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Abstract

Counting processes provide a very flexible framework for modeling discrete
events occurring over time. Estimation and interpretation is easy, and links to
more familiar approaches are at hand. The key is to think of data as ”event
histories,” a record of times of switching between states in a discrete state space.
In a simple case, the states could be default/non-default; in other models rele-
vant for credit modeling the states could be credit scores or payment status (30
dpd, 60 dpd, etc.). Here we focus on the use of stochastic counting processes for
mortgage default modeling, using data on high LTV mortgages. Borrowers seek-
ing to finance more than 80% of a house’s value with a mortgage usually either
purchase mortgage insurance, allowing a first mortgage greater than 80% from
many lenders, or use second mortgages. Are there differences in performance
between loans financed by these different methods? We address this question
in the counting process framework. In fact, MI is associated with lower default
rates for both fixed rate and adjustable rate first mortgages.
JEL Classification: C51, C52, C58, C33, C35
Keywords: Econometrics, Aalen Estimator, Duration Modeling, Mortgage In-
surance, Loan-to-Value



1 Introduction

Counting process analysis, also called event-history analysis and life-table anal-
ysis, is a general and flexible framework for studying sequences of events. In
this setup the state space is discrete, for example credit rating categories or
in a simpler case default/nondefault. Time is continuous. Transitions between
states can occur at any time and the rate or intensity at which these transitions
occur is the quantity being measured. Conceptually, the unit of observation is
the stochastic process of events through time for a particular agent or subject.
In the binary event case the approach is an alternative way of looking at clas-
sical survival analysis. There, attention is focused on the hazard rate, which is
exactly the transition rate modeled in counting processes.

Survival analysis itself, in the form of life tables, has a long history of ap-
plications. Oakes (2000) gives an historical review of survival analysis. He and
Andersen et al (1985) note the contribution of John Gaunt, an early demog-
rapher known as the father of demography, whose 1662 book dealt with life
tables. The earliest applications were actuarial and demographic. The most
recent rapid development of methods was in medical applications, and subse-
quently economics. Introductions to the statistical literature on survival analysis
may be found in texts by Kalbfleisch and Prentice (1980), Lawless (1982) and
Cox and Oakes (1984). A short introduction is given by Freedman (2008).

Two features of transition data are that the data are censored and that
parametric models are widely suspect as too restrictive. Both of these features
are easily addressed in the counting process framework.

In the survival application, censoring means that some of the observations
have not failed, so the total lifetime is unobserved. In the more general counting
process setup censoring occurs because only a portion of the stochastic process
is observed, often ending with an interval of time not ending with a transition.
Again, incomplete spell lengths complicated matters. Initial work focused on
parametric models and techniques for handling censoring. An early result in the
nonparametric analysis of censored data was the Kaplan Meier (1958) product-
limit estimator.

The presence of covariates in medical and economic applications also com-
plicates matters. In duration models the effect of covariates is more than the
familiar mean shift in linear models. Parametrization thus becomes increas-
ingly important and sometimes suspect. The highly influential partial-likelihood
model by Cox (1972) allowed for parametric modeling of the effects of covari-
ates without requiring a parametric assumption for the actual distribution of
durations. The model uses an ingenious approach based on ranks and allows
for censoring.

The classical approach to survival or duration analysis regards durations as
random variables and develops models and methods of analysis from this point
of view. Kiefer (1988) and Lancaster (1992) review parametric and nonparamet-
ric methods using the random variable approach with a view toward economic
applications. The counting process viewpoint in contrast regards the stochastic
process of events over time as the unit of observation, and focuses on modeling
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these processes. It turns out that this approach leads to natural generalizations
of the models used for survival analysis and a unified treatment of estimation and
inference procedures. Generalizations include application to recurring events in
univariate ”survival” models (repeated deaths? - perhaps missed or late pay-
ments in a credit application) and extension to multivariate counting processses
addressing the problem of competing risks. As to inference, Andersen and Gill
(1982) use the counting process approach to establish the asymptotic properties
of the Cox estimator and Johansen (1983) uses the counting process formulation
to give a maximum-likelihood justification for the Cox estimator. Generally, the
asymptotic distribution results are easily obtained using martingale arguments.
The counting process approach was suggested by Aalen (1978) and further de-
veloped by Andersen (1982). Intuition can be gained by thinking of counting
processes as Poisson processes. In general, counting processes amount to Poisson
processes on a distorted time scale (the interarrival times need not be exponen-
tial). The state of the art is described in Aalen, O., Borgan, O. & Gjessing, H.
(2008). The applications there are mostly from healthcare and medicine. The
progression of a disease through stages, resulting perhaps in recovery, perhaps
in death, is much like the progression of the risk status of a risky investment.
Counting processes also occur in physical applications, see Gardiner (2009) and
Van Kampen (1992),

Our purpose is to give a complete guide to using the counting process ap-
proach for loan-level default analysis. To this end, sections 2-5 define the count-
ing process, give a succinct discussion of the principal results on specification
and estimation of counting processes, and describe at a high level how these re-
sults are obtained. In the long section 6 the reader is taken step by step through
an application to residential mortgage defaults, with emphasis on the difference
between fixed and adjustable rate mortgages and a concentration on the effect
of mortgage insurance on default rates. Our results demonstrate in the context
of a very flexible specification that high loan-to-value mortgages financed us-
ing mortgage insurance have lower delinquency rates than those financed using
second mortgages.

2 Counting Processes

The key to the counting process approach is to think of data as ”event histories,”
a record of the times of switching between states in a discrete state space.
The focus is not on distributions (exponential, weibull, ...) but on the entire
stochastic process. The point is to estimate the transition rates between states.
Transitions are ”events” in the language of counting processes. With 2 states
this approach is a small generalization of the usual model for survival. The
approach uses the theory of martingales and stochastic integration.
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2.1 Counts, Rates and Information

A counting process N = {N(t)}(t≥0 is a stochastic process which counts the
occurrences of transitions into a target state as time t evolves. It is often
mathematically convenient to normalize to t ∈ [0, 1]. We might think of the
cumulative count of missed or late payments over time, or perhaps the incidence
of overdrafts on a deposit account. The N(t) are nonnegative integers which
have jumps of size +1 at random times.

The observable stochastic process N(t) is generated by an intensity process
λ(t) which is exactly the hazard function occurring in the ordinary survival
model. Let dN(t) be the increment N(t) − N(t−)to N(t) where t− is the
”instant” before t. Hence dN(t) ∈ {0, 1}. Then

λ(t) = Pr(dN(t) = 1|Ft−) (1)

where Ft− is the information available immediately prior to t.
A multivariate counting process N = {N1(t), N2(t), ..., Nk(t)} is a stochastic

process with k components, which counts the occurrences of transitions into
each of k states as time t evolves. Again, the counts Nj(t) are nonnegative
integers which have jumps of size +1 at random times. An economic example is
the evolution of credit ratings for assets over time (Kiefer, N. M. & Larson, C. E.
(2007)). In the multivariate case we make the further restriction that any time,
only one component can jump. The observable stochastic process N is similarly
generated by an intensity process λ = {λ1(t), λ2(t), ..., λk(t)} where the λj(t)
are exactly the origin and destination-specific hazard functions occurring in the
competing risk model. Let dNj(t) be the increment to Nj(t) (dNj(t) ∈ {0, 1}).
Thenλj(t) = Pr(dNj(t) = 1|Ft−) is the multivariate intensity process.

2.2 The Multiplicative Intensity Model

The multiplicative intensity model is intuitive and widely used. The key idea
is that the failure probability for a given asset, which can depend on covariates
and duration at risk, does not depend on the number of other assets at risk.
The intensity function for this model is

λj(t) = αj(t)Yj(t) (2)

where αj(t) is a deterministic function and Yj(t) is a predictable stochastic
process (Ft−− measurable); its value at t is known at t− . Yj(t) is interpreted
as the number at risk for this transition. In the pure survival case for a single
individual, where the event - death - can only occur once, Y (t) = 1 − N(t−),
illustrating the property of predictability. Turning to a practical specification,
let the transition rate for observation i be

λji(t) = αj(t,Xi(t), θ)Yji(t) (3)

where Xi(t) is a vector of predictable time-varying covariates, θ is a vector of
parameters. Nonparametric estimation is also practical, in which case θ is a
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high dimensional parameter. Yji(t) is a predictable indicator function (Yji(t) ∈
{0, 1}) indicating whether observation i is at risk of transition into state j.

2.3 Censoring

Censoring is a feature of duration data that makes the use of ordinary regression
techniques typically inappropriate. Censoring occurs when the time to default
is unknown, although elapsed time at risk is known. For example, the asset
might not have defaulted at the end of the observation period. Or, the asset
might disappear from the sample for other reasons, such as prepayment. The
treatment of censoring is easy and elegant in the multiplicative intensity model.
Let Nu

i (t) be the uncensored stochastic process of counts (a vector). Nu
i (t) is

not observed and has intensity

λuji(t) = αj(t,Xi(t), θ)Y
u
ji(t) (4)

where Y uji(t) is the unobserved predictable indicator sequence.
Censoring is determined by a predictable process Ci(t). This can be deter-

ministic or random and can depend on information up to but not including time
t (Ft−− measurable). This formulation allows censoring at fixed times, for ex-
ample the sample ends at the end of the observation period and those histories
are subject to analysis. Alternatively, completely random censoring is allowed.
A generalization allows censoring to depend on the observed Ft−, which is usu-
ally the sample path to date (including the regressor path). Thus the censored
observations are subject to the same intensity to default as the other observa-
tions – they are not discernibly different from other loans before they censor.
What the assumption of predictibility does not allow is censoring depending on
information available to the bank or borrower but not the analyst. For exam-
ple, suppose the loan leaves the portfolio and is therefore censored because the
bank, anticipating problems based on private information, decides to sell the
loan. Then, that kind of censoring is informative about the loan’s quality. That
should be modeled as a competing risk, not as ordinary censoring.

Define Ci(t) = 1 for uncensored times, 0 for censored. Then the counting
process with censoring is

Ni(t) =

∫ t

0

Ci(v)dNu
i (v) (5)

The at-risk indicator for the censored process is Yi(t) = Y ui (t)Ci(t). The inten-
sity for the censored process is

λji(t) = αj(t,Xi(t), θ)Yji(t) (6)

just as for the uncensored process.

3 Martingales

A martingale is a stochastic process – a sequence of random variables evolving
over time – that, while quite general, has properties allowing simple and unified
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treatment of estimation and inference for counting processes. A martingale
has the property that the expectation of a future value given the current and
past values is equal to the current value. The formalities can be skipped by
those only interested in the applications. Formally, a continuous time stochastic
process X(t) is a martingale with respect to its past if E(|X(t)|) < ∞ and
E(X(t)|{X(u}, u ≤ s) = E(X(t)|{X(s}) = X(s).See especially Jacobsen, M.
(1989).

Note that dN(t) is a (vector) 0-1 random variable (for dt small) with E(dN(t))|Ft−) =
λ(t)dt. Define the stochastic process M(t) by M(0) = 0 and

dM(t) = dN(t)− λ(t)dt (7)

Then E(dM(t)|Ft−) = 0 and so upon integrating we have the stochastic process

M(t) = N(t)−
∫ t

0

λ(u)du

= N(t)− Λ(t) (8)

defining the function Λ(t) as the integrated hazards. This process is a mar-
tingale. More generally, and relevant for our consideration of censoring and
ultimately of regressors, X(t) is a martingale with respect to the history Fs if it
is adapted to the history (i.e. X(t) is Ft− measurable and E(X(t)|Fs) = X(s).
Λ(t) is called the compensator in the language of stochastic processes. This
yields the Doob-Meyer decomposition of the process N(t) : N(t) = Λ(t)+M(t).
Indexing by sample size, martingale central limit theorems give conditions im-
plying that Mn(t) converges to a gaussian martingale. Gaussian martingales
have continuous sample paths and deterministic conditional variance processes
and so are easy to work with. The variance process for dM(t) is

V (dMj(t)|F = V (dNj(t)|Ft−)

= λj(t)dt(1− λj(t)dt) ≈ λj(t)dt (9)

So,
V (M(t)|Ft−) ≈ Λ(t). (10)

Studying the properties of estimators will involve integration with respect
to this martingale. For a predictable process H(t) define a new process by the
stochastic integral

MH(t) =

∫ t

0

H(u)dM(u) (11)

MH(t) is also a martingale (since H is deterministic and E(dM) = 0) and, since
V ar{H(t)dM(t)|Ft−} = H2(t)V (d(M(t)), MH(t) has variance process

V (MH(t)) =

∫ t

0

H2(u)V (dM(u)) (12)
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4 Parametric Models

Many familiar statistical applications rely on parametric models. These are
models that depend on a fixed, and small (when competently applied) number
of parameters. This formulation allows easily interpretable models and models
that can be estimated with smaller data sets than truly nonparametric models.
However, parametric models can lead to error if the chosen parametrization
is not a realistic description of the data. For parametric models we specify a
functional form for the hazard functions. In

λj(t) = αj(t)Yj(t) (13)

we might choose a model for αj(t). For example the Weibull αj(t, γ) = γtγ−1.
Let Ti be the survival times (times to transition or censoring) and let di = 1 if
the observation is not censored (0 if censored).

We consider estimation by maximum likelihood. The likelihood function is
the joint density of the data regarded as a function of the unknown parameters.
The values of the parameters that maximize this function are the maximum like-
lihood estimators. Subject to conditions that hold in our models, the maximum
likelihood estimator is consistent (tends toward the true parameter values as
the sample size increases), asymptotically normally distributed with a variance
that can be easily estimated, and efficient (minimum variance among consistent
and asymptotically normally distributed estimators). The likelihood function is

L(θ) =

n∏
i=1

α(ti, θ)
di exp{−

∫ ti

0

α(ti, θ)} (14)

with log

lnL(θ) = l(θ) =

n∑
i=1

di lnα(ti, θ)−
n∑
i=1

∫ ti

0

α(ti, θ) (15)

This can be simplified to

l(θ) =

∫ 1

0

lnα(t, θ)dN(u)−
∫ 1

0

α(t, θ)Y (u)du (16)

and the MLE θ̂ is the solution to ∂l(θ)/∂θ = 0 where

∂l(θ)/∂θ =

∫ 1

0

∂ lnα(t, θ)/∂θdN(u)−
∫ 1

0

∂α(t, θ)/∂θY (u)du (17)

The asymptotic distribution of the MLE can be derived using the martingale
representation

∂l(θ)/∂θ =

∫ 1

0

∂α(ti, θ)/∂θ

α(ti, θ)
dM(u) (18)

a stochastic integral against the stochastic process dM. It can be shown that√
n(θ̂−θ)→ N(0,−I(θ)−1) where I(θ) = ∂2l(θ)/∂θ2 as usual. The loglikelihood
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function for the multi-state (competing risks) model is straightforward

l(θ) =

k∑
j=1

∫ 1

0

lnαk(t, θ)dNj(u)−
k∑
j=1

∫ 1

0

α(t, θ)Yj(u)du (19)

with FOC defining the MLE again a stochastic integral involving dMj .
When there are covariates Xi(t) for each observation i varying over time we

cannot simply sum up the counts N(t) and ”at risks” Y (t). Instead we focus on
a particular transition (drop j) and write

λi(t,Xi(t), θ) = α(t,Xi(t), θ)Yi(t) (20)

for the intensity for the i−th observation in the general case. Here Yi(t) ∈ {0, 1}
indicating whether or not the i− th observation has been censored as of time t
(0 is censored). This can be analyzed directly, but it is much more convenient
to use

α(t,Xi(t), θ, β) = α(t, θ)g(Xi(t)β) (21)

where the hazard and the effect of covariates are separated. Further, the covari-
ates enter in an index form, i.e., only through the linear combination Xi(t)β.
In a parametric specifiction the function g : R → R+ is specified, perhaps up
to parameters. It can be estimated nonparametrically. Even more convenient
(and in frequent use) is

α(t, θ) exp{Xi(t)β} (22)

Specializing to this case (similar results hold for the general model) we find the
loglikelihood

l(θ, β) =

n∑
i=1

∫ 1

0

(ln(α(u, θ) +Xi(u)β)dN(u)

−
n∑
i=1

∫ 1

0

α(t, θ) exp{Xi(t)β}Yi(u)du (23)

The FOC defining the MLE (θ̂, β̂) are

∂l(θ)/∂θ =

n∑
i=1

∫ 1

0

∂α(t, θ)/∂θ

α(t, θ)
dMi(u) = 0 (24)

and

∂l(β)/∂β =

n∑
i=1

∫ 1

0

Xi(u)dMi(u) = 0 (25)

Note that the compensator component of dM(t) = dN(t) − dΛ(t) depends on
both θ and β (and X).

The usual results on the properties of MLEs hold, asymptotic normality,
asymptotic variance −I(θ, β), which can be evaluated at the MLEs. Let

A(t) =

∫ t

0

α(u)du (26)
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be the integrated intensity (differing from Λ(t) by the at-risk factor Y (t)). Then
following Aalen, note that since α(t)Y (t) is the compensator for N(t), an esti-
mator Â(t) can be defined:

Â(t) =

∫ t

0

J(u)/Y (u)dN(u) (27)

where J(t) is an indicator with J(t) = 0 if Y (t) = 0 and 0/0 is treated as 0.
This is the Aalen or Nelson-Aalen estimator. It is a natural estimator, namely
the cumulative sum of the inverse of the number at risk at each observed failure
time. Let {tf} be the failure times. Then

Â(t) =

n∑
i|ti≤t

1/Y (ti). (28)

J(t) is included to allow observations to move out and back in to the risk set
before failure or censoring. This is rare in applications. For simplicity, assume
it doesn’t occur. Then

Â(t)−A(t) =

∫ t

0

(Y (u))−1dM(u) (29)

a mean-zero martingale. Since Y (t) is a predictable process we also have

V (Â(t)−A(t)) =

∫ t

0

(Y (u))−2dN(u) (30)

The Nelson-Aalen estimator has been derived as a maximum likelihood estima-
tor by Johanssen (1983). It has the usual (asymptotic) optimality properties
associated with regular MLEs, i.e., minimum variance among CUAN estimators.
It is perhaps somewhat easier to interpret the associated survivor function

Ŝ(t) = exp{−Â(t)}. (31)
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5 Semi-Parametric Models

Semi-parametric models provide a compromise between parametric and fully
nonparametric models. Typically, the parametric part is the part we under-
stand well and is of particular interest. For example, the effect of interest rates
on mortgage default might be parametrized. The nonparametric part is one that
we do not know much about. Often, our major concern is to avoid restrictive
parametrizations which might bias our inference on the parameters of primary
focus. For example, the baseline hazard rate might be specified nonparametri-
cally. Our general parametric model is

λi(t,Xi(t), θ) = α(t,Xi(t), θ)Yi(t) (32)

To make it semiparametric, separate the baseline hazard from the effect of
regressors

α(t,Xi(t), β) = α(t)g(Xi(t), β) (33)

The parameters are now α(t) (the nonparametric part) and β, the parametric
effect of regressors. It simplifies matters to adopt an index specification, so that
Xi(t) affects g through the value of the index Xi(t)β

α(t,Xi(t), β) = α(t)g(Xi(t)β) (34)

and simplifying further

α(t,Xi(t), β) = α(t) exp{Xi(t)β} (35)

This is now Cox-regression generalized to allow time-varying covariates. The
hazard function is

λ(t,Xi(t), β) = α(t) exp{Xi(t)β}Yi(t) (36)

Using the same logic as in the fixed-covariate case, the probability that obser-
vation i is the first failure, at time t1, is

λ(t1, Xi(t1), β)∑n
j=1 λ(t1, Xj(t1), β)

=
exp{Xi(t1)β}Yi(t1)∑n
j=1 exp{Xj(t1)β}Yj(t1)

(37)

Note that typically Yj(t1) = 1 for all j.
This forms the basis for the log partial likelihood function l(β, 1) where

l(β, t) =

n∑
i=1

∫ t

0

Xi(u)βdNi(u)−
∫ t

0

ln(

n∑
i=1

exp{Xi(u)β}Yi(u))

n∑
i=1

dNi(u) (38)

and the estimator β̂ is defined by ∂l(β̂, 1)/∂β = 0.
√
n(β̂ − β) is asymptotically

normal with mean zero and variance −nI(β)−1. This result can be obtained
using martingale arguments.

The associated ”baseline intensity” can be estimated by

Â(t) =

∫ t

0

∑n
i=1 dNi(u)∑n

i=1 exp{Xi(u)β}Yi(u)
(39)

which reduces to the Nelson-Aalen estimator if there are no regressors.
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6 An Application: Analyzing the Default Risk
of High LTV Mortgages

During the housing bubble that led up to the US and global financial crisis
of 2008, many US borrowers who lacked a 20% down payment used second
mortgages obtained at origination (“piggyback” loans) as a way of avoiding
private mortgage insurance on a first lien with a higher than 80% loan-to-value
(LTV) ratio at origination. In a typical piggyback transaction, a borrower
would take out a first mortgage for 80% of the home’s value, a second for
10%, and make a 10% down payment. Mortgages with LTVs greater than
80% have traditionally been considered riskier than 20% down mortgages; in
fact, Fannie Mae and Freddie Mac have held policies precluding the purchase or
securitization of high LTV mortgages unless accompanied by mortgage insurance
sufficient to bring the LTV down to 80%. For this reason piggybacks effectively
competed with MI in the eyes of borrowers.

First mortgages with a piggyback second were the most prevalent alterna-
tive to the use of mortgage insurance over the decade preceding the financial
crisis. We analyze the relative default risk empirically in an analysis of the
loan-level performance of a sample of 5,676,428 individual residential mortgages
originated from 2003 to 2007.1 The data, provided by Genworth and First
American CoreLogic, included several borrower and loan-level characteristics.
Serious delinquency was evaluated using a definition corresponding to a loan
having ever been 90 or more days past due (or worse) at any given time.

There are a number of important caveats to consider when attempting to
extend the following analytical results to the overall population of mortgages.
First, and most importantly, the analysis focuses exclusively on loans with <20%
down payment (>80% Loan-to-Value), which is only a portion of the first-lien
origination market. Loans with LTV in excess of 80% represented approximately
20% of the overall market at the time. Second, the database does not cover
100% of the loan market, as not all servicers are CoreLogic customers. The
coverage over the study period is over 60% of loans originated. This reduces
both the number of piggyback and insured loans in the dataset, relative to
the population. However, the missing servicers were mainly large diversified
national-level players, and there is no reason to think that their omission should
have a systematic selectivity bias on the representativeness of mortgage types in
our dataset. Third, combined loan-to-value (CLTV) is not reported on all loans
in the CoreLogic dataset. The definition of a “loan with a piggyback” is a first
lien loan with LTV=80 and with reported CLTV >80. This definition serves to
reduce the number of piggybacks potentially included in the study, while not
reducing insured loans. Finally, certain exclusions had already been applied to
the dataset by Genworth. These included excluding records with missing FICO

1At the request of Genworth Financial, one of the authors (Larson) conducted an in-
dependent study (the 2011 Promontory Insured Loan Study) to assess the relative default
performance of piggyback and insured loans. The results in this paper are based on that
study.
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at origination.
To limit and ensure the comparability of our analysis, loans were also ex-

cluded if the following conditions were found: 1) Regional information was
missing; 2) The combined loan-to-value (CLTV) was greater than 105%; 3) The
mortgage use categorization was that of ‘Non Insured, Sold’; or 4) A mismatch
existed between the origination date in the dataset and the origination date as
calculated from the performance history. These exclusions resulted in a dataset
containing 5,492,097 observations.

6.1 Summary Statistics

We begin by illustrating the performance differences though descriptive analysis
of severe (ever 90 days-past-due) delinquency rates and through comparison of
vintage cumulative delinquency curves.

Table 1 presents the lifetime cumulative delinquency rates corresponding to
our performance definition (ever 90 days past due or worse). In all years except
for 2003, the calculated piggyback delinquency rates are higher than the insured
delinquency rates. The overall bad rate on the analysis dataset was 19.44% for
insured loans and 29.09% for piggyback loans.

Table 1: Delinquency Rates by Origination Year

Table 2 illustrates how delinquency rates increase with Combined Loan-
to-Value (CLTV). For the insured mortgages, the CLTV value is the same as
the LTV of the first lien; for non-insured mortgages, the CLTV represents the
combined LTV of both the first and second (piggyback) liens.

11



Table 2: Delinquency Rates by CLTV

As expected, increasing FICO scores are associated with lower delinquency
rates, with piggyback loans having higher delinquency rates in all FICO score
bands, as documented in Table 3.

Table 3: Delinquency Rates by FICO Score

Table 4 shows little difference in severe delinquency rates between purchase
and refinance purposes for insured loans, while non-insured (with piggyback)
loans supporting refinance are significantly riskier than loans supporting a new
purchase. These patterns run against the traditional thinking that a loan sup-
porting a new purchase is riskier than one supporting a refinance; however one
may need to control for other factors to see the expected relationship in these
data.

Table 4: Delinquency by Loan Purpose

Table 5 illustrates that low documentation loans are more risky than full-
documentation loans for both insured and non-insured loans.
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Table 5: Delinquency by Documentation Level

And finally, Table 6 illustrates the lower delinquency rates for adjustable
rate mortgages that are insured, compared to those that are non-insured. The
difference is much smaller for fixed rate loans.

Table 6: Delinquency by Rate Type

6.2 Vintage Curves

Vintage curves provide summaries of the performance of insured and piggyback
loans. To construct our vintage curves, we plot the cumulative monthly severe
delinquency rate over time for loans originated in a given year. For each vintage,
we present curves for sub-segments of insured and piggyback loans. We segment
using origination FICO (<=620 is SubPrime, >620 Prime) and CLTV (less
than or equal to 90% and greater than 90%). The early vintages (2003 through
2005) have 72 months of performance. Vintages 2006 and 2007 have 60 and
48 months of performance, respectively. As shown in Figures 1 and 2, below,
for the 2007 vintage, piggyback loans have significantly accelerated and higher
lifetime cumulative delinquency. Appendix A presents additional curves.
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Figure 1
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Figure 2

The tables and the vintage curve analysis are both strongly suggestive of
differing performance characteristics for insured and non-insured (with piggy-
back) mortgages. However, it is undoubtedly the case that other risk factors,
whose level and impact may differ for insured and non-insured (with piggyback)
groups, should be controlled for before any conclusions are drawn or stylized
facts established.

For instance, while the vintage curves generally illustrate that non-insured
loans with piggyback seconds may have cumulative long-term delinquency rates
that are higher than their insured counterparts, the vintage curves do at times
cross, with insured loan cumulative severe delinquency rates often being greater
during the first 12, and in some instances, first 48 months. This occurs even
with vintage curves that attempt to control – albeit weakly – for factors such as
origination FICO and CLTV. One potential explanation for this reversal in risk
is that differences in payments between the two mortgage types may significantly
impact the observed delinquency.

In our dataset, and in the population, insured mortgages overwhelmingly
have fixed-rate payment structures, while non-insured (with piggyback) mort-
gages are almost evenly split between fixed- rate and adjustable-rate payment
structures. Since initial rate levels of adjustable-rates loans are usually signifi-
cantly below those carrying a fixed-rate, and because they remain so for months
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or years before any ARM reset, the initial payments for the fixed rate loans are
likely to be significantly higher than the adjustable rate loans. Consequently, it
would not be surprising if the higher initial payments of fixed rate mortgages
(controlling for CLTV) were associated with an initial higher risk of delinquency
for insured, predominantly fixed rate, mortgages.

An obvious takeaway is that it will be important to control simultaneously
for a potentially large number of risk factors, and to do so in a way that is
sensitive to the time varying impact that such factors may have over the life of
the mortgage. The dataset allows for one to control for such effects, but the
latter requires an appropriate framework to be utilized. We make use of the
counting process approach.

6.3 Estimation Results

A Cox Proportional Hazard (PH) Model is used to investigate and quantify the
relative performance of piggyback and insured loans while controlling for loan-
level factors that are commonly thought to be important in describing loan
performance.

The Survival Analysis Modeling Dataset We based our estimates of
the stratified proportional hazard model on a modeling dataset consisting of a
randomly selected subsample of 538,500 mortgage lifetimes, selected from the
parent sample of 5,676,428 individual residential mortgages originated from 2003
to 2007 and provided by Genworth and First American CoreLogic. Summary
information is given in table 7.

Table 7: Counts and Dispositions of Observations in the Modeling
Dataset

Appendix B contains additional summary information on loans characteris-
tics in the modeling dataset.

Estimation of Nonparametric (Empirical) Survival Curves Rather
than proceeding directly to the estimation of a stratified proportional hazards
model, it will be useful to first consider the empirical survival distribution curves
for default that are implied by the sample data. To this end, we have constructed
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smoothed estimates of the empirical survival function using the method of Ka-
plan and Meier (1958.) Figures 3 and 4 show the empirical, or non-parametric,
estimated default survival curves for insured and non-insured (with piggyback)
mortgage loans, computed for subsamples defined by whether the loans were of
fixed rate or adjustable rate type. These curves, as do all the estimates pre-
sented in this section, focus exclusively on the risk of default, and treat the
competing risk of payoff as a censoring event. This approach is a conventional
and meaningful way to present results for a risk of interest (here, default) when
competing risks are present.

Figure 3. Empirical Survival Curve Estimate, Fixed Rate Loans
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Figure 4. Empirical Survival Curve Estimate, Adjustable Rate
Loans

Note that even in the empirical survival curves, the long-term higher default
risk associated with non-insured loans having piggyback second liens is easy
to identify. This is particularly true for the adjustable rate loans, where the
survival proportion for the uninsured mortgages ultimately drops well below
that of the insured loans.

Estimation of a Stratified Proportional Hazards Model We are now
ready to turn to the estimation of the stratified Cox proportional hazards model.
We specify a model in which we include additional covariates and in which
we estimate separate stratified models for subsets of our sample, with loans
grouped by rate type. Part of the rationale for estimating different models for
different rate types (fixed vs. adjustable) is that borrower behavior in response
to changes in economic conditions is likely to be very different across these
products. Furthermore, differences in mortgage product types or borrower un-
derwriting practices may exist that are unobservable in our data, but which
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may result in different magnitudes of the estimated covariate coefficients or in
different baseline hazard and survival estimates.

Covariates The covariates in our model include several zero-one categor-
ical (or dummy) variables. For each of these variables, a case that has one of
the characteristics is coded as a one, and cases without the characteristic are
coded as a zero. These variables include the following

1. Documentation level (low or full documentation, with full documentation
= 1);

2. Loan purpose (purchase or refinance, with purchase = 1), and

3. Occupancy status (Owner-occupied or not, with owner-occupied = 1).

The model also includes four continuous variables measured at the time of
loan origination:

1. Combined Loan-to-Value;

2. FICO score at origination;

3. Original Interest Rate, and

4. Original Payment, a constructed variable equal to Original Loan Balance
X Initial Interest Rate.

Finally, the model includes four time-varying covariates:

1. Interest Rate Differential( t) = Original Interest Rate - Market Interest
Rate(t)

2. Change in Payment(t) = [Original Interest Rate - Market Interest Rate(t)
] x Original Balance

3. Change in Value(t) = (Original Value) x [%Change in Case-Shiller In-
dex(t)], and

4. Unemployment Rate(t)

The seasonally adjusted civilian unemployment rate and Case-Shiller Index
data were matched to each loan based upon MSA/CBSA if available; otherwise
a state or national level measure was used, respectively. The market interest
rate data was obtained from Freddie Mac, and it was matched based upon the
rate type of the loan. Fixed rate loans were matched to the monthly average
of the average weekly 30-year rate; adjustable rate loans were matched to the
monthly average of the average weekly 1-year rate.
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Parameter Estimates Table 8 presents estimation results for the fixed
rate and adjustable rate loan group models. Recall that each estimated rate
type model has been stratified across insured and non-insured mortgage classes.
As a result, we have two sets of parameter estimates, with a given parameter
set applying equally to both strata within a given rate group.

The estimated coefficients have signs that are consistent with expectations
(recall that due to the proportional hazard specification, a positive parameter
indicates that the hazard of default is increasing with the covariate value).
Estimated standard errors are extremely small and not reported (all estimates
would be judged “significant” at the 0.0001 level by the conventional “test”,
except the one indicated).

Table 8: Cox Stratified Proportional Hazards Model Parameter
Estimates
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Low documentation, non-owner-occupied, high CLTV, and low FICO loans
are of greater default risk than loans with the opposite characteristics. Some-
what surprisingly, loans supporting refinancing are of greater risk than loans
supporting a new purchase – a result seen in the simple descriptive statistics for
this period. The coefficients on the time varying covariates measuring the rate
differential between original and current market rates, the change in payment
and the change in value are also positive. The greater the difference between the
original interest rate and the current market rate, or the greater the different
between the original home value and the current implied market value (i.e., the
absolute value of potential equity loss), the greater the default risk. Similarly,
the higher the current level of unemployment in the MSA or state when the
property is located, the higher the default risk. All these impacts are similar
across both fixed rate and adjustable rate mortgage groups.

In contrast, when we consider the impact of the level of the original interest
rate or the level of the original payment, the signs of the coefficient estimates
are reversed between fixed and adjustable rate groups. However, the sign differ-
ences make sense: for fixed rate loans, holding original balance constant, higher
original interest rates mean higher fixed payments and higher default risk. For
adjustable rate loans, the higher original rate probably implies that the risk of a
payment shock when the original rate adjusts to market rates is lowered, along
with default risk.

Baseline Survival Curve Estimates To illustrate the differences be-
tween insured and non-insured loans, it is useful to compare the implied baseline
survivor functions for the strata corresponding to our estimated set of models2.
Figures 4 and 5 shows the implied baseline survival curves resulting from our
stratified Cox PH model; estimates reflect the survival probability at month t,
evaluated at the mean value covariates across the sample population. Effec-
tively, these baseline survival curve estimates illustrate the fundamental differ-
ences in performance between insured and non-insured loan groups, controlling
simultaneously and equally for all the effects we have been able to attribute to
covariates.

2The baseline hazards and survival functions are estimated as arbitrary functions of time
through implementation of a restricted maximum likelihood estimation of the αc(t) function,
in which the covariates for explanatory variables are restricted to their previously estimated
values.
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Figure 5. Parametric Baseline Survival Curve Estimates, Fixed
Rate Loans
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Figure 6. Parametric Baseline Survival Curve Estimates, Ad-
justable Rate Loans

In these curves, the higher default risk associated with the non-insured (with
piggyback) loans is very clear – at times even more so than in the empirical
survival curves (which did not control for the effect of covariates). For both
fixed rate and adjustable rate mortgages, controlling for the impact of covariates
results in implied baseline (strata specific) survival curve estimates in which
insured loans continue to demonstrate lower extreme delinquency and default
risk than non-insured (with piggyback) loans.

Tables 9 and 10 respectively present the estimated numerical baseline sur-
vival rates and cumulative default rates, by strata, for selected months-since-
origination. Overall, across both fixed and adjustable rate loans, the proportion
of non-insured loans surviving to 72 months was .798, compared to .833 for in-
sured loans. Significantly, as shown in Table 10, this difference implies that the
baseline cumulative default rate of non-insured loans is 20.98% percent higher
than that of insured loans.

Table 9. Estimated Baseline Survival Rates, S(t)
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Table 10: Estimated Baseline Cumulative Default Rates, F(t)
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6.4 Diagnostics: Evaluating the Proportional Hazards
Assumption

The assumption of the proportional relationship between hazards and covari-
ates that is implied by the Cox model specification should be subjected to an
empirical assessment. To perform such an assessment, it is increasingly common
to construct residuals along the lines proposed by Schoenfeld (1982). Instead
of a single residual for each individual observation, Schoenfeld’s method results
in constructing separate residuals for each covariate, for each individual loan,
using only those loans that defaulted (were not censored.)

Since the Schoenfeld residuals are, in principle, independent of time, a plot
that shows a non-random pattern against time is evidence of violation of the
proportional hazards assumption. Appendix C provides plots of the estimated,
scaled Schoenfeld Residuals against rank time. The minimal departures from a
general, random zero-slope pattern vs. time provide reasonable support for the
proportional hazards specification used in our analysis.

7 Conclusions

We propose analyzing defaults at the loan level using an approach based on sta-
tistical counting processes. After describing the method, we consider the default
experience in a sample of home mortgages. The analysis generally confirms that
by controlling for various factors, mortgages with piggyback second lien loans
have historically experienced higher lifetime rates of severe delinquency than in-
sured mortgages. This conclusion is supported by descriptive tables, graphical
vintage curve analysis and by the results from conducting an analysis using sta-
tistical methods of survival analysis based on counting processes.Our results are
based on an analysis of a large sample of high loan-to-value mortgages originated
over the period 2003 through 2007.

We present the results from estimation from both simple and extended ver-
sions of stratified Cox proportional hazards models, the latter estimated across
and by US census region. Risk factor parameter estimates are generally in
line with expectations as to sign, although variability in the magnitude of es-
timates exists across regions. We also compare the implied baseline survival
curves from the estimated models to smoothed Kaplan-Meier estimates of the
empirical survival function. Our modeling approach allows us to produce sep-
arate baseline survival estimates for insured and non-insured (with piggyback)
mortgages. These baseline curves have been controlled for the impact of risk
factors on performance in a way that cannot accomplished by simple tabular or
graphical analysis of empirical data

Overall, our analysis supports the assertion that the historical performance
of first lien MI-insured loans has been associated with lower rates of extreme
delinquency or default, when compared to non-insured first lien loans accompa-
nied by a piggyback second lien, and when controlling for various risk factors.
Our results rely on a very flexible statistical specification allowing time-varing
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covariates. Our approach is likely to be useful and is certainly feasible in many
analyses of loan-level retail default data.
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10 Appendix B: Modeling Dataset Summary

39



40



41



42



43



44



11 Appendix C: Scaled Schoenfeld Residual Plots

The Schoenfeld residual, rik is the covariate value, Xik, for the ith loan which
actually defaulted at time t, minus the expected value of the covariate for the
risk set at time t (i.e., a weighted-average of the covariate, weighted by each
loan’s likelihood of defaulting at t).

Because they will vary in size and distribution, the Schoenfeld residuals
are usually scaled before being analyzed. The k-dimensional vector ofScaled
Schoenfeld Residuals, SR, for the ith loan is defined as: SR= β + D*Cov(β)*r′i
, where β=the estimated Cox model coefficient vector, D= the number of loans
defaulting, and ri= the vector of Schoenfeld residuals for loan i.

Plots for Fixed-Rate Loans, by Covariate
Documentation Level

Loan Purpose
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Unemployment Rate (t)
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Plots for Adjustable-Rate Loans, by Covariate
Documentation Level

Loan Purpose
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