which

is typically a trading day.

4 Composite Markov Estimators

The number of possible states increases exponentially with the dimension of the process, d. Conse-

quently, the dimension of P can become unmanageable even with moderate values of S, k, and d. For

instance, with d = 10 assets, and price changes ranging from −4 to 4 cents, S = 9, and a Markov chain

of order k = 2, the transition matrix would be (Sd)k × (Sd)k = 920 × 920, which is impractical.

As an alternative, one can construct a composite estimator, that combines lower dimensional Markov

estimator, which is in the spirit of Hautsch et al. (2012) and Lunde et al. (2014). In this section we

consider two such estimators. The first is constructed from univariate estimators, using a simple trans-

formation for the estimation of covariances. The second estimator is constructed from bivariate Markov

estimators, which has the advantage that standard errors of each element will be readily available. We

will make use of these standard errors in the next section.

4.1 The 1-Composite Markov Estimator

In this section we introduce a composite estimator that is based on univariate Markov estimators. The

identity

cov(X,Y ) =
var(X + Y )− var(X − Y )

4

9



motivates the estimator

MC#1
i,j = 1

4(MC#
Xi+Xj

−MC#
Xi−Xj

),

where MC#
Xi+Xj

and MC#
Xi−Xj

are the univariate Markov chain estimator, applied to the time series

Xi,t + Xj,t and Xi,t −Xj,t, respectively. Note that the diagonal terms, i = j, simplifies to 1
4MC#

2Xi
=

MC#
Xi
. This approach to polarization-based estimation of the covariance is well known. In the context

of high-frequency data it was first used in Horel (2007, section 3.6.1) who also explored related identities.

More recently it has been used in Ait-Sahalia et al. (2010).

The 1-Composite estimator is mapped into estimators of the volatility of log-returns using the same

diagonal matrix, D, as in (3), thus MC1 = D−1MC#1D−1.

4.1.1 Pre-Scaling

If one seeks to estimate the covariance of two assets, whose increments are on different grid sizes, it can

be advantageous to use differentiated scaling of the assets, specifically

cov(X,Y ) =
var(aX + bY )− var(aX − bY )

4ab
,

where a and b are constants. This can, in some cases, greatly reduce the number of states, which is

computationally advantageous.

4.2 The 2-Composite Markov Estimator

In this subsection we introduce a composite estimator that uses bivariate MC# estimates. For all pairs

of assets we compute the correlation along with an estimate of its asymptotic variance, which will be

used in the next section.

We simply estimate the bivariate Markov process (Xi,t, Xj,t)
′, and obtain the estimator of Section 3,

MC#, which is a 2× 2 matrix. The covariance terms we seek is the lower-left (or upper-right) element

MC#2
i,j =


MC#(Xi) if i = j,

MC#
1,2(Xi, Xj) if i 6= j,

where MC#
1,2(Xi, Xj) is the upper right element of the 2 × 2 matrix MC#, for the bivariate process,

(Xi, Xj). In contrast to the covariance estimated with the 1-composite estimator, the standard error of

MC#
1,2(Xi, Xj) is readily available from (2).
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Analogous to the other estimators, the 2-composite estimator is mapped into estimators of the

volatility of log-returns with MC2 = D−1MC#2D−1.

4.3 Advantages and Drawbacks of Composite Estimators

The advantages of the composite estimators are threefold.

• Computational: The state space for a univariate series is smaller than that of a multivariate.

• Dimension: Enables the construction of covariance matrices of any dimension, whereas the multi-

variate approach is limited to relatively low dimensions.

• No need to synchronize the observation times for each of the asset, e.g. by refresh time, see

Barndorff-Nielsen et al. (2011a).

The drawbacks of the composite estimators include:

• Positive semidefinite estimate is not guaranteed

• Estimate of asymptotic variance is not readily available.

The dimension of the transition matrix (and fundamental matrix) increases rapidly with the dimension

of the process d, and at some point it becomes computationally impossible to manipulate the relevant

expressions that are needed for the computation of the Markov estimator. In our empirical analysis

with k = 5, the dimension of P was about 500-1000 for d = 1, about 3000-5000 for d = 2, and about

8000-10,000 for d = 3. The problem with non-psd appears to be relatively rare in practice when d is

small. We have only seen one case where a 5 × 5 estimate was non-psd estimate. The occurrence is

more common in higher dimensions. Of the 251 14 × 14 estimators we obtained for 2013, 14 of them

were non-psd.

5 Enforcing Positivity

While MC# is a quadratic form that yields a positive semidefinite estimator, there is no reason to expect

that the composite estimators, MC#1 and MC#2 , will be positive semidefinite (PSD) in finite samples.

This problem is often encountered in estimation of high-dimensional variance-covariance matrices.

One can project a non-PSD estimate, by solving the following semi-definite program for the variable

Σ

min
Σ
‖Σ−A‖Fro subject to Σ ≥ 0. (4)
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The solution can be found efficiently by computing the spectral decomposition of the matrix A, and drop

all negative eigenvalues, i.e. map the symmetric matrix, A = Qdiag(λ1, . . . , λd)Q
′ intoQdiag(λ+

1 , . . . , λ
+
d )Q′,

where λ1, . . . , λd are the eigenvalues of A and x+ = max(x, 0). Such an estimator will, due to the zero

eigenvalues, be on the boundary of the space of psd matrices, which motivated Ledoit et al. (2003) to

impose an additional constraint, diag(Σ) = diag(A).

In this paper we propose a novel projection that takes advantage of standard errors of the individual

elements of the matrix A when these are available. Thus let ωij be (an estimate of) the standard errors

of Aij . Then we solve the following program

min
Σ

d∑
i,j=1

(
Σij −Aij

ωij

)2

subject to Σ ≥ 0. (5)

The solution can be obtained using semidefinite programming solvers that are readily available, including

the cvx software for Matlab by Grant et al. (2014). The optimization problem can be supplemented with

the constraint diag(Σ) = diag(A), which would produce a constrained estimate with strictly positive

eigenvalues, except in pathological cases, e.g. if A is psd with zero eigenvalues to begin with.

The projection in (5) is appealing because it attempts to influence accurately measured elements of

A less than those that are relatively inaccurate. An even more appealing projection along these lines

would also account for correlations across elements. In the present context, such cross correlations are

only available for the estimator MC#. However, since this estimator, MC#, is psd per construction,

there is no need for a projection of this estimator.

6 Simulation

In this section we compare the 1-composite Markov estimator against some benchmark. Diagonal

elements are compared with the realized variance (RV) and the realized kernel (RK). Off-diagonal

elements are compared with the realized covariance (RC).

6.1 Efficient Price

Our simulations are based on two designs for the latent price process, Yt. In the first design, Yt is

simply sampled from a Brownian motion with constant volatility. In the second design, Yt is drawn

from a stochastic volatility model, which is known as the Dothan model in the literature on interest
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rates, similar to that used in Barndorff-Nielsen et al. (2008). Specifically we simulate

log Yi,t = log Yi,t + σi,tVi,t, i = 1, 2,

where Vi,t = γZi,t+
√

1− γ2Wi,t with (Z1,t, Z2,t,W1,t,W2,t) being iid Gaussian, all having unit variance

and zero correlation, with the exception that cov(W1,t,W2,t) = ρ.

In the design with stochastic volatility, the volatility, σi,t, correlates with Zi,t, so that γ controls the

leverage effect of the volatility on the stock prices. Specifically,

σi,t =
√

∆ {exp (β0 + β1τi,t)} ,

where τi,t = exp(α∆)τi,t−1 +

√
exp(2α∆)−1

2α Zi,t, with τi,1 drawn from its unconditional distribution, and

∆ = 1
N with N = 23, 400. Additional details about the specification is given in the Appendix.

The values of the parameters in both designs are summarized in Table 1.

β0 β1 α ρ γ

Constant Volatility 0 0 – -0.3 0
Stochastic Volatility -0.3125 0.125 -0.025 -0.3 0.5

Table 1: Parameters values for simulating the efficient price process, Yt.

6.2 Noise

We will use two specifications for the noise. The first is pure rounding noise, so that

Xt = δ[Yt/δ],

where [a] is the rounding of a to the integers so that the parameter δ controls the coarseness of the

rounding error.

The second specification has an additive noise component in addition to the rounding error, specif-

ically

Xt = δ[(Yt + Ut)/δ],

where Ut are iid and uniformly distributed. The idea is that it would more closely resemble the bid ask

bounce (due to the additional jitter introduced by Ut, we will either round up or down).

In our simulation study we use δ = 0.01 to emulate rounding errors to a grid, and the noise is

13



Ut ∼ iidU [−1
3 ,

1
3 ] which adds additional (mean-reverting) jitter to the returns.

In Figure 1 we show an example of a realization of the process with stochastic volatility using the

design in Table 1. The upper panel has Yt and Xt, where the latter is clearly identified by it being

confined to the grid values. The lower panel displays the corresponding volatility process, specifically

we plot σ2(t) = σ2
i,t/∆.

09:36 10:48 12:00 13:12 14:24 15:36
9.95

10

10.05

10.1
Prices from SV-OU process

09:36 10:48 12:00 13:12 14:24 15:36
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
Simulated volatility from OU process

Figure 1: A typical sample path of the simulated stochastic volatility process. The upper panel displays
the price process, Yt, and the observed process, Xt, that is subject to noise and rounding error. The
lower panel displays the corresponding volatility process, σ2(t).

6.3 Estimators and Tuning Parameters

We consider the realized variance computed with different sampling frequencies. To imitate a 24 hour

period with second-by-second price observations, we generate 23,400 noisy high-frequency returns in

each simulation.

The realized variance (RV) and the realized covariance (RC) is computed using different sampling

frequencies. The choice of sampling frequency entails a bias-variance trade-off, because the bias arising

from the noise is most pronounced at high sampling frequencies, while the variance of the estimator

increases as the sampling frequency is lowered. Thus for the RV and the RC we sample every H-th

price observation where H ∈ {1, 3, 5, 10, 15, 30, 60, 120, 240}.
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The multivariate realized kernel (MRK) follows the implementation in Barndorff-Nielsen et al.

(2011a), which is based on the Parzen kernel, and an automatic selection of the bandwidth parameter.

This estimator is also applied to high-frequency returns based on the various sample frequencies. The

MRK should, in principle, be most accurate when based on returns sampled at the highest frequency,

H = 1.

The tuning parameter for the Markov chain estimator is the order of the Markov chain, k, and we

apply this estimator for k ∈ {1, . . . , 5}.

6.4 Simulation Results

We report bias and the root mean squared error (RMSE) for each of the estimators using the various

choices for their respective tuning parameters. The results are based on 10,000 simulations. The results

are presented in Tables 2 and 3 for the case with constant volatility and stochastic volatility, respectively.
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Table 2: Simulation results for the case with constant volatility.

Panel A: Constant Volatility and Pure Rounding Error
Variance Covariance

MC MC
k Bias rmse Bias rmse
1 0.002 0.109 −0.008 0.075
2 0.004 0.144 −0.053 0.093
3 0.007 0.174 −0.030 0.098
4 0.005 0.202 −0.020 0.107
5 0.003 0.221 −0.010 0.120

RV MRK RC MRK
H Bias rmse Bias rmse Bias rmse Bias rmse
1 3.752 3.763 0.140 0.182 −0.450 0.451 −0.008 0.074
3 3.445 3.455 0.058 0.136 −0.373 0.377 −0.007 0.088
5 3.136 3.145 0.037 0.136 −0.313 0.320 −0.007 0.097
10 2.486 2.494 0.017 0.146 −0.215 0.229 −0.008 0.110
15 2.014 2.021 0.010 0.155 −0.156 0.178 −0.009 0.119
30 1.222 1.229 0.002 0.175 −0.082 0.120 −0.011 0.135
60 0.646 0.657 −0.005 0.200 −0.042 0.100 −0.014 0.154
120 0.324 0.350 −0.015 0.234 −0.020 0.104 −0.018 0.182
240 0.161 0.231 −0.024 0.283 −0.010 0.128 −0.019 0.224

Panel B: Constant Volatility with Noise and Rounding Error
Variance Covariance

MC MC
k Bias rmse Bias rmse
1 0.281 0.302 −0.066 0.115
2 0.140 0.173 −0.137 0.151
3 0.056 0.131 −0.078 0.104
4 0.025 0.130 −0.076 0.103
5 0.011 0.141 −0.049 0.092

RV MRK RC MRK
H Bias rmse Bias rmse Bias rmse Bias rmse
1 9.697 9.708 0.112 0.159 −0.451 0.456 −0.006 0.075
3 8.086 8.095 0.044 0.131 −0.374 0.389 −0.005 0.090
5 6.829 6.838 0.027 0.135 −0.314 0.338 −0.006 0.099
10 4.720 4.727 0.013 0.149 −0.213 0.252 −0.007 0.113
15 3.488 3.495 0.009 0.160 −0.158 0.204 −0.008 0.122
30 1.859 1.866 0.005 0.181 −0.081 0.140 −0.011 0.138
60 0.938 0.949 0.002 0.208 −0.039 0.114 −0.015 0.160
120 0.467 0.491 −0.007 0.243 −0.020 0.115 −0.018 0.188
240 0.233 0.293 −0.016 0.291 −0.009 0.137 −0.021 0.230

aPanel A has simulation results for the case where the underlying volatility is constant and the observed process is only
subject to rounding error. Panel B presents the corresponding results for the case with both noise and rounding error.
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Table 3: Simulation results for the case with stochastic volatility.

Panel A: Stochastic Volatility and Pure Rounding Error
Variance Covariance

MC MC
k Bias rmse Bias rmse
1 0.005 0.125 −0.020 0.091
2 0.003 0.165 −0.024 0.084
3 0.003 0.214 −0.019 0.089
4 0.002 0.260 −0.010 0.098
5 −0.001 0.327 −0.007 0.108

RV MRK RC MRK
H Bias rmse Bias rmse Bias rmse Bias rmse
1 3.070 3.325 0.132 0.196 −0.325 0.443 −0.007 0.072
3 2.812 3.032 0.058 0.168 −0.270 0.370 −0.006 0.086
5 2.555 2.741 0.037 0.180 −0.227 0.313 −0.007 0.094
10 2.017 2.141 0.018 0.198 −0.155 0.221 −0.008 0.105
15 1.636 1.721 0.011 0.222 −0.114 0.173 −0.009 0.113
30 1.016 1.056 0.000 0.249 −0.059 0.112 −0.011 0.129
60 0.571 0.622 −0.010 0.295 −0.031 0.098 −0.014 0.151
120 0.304 0.371 −0.022 0.374 −0.016 0.103 −0.016 0.181
240 0.157 0.314 −0.031 0.498 −0.009 0.127 −0.016 0.223

Panel B: Stochastic Volatility with Noise and Rounding Error
Variance Covariance

MC MC
k Bias rmse Bias rmse
1 0.219 0.272 −0.055 0.143
2 0.117 0.185 −0.093 0.131
3 0.055 0.175 −0.053 0.097
4 0.034 0.193 −0.050 0.094
5 0.021 0.212 −0.034 0.090

RV MRK RC MRK
H Bias rmse Bias rmse Bias rmse Bias rmse
1 9.619 9.639 0.103 0.202 −0.333 0.461 −0.007 0.073
3 8.010 8.028 0.042 0.170 −0.275 0.392 −0.005 0.087
5 6.757 6.773 0.026 0.177 −0.230 0.340 −0.006 0.095
10 4.656 4.668 0.013 0.197 −0.160 0.256 −0.007 0.108
15 3.432 3.443 0.008 0.214 −0.116 0.205 −0.007 0.117
30 1.825 1.836 0.002 0.253 −0.062 0.142 −0.009 0.134
60 0.924 0.942 −0.004 0.311 −0.032 0.116 −0.011 0.157
120 0.462 0.508 −0.013 0.389 −0.017 0.113 −0.014 0.185
240 0.232 0.357 −0.023 0.488 −0.009 0.132 −0.016 0.226

aPanel A has simulation results for the case where the underlying volatility is stochastic and the observed process is only
subject to rounding error. Panel B presents the corresponding results for the case with both noise and rounding error.
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Consider first the case with constant volatility in Table 2. With pure rounding error we note that

the Markov chain estimator tend to outperform both the kernel estimator and the realized variance in

terms of the mean squared error. Similarly for the covariance, the MC 1-composite estimator dominates

the RC and performs on par with the MRK. The Markov estimator is somewhat insensitive to the choice

of k, so even with a non-optimal choice for k, the Markov estimator is fairly accurate. The MRK is

similarly insensitive to the choice for H. In contrast, the RV and the RC are very sensitive to the choice

of H, and suffer from large biases when H is small.

Turning to the case with both additive noise and rounding error. This design generates increments

with rather different features. While k = 1 was the optimal choice with rounding error, the best

configuration is now k = 3 or k = 4. The RV performs even worse in this design, the RC just as bad

as in the previous design, whereas MRK performs as well as in the previous design, and is on par with

the Markov estimator. This comparison is again made with hindsight as assume that relatively good

choices of tuning parameters, for k and H, respectively, are used. For the covariance, we observe that

the RMSE of the Markov estimator is predominantly driven by a bias.

Next we turn to the result in Table 3 which is for the case with stochastic volatility. The Markov

chain estimator is based on fitting a homogeneous Markov chain to the observed increment. For this

reason it might be expected that the Markov estimator is not well suited for the design with time

varying volatility, see Figure 1. However, even in the case with stochastic volatility that induced an

inhomogeneous model for the increments, we see that MC performs well. The RMSEs are, as expected,

a bit larger. Interestingly, it is the design with pure rounding errors that results in the largest RMSEs.

Both the Markov estimator and the MRK appear to benefit from the additional layer of noise that is

added prior to the rounding error.

7 Empirical Analysis

7.1 Data Description

We apply the Markov chain estimator to high-frequency commodity prices, that have previously been

used in Christoffersen et al. (2014). We confine our empirical analysis to 2013 data and consider in

our study high frequency data for 14 assets. The 14 assets include the exchange traded fund, SPY,

that tracks the S&P 500 index, and 13 commodity futures. We refer to Christoffersen et al. (2014) for

detailed information about the data, including the procedures used for cleaning the high frequency data

for outliers and other anomalies.
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Of the 15 commodities analyzed in Christoffersen et al. (2014), we drop two of these series for

computational reasons. Specifically, we dropped “Heating Oil” (HO) because it has an unusually large

number of distinct second-to-second price increments and “Feeder Cattle” (FC) because it is substantially

less liquid compared with the other commodities. Thus, in addition to the SPY, we use the following 13

commodities in our empirical analysis: Crude Light (CL), Natural Gas (NG), Gold (GC), Silver (SV),

Copper (HG), Live Cattle (LC), Lean Hogs (LH), Coffee (KC), Sugar (SB), Cotton (CT), Corn (CN),

Soybeans (SY) and Wheat (WC).

We exclusively apply the Markov estimators to high-frequency data from the time interval 10:00-

14:00 eastern standard time, because all assets are actively traded in this period. The high-frequency

prices for eight selected assets for March 18th, 2013 are displayed in Figure 2.
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Figure 2: High frequency prices for eight selected commodities on March 18th, 2013 during the period
from 10:00AM to 2:00PM.
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RV5min: Realized variance with 5-minute sampling

SPY CL GC SV KC
S&P 500 81.16 79.39 -8.26 -20.03 -15.24
Light Crude 0.48 344.08 -36.52 -1.39 -2.29
Gold -0.08 -0.16 146.11 164.45 -47.74
Silver -0.13 -0.00 0.77 316.22 -36.77
Coffee "C" -0.08 -0.01 -0.20 -0.10 407.69

RV10min: Realized variance with 10-minute sampling

SPY CL GC SV KC
S&P 500 68.92 90.57 1.98 -20.04 -40.79
Light Crude 0.59 342.05 -69.66 -57.07 -11.96
Gold 0.03 -0.43 78.43 50.73 -35.05
Silver -0.20 -0.26 0.48 139.93 -17.48
Coffee "C" -0.23 -0.03 -0.19 -0.07 446.70

MC: Markov Chain Estimator (Full)

SPY CL GC SV KC
S&P 500 80.65 88.17 -24.05 -77.56 -1.89
Light Crude 0.49 407.24 -75.01 -124.63 49.36
Gold -0.26 -0.35 109.99 155.36 -32.78
Silver -0.45 -0.32 0.77 370.69 -12.07
Coffee "C" -0.01 0.15 -0.19 -0.04 257.15

MC1: Markov Chain Estimator 1-Composite

SPY CL GC SV KC
S&P 500 116.84 75.77 -10.69 4.58 21.01
Light Crude 0.35 391.86 14.34 61.58 41.60
Gold -0.09 0.07 116.87 151.25 -16.83
Silver 0.02 0.16 0.72 380.17 -0.71
Coffee "C" 0.09 0.10 -0.08 -0.00 421.94

MC2: Markov Chain 2-Composite

SPY CL GC SV KC
S&P 500 116.84 80.35 -12.92 -7.44 13.76
Light Crude 0.38 391.86 -1.45 39.30 29.37
Gold -0.11 -0.01 116.87 149.72 -27.00
Silver -0.04 0.10 0.71 380.17 -59.90
Coffee "C" 0.06 0.07 -0.12 -0.15 421.94

Table 5: Two realized variances and the three variants of the Markov chain estimator are presented.
The estimators are for the 10:00AM-2:00PM period on March 18, 2013 for five selected assets. Variances
and covariances are annualized and further scaled by 104. Correlations are in the lower triangle in italic
font.
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7.2 Empirical Results

First we present detailed results for March 18th, 2013 (to celebrate the occasion for writing this paper).

Daily estimates (for the 10:00-14:00 interval) for all trading days in 2013 will be presented in figures.

7.2.1 Daily Estimates for March 18, 2013

In Table 5 we present five estimators of the volatility matrix for five assets. There are relatively

large discrepancies between the two realized variances, which may be due to sampling error or market

microstructure noise. The Markov estimators are largely in agreement about the correlations, but the

full estimator yields a smaller estimate of the diagonal elements in some cases. This may be caused by

the estimator being somewhat unreliable, as it is based on n = 8, 700 observations and the underlying

transition matrix is an 8, 600× 8, 600 matrix in this case. Further research is needed to characterize the

limitations of the full estimator in practice.

In Tables 6 and 7 we present estimates of the full 14 × 14 matrix. The realized variances are in

Table 6 and the two composite Markov estimators are in Table 7. Joint estimation of the full 14 ×

14 covariance matrix is not expected to be precise because the number of observed states (and the

dimensionality of the transition matrix) is equal to the number of observations in that case. As in

the previous example, the two realized variance estimators produce quite different values whereas the

composite Markov estimators produce rather similar results. In general, signs and magnitudes of the

elements of Markov covariance matrices are largely in agreement with those of the realized variances.

7.2.2 Estimates for Pooled March Data

Finally we have pooled the high-frequency data for all of March and estimated the 14× 14 matrix that

reflects the volatility in March, 2013 that occurred during the 10:00AM to 2:00PM trading periods. With

20 trading days in March, 2013, this adds up to 80 hours of high-frequency data. Precision is expected

to improve with the larger sample size, although the dimensions of the underlying transition matrices

are expected to increase as a larger number of states and transitions will be observed in a larger sample,

and the latter can potentially cause computational difficulties. For the 2-composite estimator with k = 4

we observed between 15000 and 30000 distinct states in the pooled data set. Another challenges for

the Markov estimator in the pooled sample is that a larger degree of inhomogeneity may be expected.

Hansen and Horel (2009) showed that an inhomogeneous Markov process can be approximated by a

homogeneous Markov process, by increasing the order of the Markov chain. So a larger k may be needed

in the pooled data, which also poses computational challenges.
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In Tables 8 and 9 we report estimates for the 14× 14 covariance matrix computed with the realized

variances and the two composite Markov estimators. In contrast to the data for March 18th, 2013, the

realized variances are largely in agreement for the pooled data. Albeit some differences are observed

between the 5- and 10-minute realized variances. The composite Markov estimators are in disagreement

in some cases, which we attributed to the different order of the Markov chain that were used. The

1-composite estimator was computed with k = 5 whereas 2-composite was estimated with k = 3, for

computational reasons. Naturally, one could use a higher order to compute the diagonal elements, but

we used the same order for all entries of the 2-composite estimator to illustrate the differences that arise

in this case. The 1-composite Markov estimator produces estimates that are generally in agreement

with those of the realized variance, both in terms of magnitude and signs of covariances.

7.2.3 Daily Estimates for 2013

We have estimated variances and covariances for the 10:00-14:00 interval for all trading days during

2013. Some selected series are presented in Figures 3 and 4.

In Figure 3 we plot annualized volatilities for SPY, Crude Oil, Gold, and Wheat based on the Markov

estimator with k = 5, and these are benchmarked with those of the realized variance with 10-minute

sampling. The estimates are quite similar, both for the very liquid assets, SPY, Crude Oil, and Gold,

and the relatively illiquid assets, Wheat, whose high-frequency data have pronounced bid-ask bounces.

In Figure 4 we plot daily estimates of the correlations for both the 1- and 2-composite Markov

estimators. These are benchmarked with the realized correlations based on 10-minute sampling. We

observed that Gold/Silver are highly correlated and its correlation is highly persistent over the year

2013. More moderate correlations are observed for SPY/Crude Oil and Soybeans/Wheat, and these

series exhibit a higher degree of time-variation. In the case of SPY/Gold we observe a less stable

correlation that changes sign several times during the year. The general patterns are successfully

captured by the composite Markov estimators, and while the realized correlation is in agreement about

the general trends, it exhibits far more day-to-day variation which suggests that it is less accurate. The

smooth and persistent behavior of the Markov estimators may be attributed to these estimators being

more accurate.
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Figure 3: Realized volatility based on 10 min returns against volatility computed with MC estimator
(order k = 5) in 2013. Estimated values are annualized.
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Figure 4: Realized correlation based on 10 min returns against correlation computed with MC estimator
(order k = 5) in 2013.
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8 Conclusion

In this paper we have proposed a multivariate volatility estimator that is based on the theory of finite

Markov chains. The Markov chain estimator takes advantage of the fact that high-frequency prices are

confined to a grid. This is the first robust multivariate estimator for which standard errors are readily

available. Previous estimators include the multivariate realized kernel estimator, whose standard error

also requires an estimate of the long-run variance of the noise, which is difficult to estimate because

the noise is, in practice, small, serially dependent, and endogenous. The multivariate kernel estimator

(MRK) converges at rate n1/5. In contrast, the Markov estimator converges at rate n1/2 owing to the

specification assumed for the high-frequency data. These rates are, however, not directly comparable

for practical situation, as the order of the Markov chain may be required to increase with n, in order

to accommodate inhomogeneity resulting from time-varying volatility. Our simulation design suggests

that the Markov estimator and the MRK performs similarly in practice, so the major advantage of the

Markov estimator is the readily available standard error.

The estimator performs well in a simulation design, and is relatively insensitive to the choice of the

order of the Markov chain, k, which is the tuning parameter that must be chosen in practice.

A potential limitation of the estimator is the high-dimensional objects that the estimator is computed

from. For the full estimator the dimension can be as large as (Sd)k, where S is the number of primitive

states for the individual series, d is the dimension of the process and k is the order of the Markov chain.

The dimension will typically be much smaller in practice because many states are not observed in a

given sample, and the transition matrix will be very sparse, because most transitions between states

are unobserved. So there is a need to further analyze the finite sample properties of the full Markov

estimator, and to characterize its limitations.

The two composite Markov estimators alleviate the challenges with high dimensional objects, but

may require a projection to guarantee a positive semidefinite estimate. For this purpose we have

proposed a novel projection that makes use of the standard errors of the elements of the matrix being

projected. Since these are readily available for the 2-composite estimator it is appealing to incorporate

these, so that a projection leaves accurately estimated elements relatively unchanged.

The empirical analysis of commodity prices illustrated the three Markov estimators, and bench-

marked them against conventional realized variances. The estimates were largely in agreement, but the

Markov estimators fare particularly well with regards to estimating correlations. While the time series

of daily correlation estimates based on the realized variance were somewhat erratic, those of the Markov

estimators were more stable.
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Appendix: Details on the simulation design with stochastic volatility

For comparison with the simulation design with constant volatility we seek to have the integrated

variance be 1, in expectation. This is achieved as follows. Note that

E((d log Yi,t)
2) = E [exp {2 (β0 + β1τi,t)}∆] ,

and since we (approximately) have τi,t ∼ N(0, a2) with

a2 =

1−exp(2α∆)
−2α

1− exp(α∆)2
=

1

−2α
,

it follows that

2(β0 + β1τi,t) ∼ N(2β0, 4β
2
1

1

−2α
).

Hence

E [exp {2 (β0 + β1τi,t)}] = exp

(
2β0 + β2

1

1

−α

)
,

which will be equal to 1 if we set β0 = β2
1/(2α).
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