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Abstract

We consider a multivariate time series whose increments are given from a homogeneous Markov

chain. We show that the martingale component of this process can be extracted by a filtering method

and establish the corresponding martingale decomposition in closed-form. This representation is

useful for the analysis of time series that are confined to a grid, such as financial high frequency

data.
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1 Introduction

We consider a d-dimensional time series, {Xt}, whose increments, ∆Xt = Xt −Xt−1, follow a homoge-

neous ergodic Markov chain with a countable state space. Thus, Xt = X0+
∑t

j=1 ∆Xj , which makes Xt

a (possibly non-stationary) Markov chain on a countable state space. We consider, E(Xt+h|Ft), where

Ft = σ(Xt, Xt−1, . . .), is the natural filtration. The limit, as h→∞, is particularly interesting, because

it leads to a martingale decomposition,

Xt = Yt + µt + Ut,

where µt is a linear deterministic trend, {Yt,Ft} is a martingale with Yt = limh→∞ E(Xt+h − µt+h|Ft),

and Ut is a bounded stationary process. We derive closed-form expressions for all terms in the repre-

sentation of Xt.

The martingale decomposition of finite Markov chains is akin to the Beveridge-Nelson decomposition

for ARIMA processes, see Beveridge and Nelson (1981),1 and the Granger representation for vector

autoregressive processes, see Johansen (1991). The decomposition has many applications, as the long-

run properties of Xt are governed by the persistent component, Yt, while Ut characterizes the transitory

component of Xt. In macro-econometrics Yt and Ut are often called “trend” and “cycle”, respectively,

with Yt being interpreted as the long run growth while Ut defines the fluctuations around the growth

path, see, e.g. Low and Anderson (2008). A martingale decomposition of a stochastic discount process

can be used to disentangle economic components with long term and short run impact on asset valuation,

see Hansen (2012). For the broader concept of signal extraction of the “trend”, see Harvey and Koopman

(2002).

In the context with high-frequency financial data (which often are confined to a grid), Yt and Ut

may be labelled the efficient price and market microstructure noise, respectively. One could use the

decomposition to estimate the quadratic variation of the latent efficient price Yt, as in Large (2011) and

Hansen and Horel (2009), and the framework could be adapted to study market information share, see

e.g. Hasbrouck (1995). Markov processes are often used to approximate autoregressive processes in dy-

namic optimization problems, see Tauchen (1986) and Adda and Cooper (2000), and the decomposition

could be used to compare the long-run properties of the approximating Markov process with those of

the autoregressive process.
1The result, known as Beveridge-Nelson decomposition, appeared earlier in the statistics literature, e.g. Fuller (1976,

theorem 8.5.1). See Phillips and Solo (1992) for further discussion. The martingale decomposition is also key for the
central limit theorem for stationary processes by Gordin (1969).
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The paper is organized as follows: We establish an expression for the filtered process within the

Markov chain framework, in Section 2, which leads to the martingale decomposition. Concluding re-

marks with discussion of various extensions are given in Section 3, and all proofs are given in the

Appendix.

2 Theoretical Framework

In this Section we show how the observed process, X0, X1, . . . , Xn, can be filtered in a Markov chain

framework, using the natural filtration Ft = σ(Xt, Xt−1, . . .). This leads to a martingale decomposition

for Xt that is useful for a number of things.

Initially we seek the filtered price, E(Xt+h|Ft), and we use the limit, as h→∞, to define the process,

Yt = lim
h→∞

E(Xt+h − µt+h|Ft),

where µt = tµ with µ = E(∆Xt).We will show that {Yt,Ft} is a martingale, in fact, Yt is the martingale

component of Xt that, in turn, reveals a martingale representation theorem for finite Markov processes.

Note that the one step increments of E(Xt+h − µt+h|Ft) are, in general, autocorrelated at all or-

der (including those lower than h), however all autocorrelations vanish as h → ∞ and the martin-

gale property of Y emerges. This filtering argument can be applied to any I(1) process for which

E(∆Xt+h|Ft)
a.s.→ E(∆Xt) as h → ∞, and this is the basic principle that Beveridge and Nelson (1981)

used to extract the (stochastic) trend component of ARIMA processes.

2.1 Notation and Assumptions

In this section we review the Markov terminology and present our notation that largely follows that in

Brémaud (1999, chapter 6). The following assumption is the only assumption we need to make.

Assumption 1. The increments {∆Xt}nt=1 are ergodic and distributed as a homogeneous Markov chain

of order k <∞, with S <∞ states.

The assumption that S is finite can be dispensed with, which we detail in Section 3. For now we

will assume S to be finite because it greatly simplifies the exposition. The transition matrix for price

increments is denoted by P. For a Markov chain of order k with S basic states, P will be an Sk × Sk

matrix. We use π ∈ RSk to denote the stationary distribution associated with P , which is uniquely
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defined by π′P = π′. The fundamental matrix is defined by2

Z = (I − P + Π)−1,

where Π = ιπ′ is a square matrix and ι = (1, . . . , 1)′, (so all rows of Π are simply π′). We use er to

denote the r-th unit vector, so that e′rA is the r-th row of a matrix A of proper dimensions.

Let {x1, . . . , xS} be the support for ∆Xt, with xs ∈ Rd. We will index the possible realizations for

the k-tuple, ∆Xt = (∆Xt−k+1, . . . ,∆Xt), by xs, s = 1, . . . , Sk, which includes all the perturbations,

(xi1 , . . . , xik), i1, . . . , ik = 1, . . . , S. The transition matrix, P, is given by

Pr,s = Pr(∆Xt+1 = xs|∆Xt = xr).

This matrix will be sparse when k > 1, because at most S transitions from any state have non-zero

probability, regardless of the order of the Markov chain.

For notational reasons it is convenient to introduce the sequence {st} that is defined by ∆Xt = xst ,

so that st denotes the observed state at time t. We also define the matrix f ∈ RSk×d whose s-th row,

denoted fs = e′sf , is the realization of ∆X ′ in state s. It follows that ∆Xt = f ′est and that the expected

value of the increments is given by µ = E(∆Xt) = f ′π ∈ Rd.

The auxiliary vector process, est , is such that E(est+1 |Ft) = P ′est , so that est can be expressed as

a vector autoregressive process of order one with martingale difference innovations, see e.g. Hamilton

(1994, p. 679).

2.2 Markov Chain Filtering

The filtered process E(Xt+h|Ft), is simple to compute in the Markov setting, because E(Xt+h|Ft) =

E(Xt+h|∆Xt) and Xt+h = Xt +
∑h

j=1 ∆Xt+j with E(∆X ′t+1|∆Xt = xr) =
∑Sk

s=1 Pr,sfs = e′rPf. More

generally we have E(∆X ′t+h|∆Xt) = e′stP
hf, which shows that

E(X ′t+h|∆Xt) = X ′t + e′st

h∑
j=1

P jf.

After subtracting the deterministic trend, µt+h, we let h→∞ and define

Yt = lim
h→∞

E(Xt+h − µt+h|Ft),

2The matrix, I − P + Π, is invertible since the largest eigenvalue of P − Π is less than one under Assumption 1.
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which we label the filtered process of Xt. The process, Yt is well defined and adapted to the filtration

Ft. We are now ready to formulate our main result.

Theorem 1. The process and {Yt,Ft} is a martingale with initial value, Y0 = X0 + f ′(Z ′ − I)es0 and

its increments are given by ∆Y ′t = e′stZf − e
′
st−1

PZf . Moreover, we have

Xt = Yt + µt + Ut, (1)

where U ′t = e′st(I − Z)f is a bounded, stationary, and ergodic process with mean zero.

All terms of the expression are given in closed-form, analogous to the Granger representation theorem

by Hansen (2005).

It can be shown that ∆Yt is a Markov process with Sk+1 possible states values. Analogous to P

and f , let Q and g denote the transition matrix for ∆Yt and its matrix of state values, respectively.

The martingale property dictates that Qg = 0 ∈ RSk+1×d. Note that ∆Yt is typically conditionally

heterogeneous, as Q is not a matrix of rank one, which would be the structure corresponding to the

case where ∆Yt is independent and identically distributed.

The autocovariance structure of the terms in the martingale decomposition is stated next.

Theorem 2. We have var(∆Yt) = f ′Z ′(Λπ − P ′ΛπP )Zf where Λπ = diag(π1, . . . , πSk) and

cov(Ut, Ut+j) = f ′(I − Z)′ΛπP
|j|(I − Z)f = f ′Z ′P ′ΛπP (P |j| −Π)Zf,

and the cross correlations are

cov(∆Yt, Ut+j) = f ′Z ′(−Λπ + P ′ΛπP )P j+1Zf, for j ≥ 0,

and cov(∆Yt, Ut+j) = 0 for j < 0.

The Theorem shows that the stationary component, Ut, is autocorrelated and, in general, correlated

with current and past (but not future) increments, ∆Yt, of the martingale. In the context of financial

high-frequency data, where Ut is labelled market microstructure noise, these features are referred to as

serially dependent and endogenous noise, that are common empirical characteristics of high-frequency

data, see Hansen and Lunde (2006). Let λ2 denote the second-largest eigenvalue in absolute value of P .

Since, ‖ P j −Π ‖= O(|λ2|j) and |λ2| < 1 under Assumption 1, it follow that the autocovariances of Ut

decay to zero at an exponential rate.
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A corollary to Theorem 2 is that the following.

Corollary 1. The variance of the observed increments, var(∆Xt) = f ′(Λπ − ππ′)f equals

var(∆Yt) + 2var(Ut)− cov(Ut−1, Ut)− cov(Ut, Ut−1) + cov(∆Yt, Ut) + cov(Ut,∆Yt)

= f ′Z ′(I − P )′Λπ(I − P )Zf.

3 Concluding Remarks and Extensions

The martingale decomposition of Xt has several applications, as is the case for the Beveridge-Nelson

decomposition for ARIMA processes. In the context of macro time series Yt and Ut might be labelled

the (stochastic) trend and cycle, respectively. In the context of financial high frequency prices, Yt and

Ut could be labelled the efficient prices and market microstructure noise, respectively. In that context,

both Yt and Ut are of separate interest. Moreover, extracting the martingale component, Yt, offers a

motivation for the Markov chain-based estimator of the quadratic variation as in Hansen and Horel

(2009). Their estimator is deduced from the long-run variance of Xt, that facilitates a central limit

theory and readily available standard errors.

To conclude, we will discuss extensions of the martingale decomposition to accommodate the cases

with an infinite number of states (countable), jumps, and inhomogeneous processes.

Suppose that the number of state values for ∆Xt is countable infinite. Then the number of Markov

states for ∆Xt is countable infinite, and the Markov process can be characterized by Pr,s, r, s = 1, 2, . . ..

The concept of ergodicity is well defined, and entails a unique stationary distribution, π, that satisfies

πs =
∑∞

r=1 Pr,sπr. With [P 2]r,s =
∑∞

j=1 Pr,jPj,s and higher moments defined similarly, we can define

Zr,s = Ir,s + lim
h→∞

h∑
j=1

([P j ]r,s − πs),

that are well defined provided that the Markov chain is ergodic. It can now be verified that the

expressions in Theorems 1 and 2 continue to be applicable to this case.

In financial time series the increments, ∆Xt, are often concentrated about zero, with occasional

large changes that are labelled as jumps, see e.g. Huang and Tauchen (2005) and Li (2013). Because

jumps are prevalent in high-frequency financial data, the modeling of these data often entails a jump

component. One can adapt the martingale decomposition (1) to include a jump component, Jt. This

requires a procedure for classifying large increments as jumps and one can then proceed by removing
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these jumps, e.g. using methods similar to those proposed in Mancini (2009) or Andersen et al. (2012),

and then model the remaining returns by the Markov chain methods, to arrive at

Xt = Yt + Jt + µt + Ut,

where Jt = Jt−1 + ∆Xtδj , µt = µt−1 + µ(1− δt), U ′t = (1− δt)e′st(I − Z)f , with δt being the indicator

for the jumps.

The case with an inhomogeneous Markov chain is theoretically straightforward provided that the

transition matrix, Pr,s(t) = Pr(∆Xt = xs|∆Xt−1 = xr), satisfies the ergodicity conditions for all t. From

the time-varying transition matrix, P (t), one can deduce the increments ∆Yt and ∆µt, as well as Ut, that

all depend on P (t). A decomposition arises by piecing the terms together, i.e. Yt = Y0 +
∑t

j=1 ∆Yt, and

again Yt can be verified to be a martingale, and similarly for other terms. A challenge to implementing

this in practice will be to estimate P (t) with a suitable degree of accuracy. This may be achieved by

assuming that P is locally homogeneous (piecewise constant), or by imposing a parsimonious structure

for the dynamics of P (t), similar to that in the models by Hausman et al. (1992) and Russell and Engle

(2005), that can induce an inhomogeneous Markov chain for high-frequency returns.
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Appendix of Proofs

Lemma A.1. Suppose that Assumption 1 holds.

(i) (P −Π)j = P j −Π,

(ii) limh→∞
∑h

j=1(P −Π)j = Z − I, where Z = (I − P + Π)−1,

(iii) Zι = ι, π′Z = π′, and PZ = ZP = Z − I + Π,

(iv) Z − I = (P −Π)Z.

Parts of Lemma A.1 are well know, for instance parts (i) and (ii) are in Brémaud (1999, chapter 6).

For the sake of completeness, we include the (short) proofs of all four parts of the Lemma.

Proof. We prove (i) by induction. The identity is obvious for j = 1. Now suppose that the identity

holds for j. Then

(P −Π)j+1 = (P −Π)(P j −Π) = P j+1 −ΠP j + Π2 − PΠ = P j+1 −Π,

where the last identity follows from ΠP j = Π2 = PΠ = Π.

(ii) Since the chain is ergodic we have ‖P−Π‖ < 1, so that P h converges to Π with
∥∥P h −Π

∥∥ = O(|λ2|h),

where λ2 is the second largest eigenvalue of P . It follows that
∑∞

j=1(P
j − Π) =

∑∞
j=1(P − Π)j is

absolutely convergent with
∑∞

j=1(P −Π)j =
∑∞

j=0(P −Π)j − I = (I − (P −Π))−1 − I = Z − I.

(iii) P jι = ι and π′P j = π′ for any j ∈ N; and Πι = ι and π′Π = π′, so that have (P j−Π)ι = π′(P j−Π) =

0. The first two results follow from Z = I +
∑∞

j=1(P
j − Π). Next, PZ = ZP = P +

∑∞
j=1(P

j+1 − Π)

and

P +

∞∑
j=1

(P j+1 −Π) = P +

∞∑
j=0

(P j+1 −Π)− P + Π =

∞∑
j=1

(P j −Π) + Π = Z − I + Π.

Finally, the last result follows from (Z − I) = (I − Z−1)Z = (I − I + P −Π)Z = (P −Π)Z. �

Proof of Theorem 1. We have E(∆X ′t+h|∆Xt = xst) = e′stP
hf. So with ∆Xt = xst we have

E(Xt+h − µt+h|Ft) = Xt − µt +

h∑
j=1

E(∆Xt+j − µ|Ft)

= Xt − µt + f ′
h∑
j=1

(P j −Π)′est ,

where the last term is such that e′s
∑h

j=1(P
j −Π)f → e′s(Z − I)f as h→∞ by Lemma A.1.ii. Hence,

Yt = lim
h→∞

E(Xt+h − µt+h|Ft) = Xt − µt + f ′(Z − I)′est ,
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so that Y0 = X0 + f ′(Z − I)′es0 and the increments are given by

∆Y ′t = ∆X ′t − µ′ + e′st(Z − I)f − e′st−1
(Z − I)f

= e′stZf − e
′
st−1

(Z + Π− I)f = e′stZf − e
′
st−1

PZf,

where we used Lemma A.1.iii.

This establishes the decomposition, Xt = Yt + µt + Ut, where U ′t = e′st(I − Z)f . Since Ut is a simple

function of ∆Xt it follows that Ut is a stationary, ergodic, and bounded process. That E(Ut) = 0 follows

from E(U ′t) =
∑
πse
′
s(I − Z)f = (π′ − π′Z)f = 0, where we used Lemma A.1.iii.

Moreover, {Yt,Ft} is a martingale, because Yt ∈ Ft and

E(e′sZf − e′rPZf |∆Xt−1 = xr) =
∑
s

Pr,se
′
sZf − e′rPZf = e′rPZf − e′rPZf = 0,

for any r = 1, . . . , Sk, where r and s are short for st−1 and st, respectively (defined by ∆Xt−1 = xr and

∆Xt = xs). �

In the proof of Theorem 2 we use the following identities

∑
r,s

πrPr,sere
′
r =

∑
r,s

πrPr,sese
′
s = Λπ, and

∑
r,s

πr[P
j ]r,sere

′
s = ΛπP

j , (A.1)

that are easily verified.

Proof of Theorem 2. For the variance of the martingale increments we have

E(∆Yt∆Y
′
t ) = E[(f ′Z ′est − f ′Z ′P ′est−1)(e′stZf − e

′
st−1

PZf)],

=
∑
r,s

πrPr,sf
′Z ′(es − P ′er)(e′s − e′rP )Zf

=
∑
r,s

πrPr,sf
′Z ′(ese

′
s − ese′rP − P ′ere′s + P ′ere

′
rP )Zf

= f ′Z ′(Λπ − P ′ΛπP − P ′ΛπP + P ′ΛπP )Zf = f ′Z ′(Λπ − P ′ΛπP )Zf,

where we used (A.1) in the second last equality.

10



Concerning the stationary component of the decomposition we have for j ≥ 0 that

E(UtU
′
t+j) = E[f ′(I − Z)′este

′
st+j

(I − Z)f ]

=
∑
r,s

πr[P
j ]r,sf

′(I − Z)′ere
′
s(I − Z)f

= f ′(I − Z)′ΛπP
j(I − Z)f

= f ′Z ′(Π− P )′ΛπP
j(Π− P )Zf

= f ′Z ′P ′ΛπP (P j −Π)Zf,

where we used Lemma A.1.iv in the second last equality.

Finally, for the cross covariance we first note that,

∑
r,s,v

πrPr,s[P
j ]s,vese

′
v =

∑
s,v

πs[P
j ]s,vese

′
v = ΛπP

j ,∑
r,s,v

πrPr,s[P
j ]s,vere

′
v =

∑
r,s,v

πr[P
j+1]r,vere

′
v = ΛπP

j+1,

where the first identities in the two equations follow by
∑

r πrPr,s = πs and
∑

s Pr,s[P
j ]s,v = [P j+1]r,v,

respectively, and the last equalities both follow from the last variant of (A.1). So for j ≥ 0 we have

E(∆YtU
′
t+j) = E[(e′stZf − e

′
st−1

PZf)′e′st+j
(I − Z)f ]

=
∑
r,s,v

πrPr,s[P
j ]s,vf

′Z ′(es − P ′er)e′v(Π− P )Zf

= f ′Z ′[ΛπP
j(Π− P )− P ′ΛπP j+1(Π− P )]Zf

= f ′Z ′[ππ′ − ΛπP
j+1 − ππ′ + P ′ΛπP

j+2]Zf

= f ′Z ′(−Λπ + P ′ΛπP )P j+1Zf.

That E(∆YtU
′
t+j) = 0 for j < 0 can be verified similarly. However, this is not required because the zero

covariances are a simple consequence of martingale property of Yt that was established in the proof of

Theorem 1. �

Proof of Corollary (1). By substituting the expressions from Theorem 2 and using cov(∆Yt, Ut−1) =
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0, one finds that the expression in Corollary 1 equals f ′Z ′AZf , where

A = (Λπ − P ′ΛπP ) + 2P ′ΛπP (I −Π)− P ′ΛπP (P −Π)− (P −Π)′P ′ΛπP

+(−Λπ + P ′ΛπP )P + P ′(−Λπ + P ′ΛπP )

= Λπ + P ′ΛπP − 2ππ′ + ππ′ + ππ′ − ΛπP − P ′Λπ

= (I − P )′Λπ(I − P ),

which proves the equality in the Corollary. That f ′Z ′AZf = f ′(Λπ − ππ′)f follows from

(I − P )′Λπ(I − P ) = (I − P + Π)′Λπ(I − P + Π)− ππ′

= (I − P + Π)′(Λπ − ππ′)(I − P + Π),

which equals (Z−1)′(Λπ − ππ′)Z−1. This completes the proof. �
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