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Abstract

Conventional structural vector autoregressive (SVAR) models with Gaussian errors
are not identified, and additional identifying restrictions are typically imposed in applied
work. We show that the Gaussian case is an exception in that a SVAR model whose
error vector consists of independent non-Gaussian components is, without any additional
restrictions, identified and leads to (essentially) unique impulse responses. We also in-
troduce an identification scheme under which the maximum likelihood estimator of the
non-Gaussian SVAR model is consistent and asymptotically normally distributed. As a
consequence, additional economic identifying restrictions can be tested. In an empirical
application, we find a negative impact of a contractionary monetary policy shock on finan-
cial markets, and clearly reject the commonly employed recursive identifying restrictions.
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1 Introduction

Vector autoregressive (VAR) models are widely employed in empirical macroeconomic research,

and they have also found applications in other fields of economics and finance. While the

reduced-form VAR model can be seen as a convenient description of the joint dynamics of a

number of time series that also facilitates forecasting, the structural VAR (SVAR) model is more

appropriate for answering economic questions of theoretical and practical interest. The main

tools in analyzing the dynamics in SVAR models are the impulse response function and the

forecast error variance decomposition. The former traces out the future effects of an economic

shock on the variables included in the model, while the latter gives the relative importance

of each shock for each variable. In order to apply these tools, the economic shocks (or at

least the interesting subset of them) must be identified. Traditionally short-run and long-run

restrictions, constraining the immediate and permanent impact of certain shocks, respectively,

have been entertained, while recently alternative approaches, including sign restrictions and

identification based on heteroskedasticity, have been introduced.

When SVAR models are applied the joint distribution of the error terms is almost always

(either explicitly or implicitly) assumed to have a multivariate Gaussian (normal) distribution.

This means that the joint distribution of the reduced-form errors is fully determined by their

covariances only (their expectation is always set to zero). A well-known consequence of this

is that the structural errors cannot be identified without some additional information or re-

strictions. This raises the question of the potential benefit of SVAR models with non-Gaussian

errors whose joint distribution is not determined by the (first and) second moments only and

which may therefore contain more useful information for identification of the structural shocks.

In this paper, we show that the Gaussian case is an exception in that SVAR models with

(suitably defined) non-Gaussian errors are identified without any additional identifying re-

strictions. In the non-Gaussian SVAR model we consider, exact identification is achieved by

assuming mutual independence across the non-Gaussian error processes. We obtain an iden-

tification result that is ‘statistical’in the sense that it allows the computation of (essentially)

unique impulse responses, but not ‘economic’ in the sense that the structural shocks do not

carry any economic meaning as such. For interpretation, additional information is needed to

give economic labels to the structural shocks of interest. We also obtain an exact identification

result that makes it possible to develop an asymptotic theory of maximum likelihood (ML)

estimation. A particularly useful consequence of this is that additional identifying restrictions,
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such as commonly used short-run and long-run restrictions, become testable. In traditional

identification approaches based on economic restrictions only, exactly-identifying restrictions

cannot be tested, and finding over-identifying restrictions, or even convincing exactly iden-

tifying restrictions, may be diffi cult (with sign restrictions, the assessment of the validity of

identifying restrictions is not testable; see, e.g., Fry and Pagan (2011)).

Compared to the previous literature on statistical identification in SVAR models, our ap-

proach is quite general. Similarly to us, Hyvärinen, Zhang, Shimizu, and Hoyer (2010) and

Moneta, Entner, Hoyer, and Coad (2013) also assume independence and non-Gaussianity, but,

in addition, they impose a recursive structure, which in our model only obtains as a special case.

Lanne and Lütkepohl (2010) assume that the error term of their SVAR model follows a mixture

of two Gaussian distributions whereas our model allows for a wide variety of (non-Gaussian)

distributions. Statistical identification by explicitly modeling conditional heteroskedasticity of

the errors in various forms, considered by Normandin and Phaneuf (2004), Lanne, Lütkepohl,

and Maciejowska (2010), and Lütkepohl and Netšunajev (2014b), is also covered by our model.

In fact, identification by unconditional heteroskedasticity (see, e.g., Rigobon (2003)) is the only

approach to statistical identification entertained in the previous literature that our model does

not encompass.

We apply our SVAR model to examining the impact of monetary policy in financial markets.

There is a large related literature that for the most part relies on Gaussian SVAR models

identified by short-run restrictions. While empirical results vary depending on the data and

identification schemes, typically a monetary policy shock is not found to account for a major

part of the variation of stock returns. This is counterintuitive and goes contrary to recent

theoretical results (see Castelnuovo (2013) and the references therein). Our model, with the

errors assumed to follow independent Student’s t-distributions, is shown to fit recent U.S. data

well, and we find a strong negative, yet short-lived, impact of a contractionary monetary policy

shock on financial conditions, as recent macroeconomic theory predicts. Moreover, the recursive

identification restrictions employed in much of the previous literature are clearly rejected.

The rest of the paper is organized as follows. In Section 2, we introduce the SVAR model.

Section 3 contains the identification results. First we show how identification needed for the

computation of impulse responses is achieved and then how to obtain complete identification

needed in Section 4 where we develop an asymptotic estimation theory and establish the consis-

tency and asymptotic normality of the maximum likelihood (ML) estimator of the parameters

3



of our model (for the estimation theory, the stronger assumption of temporal independence of

the error terms is made). In addition, a two-step estimator is proposed that may be useful in

cases where full ML estimation is cumbersome due to short time series or the high dimension of

the model. As both estimators turn out asymptotically normal, standard tests (of, e.g., addi-

tional economic identifying restrictions) can be carried out in the usual manner. An empirical

application to the effect of U.S. monetary policy in financial markets is presented in Section 5,

and Section 6 concludes.

Finally, a few notational conventions are given. All vectors will be treated as column vectors

and, for the sake of uncluttered notation, we shall write x = (x1, . . . , xn) for the (column) vector

x where the components xi may be either scalars or vectors (or both). For any vector or matrix

x, the Euclidean norm is denoted by ‖x‖. The vectorization operator vec(A) stacks the columns

of matrixA on top of one another. Kronecker and Hadamard (elementwise) products of matrices

are denoted by ⊗ and �, respectively. Notation ıi is used for the ith canonical unit vector of Rn

(i.e., an n-vector with 1 in the ith coordinate and zeros elsewhere), i = 1, . . . , n (the dimension

n will be clear from the context). An identity matrix of order n will be denoted by In.

2 Model

Consider the structural VAR (SVAR) model

yt = ν + A1yt−1 + · · ·+ Apyt−p +Bεt, (1)

where yt is the n-dimensional time series of interest, ν (n× 1) is an intercept term, A1, . . . , Ap

and B (n × n) are parameter matrices with B nonsingular, and εt (n × 1) is a temporally

uncorrelated stationary error term with zero mean and finite positive definite covariance matrix

(more specific assumptions about the covariance matrix will be made later). As we only consider

stationary (or stable) time series, we assume

detA (z)
def
= det (In − A1z − · · · − Apzp) 6= 0, |z| ≤ 1 (z ∈ C). (2)

Left-multiplying (1) by the inverse of B yields an alternative formulation of the SVAR model,

A0yt = ν• + A•1yt−1 + · · ·+ A•pyt−p + εt, (3)

where εt is as in (1), A0 = B−1, ν• = B−1ν, and A•j = B−1Aj (j = 1, . . . , p). Typically the

diagonal elements of A0 are normalized to unity, so that the model becomes a conventional

simultaneous-equations model. In this paper, we shall not consider formulation (3) in detail.
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The literature on SVAR models is voluminous (for a recent survey, see Kilian (2013)). A

central problem with these models is the identification of the parameter matrix B: without

additional assumptions or prior knowledge, B cannot be identified because, for any nonsingular

n×n matrix C, the matrix B and the error term εt in the product Bεt can be replaced by BC

and C−1εt, respectively, without changing the assumptions imposed above on model (1). This

identification problem has serious implications on the interpretation of the model via impulse

response functions that trace out the impact of economic shocks (i.e., the components of the

error term εt) on current and future values of the variables included in the model. Impulse

responses are elements of the coeffi cient matrices ΨjB in the moving average representation of

the model,

yt = µ+

∞∑
j=0

ΨjBεt−j, Ψ0 = In, (4)

where µ = A (1)−1 ν is the expectation of yt and the matrices Ψj (j = 0, 1, . . .) are determined

by the power series Ψ (z) = A (z)−1 =
∑∞

j=0 Ψjz
j. As the preceding discussion makes clear, for

a meaningful interpretation of such an analysis, an appropriate identification result is needed

to make the two factors in the product Bεt, and hence the impulse responses ΨjB, unique.

So far we have only made very general assumptions about the SVAR model, implying

uniqueness only up to linear transformations of the form B 7→ BC and εt 7→ C−1εt with

C nonsingular. In SVAR models of the type (1), the covariance matrix of the error term is

typically restricted to a diagonal matrix so that the transformation matrix C has to be of the

form C = DO with O orthogonal and D diagonal and nonsingular. The diagonal elements of

D are either +1 or −1 if the covariance matrix of εt is assumed an identity matrix, while in the

absence of such a normalization, the diagonal elements of D are not restricted (except to be

nonzero). Thus, further assumptions are needed to achieve identifiability, and probably the most

common way of achieving identification is to impose short-run restrictions that restrict some of

the elements ofB to zero. In the best known example of this approach, the matrixB is restricted

to a lower triangular matrix which can be identified as a Cholesky factor of the covariance

matrix of the error term Bεt. This solves the identification problem, but it imposes a recursive

structure upon the variables included in yt that may be implausible: either recursiveness is

completely absent, or present only under a different ordering of the variables. This example

also illustrates what seems to be an inherent diffi culty in using short-run restrictions: one

basically tries to solve the identification problem by using only the covariance matrix of the
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error term. Nevertheless, this approach has a long history in the econometrics and time series

literature. For instance, the SVAR model (1) is a special case of a simultaneous vector ARMAX

model where identification results based only on knowledge of second order moments have been

obtained by Kohn (1979), Hannan and Deistler (1988), and others. Similarly to these previous

authors, we use the term ‘class of observationally equivalent SVAR processes’to refer to SVAR

processes satisfying the assumptions made of (1) with the matrix B and the error term εt

replaced by BC and C−1εt with C a nonsingular matrix (in the same way we shall speak of

classes of observationally equivalent moving average representations). Then the identification

problem boils down to finding conditions which imply that the only possible choice for the

matrix C is an identity matrix and thus that the matrix B and the error term εt are unique.

As already indicated, successful identification results may be diffi cult to obtain without

strengthening the assumptions so far imposed on the error term εt. In this paper, we consider

model (1) where, similarly to Hyvärinen et al. (2010) and Moneta et al. (2013), the components

of the error term are assumed contemporaneously independent. However, for identification, the

errors need not be independent in time, but only serially uncorrelated, which covers conditional

heteroskedasticity recently used to achieve identifiability in SVAR models (see Lütkepohl and

Netšunajev (2014b) and the references therein).

3 Identification

3.1 Non-Gaussian errors

As already mentioned, we assume that the components of the error term εt = (ε1,t, . . . , εn,t)

are mutually independent, non-Gaussian, and uncorrelated in time. Specifically, we make the

following assumption.

Assumption 1.

(i) The error process εt = (ε1,t, . . . , εn,t) is a sequence of (strictly) stationary random vectors

with each component εi,t, i = 1, . . . , n, having zero mean and finite positive variance.

(ii) The component processes εi,t, i = 1, . . . , n, are mutually independent and at most one of

them has a Gaussian marginal distribution.

(iii) For all i = 1, . . . , n, the components εi,t are uncorrelated in time, that is, Cov [εi,t, εi,t+k] =

0 for all k 6= 0.
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The conditions imposed in Assumption 1(i) are rather standard. Although it might be pos-

sible to weaken them (to require only covariance stationarity, or to allow for infinite variances)

we do not pursue this matter. Assumption 1(ii) restricts the interdependence of the components

of the error process. Note that complete statistical independence of the n component processes

{εi,t, t ∈ Z}, i = 1, . . . , n, is assumed; this implies, for instance, the (weaker) condition that

εi,t and εj,t are independent for all i 6= j. The vector process εt is assumed non-Gaussian, but

the possibility that (at most) one of its components is Gaussian is permitted. Note that in this

non-Gaussian case, independence is a much stronger requirement than mere uncorrelatedness

(in the Gaussian case, independence and uncorrelatedness are equivalent, but here the distinc-

tion is essential). The importance of requiring independence and not only uncorrelatedness in

SVAR models has recently been stressed also by Gouriéroux and Monfort (2014, Sec. 3).

The last part of Assumption 1 restricts the temporal dependence of each individual com-

ponent process. Assuming only uncorrelatedness (and thus not necessarily independence) has

the convenience that conditionally heteroskedastic errors are also covered (for instance, the

component error processes can follow conventional GARCH processes which, with appropriate

parameter restrictions, are stationary with finite second moments and necessarily non-Gaussian,

so that Assumptions 1(i) and (ii) apply).

Compared with assumptions made in previous literature, Assumption 1 is similar to its

counterparts in Hyvärinen et al. (2010) and Moneta et al. (2013) except that (at least) the

former authors also assume independence of the errors over time.

3.2 Identification up to permutations and scalings

In this section, we explain how non-Gaussianity aids in solving the identification problem

discussed in Section 2. As impulse response analysis constitutes a major application of the

SVAR model, we consider the identification of the moving average representation (4). Under

Assumption 1, this representation is essentially unique in the following sense (the subsequent

arguments will be formalized and proved in Proposition 1 below): If the process yt can be

represented by two (potentially) different moving average representations, say,

yt = µ+

∞∑
j=0

ΨjBεt−j = µ∗ +

∞∑
j=0

Ψ∗jB
∗ε∗t−j, (5)

then necessarily µ∗ = µ, Ψ∗j = Ψj (j = 0, 1, . . .), and Bεt = B∗ε∗t for all t, but the choice of the

matrix B and the error process εt is not unique: As discussed in Section 2, the choice B∗ = BC
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and ε∗t = C−1εt will do for any nonsingular n × n matrix C. This holds under Assumption

1(i) and Assumption 1(iii) strengthened to Cov[εt, εt+k] = 0 for all k 6= 0. In the conventional

Gaussian set-up, Assumption 1(ii) is not imposed directly, but independence of the component

processes obtains because εt is assumed to be independent and identically normally distributed

with mean zero and a diagonal covariance matrix. In this Gaussian set-up, the discussion in

Section 2 applies and the aforementioned (nonsingular) matrix C is of the form C = DO with O

orthogonal and D diagonal, so that an identification problem remains. However, assuming non-

Gaussianity and independence (in the sense of Assumption 1(ii)) we can restrict the orthogonal

matrix O in the product C = DO to a permutation matrix so that only permutations and

scale changes in the columns of B are allowed. This constitutes a considerable improvement

and forms the first step in achieving complete identification which is the topic of the next

subsection.

The preceding discussion is formalized in the following proposition, whose proof is given in

Appendix A.1

Proposition 1. Consider the SVAR model (1) and assume that the stationarity condition

(2) and Assumption 1 on the error term εt are satisfied. Suppose the two moving average

representations in (5) hold true

(i) for some parameters µ∗ (n× 1) and B∗ (n× n) with B∗ nonsingular,

(ii) for some coeffi cient matrices Ψ∗j (n × n), j = 0, 1, . . ., that are determined by the power

series Ψ∗ (z) = A∗ (z)−1 =
∑∞

j=0 Ψ∗jz
j with A∗ (z) = In − A∗1z − · · · − A∗pz

p satisfying

condition (2) (with Aj therein replaced by A∗j , j = 1, . . . , p), and

(iii) for some error process ε∗t = (ε∗1,t, . . . , ε
∗
n,t) satisfying Assumption 1 (with each ‘ε’therein

replaced by ‘ε∗’).

Then, for some diagonal matrix D = diag (d1, . . . , dn) with nonzero diagonal elements, for some

permutation matrix P (n× n), and for all t,

B∗ = BDP , ε∗t = P ′D−1εt, µ∗ = µ, and Ψ∗j = Ψj (j = 0, 1, . . .). (6)

Variants of Proposition 1 have appeared in previous literature. For instance, in the indepen-

dent component literature, reference can be made to Theorem 11 and its corollaries in Comon

1This proposition can be specialized to formulation (3) by setting B = A−10 , ν = A−10 ν•, and Aj = A−10 A•j

(j = 1, . . . , p) in model (1).
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(1994) that are very similar, although formulated for the case corresponding to a serially uncor-

related process, i.e., yt = ν +Bε. Another related result in the statistics literature is Theorem

4 of Chan and Ho (2004) (a discussion of this theorem can also be found in Chan, Ho, and Tong

(2006)). Unlike in Assumption 1, Chan and Ho (2004) assume that the components of εt are

independent in time, but instead of the specific moving average representation (4) they allow

for a general linear process with a two-sided moving average representation. Recently, also

Gouriéroux and Zakoïan (2014, Proposition 7) and Gouriéroux and Monfort (2014, Proposition

2) have presented counterparts of Proposition 1 assuming independence of εt over time.

Proposition 1 does not provide a complete solution to the identification problem. It only

shows that the moving average representation (4) and its SVAR counterpart (1) are unique apart

from permutations and scalings of the columns of B and the components of εt; uniqueness of

the expectation µ and the coeffi cients Ψj, j = 0, 1, . . ., or, equivalently, the intercept term ν and

the autoregressive parameters A1, . . . , Ap obtains, however. Using the terminology introduced

in Section 2, Proposition 1 characterizes a class of observationally equivalent SVAR processes

and the corresponding moving average representations: The moving average representations

in (5) are observationally equivalent (and hence members of this class) if they satisfy the

equations in (6). The same, of course, applies to the corresponding SVAR processes, i.e., (1)

and yt = ν∗ +A∗1yt−1 + · · ·+A∗pyt−p +B∗ε∗t , but now the last two equations in (6) are replaced

by ν = ν∗ and Ai = A∗i , i = 1, . . . , p, respectively.

From the viewpoint of computing impulse responses and forecast error variance decomposi-

tions, identification up to permutations and scalings is suffi cient, and this is all that is attained

by means of statistical identification procedures of SVAR models put forth in the previous liter-

ature. Upon such identification of the SVAR model, labeling the shocks is in any case based on

outside information, such as sign restrictions, or conventional identifying short-run or long-run

restrictions (see Lütkepohl and Netšunajev (2014a)), and the sign and size of the shocks are

chosen by the researcher. For these purposes, any permutation and scaling are equally useful.

However, development of conventional statistical estimation theory, in particular, calls for a

complete solution to the identification problem.

3.3 Complete identification

In this section, we provide formal identifying or normalizing restrictions that remove the in-

determinacy due to scaling and permutation in Proposition 1. One set of such conditions,
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employed in the context of independent component analysis, can be found in Ilmonen and

Paindaveine (2011) (see also Hallin and Mehta (in press)); for potential alternative conditions,

see, e.g., Pham and Garat (1997) and Chen and Bickel (2005). In the case of Proposition 1

these conditions are specified as follows.

To express the result, letMn denote the set of nonsingular n×n matrices. We say that two
matrices B1 and B2 inMn are equivalent, expressed as B1 ∼ B2, if and only if they are related

as B2 = B1DP for some diagonal matrix D = diag (d1, . . . , dn) with nonzero diagonal elements

and some permutation matrix P .2 The equivalence relation ∼ partitionsMn into equivalence

classes, and each of these equivalence classes defines a set of observationally equivalent SVAR

processes. Using this terminology, Proposition 1 and the discussion following it state that while

a specific equivalence class for B is identifiable, any member from this equivalence class can be

used as a B and also used to define a member from the corresponding set of observationally

equivalent SVAR processes. Our next aim is to pinpoint a particular (unique) member from

the equivalence class indicated by Proposition 1. We collect the description of how this can

be done in the following ‘Identification Scheme’(whose content is adapted from Ilmonen and

Paindaveine (2011) and Hallin and Mehta (in press)).

Identification Scheme. For each B ∈Mn, consider the sequence of transformations

B → BD1 → BD1P → BD1PD2,

where, whenever such n× n matrices D1, P , and D2 exist,

(i) D1 is the positive definite diagonal matrix that makes each column of BD1 have Euclidean

norm one,

(ii) P is the permutation matrix for which the matrix C = (cij) = BD1P satisfies |cii| > |cij|
for all i < j, and

(iii) D2 is the diagonal matrix such that all diagonal elements of BD1PD2 are equal to one.

Let I ⊆ Mn be the set consisting of those B ∈ Mn for which the matrices D1, P , and D2

above exist, and E = Mn\I the complement of this set in Mn.3 Define the transformation

2Note that DP = PD1 for some scaling matrix D1 so that the order of the permutation and scaling matrix

does not matter for the defined equivalence; from this fact it can also be seen that the relation B1 ∼ B2 is

transitive and, as it is clearly symmetric and reflexive, it really is an equivalence relation.
3That is, E is the set of those matrices B ∈ Mn for which a tie occurs in step (ii) in the sense that for any

choice of P we have |cii| = |cij | for some i < j, or for which at least one diagonal element of BD1P equals zero

so that step (iii) cannot be done.
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Π (·) : I → I as Π (B) = BD1PD2 with D1, P , and D2 as above4, and define the set B as

B = Π(I) = {B̃ ∈Mn : B̃ = Π(B) for some B ∈ I}.

This scheme provides a recipe for picking a particular permutation and a particular scaling

to identify a unique matrix B from each equivalence class corresponding to observationally

equivalent SVAR processes. Therefore, the scheme provides a solution to the identification

problem in the sense formalized in the following proposition (which is justified in Appendix A).

Proposition 2.

(a) Under the assumptions of Proposition 1, the matrix B is uniquely identified in the set B
defined in the Identification Scheme.5

(b) The set B consists of unique, distinct representatives from each ∼-equivalence class of I.

(c) The set E (of matrices being excluded in the Identification Scheme) has Lebesgue measure
zero in Rn×n, and the set I (of matrices being included in the Identification Scheme)
contains an open and dense subset ofMn.

According to part (a) of Proposition 2, unique identification is achieved by restricting the

permissible values of the matrix B to the set B = Π(I) defined in the Identification Scheme,

while parts (b) and (c) of the proposition explain in further detail what exactly is achieved.

According to part (b), the set B is suitably defined: no two observationally equivalent SVAR
processes are represented in B, while nearly all observationally non-equivalent SVAR processes
are represented in B. Part (c) explains the quantifier ‘nearly all’: A small number of SVAR

processes, namely those corresponding to the set E , have to be excluded from consideration,

but as these processes only comprise a set of measure zero, ignoring them is hardly relevant in

practice; moreover, the set I corresponding to those SVAR processes that are included in the
Identification Scheme is ‘large’in the sense that I contains an open and dense subset ofMn.

Some further remarks on this result are in order.

First, the set E having measure zero and I containing an open and dense subset of Mn

indeed mean that almost all SVAR processes are being included. According to the terminology

used by some authors, the matrix B would be ‘generically identified’in case it were identified

in this open and dense subset I of the parameter space of interest,Mn; see, e.g., Anderson et

4The matrices D1, P , and D2 depend on B, but we do not make this dependence explicit.
5In the sense that if B,B∗ ∈ B are as in Proposition 1, then necessarily D = P = I in (6) so that B = B∗.
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al. (in press) for the use of this terminology in the context of VAR models, or Johansen (1995)

in a cointegrated VAR model. It is also worth noting that the excluded matrices in E are in no
way ‘ill-behaving’; their exclusion is done for purely technical reasons to make the formulation

of the Identification Scheme easy (although it would be possible to devise a scheme in a way

that no exlusions are needed, we do not pursue this matter, as such a scheme would be rather

complex and its implementation would presumably be diffi cult in practice).

Second, as the preceding discussion suggests, one can similarly obtain identifiability by using

some alternative formulation of the Identification Scheme. One relevant alternative is obtained

if the definitions of D1 and P in the Identification Scheme are maintained but D2 is defined as

the diagonal matrix whose diagonal elements equal either 1 or −1 and which makes the diagonal

elements of BD1PD2 positive. The restrictions implied by this alternative identification scheme

may be easier to take into account in estimation than those based on the original Identification

Scheme. In our empirical application we use this alternative identification scheme, and after

finding the maximum of the likelihood function, we switch to the original Identification Scheme.

On the other hand, the original Identification Scheme is more convenient in deriving asymptotic

distributions for estimators; in the alternative scheme just described, one would need to employ

Lagrange multipliers as the columns of BD1PD2 would then have Euclidean norm one.

Third, as already alluded to in Section 3.2, the Identification Scheme and Proposition 2 only

yield statistical identification which need not have any economic interpretation. In particular,

they do not offer any information about which economic shock each component of εt might

be. The statistical identification result obtained does, however, facilitate the development of

conventional estimation theory, the topic of Section 4 below.

3.4 Discussion of previous identification results

There are a number of statistical identification procedures for SVAR models introduced in the

previous literature that are more or less closely related to the procedure put forth in this paper.

Hyvärinen et al. (2010) and Moneta et al. (2013) consider identification in SVAR models and,

similarly to us, assume that the error terms are non-Gaussian and mutually independent. Their

identification condition is explicitly stated for model (3), but it, of course, applies to model (1)

as well (an analog of our Proposition 2 could also be formulated for model (3)). Compared

to us, an essential difference is that they assume the matrix A0 in model (3), or equivalently

the matrix B in model (1), to be lower triangular (potentially after reordering the variables in
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yt). This is a rather stringent and potentially undesirable a priori assumption, as it imposes a

recursive structure on the SVAR model. Hence, our result is more general, yet allowing for a

recursive structure as a special case.

Lanne and Lütkepohl (2010) assume that the errors of model (1) are independent over time

with a distribution that is a mixture of two Gaussian distributions with zero means and diagonal

covariance matrices, one of which is an identity matrix and the other one has positive diagonal

elements, which for identifiability have to be different from each other. Under these conditions,

identifiability is obtained apart from permutations of the columns of B and multiplication by

minus one. If the above-mentioned positive diagonal elements are ordered in some specific

way, say from largest to smallest, the indeterminacy due to permutations of the columns of

B is removed and identifiability is achieved. Thus, their identification result differs from ours

mainly in that a specific non-Gaussian error distribution is employed, and its components are

only contemporaneously uncorrelated, not independent.

Assuming some form of heteroskedasticity of the errors εt is one popular approach to identi-

fication. Lanne et al. (2010) and Lütkepohl and Netšunajev (2014b) assume Markov switching

and a smooth transition in the covariance matrix of the error term εt in model (1), respectively,

while Normandin and Phaneuf (2004) allow for GARCH-type heteroskedasticity in the errors.

As already discussed, our approach also covers these cases in that the identification results hold

under conditional heteroskedasticity that necessarily implies non-Gaussianity of the errors. In

contrast, identification by unconditional heteroskedasticity that has also been entertained in

the recent SVAR literature (see, e.g., Rigobon (2003) and Lanne and Lütkepohl (2008)) is not

covered.

4 Parameter estimation

We next discuss parameter estimation in the non-Gaussian SVAR model. The first four sub-

sections present the likelihood function, study the score vector and the Hessian matrix, and

give an asymptotic normality result for the maximum likelihood (ML) estimator. The fifth

subsection develops a two-step estimator useful in computationally demanding situations, and

the sixth subsection discusses hypothesis testing.
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4.1 Likelihood function

We consider ML estimation of the parameters in model (1), and to that end, we have to be

more specific about the temporal dependence of the error term. For the estimation theory of

this paper, we assume that the non-Gaussian and mutually independent error terms εi,t (i =

1, . . . , n) are independent also in time instead of only uncorrelated, as required in Assumption

1(iii). Specifically, we make the following assumption.

Assumption 2.

(i) Assumption 1 holds with the mutually independent error processes εi,t being independent

also in time and with finite and positive variances σ2
i , i = 1, . . . , n.

(ii) For each i = 1, . . . , n, the distribution of the error term εi,t has a (Lebesgue) density

fi,σi (x;λi) = σ−1
i fi(σ

−1
i x;λi) which may also depend on a parameter vector λi.

Assumption 2(i) strengthens Assumption 1(iii) by requiring that each of the error processes

εi,t is independent and identically distributed with zero mean and variance σ2
i (i = 1, . . . , n).

Assumption 2(ii) is suffi cient to construct the likelihood function of the parameters. Note that

the component densities fi (·;λi) are supposed to depend on their own parameter vectors, but
they can (though need not) belong to the same family of densities. For instance, they can be

densities of Student’s t-distribution with different degrees of freedom parameters.

Next we define the parameter space of the model. First consider the parameter matrix B

which we assume to belong to the set B introduced in the previous section. This restricts the
diagonal elements of the matrix B to unity, and we collect its off-diagonal elements in the vector

β (n (n− 1) × 1) and express this as β = vecd◦ (B) where, for any n × n matrix C, vecd◦ (C)

signifies the n (n− 1)—dimensional vector obtained by removing the n diagonal entries of C

from its usual vectorized form vec (C). Note that vec (B (β)) = Hβ + vec (In), where the

n2 × n (n− 1) matrix H is of full column rank and its elements consist of zeros and ones6 (we

use the notation B (β) when we wish to make the dependence of the parameter matrix B on

its unknown off-diagonal elements explicit). The parameters of the model are now contained

in the vector θ = (π, β, σ, λ) where π = (π1, π2) with π1 = ν and π2 = vec ([A1 : · · · : Ap]),
6The matrix H can be expressed as H =

∑n
i=1

∑n−1
j=1 (ıiı

′
i ⊗ ıj+I[j≥i] ı̃′j), where ı̃j denotes an (n − 1)-vector

with 1 in the jth coordinate and zeros elsewhere, j = 1, . . . , n− 1, and I[j ≥ i] = 1 if j ≥ i and zero otherwise

(cf. Ilmonen and Paindaveine (2011, p. 2452)).

14



and σ = (σ1, . . . , σn) and λ = (λ1, . . . , λn). We use θ0 to signify the true parameter value (and

similarly for its components) and introduce the following assumption.

Assumption 3. The true parameter value θ0 belongs to the permissible parameter space Θ =

Θπ × Θβ × Θσ × Θλ, where (i) Θπ = Rn × Θπ2 with Θπ2 ⊆ Rn
2p such that condition (2) holds

for every π2 ∈ Θπ2, (ii) Θβ = vecd◦ (B) = {β ∈ Rn(n−1) : β = vecd◦ (B) for some B ∈ B}, (iii)
Θσ = Rn+, and (iv) Θλ = Θλ1 × · · · ×Θλn ⊆ Rd with Θλi ⊆ Rdi open for every i = 1, . . . , n and

d = d1 + · · ·+ dn.

Condition (2) entails that Θπ2 , the parameter space of π2, is open whereas Θβ is open due

to the Identification Scheme and Proposition 2 (a justification is given in the Supplementary

Appendix). Thus, Assumption 3 implies that the whole parameter space Θ is open so that the

true parameter value θ0 is an interior point of the parameter space, as assumed in standard

derivations of the asymptotic normality of a ML estimator.

The log-likelihood function of the parameter θ ∈ Θ based on model (1) and the data

y−p+1, . . . , y0, y1, . . . , yT (and conditional on y−p+1, . . . , y0) can now be written as

LT (θ) = T−1

T∑
t=1

lt (θ) , (7)

where

lt (θ) =
n∑
i=1

log fi
(
σ−1
i ι′iB (β)−1 ut (π) ;λi

)
− log det (B (β))−

n∑
i=1

log σi

with ιi the ith unit vector and ut (π) = yt− ν −A1yt−1− · · · −Apyt−p. Maximizing LT (θ) over

the permissible parameter Θ space yields the ML estimate of θ.

To apply the estimator discussed above one has to choose a non-Gaussian error distribu-

tion. In economic applications departures from Gaussianity typically manifest themselves as

leptokurtic behavior, and Student’s t-distribution is presumably the non-Gaussian distribution

most commonly employed in the previous empirical literature. Alternatives include the nor-

mal inverse Gaussian distribution, the generalized hyperbolic distribution, and their skewed

versions.

4.2 Score vector

We first derive the asymptotic distribution of the score vector (evaluated at the true parameter

value θ0). We use a subscript to signify a partial derivative; for instance lθ,t (θ) = ∂lt (θ) /∂θ,
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fi,x (x;λi) = ∂fi (x;λi) /∂x, and fi,λi (x;λi) = ∂fi (x;λi) /∂λi (an assumption which guarantees

the existence of these partial derivatives will be given shortly). The score vector of a single

observation, lθ,t (θ), is derived in Appendix B. When evaluated at the true parameter value, the

components of lθ,t (θ0) = (lπ,t (θ0) , lβ,t (θ0) , lσ,t (θ0) , lλ,t (θ0)) are

lπ,t (θ0) = −(xt−1 ⊗B−1′

0 Σ−1
0 )ex,t (8a)

lβ,t (θ0) = −H ′[(εt ⊗B−1′

0 Σ−1
0 ex,t) + vec(B−1′

0 )] (8b)

lσ,t (θ0) = −Σ−2
0 (εt � ex,t + σ0) (8c)

lλ,t (θ0) = eλ,t, (8d)

where xt−1 = (1, yt−1, . . . , yt−p), Σ0 = diag (σ1,0, . . . , σn,0), ex,t = (e1,x,t, . . . , en,x,t), and eλ,t =

(e1,λ1,t, . . . , en,λn,t) with

ei,x,t =
fi,x(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

and ei,λi,t =
fi,λi(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

.

We also introduce the compact and convex set Θ0 = Θ0,π ×Θ0,β ×Θ0,σ ×Θ0,λ contained in the

interior of Θ that has θ0 as an interior point. Now, we make the following assumption.

Assumption 4. The following conditions hold for i = 1, . . . , n:

(i) For all x ∈ R and all λi ∈ Θ0,λi, fi (x;λi) > 0 and fi (x;λi) is twice continuously differ-

entiable with respect to (x;λi).

(ii) The function fi,x (x;λi,0) is integrable with respect to x, i.e.,
∫
|fi,x (x;λi,0)| dx <∞.

(iii) For all x ∈ R, the functions

x2
f 2
i,x (x;λi,0)

f 2
i (x;λi,0)

and
‖fi,λi(x;λi,0)‖2

f 2
i (x;λi,0)

are dominated by c1(1 + |x|c2) with c1, c2 ≥ 0 and
∫
|x|c2 fi (x;λi,0) dx <∞.

(iv) For all x ∈ R and λi ∈ Θ0,λi,
∫

supλi∈Θ0,λi
‖fi,λi (x;λi)‖ dx <∞.

Moreover,

(v) The matrix E[lθ,t(θ0)l′θ,t(θ0)] is positive definite.

Assumption 4(i) guarantees that the log-likelihood function satisfies conventional differen-

tiability assumptions of ML estimation by imposing differentiability assumptions on the density
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functions fi (x;λi). Assumptions 4(ii)—(iv) require that the partial derivatives of the density

functions fi (x;λi) satisfy suitable integrability conditions that are needed to ensure that the

score function (evaluated at the true parameter value) has zero mean and a finite covariance

matrix. Assumption 4(v) ensures that this covariance matrix, and hence the covariance matrix

of the (normal) limiting distribution of the ML estimator of θ, is positive definite. The condi-

tions in Assumption 4 (as well as those in Assumption 5 below) are similar to those previously

used in the estimation theory of noncausal and noninvertible ARMA models (see, e.g., Breidt,

Davis, Lii, and Rosenblatt (1991), Andrews, Davis, and Breidt (2006), Lanne and Saikkonen

(2011), Meitz and Saikkonen (2013), and the references therein), although their formulation is

somewhat different. Most common density functions satisfy these assumptions.

The limiting distribution of the score vector is given in the following lemma which is proved

in Appendix B.

Lemma 1. If Assumptions 2—4 hold, T−1/2
∑T

t=1 lθ,t (θ0)
d→ N (0, I (θ0)), where I (θ0) =

E[lθ,t (θ0) l′θ,t (θ0)] is positive definite.

As shown in Appendix B, lθ,t (θ0) is a stationary and ergodic martingale difference sequence

with covariance matrix I (θ0) and, consequently, the limiting distribution can be obtained by

applying a standard central limit theorem. An explicit expression of the covariance matrix

I (θ0) is given in Appendix B.

4.3 Hessian matrix

We next consider the Hessian matrix. Expressions for the required second partial derivatives are

given in Appendix C. Similarly to the first partial derivatives, we use notations such as lθθ,t (θ) =

∂2lt (θ) /∂θ∂θ′, fi,xx (x, λi) = ∂2fi (x;λi) /∂x
2, and fi,xλi (x;λi,0) = ∂2fi,xλi (x;λi) /∂x∂λ

′
i. The

following assumption complements Assumption 4 by providing further regularity conditions on

the partial derivatives of the density functions fi (x;λi).

Assumption 5. The following conditions hold for i = 1, . . . , n:

(i) The functions fi,xx (x;λi,0) and fi,xλi(x;λi,0) are integrable with respect to x, i.e.,∫
|fi,xx (x;λi,0)| dx <∞ and

∫
‖fi,xλi (x;λi,0)‖ dx <∞.

(ii) For all x ∈ R and λi ∈ Θ0,λi,
∫

supλi∈Θ0,λi
‖fi,λiλi (x;λi)‖ dx <∞.
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(iii) For all x ∈ R and all λi ∈ Θ0,λi, the functions

f 2
i,x (x;λi)

f 2
i (x;λi)

and

∣∣∣∣fi,xx (x;λi)

fi (x;λi)

∣∣∣∣ are dominated by a0 (1 + |x|a1) ,∥∥∥∥fi,xλi (x;λi)

fi (x;λi)

∥∥∥∥ and

∥∥∥∥fi,x (x;λi)

fi (x;λi)

fi,λi (x;λi)

fi (x;λi)

∥∥∥∥ are dominated by a0 (1 + |x|a2) ,∥∥∥∥fi,λi (x;λi)

fi (x;λi)

∥∥∥∥2

and

∥∥∥∥fi,λiλi (x;λi)

fi (x;λi)

∥∥∥∥ are dominated by a0 (1 + |x|a3) ,

with a0, a1, a2, a3 ≥ 0 such that
∫

(|x|2+a1+|x|1+a2+|x|a3)fi (x;λi,0) dx <∞ (i = 1, . . . , n).

These conditions are similar to those in Assumptions 4(ii)—(iv) and again impose suitable in-

tegrability conditions on partial derivatives of the density functions fi (x;λi). Assumptions 5(i)

and (ii) are needed to ensure that, when evaluated at the true parameter value, the expectation

of the Hessian matrix has the usual property E[lθθ,t(θ0)] = −Cov[lθ,t(θ0)], whereas Assumption

5(iii) guarantees that the (standardized) Hessian matrix obeys an appropriate uniform law of

large numbers. These results are given in the following lemma which is proved in Appendix C.

Lemma 2. If Assumptions 2—5 hold, supθ∈Θ0

∥∥T−1
∑T

t=1 lθθ,t (θ)−E [lθθ,t (θ)]
∥∥→ 0 a.s., where

E[lθθ,t (θ)] is continuous at θ0 and E[lθθ,t(θ0)] = −I(θ0).

In addition to enabling us to establish the asymptotic normality of the ML estimator,

Lemma 2 can also be used to obtain a consistent estimator for the covariance matrix of the

limiting distribution needed to conduct statistical inference.

4.4 Maximum likelihood estimator

The results of Lemmas 1 and 2 provide the basic ingredients needed to derive the consistency

and asymptotic normality of a local ML estimator stated in the following theorem.

Theorem 1. If Assumptions 2—5 hold, there exists a sequence of solutions θ̂T to the likelihood

equations Lθ,T (θ) = 0 such that T 1/2(θ̂T − θ0)
d→ N(0, I(θ0)−1) as T →∞.

Theorem 1 shows that the usual result on consistency and asymptotic normality of a local

maximizer of the log-likelihood function applies. The proof of Theorem 1, given in Appendix

C, is based on arguments used in similar proofs in the previous literature.
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A consistent estimator of the covariance matrix I(θ0)−1 in Theorem 1 can be obtained by

using the ML estimator θ̂T and the Hessian matrix of the log-likelihood function. Specifically,

−L−1
θθ,T (θ̂T )

def
= −

(
T−1

T∑
t=1

lθθ,t(θ̂T )

)−1

→ I(θ0)−1 (a.s.). (9)

We omit the proof of this result, which follows from Lemma 2 and Theorem 1 with standard

arguments.

4.5 Two-step estimation

The ML estimator θ̂T can be computationally rather demanding when the dimension n is not

small and relatively short time series are considered. In this section, we therefore discuss two-

step alternatives which may be of interest in such cases. We partition the parameter vector θ as

θ = (π, γ), where π contains the autoregressive parameters (ν and A1, . . . , Ap) and γ = (β, σ, λ)

the parameters related to the error term Bεt.

A computationally convenient and widely used estimator of π is the least squares (LS)

estimator denoted by π̃T . In the present non-Gaussian set-up, the LS estimator is consistent

(although not effi cient), and can therefore serve as a useful estimator for the autoregressive

parameters. Thus, a natural way to obtain an estimator of γ, the parameter vector related to

the error term, is to replace the parameter π in the log-likelihood function LT (π, γ) by the LS

estimator π̃T and maximize the resulting function

L̃T (γ) = LT (π̃T , γ) = T−1

T∑
t=1

lt (π̃T , γ) (10)

with respect to γ. Here

lt (π̃T , γ) =

n∑
i=1

log fi
(
σ−1
i ι′iB (β)−1 ut (π̃T ) ;λi

)
− log det (B (β))−

n∑
i=1

log σi,

where ut (π̃T ) = yt−ν̃T−Ã1,Tyt−1−· · ·−Ãp,Tyt−p are the LS residuals (here ν̃T and Ã1,T , . . . , Ãp,T

denote the appropriate LS estimators). The resulting estimator, denoted by γ̃T , hence uses the

LS residuals to estimate the parameters related to the error term Bεt. As is shown in Theorem

2 below, the estimator γ̃T is consistent. Moreover, if the components of the error term εt are

symmetric in a certain sense (for details, see Theorem 2 below), the estimator γ̃T has the same

asymptotic distribution as the ML estimator, so that γ̃T is even asymptotically effi cient and

hence a suitable final estimator for γ.
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In general, if the components of the error distribution are not symmetric, a second stage

estimator is needed to achieve asymptotic effi ciency. Let θ̃T = (π̃T , γ̃T ) denote the preliminary

estimator of θ with π̃T and γ̃T as described above. An asymptotically effi cient second stage

estimator of θ can be obtained by a single Newton-Raphson iteration from θ̃T , that is, by

θ̃
(2)

T = θ̃T − L−1
θθ,T (θ̃T )Lθ,T (θ̃T ),

where Lθ,T (·) and Lθθ,T (·) denote the first and second partial derivatives of LT (·).
The preceding discussion is summarized in the following theorem. To present the result, we

partition the matrix I(θ0)−1 conformably with the partition of θ = (π, γ) as

I(θ0)−1 =

Iππ(θ0) Iγπ(θ0)

Iπγ(θ0) Iγγ(θ0)

 .
Theorem 2. Suppose Assumptions 2—5 hold. Then

(i) The first stage estimator θ̃T = (π̃T , γ̃T ) is a strongly consistent estimator of θ0 and

T 1/2(θ̃T − θ0) = Op(1).

(ii) If for each i = 1, . . . , n, the distribution of εi,t is symmetric in the sense that fi (x;λi) =

fi (−x;λi) for all λi ∈ Θ0,λi, then the first stage estimator γ̃T is asymptotically effi cient,

i.e., T 1/2(γ̃T − γ0)
d→ N(0, Iγγ(θ0)) as T →∞.

(iii) The second stage estimator θ̃
(2)

T is asymptotically effi cient, i.e., T 1/2(θ̃
(2)

T −θ0)
d→ N(0, I(θ0)−1)

as T →∞.

The result given in (9) applies with the ML estimator θ̂T replaced by the first stage estimator

θ̃T so that consistent estimators of the covariance matrices of the limiting distributions in parts

(ii) and (iii) of Thereom 2 can be obtained from L−1
θθ,T (θ̃T ). Finally, it should be noted that the

conclusion of Theorem 2(iii) remains valid even if the first stage estimator θ̃T is replaced with

some other estimator having the properties listed in part (i) of Theorem 2.

4.6 Testing hypotheses

A major advantage of the non-Gaussian SVAR model is the ability to test restrictions that are

partly or exactly identifying in its Gaussian counterpart. Such restrictions, often obtained from

the previous literature, may also prove useful in interpretation. Short-run restrictions typically

come in the form of zero restrictions on certain elements of the matrix B (or, equivalently,
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on the elements of β); for instance, in a four-variable SVAR model, B could take one of the

following forms: 
1 0 0 0

∗ 1 0 0

∗ ∗ 1 0

∗ ∗ ∗ 1

 ,


1 ∗ ∗ 0

∗ 1 ∗ 0

∗ ∗ 1 0

∗ ∗ ∗ 1

 , or


1 ∗ ∗ ∗
∗ 1 ∗ ∗
∗ ∗ 1 0

∗ ∗ ∗ 1

 ,
where ∗ denotes an arbitrary value. The first matrix implies a recursive structure on the SVAR
model, while the second restricts the fourth shock to have an immediate impact on the fourth

variable only, and the third precludes the immediate impact of the fourth shock on the third

variable. Note that, in the Gaussian SVAR model, only the first set of restrictions is exactly

identifying, while the other two do not suffi ce for identification of the structural shocks.

As the parameter vector θ is fully identified in Θ and the ML (as well as the two-step)

estimator has a conventional asymptotic normal distribution, hypothesis tests can be carried

out in the usual manner, using standard Wald, likelihood ratio, or Lagrange multiplier tests.

In the case of short-run restrictions discussed above, testing is straightforward. Also long-run

restrictions imposing zero restrictions on the sum of certain element(s) of the matrices ΨjB,

j = 0, 1, . . ., can be tested by standard tests.

When performing and interpreting tests, one should keep in mind that the straightforward

conventional tests require the parameter vector under the null hypothesis to belong to the

parameter space considered. In particular, it is required that the assumed value of the matrix

B under the null hypothesis belongs to the set B defined in the Identification Scheme (see
Section 3.3). One implication of this is that not all restrictions can be straightforwardly tested

(an example is the restriction that a diagonal element of B equals zero). Another, more subtle,

implication to be kept in mind is that the particular permutation (of the columns of B and

the elements of εt) being considered is fixed to the one defined by step (ii) of the Identification

Scheme. For instance, one might be tempted to interpret a test of the second set of restrictions

above as a test of whether there exists a shock with no immediate impact on the other three

variables. However, it should only be interpreted as a test of whether, with this particular

ordering, the fourth structural shock has no immediate impact on the first three variables.

Therefore, prior to testing restrictions, we recommend labeling the shocks by inspection of

impulse response functions, as illustrated in Section 5.
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5 Empirical application

The interdependence of monetary policy and the stock market is an issue that has recently

awoken a lot of interest and that has been addressed by means of SVAR analysis. Intuitively, one

would expect the dynamics of monetary policy actions and the stock market to be closely linked.

Movements of stock prices are driven by expectations of future returns that are connected to

the business cycle and monetary policy decisions. On the other hand, because of the close

interconnections between financial markets and the real economy, policymakers monitor asset

prices, and presumably use them as indicators when making monetary policy decisions.

Given the plausibly close connections between financial markets and monetary policy, it is

somewhat surprising that typical new-Keynesian models of the business cycle mostly ignore

stock prices, as Castelnuovo and Nisticò (2010), among others, have pointed out. They put

forth a dynamic stochastic general equilibrium (DSGE) model where the stock market is allowed

to play an active role in the determination of the business cycle, and their empirical results

with postwar U.S. data indeed lend support to reciprocal effects between financial markets

and monetary policy. Specifically, they find an on-impact negative reaction in the stock-price

gap following a contractionary monetary policy shock, and an interest rate increase following

a positive stock market shock.

While the theoretical literature on interactions between monetary policy and the stock mar-

ket is scant, empirically this issue has been addressed in a number of papers by means of SVAR

analysis using different identification schemes. Examples include Lastrapes (1998) and Rapach

(2001) who rely on long-run restrictions for identification, Li, Isca, and Xu (2010) who use non-

recursive short-run restrictions, Bjørnland and Leitemo (2009) who consider identification by

a combination of short-run and long-run restrictions, and Rigobon and Sack (2004), who base

identification on the heteroskedasticity of shocks in high-frequency data. However, short-run

recursive restrictions have probably been the most commonly employed approach to identifica-

tion in this literature; see, e.g., Patelis (1997), Thorbecke (1997), and Cheng and Jin (2013).

Empirical results depend on the data and identification scheme used, but typically a monetary

policy shock is found not to account for a major part of the variation of stock returns.

However, recursive identification by the Cholesky decomposition has been strongly criticized

by Bjørnland and Leitemo (2009) on the grounds that in their U.S. data set (from 1983 to

2002), such identification yields counterintuitive impulse responses. In particular, they found

a permanent positive effect on stock returns following a contractionary monetary policy shock,
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while on economic grounds a temporary negative response is expected. Moreover, recursive

ordering, by construction, precludes the immediate impact of a monetary policy (stock market)

shock on the stock price (policy rate) if the interest rate (stock return) is placed last in the

ordering of the variables as is usually done. This is not theoretically well founded, and it does

not conform to Castelnuovo and Nisticò’s (2010) DSGE model. According to Castelnuovo’s

(2013) simulation results, the impulse response functions of a monetary policy shock of a

Cholesky-identified SVAR model estimated on data generated from their DSGE model are

quite different from those implied by the actual DSGE model. Specifically, the DSGE model

predicts a significant negative reaction of financial conditions to a contractionary monetary

policy shock, which is necessarily overlooked by the recursive SVAR model.

In this paper, we estimate a four-variable SVAR model with recent U.S. data. Identification

is achieved by assuming that the components of the error term are independently t-distributed.

Given that financial market data are involved, a distributional assumption allowing for fat-tailed

errors seems useful. Moreover, t-distributed shocks have also recently been implemented in

DSGE models (see, e.g., Chib and Ramamurthy (2014), and Cúrdia, Del Negro, and Greenwald

(2014)). To facilitate direct interpretation of our results in terms of Castelnuovo’s (2013) DSGE

model, we use the same data set as he did. As discussed in Section 4.6, our identification scheme

facilitates testing additional identification restrictions, and we test a number of such restrictions

in order to understand the importance of the monetary policy shock for financial markets.

5.1 Data

Our quarterly U.S. data set comprises the same four time series on which Castelnuovo (2013)

based the estimates of the parameters of his DSGE model discussed above. The output gap

is computed as the log-deviation of the real GDP from the potential output estimated by the

Congressional Budget Offi ce. Inflation is measured by the growth rate of the GDP deflator.

Instead of a stock return, we include the Kansas City Financial Condition Index (KCFCI)

that combines information from a variety of financial indexes (see Hakkio and Keeton (2009)

for details, and Castelnuovo (2013, Appendix 4) for further discussion). Federal funds rate

(average of monthly values) is the policy interest rate in the model. The output gap (xt),

inflation (πt), and federal funds rate (Rt) are measured as percentages. Our sample period

runs from the beginning of 1990 until the second quarter of 2008. Hence, the time series

consist of only 74 observations, but there are a number of reasons to prefer this relatively short
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Figure 1: The time series included in the SVAR model.

sample period. First, observations of the KCFCI are not available before 1990, and, second, as

Castelnuovo (2013), we also do not want to include earlier data to avoid the plausible policy

break prior to the Greenspan-Bernanke regime. Moreover, the most recent data are excluded

to avoid having to deal with the acceleration of the financial crisis. The KCFCI series (st) is

downloaded from the website of the Federal Reserve Bank of Kansas City, while the rest of the

data are extracted from FRED database of the Federal Reserve Bank of St. Louis. The time

series are depicted in Figure 1.

5.2 Results

We start out by selecting an adequate reduced-form VAR(p) model for the data vector yt =

(xt, πt, st, Rt). The Bayesian and Akaike information criteria select models with one and two

lags, respectively. However, according to the multivariate Portmanteau test (with eight lags),

only the latter produces serially uncorrelated residuals. Moreover, the solution of Castelnuovo

and Nisticò’s (2010) DSGE model has a VAR(2) representation. The multivariate Jarque-Bera

test soundly rejects normality at the 1% level, and all residual series seem leptokurtic. Thus,

we proceed to a second-order SVAR model with errors following independent t-distributions.

Given the short sample period, we estimate the SVAR(2) model by the two-step procedure

discussed in Section 4.5. In estimation, the identification restrictions on the matrixB mentioned
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Table 1: Estimation results of the unrestricted SVAR(2) model.

B 1.000 —0.231 —1.362 —0.760 Equation
· (0.115) (0.592) (0.954) xt πt st Rt

0.310 1.000 —0.008 0.013
(0.259) · (0.231) (0.408) σi 0.293 0.657 0.211 0.199
0.334 —0.043 1.000 —0.467 (0.082) (0.203) (0.051) (0.065)

(0.198) (0.056) · (0.336)

0.501 —0.049 —0.335 1.000 λi 10.480 3.142 4.070 14.375
(0.358) (0.070) (0.293) · (9.521) (1.473) (2.535) (18.886)

Notes: The model is estimated by the two-step method described in Section 4.5. The intercept
term and the coeffi cient matrices of the lags are estimated in the first step by ordinary least
squares, and kept fixed in the second-step maximization of (10). The figures in parentheses are
standard errors computed from the Hessian of the log-likelihood function.

in Section 3.3 are imposed. The estimation results are presented in Table 1. We only report

the estimates of B and the scale (σi) and degree-of-freedom (λi) parameters corresponding

to the errors of each equation i. They are conditional on the OLS estimates of the intercept

term and the coeffi cient matrices estimated by OLS in the first step and kept fixed in the

second-step maximization of (10).7 The fit of the SVAR(2) model to the data appears quite

good. According to the Ljung-Box test with eight lags, there is no evidence of remaining

autocorrelation in the residuals (the p-values for the four residual series are 0.17, 0.16, 0.66,

and 0.50). Also, no remaining conditional heteroskedasticity is detected (the p-values of the

McLeod-Li test with eight lags for the four residual series equal 0.10, 0.92, 0.87, and 0.95).

The residuals are virtually uncorrelated, and do not exhibit any significant cross correlations8,

lending support to the independence assumption underlying identification. The estimates of

the degree-of-freedom parameters suggest clear deviations from normality, which is required for

identification. The fit of the error distributions is also reasonable as shown by the quantile-

quantile plots in Figure 2.

In order to interpret the estimation result, we compute the implied impulse response func-

tions. However, as discussed in Section 3, the identified shocks do not, as such, carry any

economic interpretation despite exact identification. Therefore, along the lines of Lütkepohl

and Netšunajev (2014a), we use sign restrictions to help in economic identification. It is es-

7The first-step OLS estimation results are available upon request.
8To save space, the detailed results are not reported, but they are available upon request.
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Figure 2: Quantile-quantile plots of the residuals of the unrestricted SVAR(2) model.

pecially the monetary policy shock that we are interested in, and its qualitative properties on

which there is considerable agreement in the established literature, are summarized by Chris-

tiano, Eichenbaum, and Evans (1999), among others. As far as the variables included in our

SVAR model are concerned, these properties are as follows: after a contractionary monetary

policy shock, the short-term interest rate rises, output (gap) increases, and inflation responds

very slowly. Because of the arguments presented at the beginning of this section, there should

be an immediate negative effect on the financial condition index.

The impulse response functions of one standard deviation shocks up to 16 quarters ahead

are depicted in Figure 3. Each row contains the impulse responses of all variables to one shock.

Following the common practice in the literature, 68% (pointwise Hall’s percentile) confidence

bands are plotted to facilitate the assessment of the significance of the impulse reponses. They

are obtained by residual-based bootstrap (1,000 replications). In bootstrapping, the intercept

term and the coeffi cient matrices of the VAR model were estimated by OLS, and the ML

estimates of B, σi, and λi (i = 1, 2, 3, 4) reported in Table 1 were used as starting values.

Judged by the confidence bands, only the shocks on the top and bottom rows have a nonzero

(positive) immediate impact on the interest rate, and they are thus possible candidates for a

(contractionary) monetary policy shock. Both have a significantly negative impact on inflation

over time as would be expected of a monetary policy shock, but the impact of the shock on

the top row on the output gap is (significantly) positive, while that of the other shock is

(insignificantly) negative. A contractionary monetary policy shock should not have a positive

impact on output, and therefore, the shock on the bottom row can be labeled as the monetary

26



Figure 3: Impulse response functions implied by the unrestricted SVAR model. Each row

contains the impulse responses of all variables to one shock. The dashed lines are the pointwise

68% Hall’s percentile confidence bands.

policy shock. Interestingly, it also has a significant negative immediate impact on financial

conditions, and the negative effect lasts for one to two years. With the exception of inflation,

the magnitudes of the impact effects and the time it takes for the impulse responses to revert

to zero are quite well in line with those implied by the DSGE model of Castelnuovo (2013).

In order to gauge the importance of the restriction involved in recursive identification that

a monetary policy shock cannot have an immediate impact on financial conditions st, we next

consider two restricted models. First, we estimate a model where the matrix B is restricted

to be lower-triangular with the exception that the b3,4 element is left unrestricted to allow

the monetary policy shock to have an immediate impact on st. Then, we restrict also that

element to zero to obtain a model corresponding to the Cholesky identification commonly

employed in the previous literature. The p-value of the likelihood ratio (LR) test of the former

restriction is 0.253, indicating nonrejection at conventional significance levels. The p-values of

the LR and Wald tests of the restriction b3,4 = 0 in this model, in turn, equal 0.052 and 0.013,

respectively, indicating rejection (at least at the 10% level) of the hypothesis that the monetary
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Figure 4: Impulse response functions of the monetary policy shock in the unrestricted (upper

panel) and the restricted SVAR models (lower panel: recursive model; middle panel: model

allowing for immediate impact of the monetary policy shock on financial conditions).

policy shock has no immediate impact on financial markets. This evidence against Cholesky

identification is in line with the results of Lütkepohl and Netšunajev (2014b), who achieved

exact identification in a similar SVAR model for U.S. data by introducting a smooth transition

in the error covariance matrix.

The impulse response functions of the monetary policy shock implied by the unrestricted and

restricted models along with their 68% bootstrap confidence intervals are depicted in Figure 4.

From the middle panel it is seen that, when not restricted to zero, the immediate impact of the

monetary policy shock on financial conditions is negative, and its effect dies out quickly in the

same way as in the unrestricted model. As far as the rejected recursive model is concerned, the

impulse response functions in the lower panel show no significant impact on financial conditions.

Given that our unrestricted model seems to fit the data reasonably well and the recursive

restrictions are rejected, we can thus conclude that a contractionary monetary policy shock

indeed has a negative albeit short-lived effect on financial conditions.
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6 Conclusion

In this paper, we have considered identification and estimation of SVAR models with non-

Gaussian errors. Specifically, we considered a SVAR model where the components of the error

process were assumed non-Gaussian and independent. Deviations from Gaussianity, especially

fat-tailed error distributions, are often encountered in VAR analysis, and therefore we ex-

pect the model to be useful in a large number of applications. Our first identification result

showed that, together with standard VAR assumptions, the non-Gaussianity and independence

assumptions are suffi cient for identification up to permutation and scaling of the structural

shocks, which facilitates impulse response analysis. We also presented an Identification Scheme

yielding complete identification, a prerequisite for the development of conventional estimation

theory.

Under mild technical conditions, we showed consistency and asymptotic normality of the

maximum likelihood estimator and a two-step estimator devised for computationally demand-

ing situations. Due to complete statistical identification and standard asymptotic estimation

theory, additional economic identifying restrictions, such as commonly used short-run and long-

run restrictions, can be tested, which is a particularly convenient feature of the non-Gaussian

SVAR model.

We illustrated the new methods in an empirical application to the relationship between

the U.S. stock market and monetary policy. In previous studies, the instantaneous impact

of a monetary policy shock on the stock market has either been precluded at the outset or

found relatively minor or insignificant. In contrast, we found the monetary policy shock to

have a negative significant instantaneous impact on the stock market. Moreover, we were able

to clearly reject the recursive identification scheme precluding an instantaneous impact of the

monetary policy shock on the stock market, employed in part of the previous literature.
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Appendix A: Technical details for Section 3

The proof of Proposition 1 makes use of a well-known result referred to as the Skitovich-Darmois

theorem (see, e.g., Theorem 3.1.1 in Kagan, Linnik, and Rao (1973)). A variant of this theorem

has also been used by Comon (1994) to obtain identifiability in the context of an independent

component model. For ease of reference, we first provide this result as the following lemma.

Lemma A.1. (Kagan et al. (1973), Theorem 3.1.1). Let X1, . . . , Xn be independent (not

necessarily identically distributed) random variables, and define Y1 =
∑n

i=1 aiXi and Y2 =∑n
i=1 biXi where ai and bi are constants. If Y1 and Y2 are independent, then the random

variables Xj for which ajbj 6= 0 are all normally distributed.

Now we can prove Proposition 1. The proof is straigthforward with the most essential part

being based on arguments already used by Comon (1994).

Proof of Proposition 1. First note that (5) can be expressed as yt = µ + A (L)−1Bεt =

µ∗ + A∗ (L)−1B∗ε∗t , where L denotes the lag operator (e.g., Lyt = yt−1). Taking expectations

this implies that E [yt] = µ = µ∗. Without loss of generality we can continue by assuming that

µ = µ∗ = 0 (alternatively, we can replace yt below by yt − µ). From the preceding equation we

then obtain yt−A1yt−1− · · · −Apyt−p = Bεt and yt−A∗1yt−1− · · · −A∗pyt−p = B∗ε∗t . Denoting

yt−1 = (yt−1, . . . , yt−p) (np× 1), A = [A1 : · · · : Ap] (n× np), and A∗ = [A∗1 : · · · : A∗p] (n× np),
this implies that

Bεt −B∗ε∗t = (A∗1 − A1)yt−1 + · · ·+ (A∗p − Ap)yt−p = (A∗ −A)yt−1. (11)

Multiplying this equation from the right by y′t−1 and taking expectations yields

E[(Bεt −B∗ε∗t )y′t−1] = (A∗ −A)E[yt−1y
′
t−1],

and, as both εt and ε∗t are uncorrelated with yt−1 (due to (5) and Assumptions 1(ii) and 1(iii)),

we get (A∗ − A)E[yt−1y
′
t−1] = 0. As there can be no exact linear dependences between the

components of the vector yt−1, its covariance matrix E[yt−1y
′
t−1] is positive definite, so that

A∗−A = 0 must hold. From the definitions of Ψj and Ψ∗j and equation (11) it therefore follows

that Ψ∗j = Ψj, j = 0, 1, . . ., and Bεt = B∗ε∗t . Using the nonsingularity of B we can solve εt

from this equation and obtain

εt = Mε∗t , where M = B−1B∗. (12)
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By condition (iii) in the Proposition and Assumption 1(ii), the random variables ε∗1,t, . . . , ε
∗
n,t are

mutually independent and at most one of them has a Gaussian marginal distribution. Also the

random variables ε1,t, . . . , εn,t are mutually independent. Therefore by Lemma A.1, at most one

column of M may contain more than one nonzero element. Suppose, say, the kth column of M

has at least two nonzero elements, mik andmjk (i 6= j). Then εi,t = mikε
∗
k,t+

∑
l=1,...,n; l 6=kmilε

∗
l,t

and εj,t = mjkε
∗
k,t +

∑
l=1,...,n; l 6=kmjlε

∗
l,t with the random variable ε∗k,t being Gaussian (due to

Lemma A.1) with positive variance (due to Assumption 1(i) for the process ε∗t ). Moreover, for

all l = 1, . . . , n, l 6= k, it must hold that milmjl = 0 because only the kth column of M could

have more than one nonzero element. This, however, implies (because the random variables

ε∗1,t, . . . , ε
∗
n,t are independent) that E[εi,tεj,t] = mikmjkE[ε∗2k,t] 6= 0 so that the random variables

εi,t and εj,t are not independent, a contradiction. Therefore each column of M has at most

one nonzero element. Now, by the invertibility of M , it follows that each column of M has

exactly one nonzero element, and for the same reason, also that each row of M has exactly

one nonzero element. Therefore there exist a permutation matrix P and a diagonal matrix

D = diag (d1, . . . , dn) with nonzero diagonal elements such that M = DP . This together with

(12) implies that ε∗t = P ′D−1εt and B∗ = BDP , thus completing the proof.

Parts (a) and (b) of Proposition 2 are rather straightforward to prove based on the Identi-

fication Scheme.

Proof of Proposition 2, parts (a) and (b). We begin with part (b). To show that B
contains representatives from each ∼-equivalence class of I, choose any B ∈ I. Then by the
definition of B, the matrix Π (B) = BD1PD2 belongs to B. Moreover, B ∼ Π (B) = BD1PD2

(because necessarily D1PD2 = D3P for some diagonal D3 with nonzero diagonal elements). To

show that such a representative must be unique, suppose B̃1, B̃2 ∈ B and B̃1 ∼ B̃2. Then for

some B1 ∼ B2 in I, B̃1 = Π(B1) and B̃2 = Π(B2), so that

B2 = B1DP, B̃1 = B1D1(B1)P (B1)D2(B1), and B̃2 = B2D1(B2)P (B2)D2(B2)

(where we have made the dependence onB1 andB2 explicit). Thus B̃2 = B1DPD1(B2)P (B2)D2(B2).

In the expressions

B̃1 = B1D1(B1)P (B1)D2(B1) and B̃2 = B1DPD1(B2)P (B2)D2(B2)

the matrices B1D1(B1) and B1DPD1(B2) are matrices with the same columns but potentially

in different order (this follows from the identity B2 = B1DP and the definitions of D1(B1)
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and D1(B2)). Therefore, by the definitions of the matrices P (B1) and P (B2), it necessarily

holds that B1D1(B1)P (B1) = B1DPD1(B2)P (B2). Thus, due to the definitions of D2(B1) and

D2(B2), the result B̃1 = B̃2 also follows, implying the desired uniqueness. Finally, to show that

the representatives of different equivalence classes are distinct, suppose (on the contrary) that

Π (B1) = Π (B2) but B1 � B2. Then B1D1(B1)P (B1)D2(B1) = B2D1(B2)P (B2)D2(B2), and

solving this equation for B2 implies the existence of a permutation matrix P and a diagonal

matrix D such that B2 = B1DP , a contradiction with B1 � B2. Thus, the representatives

must be distinct, and the proof of part (b) is complete.

Having established part (b), to prove (a), it now suffi ces to note that if B,B∗ ∈ B are as in
Proposition 1, then B∗ = BDP so that B∗ ∼ B. Then, by the uniqueness proved in part (b),

necessarily B∗ = B.

The proof of Proposition 2(c) is somewhat more intricate and we resort to using results

based on basic algebraic geometry. In what follows, we first define a few concepts from algebraic

geometry we need, then present three auxiliary results, and finally prove Proposition 2(c) as a

(rather straightforward) consequence of these auxiliary results. A comprehensive reference for

the employed concepts is, e.g., Bochnak, Coste, and Roy (1998).

Consider them-dimensional Euclidean spaceRm. A subsetA ⊆ Rm is called a semi-algebraic
set (cf. Bochnak et al. (1998, Definition 2.1.4)) if it is of the form

A = ∪si=1 ∩rij=1 {x ∈ Rm : fi,j(x) ∗i,j 0}, (13)

where, for each i = 1, . . . , s and j = 1, . . . , ri, fi,j(·) is a polynomial function (of finite order)
in m variables and ∗i,j is either =, <, >, or 6=. A semi-algebraic set is called an algebraic set if
in (13) the ∗i,j is always = (Bochnak et al. (1998, Definition 2.1.1)). Lacking a better term, we

will call a semi-algebraic set a semi-algebraic set with equality constraints if in (13) for each

i = 1, . . . , s at least one of the ∗i,j is = with the corresponding fi,j not being identically equal

to zero. Finally, the quantifier ‘proper’ is used in connection with these terms (e.g., proper

algebraic set) if A 6= Rm.
As (proper) algebraic sets are built from zeros of polynomial functions, intuition tells that

in some sense they must be ‘small’in Rm (in R they are finite, in R2 finite intersections/unions

of plane curves, etc.). This is indeed the case, as the following well-known result shows (as we

were unable to find a convenient reference, we include a proof in the Supplementary Appendix

for completeness).

32



Lemma A.2. A proper algebraic set A of Rm has Lebesgue measure zero in Rm. Its complement

Rm\A in Rm is an open and dense subset of Rm.

Semi-algebraic sets are not necessarily ‘small’, but as the following result shows, semi-

algebraic sets with equality constraints are (proof in the Supplementary Appendix).

Lemma A.3. A proper semi-algebraic set with equality constraints A of Rm has Lebesgue

measure zero in Rm. Its complement Rm\A in Rm contains an open and dense subset of Rm.

Now, consider the set of all (real) n× n matrices, which we denote withMA
n . As matrices

belonging toMA
n can be identified with vectors of Rn

2
the preceding results can be applied to

algebraic sets ofMA
n and any statement on algebraic sets ofMA

n can be formulated in terms

of corresponding algebraic sets of Rn2 and vice versa. Recall that the set of all invertible n× n
matrices is denoted withMn. In Proposition 2 we end up excluding the set E

def
= Mn\I. This

set is a proper semi-algebraic set with equality constraints as the next result shows (proof in

the Supplementary Appendix).

Lemma A.4. The set E = Mn\I is a proper semi-algebraic set with equality constraints of
MA

n .

Part (c) of Proposition 2 now follows from the preceding lemmas in a straightforward fashion.

Proof of Proposition 2, part (c). The fact that E has Lebesgue measure zero in Rn×n

follows directly from Lemmas A.3 and A.4. From these Lemmas it also follows that the set

MA
n\E contains an open and dense subset of MA

n , say O. Note also that the set MA
n\Mn

is a proper algebraic subset of MA
n , and therefore Mn is an open and dense subset of MA

n

(this holds because the determinant of a matrix is a polynomial function, and a matrix is

noninvertible if the determinant equals zero). Elementary calculations can now be used to

show that O ∩Mn ⊆ I =Mn ∩ (MA
n\E) is an open and dense subset ofMn.

Appendix B: Technical details for Section 4.2

Expression of the score. As in Sections 4.1 and 4.2, we use the notation xt−1 = (1, yt−1, . . . , yt−p)

and π = vec ([ν : A1 : · · · : Ap]), and express ut (π) = yt − ν − A1yt−1 − · · · − Apyt−p briefly as
ut (π) = yt − (x′t−1 ⊗ In)π. Regarding the matrix B(β), for brevity we do not make its de-

pendence on β explicit and denote B = B(β). When B(β) is evaluated at β = β0, we denote
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B0 = B(β0). We also define εi,t (θ) = ι′iB
−1ut (π) (in the notation we ignore the fact that εi,t (θ)

does not depend on the parameter vector λ) and εt (θ) = (ε1,t (θ) , . . . , εn,t (θ)). Note that when

evaluated at the true parameter values we have ut (π0) = B0εt and εi,t (θ0) = εi,t. Furthermore,

define

ei,x,t (θ) =
fi,x(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
and ei,λi,t (θ) =

fi,λi(σ
−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
,

and use them to form the n× 1 and d× 1 vectors

ex,t (θ) = (e1,x,t (θ) , . . . , en,x,t (θ)) and eλ,t (θ) = (e1,λ1,t (θ) , . . . , en,λn,t (θ)) .

Finally, denote Σ = diag (σ1, . . . , σn).

As in Section 4.2, let lθ,t (θ) = (lπ,t (θ) , lβ,t (θ) , lσ,t (θ) , lλ,t (θ)) with lσ,t (θ) = (lσ1,t (θ) , . . . , lσn,t (θ))

and lλ,t (θ) = (lλ1,t (θ) , . . . , lλn,t (θ)) be the score vector of θ based on a single observation. With

straightforward differentiation (details omitted but available in the Supplementary Appendix)

one obtains

lπ,t (θ) = −(xt−1 ⊗B−1′Σ−1)ex,t (θ) , (14a)

lβ,t (θ) = −H ′[(B−1ut (π)⊗B−1′Σ−1)ex,t (θ) + vec(B−1′)], (14b)

lσ,t (θ) = −Σ−2 [εt (θ)� ex,t (θ) + σ] , (14c)

lλ,t (θ) = eλ,t(θ), (14d)

which form Lθ,T (θ) = T−1
∑T

t=1 lθ,t (θ), the score vector of θ.

An auxiliary lemma. The following lemma contains results needed in subsequent derivations.

Its proof is straightforward and is given in the Supplementary Appendix.

Lemma B.1. Under Assumptions 2—4, the following hold for i = 1, . . . , n: (i) E [ei,x,t] = 0,

(ii) E[e2
i,x,t] < ∞, (iii) E [ei,λi,t] = 0, (iv) E[ei,λi,te

′
i,λi,t

] is finite, (v) E [εi,tei,x,t] = −σi,0, (vi)
E[ε2

i,te
2
i,x,t] <∞.

Martingale property of the score. Consider Lθ,T (θ0) = T−1
∑T

t=1 lθ,t (θ0), the score vector

of θ evaluated at the true parameter value. As in Section 4.2 we denote ex,t (θ0) = ex,t =

(e1,x,t, . . . , en,x,t) and eλ,t(θ0) = eλ,t = (e1,λ1,t, . . . , en,λn,t) and note that

ei,x,t =
fi,x(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

and ei,λi,t =
fi,λi(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

, i = 1, . . . , n.
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Let Et [·] signify the conditional expectation given the sigma-algebra Ft = σ (εt−j, j ≥ 0)

or, equivalently, the sigma-algebra σ (yt−j, j ≥ 0) (see (4)). We need to demonstrate that

{lθ,t (θ0) ,Ft} is a martingale difference sequence.
First note that lπ,t (θ0) = −(xt−1 ⊗ B−1′

0 Σ−1
0 )ex,t so that for this component of lθ,t (θ0) the

desired result follows from Et−1[(xt−1⊗B−1′

0 Σ−1
0 )ex,t] = 0 which holds in view of Lemma B.1(i)

and the independence of xt−1 and εt. Next consider lλ,t (θ0) = eλ,t where eλ,t is an IID sequence

so that it suffi ces to show that E [eλ,t] = 0 which holds by Lemma B.1(iii). As seen from (14c),

lσ,t (θ0) is an IID sequence and Et−1[lσ,t (θ0)] = 0 follows from the identity E [εi,tei,x,t] = −σi,0
obtained from Lemma B.1(v). Finally, consider lβ,t (θ0). As B−1

0 ut (π0) = εt and ex,t (θ0) = ex,t

are IID sequences, we only need to show that E[εt⊗B−1′

0 Σ−1
0 ex,t] = −vec(B−1′

0 ) (see (8b)). To

this end, note that εi,t and ej,x,t are independent when i 6= j, so that from Lemma B.1(i) and (v)

it follows that E[εi,tej,x,t] = −σi,0 when i = j and zero otherwise. Thus, as εt ⊗ B−1′

0 Σ−1
0 ex,t =

vec
(
B−1′

0 Σ−1
0 ex,tε

′
t

)
and E [ex,tε

′
t] = −Σ0 we find that

E[εt ⊗B−1′

0 Σ−1
0 ex,t] = vec

(
E
[
B−1′

0 Σ−1
0 ex,tε

′
t

])
= −vec(B−1′

0 ),

which shows the desired result.

Covariance matrix of the score —Expression. We derive the components of Cov [lθ,t (θ0)]

which equal the components of Cov [Lθ,T (θ0)] (see (8a)-(8d)). To this end, denote Vex =

Cov [ex,t] (n× n), Veλ = Cov [eλ,t] (d× d), and Vexeλ = Cov [ex,t, eλ,t] (n× d), and note that by

Assumption 2(i) and Lemma B.1(i)—(iv), Vex is a diagonal matrix with finite diagonal elements,

Veλ is a block-diagonal matrix with finite diagonal blocks, and Cov [ei,x,t, ej,λ,t] = 0 for i 6= j.

To derive the expression of Cov [lθ,t (θ0)], first consider its diagonal blocks (the finiteness of the

blocks of Cov [lθ,t (θ0)] is here assumed and justified below). Straightforward computation leads

to the expressions

Cov [lπ,t (θ0)] = E
[
xt−1x

′
t−1

]
⊗B−1′

0 Σ−1
0 VexΣ

−1
0 B−1

0 ,

Cov [lβ,t (θ0)] = H ′(In ⊗B−1′

0 Σ−1
0 )E

[
εtε
′
t ⊗ ex,te′x,t

] (
In ⊗ Σ−1

0 B−1
0

)
H −H ′vec(B−1′

0 )vec(B−1′

0 )′H,

Cov [lλ,t (θ0)] = Veλ ,

where in deriving the second result we have used the result E[εt ⊗ B−1′

0 Σ−1
0 ex,t] = −vec(B−1′

0 )

obtained above. The covariance matrix of lσ,t (θ0) is

Cov [lσ,t (θ0)] = Σ−2
0 E

[
(εt � ex,t + σ0) (εt � ex,t + σ0)′

]
Σ−2

0 ,
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a diagonal matrix with diagonal elements

E[(σ−2
i,0 εi,tei,x,t + σ−1

i,0 )2] = σ−2
i,0E[(σ−1

i,0 εi,tei,x,t + 1)2] = σ−4
i,0 (E[ε2

i,te
2
i,x,t]− σ2

i,0), i = 1, . . . , n.

The off-diagonal blocks of Cov [lθ,t (θ0)] can be derived by straightforward computation by

using the expressions in (8), Lemma B.1, the martingale difference property of lθ,t (θ0), the

result E[εt ⊗ B−1′

0 Σ−1
0 ex,t] = −vec(B−1′

0 ) derived above, and the independence of xt−1 and

(εt, ex,t, eλ,t). The resulting expressions are

Cov [lπ,t (θ0) , lβ,t (θ0)] = (E [xt−1]⊗B−1′

0 Σ−1
0 )E

[
ε′t ⊗ ex,te′x,t

]
(In ⊗ Σ−1

0 B−1
0 )H,

Cov [lπ,t (θ0) , lσ,t (θ0)] = (E [xt−1]⊗B−1′

0 Σ−1
0 )E[ex,t (εt � ex,t)′]Σ−2

0 ,

Cov [lπ,t (θ0) , lλ,t (θ0)] = −E [xt−1]⊗B−1′

0 Σ−1
0 E[ex,te

′
λ,t],

Cov [lβ,t (θ0) , lσ,t (θ0)] = H ′(In ⊗B−1′

0 Σ−1
0 )E

[
(εt ⊗ ex,t) (εt � ex,t)′

]
Σ−2

0 −H ′vec(B−1′

0 )σ′0Σ−2
0 ,

Cov [lβ,t (θ0) , lλ,t (θ0)] = −H ′(In ⊗B−1′

0 Σ−1
0 )E[εt ⊗ ex,te′λ,t],

Cov [lσ,t (θ0) , lλ,t (θ0)] = −Σ−2
0 E

[
(εt � ex,t) e′λ,t

]
.

Covariance matrix of the score —Finiteness. By the Cauchy-Schwarz inequality, it suffi ces

to show that the diagonal blocks of Cov [lθ,t (θ0)] are finite. This, in turn, is the case if the

following expectations are finite:

(i) E[xt−1x
′
t−1], (ii) Vex , (iii) E[εtε

′
t ⊗ ex,te′x,t], (iv) Veλ, and (v) E[ε2

i,te
2
i,x,t].

The elements of E[xt−1x
′
t−1] in (i) can be expressed in terms of the expectation of yt and the

covariance matrices Cov [yt, yt+k], k = 0, . . . , p, and are thus finite. Finiteness of the moments

in (ii) and (iv) was already noted above. A typical element of E[εtε
′
t ⊗ ex,te

′
x,t] in (iii) is

E [εi,tεj,tek,x,tel,x,t] which by Assumption 1(i) and Lemma B.1(i,ii,vi) is finite and zero if one

of the indexes i, j, k, and l is different from all others. When i = k and j = l 6= k we have

E [εi,tei,x,tεj,tej,x,t] = E [εi,tei,x,t]E [εj,tej,x,t] = σ2
i,0 because both of the last expectations are

equal to −σi,0, as noted above, and similarly when i = l and j = k 6= l. Finally, when

i = j 6= k = l we have E[ε2
i,te

2
k,x,t] = E[ε2

i,t]E[e2
k,x,t] = σ2

i,0E[e2
k,x,t], so that altogether we have

E [εi,tεj,tek,x,tel,x,t] =


σ2
i,0, i = k, j = l 6= k or i = l, j = k 6= k,

E[ε2
i,te

2
i,x,t], i = j = k = l,

σ2
i,0E[e2

k,x,t], i = j 6= k = l,

0, otherwise.
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Finiteness of the moments appearing in this expression, as well as that in (v), is ensured by

Assumption 1(i) and Lemma B.1(ii,vi).

Proof of Lemma 1. We have demonstrated above that {lθ,t (θ0) ,Ft} is a martingale differ-
ence sequence with a finite covariance matrix. By Assumption 4(v), this covariance matrix is

positive definite. As a (measurable) function of the IID sequence εt, the process lθ,t (θ0) is also

stationary and ergodic, and hence the central limit theorem of Billingsley (1961) (in conjunction

with the Cramér-Wold device) implies the stated asymptotic normality.

Appendix C: Technical details for Section 4.3

Expression for the Hessian matrix. In accordance with the partition of θ as θ = (π, β, σ, λ),

we will denote the 16 blocks of the Hessian matrix with lππ,t(θ) = ∂2lt(θ)
∂π∂π′ , lπβ,t(θ) = ∂2lt(θ)

∂π∂β′ , etc.

Let us summarize what form the 16 blocks of the Hessian lθθ,t(θ) take. To simplify notation

define, for i = 1, . . . , n, the quantities

ei,xx,t (θ) =
fi,xx(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
−
(
fi,x(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)

)2

,

ei,xλi,t (θ) =
fi,xλi(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
− fi,x(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)

f ′i,λi(σ
−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
,

ei,λiλi,t (θ) =
fi,λiλi(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
− fi,λi(σ

−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)

f ′i,λi(σ
−1
i ι′iB

−1ut (π) ;λi)

fi(σ
−1
i ι′iB

−1ut (π) ;λi)
,

and use these to form the diagonal / block diagonal matrices

exx,t (θ) = diag (e1,xx,t (θ) , . . . , en,xx,t (θ)) (n× n) ,

eλλ,t (θ) = diag (e1,λ1λ1,t (θ) , . . . , en,λnλn,t (θ)) (d× d) ,

exλ,t (θ) = diag(e1,xλ1,t (θ) , . . . , en,xλn,t (θ)) (n× d).

Also define the diagonal matrices

Ex,t(θ) = diag (e1,x,t (θ) , . . . , en,x,t (θ)) (n× n) ,

Et(θ) = diag (ε1,t (θ) , . . . , εn,t (θ)) (n× n) ,

and let Knn (n2 × n2) denote the commutation matrix (satisfying Knnvec(A) = vec(A′) for

any n× n matrix A). Now, straightforward but tedious differentiation (details available in the
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Supplementary Appendix) yields the different blocks of lθθ,t(θ) as

lππ,t (θ) = (In ⊗B−1′Σ−1)(xt−1x
′
t−1 ⊗ exx,t (θ))(In ⊗ Σ−1B−1),

lπβ,t (θ) = xt−1 ⊗ [(In ⊗ e′x,t (θ))(B−1′ ⊗ Σ−1B−1)H]

+xt−1 ⊗ [B−1′Σ−1(u′t (π)⊗ exx,t (θ))(B−1′ ⊗ Σ−1B−1)H],

lββ,t (θ) = H ′(B−1 ⊗B−1′Σ−1)(ut (π)u′t (π)⊗ exx,t (θ))(B−1′ ⊗ Σ−1B−1)H

+H ′(B−1 ⊗ In)
(
ut (π) e′x,t (θ)⊗ In

)
(Σ−1B−1 ⊗B−1′)KnnH

+H ′Knn(B−1′Σ−1 ⊗B−1) (ex,t (θ)u′t (π)⊗ In) (B−1′ ⊗ In)H

+H ′(B−1 ⊗B−1′)KnnH,

lπσ,t (θ) = xt−1 ⊗B−1′
[
Σ−2Ex,t(θ) + Σ−3exx,t (θ) Et(θ)

]
,

lβσ,t (θ) = H ′(B−1 ⊗B−1′)(ut (π)⊗
[
Σ−2Ex,t(θ) + Σ−3exx,t (θ) Et(θ)

]
),

lσσ,t (θ) = Σ−2 + 2Σ−3Et(θ)Ex,t(θ) + Σ−4E2
t (θ)exx,t (θ) ,

lπλ,t (θ) = −(Inp+1 ⊗B−1′Σ−1)(xt−1 ⊗ exλ,t (θ)),

lβλ,t (θ) = −H ′(B−1 ⊗B−1′Σ−1)(ut (π)⊗ exλ,t (θ)),

lσλ,t (θ) = −Σ−2Et(θ)exλ,t (θ) ,

lλλ,t (θ) = eλλ,t(θ).

Proof of Lemma 2. Regarding the uniform convergence of the Hessian, from the stationarity

and ergodicity of yt and the expressions of the components of lθθ,t(θ) at the beginning of this

Appendix it follows that lθθ,t(θ) forms a stationary ergodic sequence of random variables that

are continuous in θ over Θ0. The desired result thus follows (see, e.g., Ranga Rao (1962)) if

we establish that E
[
supθ∈Θ0

‖lθθ,t(θ)‖
]
is finite or that the corresponding result holds for the

(matrix) components of lθθ,t (θ). In light of the expression of lθθ,t(θ) and the definition of Θ in

Assumption 3, it suffi ces to show that the following condition holds:

E[supθ∈Θ0
‖∗‖] is finite whenever ∗ is replaced by any of the following expressions:

xt−1x
′
t−1 ⊗ exx,t (θ) , xt−1 ⊗ In ⊗ e′x,t (θ) , xt−1 ⊗ u′t (π)⊗ exx,t (θ) , ut (π)u′t (π)⊗ exx,t (θ) ,

ut (π) e′x,t (θ)⊗ In, xt−1 ⊗ Ex,t(θ), xt−1 ⊗ exx,t (θ) Et(θ), ut (π)⊗ Ex,t(θ),

ut (π)⊗ exx,t (θ) Et(θ), Et(θ)Ex,t(θ), E2
t (θ)exx,t (θ) , xt−1 ⊗ exλ,t (θ) ,

ut (π)⊗ exλ,t (θ) , Et(θ)exλ,t (θ) , eλλ,t(θ).
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By submultiplicativity and the property ‖U ⊗ V ‖ = ‖U‖ ‖V ‖ of the Euclidean matrix norm
(for any matrices U and V ), it suffi ces to show that the following condition holds:

E[supθ∈Θ0
∗ ] is finite whenever ∗ is replaced by any of the following expressions: (15)

‖xt−1‖2 ‖exx,t(θ)‖ , ‖xt−1‖ ‖ex,t(θ)‖ , ‖xt−1‖ ‖ut(π)‖ ‖exx,t(θ)‖ , ‖ut(π)‖2 ‖exx,t(θ)‖ ,

‖ut(π)‖ ‖ex,t(θ)‖ , ‖xt−1‖ ‖Ex,t(θ)‖ , ‖xt−1‖ ‖exx,t(θ)‖ ‖Et(θ)‖ , ‖ut(π)‖ ‖Ex,t(θ)‖ ,

‖ut(π)‖ ‖exx,t(θ)‖ ‖Et(θ)‖ , ‖Et(θ)‖ ‖Ex,t(θ)‖ , ‖Et(θ)‖2 ‖exx,t(θ)‖ , ‖xt−1‖ ‖exλ,t(θ)‖ ,

‖ut(π)‖ ‖exλ,t(θ)‖ , ‖Et(θ)‖ ‖exλ,t(θ)‖ , ‖eλλ,t(θ)‖ .

By the definitions of ei,xx,t (θ), ei,x,t (θ), ei,xλi,t (θ), and ei,λiλi,t (θ) and Assumption 5(iii), for

some C <∞ and for all i = 1, . . . , n and all θ ∈ Θ0,

|ei,x,t (θ)| , e2
i,x,t (θ) , |ei,xx,t (θ)| ≤ C (1 + ‖ut (π)‖a1) ,

‖ei,xλi,t (θ)‖ ≤ C (1 + ‖ut (π)‖a2) ,

‖ei,λiλi,t (θ)‖ ≤ C(1 + ‖ut (π)‖a3).

On the other hand, by the definitions of ut (π), εi,t (θ) (i = 1, . . . , n), and xt−1 = (1, yt−1, . . . , yt−p),

for some C <∞ and for all θ ∈ Θ0,

‖ut (π)‖ ≤ C(1 +

p∑
j=0

‖yt−j‖), |εi,t (θ)| ≤
∥∥ι′iB (β)−1

∥∥ ‖ut (π)‖ ≤ C(1 +

p∑
j=0

‖yt−j‖),

‖xt−1‖ ≤ 1 +

p∑
j=1

‖yt−j‖ , and ‖xt−1‖2 = 1 +

p∑
j=1

‖yt−j‖2 .

Consequently by Loève’s cr-inequality, for any fixed r > 0 and some C <∞,

‖ut (π)‖r ≤ C(1 +

p∑
j=0

‖yt−j‖r).

Combining the results above, it can be shown that condition (15) holds as long as E[‖yt‖2+a1 +

‖yt‖1+a2 + ‖yt‖a3 ] < ∞. This, in turn, holds if E [|εi,t|r] < ∞ for r = 2 + a1, 1 + a2, a3 and all

i = 1, . . . , n, which is ensured by Assumption 5(iii).

Finally, using Assumptions 5(i) and (ii) (and the earlier assumptions) the identityE [lθθ,t (θ0)] =

−E
[
lθ,t (θ0) l′θ,t (θ0)

]
can be established with straightforward but quite tedious and uninterest-

ing matrix algebra. For brevity, we omit the details, which are available in the Supplementary

Appendix.
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Appendix D: Technical details for Section 4.4

Proof of Theorem 1. Existence of a consistent root. We first show that there exists

a sequence of solutions θ̂T to the likelihood equations Lθ,T (θ) = 0 that are strongly consistent

for θ0. To this end, choose a small fixed ε > 0 such that the sphere Θε = {θ : ‖θ − θ0‖ = ε} is
contained in Θ0. We will compare the values attained by LT (θ) on this sphere with LT (θ0).

For an arbitrary point θ ∈ Θε, using a second-order Taylor expansion around θ0 and adding

and subtracting terms yields

LT (θ)− LT (θ0) = (θ − θ0)′ Lθ,T (θ0) +
1

2
(θ − θ0)′ [Lθθ,T (θ•)− E[lθθ,t (θ•)]] (θ − θ0)

+
1

2
(θ − θ0)′ [E[lθθ,t (θ•)]− E[lθθ,t (θ0)]] (θ − θ0) +

1

2
(θ − θ0)′E[lθθ,t (θ0)] (θ − θ0)

= S1 + S2 + S3 + S4,

where θ• lies on the line segment between θ and θ0, and the latter equality defines the terms

Si, i = 1, . . . , 4. It can be shown that, for any suffi ciently small fixed ε, supθ∈Θε (S1 + S2)→ 0

a.s. as T → ∞ (for S1 this follows from the fact that Lθ,T (θ0) → 0 a.s. as T → ∞; for
S2 the result is obtained making use of Lemma 2). The terms S3 and S4 do not depend on

T , and it can be shown that there exists a positive δ such that for each suffi ciently small ε,

supθ∈Θε (S3 + S4) < −δε2 (for S3 the needed arguments are obtained from Lemma 2 and the

continuity of E[lθθ,t (θ) mentioned therein; for S4 one can invoke the fact that E[lθθ,t (θ0)] is

negative definite due to Lemmas 1 and 2). Therefore, for each suffi ciently small ε,

sup
θ∈Θε

LT (θ) < LT (θ0) a.s. as T →∞. (16)

As a consequence, for each fixed suffi ciently small ε, and for all T suffi ciently large, LT (θ) must

have a local maximum, and hence a root of the likelihood equation Lθ,T (θ) = 0, in the interior

of Θε with probability one. Having established this, the existence of a sequence θ̂T , independent

of ε, such that the θ̂T are solutions of the likelihood equations Lθ,T (θ) = 0 for all suffi ciently

large T and that θ̂T → θ0 a.s. as T →∞ can be shown as in Serfling (1980, pp. 147—148).

Asymptotic Normality. By a standard mean value expansion of the score vector Lθ,T (θ),

T 1/2Lθ,T (θ̂T ) = T 1/2Lθ,T (θ0) + L̇θθ,TT
1/2(θ̂T − θ0) a.s., (17)

where L̇θθ,T signifies the matrix Lθθ,T (θ) with each row evaluated at an intermediate point

θ̇i,T (i = 1, . . . , dim θ) lying between θ̂T and θ0. As shown above, θ̂T → θ0 a.s., so that
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θ̇i,T → θ0 a.s. as T → ∞ (i = 1, . . . , dim θ) which, together with the uniform convergence

result for Lθθ,T (θ) in Lemma 2, yields L̇θθ,T → E[lθθ,t (θ0)] a.s. as T → ∞. This and the
invertibility of E[lθθ,t (θ0)] obtained from Assumption 4(v) and the result E[lθθ,t (θ0)] = −I (θ0)

established in Lemma 2 imply that, for all T suffi ciently large, L̇θθ,T is also invertible (a.s.) and

L̇−1
θθ,T → E[lθθ,t (θ0)]−1 a.s. as T → ∞. Multiplying the mean value expansion (17) with the
Moore-Penrose inverse L̇+

θθ,T of L̇θθ,T (this inverse exists for all T ) and rearranging we obtain

T 1/2(θ̂T −θ0) = (Idim θ− L̇+
θθ,T L̇θθ,T )T 1/2(θ̂T −θ0)+ L̇+

θθ,TT
1/2Lθ,T (θ̂T )− L̇+

θθ,TT
1/2Lθ,T (θ0). (18)

The first two terms on the right hand side of (18) converge to zero a.s. (for the first term,

this follows from the fact that for all T suffi ciently large L̇θθ,T is invertible; for the second one,

this holds because θ̂T being a maximizer of LT (θ) and θ0 being an interior point of Θ0 yield

Lθ,T (θ̂T ) = 0 for all T suffi ciently large). Furthermore, the eventual a.s. invertibility of L̇θθ,T

also means that L̇+
θθ,T − E[lθθ,t (θ0)]−1 → 0 a.s. Hence, (18) becomes

T 1/2(θ̂T − θ0) = o1(1)− (E[lθθ,t (θ0)]−1 + o2(1))T 1/2Lθ,T (θ0),

where o1(1) and o2(1) (a vector- and a matrix-valued process, respectively) converge to zero

a.s. Combining this with the result of Lemma 1 and the property E[lθθ,t (θ0)] = −I (θ0) (see

Lemma 2) completes the proof.

Proof of Theorem 2. (i) Regarding the least squares estimator π̃T , strong consistency and

the result T 1/2(π̃T −π0) = Op(1) follow from the imposed assumptions by standard arguments.

Concerning γ̃T , we first show that there exists a sequence of solutions γ̃T to the (likelihood-

like) equations L̃γ,T (γ) = 0 that are strongly consistent for γ0. As in the proof of Theorem

1, choose a small fixed ε > 0 such that the sphere Θγ
ε = {γ : ‖γ − γ0‖ = ε} is contained in

Θ0,β × Θ0,σ × Θ0,λ. For an arbitrary point γ ∈ Θγ
ε , by the definition of L̃T (γ) and by adding

and subtracting terms, we have

L̃T (γ)− L̃T (γ0) = [LT (π̃T , γ)− E[lt (π0, γ)]] + [E[lt (π0, γ)]− LT (π0, γ)]

+[LT (π0, γ)− LT (π0, γ0)]

+[LT (π0, γ0)− E[lt (π0, γ0)]] + [E[lt (π0, γ0)]− LT (π̃T , γ0)]

= U1 + U2 + U3 + U4 + U5,

where the latter equality defines the terms U1, . . . , U5. As π̃T is strongly consistent for π0 and

the lt (θ) form a stationary ergodic sequence of random variables that are continuous in θ over
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Θ0, the terms U1 and U5 converge to zero a.s. as T → ∞ if the uniform law of large numbers

holds for lt (θ), i.e., if supθ∈Θ0

∣∣T−1
∑T

t=1 lt(θ) − E[lt(θ)]
∣∣ → 0 a.s. This in turn holds if (see,

e.g., Ranga Rao (1962)) E
[
supθ∈Θ0

|lt(θ)|
]
is finite. By a mean value expansion of lt(θ), the

conditions E [|lt(θ0)|] <∞ and E
[
supθ∈Θ0

‖lθ,t(θ)‖
]
<∞ suffi ce for this. The former condition

holds due to the assumed continuity of fi(·;λi,0), i = 1, . . . , n. In light of the expression of

lθ,t(θ) in Appendix B and the definition of Θ in Assumption 3, it suffi ces to show that (cf. the

proof of Lemma 2) the expressions

E [‖xt−1‖] , E
[

sup
θ∈Θ0

‖ex,t(θ)‖
]
, E

[
sup
θ∈Θ0

‖ut(π)‖ ‖ex,t(θ)‖
]
, E

[
sup
θ∈Θ0

‖εt(θ)‖ ‖ex,t(θ)‖
]
, E

[
sup
θ∈Θ0

‖eλ,t(θ)‖
]

are all finite. This follows from arguments already used in the proof of Lemma 2. The deriva-

tions above also ensure that the ergodic theorem applies to lt (θ) for any fixed θ ∈ Θ0, implying

that also the terms U2 and U4 converge to zero a.s. as T →∞.
Concerning the term U3, arguments similar to those in the proof of Theorem 1 can be used

to show that, for each suffi ciently small ε,

sup
γ∈Θγε

LT (π0, γ) < LT (π0, γ0) a.s. as T →∞,

and the existence of a sequence of solutions γ̃T to the likelihood equations L̃γ,T (γ) = 0 that are

strongly consistent for γ0 follows as in the proof of Theorem 1.

Concerning the root-T consistency of γ̃T , mean value expansions of the functions Lγ,T (π̃T , ·)
and Lγ,T (·, γ0) yield

T 1/2Lγ,T (π̃T , γ̃T ) = T 1/2Lγ,T (π̃T , γ0) + L̇γγ,TT
1/2(γ̃T − γ0) a.s.,

T 1/2Lγ,T (π̃T , γ0) = T 1/2Lγ,T (π0, γ0) + L̇γπ,TT
1/2(π̃T − π0) a.s.,

where L̇γγ,T (resp. L̇γπ,T ) signifies the matrix Lγγ,T (π̃T , ·) (resp. Lγπ,T (·, γ0)) with each row

evaluated at an intermediate point γ̇i,T , i = 1, . . . , dim γ, lying between γ̃T and γ0 (resp. π̇i,T ,

i = 1, . . . , dimπ, lying between π̃T and π0). Arguments similar to those used in the proof of

Theorem 1 now yield

T 1/2(γ̃T − γ0) = −L̇+
γγ,TT

1/2Lγ,T (π0, γ0)− L̇+
γγ,T L̇γπ,TT

1/2(π̃T − π0) + o(1), (19)

where L̇+
γγ,T denotes the Moore-Penrose inverse of L̇γγ,T and o(1) (dim γ × 1) converges to zero

a.s. By the strong consistency of π̃T and Lemmas 1 and 2, the first term on the right hand side

of (19) converges in distribution to N(0, Iγγ(θ0)−1). By the strong consistency of π̃T , Lemma 2,
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finiteness and invertibility of E[lθθ,t(θ0)], and the fact T 1/2(π̃T − π0) = Op(1), the second term

on the right hand side of (19) is Op(1). This completes the proof of (i).

(ii) In light of the result (19) and the discussion following it, it suffi ces to show that the

second term on the right hand side of (19) is op(1). This is the case because E[lπγ,t(θ0)] = 0,

as we establish next. Due to the result E[lθθ,t(θ0)] = −I(θ0) in Lemma 2 and the expressions

of the off-diagonal blocks of I(θ0) = Cov[lθ,t(θ0)] in Appendix B, it suffi ces to show that the

moments E[ε′t ⊗ ex,te′x,t], E[ex,t(εt � ex,t)′], and E[ex,te
′
λ,t] all equal zero. To this end, note that

the elements of the matrices E[ε′t ⊗ ex,te′x,t] and E[ex,t(εt � ex,t)′] are obtained from

E [εi,tej,x,tek,x,t] =

 E[εi,te
2
i,x,t], i = j = k

0, otherwise
and E [ei,x,tεj,tej,x,t] =

 E[εi,te
2
i,x,t], i = j

0, otherwise
,

respectively. The assumed symmetry and Lemma A.3 of Meitz and Saikkonen (2013) ensure

that E[εi,te
2
i,x,t] = 0, i = 1, . . . , n. Regarding the moment E[ex,te

′
λ,t], it suffi ces to show that

E[ei,x,tei,λi,t] = 0 for i = 1, . . . , n. As

E [ei,x,tei,λi,t] = E

[
fi,x(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

fi,λi(σ
−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

]
,

the desired result again follows from Lemma A.3 of Meitz and Saikkonen (2013) because if the

distribution of εi,t is symmetric in the sense that fi (x;λi) = fi (−x;λi) for all λi ∈ Θ0,λi, the

functions fi(σ−1
i,0 ·;λi,0) and fi,λi(σ

−1
i,0 ·;λi,0) are symmetric functions (for the latter, this follows

from fi,λi(σ
−1
i,0 ·;λi,0) = ∂

∂λi
fi(σ

−1
i,0 ·;λi,0) and the symmetry of fi(σ−1

i,0 ·;λi) for λi ∈ Θ0,λi) and the

function fi,x(σ−1
i,0 ·;λi,0) is an odd function.

(iii) By the definition of θ̃
(2)

T (and, for simplicity, assuming invertibility) we have T 1/2(θ̃
(2)

T −
θ̃T ) = −L−1

θθ,T (θ̃T )T 1/2Lθ,T (θ̃T ). A standard mean value expansion of Lθ,T (θ) yields

T 1/2Lθ,T (θ̃T ) = T 1/2Lθ,T (θ0) + L̈θθ,TT
1/2(θ̃T − θ0) a.s.,

where L̈θθ,T signifies the matrix Lθθ,T (θ) with each row evaluated at an intermediate point θ̈i,T

(i = 1, . . . , dim θ) lying between θ̃T and θ0. Therefore,

T 1/2(θ̃
(2)

T − θ0) = T 1/2(θ̃T − θ0)− L−1
θθ (θ̃T )T 1/2Lθ,T (θ0)− L−1

θθ (θ̃T )L̈θθ,TT
1/2(θ̃T − θ0)

= (Idim θ − L−1
θθ (θ̃T )L̈θθ,T )T 1/2(θ̃T − θ0)− L−1

θθ (θ̃T )T 1/2Lθ,T (θ0) a.s. (20)

The first term on the right hand side of (20) converges to zero a.s. due to strong consistency

of θ̃T , Lemma 2, and the result T 1/2(θ̃T − θ0) = Op(1) in part (i) of this theorem, whereas the

second term converges in distribution to N(0, I(θ0)−1).
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Supplementary Appendix to ‘Identification and estimation of non-Gaussian struc-

tural vector autoregressions’by Lanne, Meitz, and Saikkonen. (Not to be pub-

lished.)

A1 Proofs of some results in Appendix A

Proof of Lemma A.2. The algebraic set

A = ∪si=1 ∩rij=1 {x ∈ Rm : fi,j(x) = 0}

can always be written as

A = ∪si=1{x ∈ Rm : fi(x) = 0} def= ∪si=1Ai

if one defines the (finite-order polynomial) functions fi(x) as fi(x) =
∑ri

j=1 f
2
i,j(x) (i = 1, . . . , s),

and where the latter equality defines the (algebraic) sets Ai. The assumption that A is a proper

subset of Rm ensures that none of the fi(·) is identically equal to zero. Now, as A = ∪si=1Ai and

Rm\A = ∩si=1(Rm\Ai), it suffi ces to show that, for each i = 1, . . . , s, Ai has Lebesgue measure

zero in Rm and its complement Rm\Ai in Rm is an open and dense subset of Rm. Without loss
of generality, consider A1, the set of zeros of the finite-order polynomial f1(·) in Rm.
We next prove the following subresult: For an arbitrary finite-order polynomial f(·) in Rm,

not identically equal to zero, the set of zeros {x ∈ Rm : f(x) = 0} has Lebesgue measure zero in
Rm. If m = 1, the set of zeros of an arbitrary f(·) is a finite set of points, and hence of Lebesgue
measure zero in R. Proceed inductively and assume the statement holds in dimension m − 1.

Now in dimension m, consider an arbitrary nonzero polynomial f(x1, . . . , xm) and, for ease of

notation, let xm−1 = (x1, . . . , xm−1) denote a vector in Rm−1. For any xm−1, define the sets

Sm(xm−1) = {xm ∈ R : f(xm−1, xm) = 0} and Scm(xm−1) = {xm ∈ R : f(xm−1, xm) 6= 0},

and, furthermore, define the sets

Sm = ∩xm−1∈Rm−1Sm(xm−1) and Scm = ∪xm−1∈Rm−1Scm(xm−1).

Then the sets Sm and Scm form a partition of R. For each fixed x ∈ Scm, define the set

Sm−1 (x) = {xm−1 ∈ Rm−1 : f(xm−1, x) = 0}.

1



Note that, for each fixed xm−1 ∈ Rm−1, the set Sm(xm−1) has Lebesgue measure zero in R (as

it is finite), and therefore also Sm has Lebesgue measure zero in R. Moreover, for each fixed

x ∈ Scm, the set Sm−1 (x) has Lebesgue measure zero in Rm−1 (by the inductive hypothesis and

noting that f(xm−1, x) cannot be identically equal to zero because x ∈ Scm).
Next note that the set of zeros of f(x1, . . . , xm−1, xm) is

Zm = {(x1, . . . , xm−1, xm) ∈ Rm : f(x1, . . . , xm−1, xm) = 0}

= (Rm−1 × Sm) ∪ (∪x∈Scm(Sm−1 (x)× {x})),

where the two sets of the union are disjoint. Let µm(·) signify the Lebesgue measure in dimension
m and 1S (·) the indicator function that takes the value one when the argument belongs to the
set S. Then,

µm(Zm) = µm(Rm−1 × Sm) + µm(∪x∈Scm(Sm−1 (x)× {x}))

=

∫
Rm−1

[∫
R

1Sm (xm) dµ1(xm)

]
dµm−1 (xm−1)

+

∫
R

1Scm (xm)

[∫
Rm−1

1Sm−1(xm)(xm−1)dµm−1(xm−1)

]
dµ1(xm),

where the second equality is justified by the Tonelli-Fubini Theorem (see, e.g., Dudley (2002,

pp. 137, 139)). In the last expression, the former integral is zero because the set Sm has

Lebesgue measure zero in R and the same is true for the latter integral because, for each fixed

x ∈ Scm, the set Sm−1 (x) has Lebesgue measure zero in Rm−1. This proves the subresult.

The subresult shows that the set A1 has Lebesgue measure zero in Rm. Finally, regarding

the complement Rm\A1, it is open as the preimage of the open set R\{0} in the continuous
transformation f1(·) and dense because the interior of A1 is empty.

Proof of Lemma A.3. Let A be a proper semi-algebraic set with equality constraints and,

without loss of generality, assume that ∗i,1 is = for all i = 1, . . . , s. Then the set

Ã = ∪si=1Ãi = ∪si=1{x ∈ Rm : fi,1(x) = 0},

where the sets Ãi are defined via the latter equality, is a proper algebraic set with the properties

A ⊆ Ã and Rm\A ⊇ Rm\Ã. The result now follows from Lemma A.2.

Proof of Lemma A.4. First some preliminaries. Note that the determinant of a matrix

is a polynomial function of the elements of the matrix, and a matrix is noninvertible if the

2



determinant equals zero. Next consider the transformation B → BD1 (for B ∈ Mn) and note

in this transformation the elements bij of B are mapped as follows:

bij →
bij

(
∑
b2
·j)

1/2

def
= b̃ij

where for brevity we denote
∑
b2
·j =

∑n
k=1 b

2
kj (and similarly below). All indices (i, j, etc.) are

assumed to belong to {1, . . . , n} and this is tacitly assumed in what follows. In step (ii) of the
identification scheme, the absolute values |b̃ij| and |b̃ik| are compared for some i and j 6= k.

Equivalently, one may compare b̃2
ij and b̃

2
ik, that is,

b2
ij∑
b2
·j

and
b2
ik∑
b2
·k
.

Note that any statement of the form ‘̃b2
ij ∗ b̃2

ik’, where ∗ is either =, <, >, or 6=, can equivalently
be expressed as ‘b2

ij

∑
b2
·k− b2

ik

∑
b2
·j ∗ 0’(note that the sums appearing here are always positive

as B ∈ Mn). Therefore, recalling the note about the determinant at the beginning of the

proof, statements like ‘det(B) ∗ 0’or ‘̃b2
ij ∗ b̃2

ik’(with ∗ interpreted as before) can equivalently
be seen as statements about a polynomial in n2 variables, the variables being the elements of

the matrix B. As a last preparatory comment, in what follows, (1̃, . . . , ñ) will always denote

some permutation of (1, . . . , n).

Now, let us describe the set E =Mn\I as a subset ofMA
n , starting with dimension n = 2.

The set

E2,1 = {B ∈M2 : b̃2
11 = b̃2

12} = {B ∈MA
2 : det(B) 6= 0, b̃2

11 = b̃2
12}

consists of those matrices B ∈ M2 for which a tie occurs (on the first row) in step (ii) of the

Identification Scheme. Furthermore, although (in the two-dimensional case) the following set

is empty, to clarify the argument define the set

E2,2 = {B ∈M2 : ∃(1̃, 2̃) such that b̃2
11̃
> b̃2

12̃
; and b̃22̃ = 0},

that is, the set of those B ∈ M2 for which step (ii) can be done but in step (iii) a zero

would occur at the lower right-hand corner of the matrix C (in the two-dimensional case this

is impossible). Note that E2,2 could alternatively be expressed as the union of the sets

E2,2,1 = {B ∈MA
2 : det(B) 6= 0, b̃2

11 > b̃2
12 and b̃22 = 0},

E2,2,2 = {B ∈MA
2 : det(B) 6= 0, b̃2

12 > b̃2
11 and b̃21 = 0}.

3



Therefore, in the case n = 2,

E =M2\I = E2,1 ∪ E2,2 = E2,1 ∪ E2,2,1 ∪ E2,2,2,

a proper semi-algebraic set with equality constraints ofMA
2 .

Now consider the case n = 3. The set of those matrices B ∈ M3 for which a tie occurs in

step (ii) on the first row can be expressed as

E3,1 = {B ∈M3 : ∃(1̃, 2̃, 3̃) such that b̃2
11̃

= b̃2
12̃
≥ b̃2

13̃
}.

(This could equivalently be expressed as

E3,1 = {B ∈MA
3 : det(B) 6= 0, ∃(1̃, 2̃, 3̃) such that b̃2

11̃
= b̃2

12̃
≥ b̃2

13̃
}

but as this latter way is longer we won’t bother writing this explicitly anymore in what follows.)

Furthermore, the set E3,1 can be expressed as the union of the (disjoint) sets

E3,1,1 = {B ∈M3 : b̃2
11 = b̃2

12 = b̃2
13},

E3,1,2 = {B ∈M3 : b̃2
11 = b̃2

12 > b̃2
13},

E3,1,3 = {B ∈M3 : b̃2
11 = b̃2

13 > b̃2
12},

E3,1,4 = {B ∈M3 : b̃2
12 = b̃2

13 > b̃2
11}.

Next, the set of those matrices B ∈ M3 for which a tie occurs in step (ii) on the second row

(that is, no tie on the first row) can be expressed as

E3,2 = {B ∈M3 : ∃(1̃, 2̃, 3̃) such that b̃2
11̃
> max{b̃2

12̃
, b̃2

13̃
}; b̃2

22̃
= b̃2

23̃
}.

Again, E3,2 can be expressed as the union of the (disjoint) sets

E3,2,1 = {B ∈M3 : b̃2
11 > b̃2

12, b̃
2
11 > b̃2

13, b̃
2
22 = b̃2

23}

E3,2,2 = {B ∈M3 : b̃2
12 > b̃2

11, b̃
2
12 > b̃2

13, b̃
2
21 = b̃2

23}

E3,2,3 = {B ∈M3 : b̃2
13 > b̃2

11, b̃
2
13 > b̃2

12, b̃
2
21 = b̃2

22}

Finally, the set of those matrices B ∈ M3 for which no tie occurs in step (ii) but for which a

zero occurs at the lower right-hand corner of the matrix C can be expressed as

E3,3 = {B ∈M3 : ∃(1̃, 2̃, 3̃) such that b̃2
11̃
> max{b̃2

12̃
, b̃2

13̃
}; b̃2

22̃
> b̃2

23̃
; b̃2

33̃
= 0}.
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Again, E3,3 can be expressed as the union of the (disjoint) sets

E3,3,1 = {B ∈M3 : b̃2
11 > b̃2

12, b̃
2
11 > b̃2

13, b̃
2
22 > b̃2

23, b̃
2
33 = 0},

E3,3,2 = {B ∈M3 : b̃2
11 > b̃2

12, b̃
2
11 > b̃2

13, b̃
2
23 > b̃2

22, b̃
2
32 = 0},

E3,3,3 = {B ∈M3 : b̃2
12 > b̃2

11, b̃
2
12 > b̃2

13, b̃
2
21 > b̃2

23, b̃
2
33 = 0},

E3,3,4 = {B ∈M3 : b̃2
12 > b̃2

11, b̃
2
12 > b̃2

13, b̃
2
23 > b̃2

21, b̃
2
31 = 0},

E3,3,5 = {B ∈M3 : b̃2
13 > b̃2

11, b̃
2
13 > b̃2

12, b̃
2
21 > b̃2

22, b̃
2
32 = 0},

E3,3,6 = {B ∈M3 : b̃2
13 > b̃2

11, b̃
2
13 > b̃2

12, b̃
2
22 > b̃2

21, b̃
2
31 = 0}.

Therefore, in the case n = 3,

E =M3\I = E3,1 ∪ E3,2 ∪ E3,3,

a finite union of (disjoint) sets each of which is a proper semi-algebraic set with equality

constraints ofMA
3 (because each of E3,1, E3,2, E3,3 can be expressed as a finite union of (disjoint)

sets, each of which is a proper semi-algebraic set with equality constraints ofMA
3 ).

The preceding calculations for the cases n = 2 and n = 3 could be repeated for any n ≥ 2.

Without going into details, we just note that the set of those matrices B ∈ Mn for which ties

occur in step (ii) of the Identification Scheme or a zero occurs in the lower right hand corner of

C can be described by equalities and inequalities involving the row-wise elements of permuted

versions of the matrix BD1 with at least one equality occurring on each row. Hence, for any

n ≥ 2, the set E =Mn\I can be expressed as a finite union of (disjoint) sets each of which is
a proper semi-algebraic set with equality constraints ofMA

n .

A2 Technical details for Section 4.1

Justification for the openness of the set Θβ in Assumption 3. First note that the

openness of Θβ cannot be directly deduced from Proposition 2(c) or Lemma A.3 because the

statement ‘contains an open . . . subset’ therein cannot be strengthened to ‘is an open . . .

subset’. Now, in order to show that Θβ is an open subset of Rn(n−1), pick an arbitrary β• ∈ Θβ.

We need to show that there exists a neighborhood of β• in Rn(n−1) that is contained in Θβ. The

point β• corresponds to a B• ∈ B. LetMR
n denote the set of all n×n matrices whose diagonal

elements are all restricted to unity. We may equally well show that there exists a neighborhood

of B• inMR
n that is contained in B.
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As a first step, we show that there exists a neighborhood of B• inMR
n that is contained in I.

First note that (due to the continuity of the determinant function) we can find a neighborhood

of B• inMR
n in which all matrices are invertible. Next note that, as B• ∈ B, it is necessarily

the case that Π(B•) = B• (because Π(B•) ∈ B and Π(B•) ∼ B•, Π(B•) 6= B• would violate

Proposition 2(b)). Hence, the matrices D1, P , and D2 in the Identification Scheme (for the

matrix B•) must satisfy P = In and D1D2 = In (Π(B•) = B• implies D1PD2 = In, so

that P = D−1
1 D−1

2 necessarily equals In). To avoid confusion below, make the dependence

of the matrices D1, P , and D2 on B• explicit and express these results as P (B•) = In and

D1(B•)D2(B•) = In.

Next note that in the Identification Scheme for an arbitrary B ∈ Mn, the matrix D1,

and hence the matrix BD1, is a continuous function of the elements of B and that the strict

inequalities used to define the permutation matrix P are in terms of the elements of BD1. As

P (B•) = In, the elements of B•D1(B•) satisfy the strict inequality constraints required in step

(ii) of the Identification Scheme and, due to continuity, we can find a neighborhood N(B•) of

B• inMR
n such that the matrix P (B) in the Identification Scheme equals In for all B ∈ N(B•).

With similar reasoning and redefining the neighborhood N(B•) if necessary, we can conclude

that step (iii) of the Identification Scheme is possible for all B ∈ N(B•). To summarize, we

have so far shown that there exists a neighborhood N(B•) of B• in MR
n such that, for all

B ∈ N(B•), B ∈ I and that the matrix P (B) in the Identification Scheme equals In.

To express the preceding conclusion differently, it holds that for all B ∈ N(B•) ⊆ MR
n ,

Π(B) = BD1D2 where, by the definition of D2, also Π(B) ∈ MR
n . But if both B and Π(B)

belong toMR
n , it must be the case that D1D2 = In. Therefore, for all B ∈ N(B•), Π(B) = B.

By the definition of B (and the fact that B ∈ I), it thus holds that, for all B ∈ N(B•), B ∈ B.
The proof is complete.

A3 Derivation of score and Hessian

Here we derive the expressions given for the score and Hessian in Appendices B and C, respec-

tively. First, we give two differentiation rules that are frequently used below. The first rule

(PR1) is obtained from result 17.30(h) in Seber (2008), whereas the second one (PR2) can be

deduced from the first one.

Rule PR1. If X is m× n, U is a p× q matrix function of X, and V is a q× r matrix function

6



of X, then
∂ vec(UV )

∂ vec(X)′
= (V ⊗ Ip)′

∂ vec(U)

∂ vec(X)′
+ (Ir ⊗ U)

∂ vec(V )

∂ vec(X)′

or, equivalently,

∂ vec(UV )′

∂ vec(X)
=
∂ vec(U)′

∂ vec(X)
(V ⊗ Ip) +

∂ vec(V )′

∂ vec(X)
(Ir ⊗ U)′.

Rule PR2. If X is m× n, U is a p× q matrix function of X, and V is a q× r matrix function
of X, and W is a r × s matrix function of X, then

∂ vec(UVW )

∂ vec(X)′
= (VW ⊗ Ip)′

∂ vec(U)

∂ vec(X)′
+ (W ′ ⊗ U)

∂ vec(V )

∂ vec(X)′
+ (Is ⊗ UV )

∂ vec(W )

∂ vec(X)′

or, equivalently,

∂ vec(UVW )′

∂ vec(X)
=
∂ vec(U)′

∂ vec(X)
(VW ⊗ Ip) +

∂ vec(V )′

∂ vec(X)
(W ⊗ U ′) +

∂ vec(W )′

∂ vec(X)
(Is ⊗ UV )′.

In what follows, several other results from Seber (2008) will also be used and referred to with

abbreviations such as S 17.30(h). Similar abbreviations are used when references to results

from Lütkepohl (1996) are made (e.g., L 9.2.2(5)(a)).

Derivation of the score.

lπ,t (θ): First note that ∂ut(π)′

∂π
= −(xt−1 ⊗ In) and

lπ,t (θ)
PR1
=

n∑
i=1

ei,x,t (θ)
∂ut (π)′

∂π
(σ−1

i ι′iB (β)−1)′ = −(xt−1 ⊗ In)B (β)−1′
n∑
i=1

σ−1
i ei,x,t (θ) ιi.

The expression of lπ,t (θ) in (14a) can be obtained by noting that (xt−1 ⊗ In)B−1′ =
(
xt−1 ⊗B−1′

)
and

∑n
i=1 σ

−1
i ei,x,t (θ) ιi = Σ−1ex,t (θ), and using simple matrix algebra.

lβ,t (θ): As vec(B (β)) = Hβ + vec(In), we have ∂ vec(B(β))′

∂β
= H ′ and hence

∂ log det(B(β))

∂β

S 17.7(b)(ii)
=

1

det(B(β))

∂ det(B(β))

∂β

S 17.26(c)
=

1

det(B(β))
H ′ vec(adj(B(β))′) = H ′ vec(B (β)−1′).

Thus,

lβ,t (θ)
PR2
=

n∑
i=1

ei,x,t (θ)
∂ vec(B (β)−1)′

∂β
(ut (π)⊗ σ−1

i ιi)−H ′ vec(B (β)−1′)

S 17.33(b)
= −H ′(B (β)−1 ⊗B (β)−1′)

n∑
i=1

(ut (π)⊗ ιi)σ−1
i ei,x,t (θ)−H ′ vec(B (β)−1′).
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The expression of lβ,t (θ) in (14b) can be obtained from this by noting that

n∑
i=1

(ut (π)⊗ ιi)σ−1
i ei,x,t (θ) = ut (π)⊗

n∑
i=1

σ−1
i ei,x,t (θ) ιi =

(
ut (π)⊗ Σ−1

)
ex,t (θ) .

lσ,t (θ) and lλ,t (θ): Differentiation directly gives

lσi,t (θ) = −σ−1
i − σ−2

i ι′iB (β)−1 ut (π) ei,x,t (θ) , i = 1, . . . , n,

lλi,t (θ) = ei,λi,t (θ) , i = 1, . . . , n,

which form the components of the expressions of lσ,t (θ) and lλ,t (θ) in (14c) and (14d).

Derivation of the Hessian. We begin with the diagonal blocks, and then derive the off-

diagonal blocks.

lππ,t (θ): First note that

∂ei,x,t (θ)

∂π′
= −ei,xx,t (θ)σ−1

i ι′iB (β)−1 (x′t−1 ⊗ In),

so that

lππ,t (θ) = − ∂

∂π′

[
(xt−1 ⊗B (β)−1′ Σ−1)ex,t (θ)

]
= −(xt−1 ⊗B (β)−1′ Σ−1)

∂ex,t (θ)

∂π′

= (xt−1 ⊗B (β)−1′ Σ−1)exx,t (θ) Σ−1B (β)−1 (x′t−1 ⊗ In)

= xt−1x
′
t−1 ⊗B (β)−1′ Σ−1exx,t (θ) Σ−1B (β)−1

= (In ⊗B (β)−1′ Σ−1)(xt−1x
′
t−1 ⊗ exx,t (θ))(In ⊗ Σ−1B (β)−1).

lββ,t (θ): We first note that ∂ vec(B(β))
∂β′ = H and derive the following intermediate results:

∂vec(B(β)−1)

∂β′
S 17.33(b)

= −(B(β)−1′ ⊗B(β)−1)
∂vec(B(β))

∂β′
= −(B(β)−1′ ⊗B(β)−1)H

∂vec(B (β)−1′)

∂β′
= Knn

∂vec(B(β)−1)

∂β′
= −Knn(B(β)−1′⊗B(β)−1)H

L 9.2.2(5)(a)
= −(B(β)−1⊗B(β)−1′)KnnH

∂ei,x,t (θ)

∂β′
=

∂

∂β′

[
fi,x(σ

−1
i ι′iB(β)−1ut (π) ;λi)

fi(σ
−1
i ι′iB(β)−1ut (π) ;λi)

]
PR2
= ei,xx,t (θ)

[
(u′t (π)⊗ σ−1

i ι′i)
∂vec(B(β)−1)

∂β′

]
= −ei,xx,t (θ)

[
(u′t (π)⊗ σ−1

i ι′i)(B(β)−1′ ⊗B(β)−1)H
]

= −(u′t (π)B(β)−1′ ⊗ ei,xx,t (θ)σ−1
i ι′iB(β)−1)H
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∂ex,t (θ)

∂β′
= −(u′t (π)B(β)−1′ ⊗ exx,t (θ) Σ−1B(β)−1)H

= −(u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

∂

∂β′

[
B (β)−1 ut (π)⊗B (β)−1′ Σ−1ex,t (θ)

]
S 17.34(a)(i)

= B (β)−1 ut (π)⊗ ∂B (β)−1′ Σ−1ex,t (θ)

∂β′
+
∂B (β)−1 ut (π)

∂β′
⊗B (β)−1′ Σ−1ex,t (θ)

PR1,PR2
= B (β)−1 ut (π)⊗

(
(Σ−1ex,t (θ)⊗ In)′

∂vec(B (β)−1′)

∂β′
+B (β)−1′ Σ−1∂ex,t (θ)

∂β′

)

+

(
(ut (π)⊗ In)′

∂vec(B(β)−1)

∂β′

)
⊗B (β)−1′ Σ−1ex,t (θ)

= −B (β)−1 ut (π)⊗
(

(Σ−1ex,t (θ)⊗ In)′(B(β)−1 ⊗B(β)−1′)KnnH
)

−B (β)−1 ut (π)⊗
(
B (β)−1′ Σ−1(u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

)
−
(

(ut (π)⊗ In)′(B(β)−1′ ⊗B(β)−1)H
)
⊗B (β)−1′ Σ−1ex,t (θ)

= −
(
B (β)−1 ut (π)⊗ e′x,t (θ) Σ−1B(β)−1 ⊗B(β)−1′

)
KnnH

−B (β)−1 ut (π)⊗ (u′t (π)B(β)−1′ ⊗B (β)−1′ Σ−1exx,t (θ) Σ−1B(β)−1)H

−
(
u′t (π)B(β)−1′ ⊗B(β)−1

)
H ⊗B (β)−1′ Σ−1ex,t (θ)

L 2.4(12), L 9.2.2(3)ii
= −

(
B (β)−1 ut (π)⊗ e′x,t (θ) Σ−1B(β)−1 ⊗B(β)−1′

)
KnnH

− (B (β)−1 ⊗B (β)−1′ Σ−1)(ut (π)u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

−Knn

(
B (β)−1′ Σ−1ex,t (θ)⊗

(
u′t (π)B(β)−1′ ⊗B(β)−1

))
H,

where in the last two equalities we also used the rule a⊗BC = a1⊗BC = (a⊗B)C (a column

vector, B and C conformable).
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Hence, lββ,t (θ) becomes

lββ,t (θ) = −H ′
[
∂

∂β′

[
(B (β)−1 ut (π)⊗B (β)−1′ Σ−1)ex,t (θ)

]
+

∂

∂β′
vec(B (β)−1′)

]
= H ′

(
B (β)−1 ut (π)⊗ e′x,t (θ) Σ−1B(β)−1 ⊗B(β)−1′

)
KnnH

+H ′(B (β)−1 ⊗B (β)−1′ Σ−1)(ut (π)u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

+H ′Knn

(
B (β)−1′ Σ−1ex,t (θ)⊗ u′t (π)B(β)−1′ ⊗B(β)−1

)
H

+H ′(B(β)−1 ⊗B(β)−1′)KnnH

L 2.4(12)
= H ′

(
B (β)−1 ut (π) e′x,t (θ)⊗ In

) (
Σ−1B(β)−1 ⊗B(β)−1′

)
KnnH

+H ′(B (β)−1 ⊗B (β)−1′ Σ−1)(ut (π)u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

+H ′Knn

(
B (β)−1′ Σ−1 ⊗B(β)−1

)(
ex,t (θ)u′t (π)B(β)−1′ ⊗ In

)
H

+H ′(B(β)−1 ⊗B(β)−1′)KnnH

= H ′(B (β)−1 ⊗B (β)−1′ Σ−1)(ut (π)u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

+H ′(B (β)−1 ⊗ In)
(
ut (π) e′x,t (θ)⊗ In

) (
Σ−1B(β)−1 ⊗B(β)−1′

)
KnnH

H ′Knn(B (β)−1′ Σ−1 ⊗B(β)−1) (ex,t (θ)u′t (π)⊗ In) (B(β)−1′ ⊗ In)H

+H ′(B(β)−1 ⊗B(β)−1′)KnnH.

lσσ,t (θ): Recall that

lσi,t (θ) = −σ−1
i − σ−2

i ι′iB (β)−1 ut (π) ei,x,t (θ) , i = 1, ..., n,

lσ,t (θ) = −Σ−2 [εt (θ)� ex,t (θ) + σ] .

Thus lσσ,t (θ) is a diagonal matrix with diagonal elements

lσiσi,t (θ) =
∂

∂σi

[
−σ−1

i − σ−2
i ι′iB (β)−1 ut (π) ei,x,t (θ)

]
= σ−2

i + 2σ−3
i ι′iB (β)−1 ut (π) ei,x,t (θ)− σ−2

i ι′iB (β)−1 ut (π) ei,xx,t (θ)
[
−σ−2

i ι′iB (β)−1 ut (π)
]

= σ−2
i + 2σ−3

i εi,t (θ) ei,x,t (θ) + σ−4
i ε2

i,t (θ) ei,xx,t (θ) ,

so that lσσ,t (θ) can be expressed as

lσσ,t (θ) = Σ−2 + 2Σ−3Et(θ)Ex,t(θ) + Σ−4E2
t (θ)exx,t (θ) .

lλλ,t (θ): Directly,

lλλ,t (θ) = eλλ,t(θ).
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lπβ,t (θ): As a preliminary result we first obtain (see the derivation of lββ,t (θ)),

∂

∂β′

[
B (β)−1′ Σ−1ex,t (θ)

]
PR2
= (Σ−1ex,t (θ)⊗ In)′

∂vec(B (β)−1′)

∂β′
+B (β)−1′ Σ−1∂ex,t (θ)

∂β′

= −(Σ−1ex,t (θ)⊗ In)′(B(β)−1 ⊗B(β)−1′)KnnH

−B (β)−1′ Σ−1(u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

= −(e′x,t (θ) Σ−1B(β)−1 ⊗B(β)−1′)KnnH −B (β)−1′ Σ−1(u′t (π)B(β)−1′ ⊗ exx,t (θ) Σ−1B(β)−1)H.

Hence,

lπβ,t (θ) =
∂

∂β′

[
−(xt−1 ⊗B (β)−1′ Σ−1)ex,t (θ)

]
= − ∂

∂β′

[
xt−1 ⊗B (β)−1′ Σ−1ex,t (θ)

]
S 17.34(a)(i)

= −xt−1 ⊗
∂

∂β′

[
B (β)−1′ Σ−1ex,t (θ)

]
= xt−1 ⊗

[
(e′x,t (θ) Σ−1B(β)−1 ⊗B(β)−1′)KnnH

]
+xt−1 ⊗

[
B (β)−1′ Σ−1(u′t (π)B(β)−1′ ⊗ exx,t (θ) Σ−1B(β)−1)H

]
= xt−1 ⊗

[
(In ⊗ e′x,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

]
+xt−1 ⊗

[
B (β)−1′ Σ−1(u′t (π)⊗ exx,t (θ))(B(β)−1′ ⊗ Σ−1B(β)−1)H

]
.

lπσ,t (θ): Note that Σ−1ex,t (θ) is a vector with the ith component given by σ−1
i ei,x,t (θ), so that

∂

∂σi

[
σ−1
i ei,x,t (θ)

]
= −σ−2

i ei,x,t (θ)− σ−1
i ei,xx,t (θ)σ−2

i ι′iB (β)−1 ut (π)

= −σ−2
i ei,x,t (θ)− σ−1

i ei,xx,t (θ)σ−2
i εi,t (θ)

and ∂
∂σj

[
σ−1
i ei,x,t (θ)

]
= 0 for j 6= i. Therefore,

∂

∂σ′
[
Σ−1ex,t (θ)

]
= −Σ−2Ex,t(θ)− Σ−3exx,t (θ) Et(θ)

and

lπσ,t (θ) =
∂

∂σ′

[
−(xt−1 ⊗B (β)−1′ Σ−1)ex,t (θ)

]
S 17.34(a)(i)

= −xt−1 ⊗B (β)−1′ ∂

∂σ′
[
Σ−1ex,t (θ)

]
= xt−1 ⊗B (β)−1′ [Σ−2Ex,t(θ) + Σ−3exx,t (θ) Et(θ)

]
.
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lπλ,t (θ): With direct computation,

lπλ,t (θ) =
∂

∂λ′

[
−(xt−1 ⊗B (β)−1′ Σ−1)ex,t (θ)

]
= −xt−1 ⊗B (β)−1′ Σ−1∂ex,t (θ)

∂λ′

= −xt−1 ⊗B (β)−1′ Σ−1exλ,t (θ)

= −(Inp+1 ⊗B (β)−1′ Σ−1)(xt−1 ⊗ exλ,t (θ)).

lβσ,t (θ): With direct computation,

lβσ,t (θ) =
∂

∂σ′

[
−H ′

[
(B (β)−1 ut (π)⊗B (β)−1′ Σ−1)ex,t (θ) + vec(B (β)−1′)

]]
= −H ′(B (β)−1 ut (π)⊗B (β)−1′ ∂

∂σ′
[
Σ−1ex,t (θ)

]
)

= H ′(B (β)−1 ut (π)⊗B (β)−1′ [Σ−2Ex,t(θ) + Σ−3exx,t (θ) Et(θ)
]
)

= H ′(B (β)−1 ⊗B (β)−1′)(ut (π)⊗
[
Σ−2Ex,t(θ) + Σ−3exx,t (θ) Et(θ)

]
).

lβλ,t (θ): With direct computation,

lβλ,t (θ) =
∂

∂λ′

[
−H ′

[
(B (β)−1 ut (π)⊗B (β)−1′ Σ−1)ex,t (θ) + vec(B (β)−1′)

]]
= −H ′(B (β)−1 ut (π)⊗B (β)−1′ Σ−1∂ex,t (θ)

∂λ′
)

= −H ′(B (β)−1 ut (π)⊗B (β)−1′ Σ−1exλ,t (θ))

= −H ′(B (β)−1 ⊗B (β)−1′ Σ−1)(ut (π)⊗ exλ,t (θ)).

lσλ,t (θ): As lσi,t (θ) = −σ−1
i − σ−2

i εi,t (θ) ei,x,t (θ), we have

lσiλi,t (θ) =
∂

∂λ′i
lσi,t (θ) = −σ−2

i εi,t (θ) ei,xλi,t (θ)

lσiλj ,t (θ) = 0 for j 6= i,

so that

lσλ,t (θ) = −Σ−2Et(θ)exλ,t (θ) .

A4 Further details omitted from Appendix B

Proof of Lemma B.1. Part (i) holds because, due to integrability of fi,x(x;λi,0) (Assumption

4(ii)) and the fundamental theorem of calculus,

E [ei,x,t] =

∫
fi,x(σ

−1
i,0x;λi,0)σ−1

i,0 dx =

∫
fi,x(x;λi,0)dx = |∞−∞fi(x;λi,0) = 0,
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where the last equality holds due to ∫ fi(x;λi,0)dx = 1. Parts (ii), (iv), and (vi) are immediate

consequences of the dominance conditions in Assumption 4(iii). Part (iii) holds because

E [ei,λi,t] =

∫
fi,λi(σ

−1
i,0x;λi,0)σ−1

i,0 dx =

∫
fi,λi(x;λi,0)dx

=

∫ [
∂fi(x;λi)

∂λi

]
λi=λi,0

dx =

[
d

dλi

∫
fi(x;λi)dx

]
λi=λi,0

= 0,

where the penultimate equality is justified by Assumption 4(iv) and a theorem on the differen-

tiation of an integral (see, e.g., Theorem 24.5 and the discussion following it in Aliprantis and

Burkinshaw (1998)). Part (v) follows because, in view of the integrability of fi,x(x;λi,0),

E [εi,tei,x,t] =

∫
xfi,x(σ

−1
i,0x;λi,0)σ−1

i,0 dx = σi,0

∫
xfi,x(x;λi,0)dx

= σi,0|∞−∞xfi(x;λi,0)− σi,0
∫
fi(x;λi,0)dx = −σi,0,

where the last equality holds due to the facts E[εi,t] = 0 and ∫ fi(x;λi,0)dx = 1.

A5 Further details omitted from Appendix C

First define, for i = 1, . . . , n,

ei,xx,t = ei,xx,t(θ0) =
fi,xx(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

−
(
fi,x(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

)2

ei,xλi,t = ei,xλi,t(θ0) =
fi,xλi(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

−
fi,x(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

f ′i,λi(σ
−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

ei,λiλi,t = ei,λiλi,t(θ0) =
fi,λiλi(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

−
fi,λi(σ

−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

f ′i,λi(σ
−1
i,0 εi,t;λi,0)

fi(σ
−1
i,0 εi,t;λi,0)

and use these to form the diagonal / block diagonal matrices

exx,t = exx,t(θ0) = diag (e1,xx,t, . . . , en,xx,t) (n× n)

eλλ,t = eλλ,t(θ0) = diag (e1,λ1λ1,t, . . . , en,λnλn,t) (d× d)

exλ,t = exλ,t(θ0) = diag(e1,xλ1,t, . . . , en,xλn,t) (n× d)

The following auxiliary lemmas contains results needed in subsequent derivations.

Lemma C.1. Under Assumptions 2—5, the following hold (for i = 1, . . . , n when apropriate):

(i) E[exx,t] = −E[ex,te
′
x,t], (ii)

∫
x2fi,xx (x;λi,0) dx = 2, (iii) E[eλλ,t] = −E[eλ,te

′
λ,t], (iv)

13



E[exλ,t] = −E[ex,te
′
λ,t], (v) E[εi,texλi,t] = −E[εi,tei,x,te

′
i,λi,t

], (vi) E[εi,tei,xx,t] = −E
[
εi,te

2
i,x,t

]
,

(vii) E[ε2
i,tei,xx,t] = 2σ2

i,0 − E
[
ε2
i,te

2
i,x,t

]
.

Proof of Lemma C.1. (i) We need to show that E [ei,xx,t] = −E[e2
i,x,t] for i = 1, . . . , n, which,

recalling the definition of ei,xx,t, holds if
∫
fi,xx (x;λi,0) dx = 0. As fi,xx (x;λi,0) is integrable by

Assumption 5(i), fundamental theorem of calculus yields
∫
fi,xx (x;λi,0) dx = |∞−∞fi,x (x;λi,0),

and the expression on the right equals zero becauseE [ei,x,t] = 0 (Lemma B.1(i)). (ii) Integration

by parts yields∫
x2fi,xx (x;λi,0) dx = |∞−∞x2fi,x (x;λi,0)− 2

∫
xfi,x (x;λi,0) dx = 2,

where the last equality holds because E
[
ε2
i,t |ei,x,t|

]
is finite (due to Lemma B.1(vi)) and because

the integral in the penultimate expression equals −1 (see the proof of Lemma B.1(v)). (iii) By

the definition of eλλ,t it suffi ces to show that E
[
fi,λiλi

(
σ−1
i,0 εi,t;λi,0

)
/fi
(
σ−1
i,0 εi,t;λi,0

)]
= 0 for

i = 1, . . . , n. This holds because

E

[
fi,λiλi

(
σ−1
i,0 εi,t;λi,0

)
fi
(
σ−1
i,0 εi,t;λi,0

) ]
=

∫
fi,λiλi

(
σ−1
i,0x;λi,0

)
σ−1
i,0 dx =

∫
fi,λiλi (x;λi,0) dx

=

∫ [
∂2fi(x;λi)

∂λi∂λ
′
i

]
λi=λi,0

dx =

[
d2

dλidλ
′
i

∫
fi(x;λi)dx

]
λi=λi,0

= 0,

where the penultimate equality is justified by Assumption 5(ii), cf. proof of Lemma B.1(iii).

(iv) By the definition of exλ,t it suffi ces to show that E
[
fi,xλi

(
σ−1
i,0 εi,t;λi,0

)
/fi
(
σ−1
i,0 εi,t;λi,0

)]
= 0

for i = 1, . . . , n. This holds because, in view of the integrability of fi,xλi(x;λi,0) (Assumption

5(i)),

E

[
fi,xλi

(
σ−1
i,0 εi,t;λi,0

)
fi
(
σ−1
i,0 εi,t;λi,0

) ]
=

∫
fi,xλi

(
σ−1
i,0x;λi,0

)
σ−1
i,0 dx =

∫
fi,xλi (x;λi,0) dx = |∞−∞fi,λi (x;λi,0) = 0,

where the last equality holds because E [ei,λi,t] = 0 by Lemma B.1(iii). (v) By the definition of

exλ,t it suffi ces to show that E
[
εi,tfi,xλi

(
σ−1
i,0 εi,t;λi,0

)
/fi
(
σ−1
i,0 εi,t;λi,0

)]
=
∫
xfi,xλi (x;λi,0) dx =

0 for all i = 1, . . . , n. This holds because, by change of variables and integration by parts,

E

[
εi,t

fi,xλi
(
σ−1
i,0 εi,t;λi,0

)
fi
(
σ−1
i,0 εi,t;λi,0

) ]
=

∫
xfi,xλi

(
σ−1
i,0x;λi,0

)
σ−1
i,0 dx = σi,0

∫
xfi,xλi (x;λi,0) dx

= σi,0|∞−∞xfi,λi (x;λi,0)− σi,0
∫
fi,λi (x;λi,0) dx.

In the last expression derived, the integral on the right is zero because E [ei,λi,t] = 0 (due

to Lemma B.1(iii)), whereas the first term therein is zero because E [|εi,tei,λ,t|] < ∞ (due to
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Assumption 1 and Lemma B.1(iv)). (vi) By the definition of ei,xx,t it suffi ces to establish

that E[εi,tfi,xx
(
σ−1
i,0 εi,t;λi,0

)
/fi
(
σ−1
i,0 εi,t;λi,0

)
] = 0. To this end, by change of variables and

integration by parts,

E

[
εi,t

fi,xx
(
σ−1
i,0 εi,t;λi,0

)
fi
(
σ−1
i,0 εi,t;λi,0

) ] =

∫
σ−1
i,0xfi,xx

(
σ−1
i,0x;λi,0

)
dx = σi,0

∫
σ−1
i,0xfi,xx

(
σ−1
i,0x;λi,0

)
σ−1
i,0 dx

= σi,0

∫
xfi,xx (x;λi,0) dx = σi,0|∞−∞xfi,x (x;λi,0)− σi,0

∫
fi,x (x;λi,0) dx.

The integral in the last expression is zero because E [ei,x,t] = 0 (Lemma B.1(i)), whereas the

first term therein is zero because E [εi,tei,x,t] = −σi,0 (Lemma B.1(v)). (vii) By the definition
of ei,xx,t

E
[
ε2
i,tei,xx,t

]
= E

[
ε2
i,t

fi,xx
(
σ−1
i,0 εi,t;λi,0

)
fi
(
σ−1
i,0 εi,t;λi,0

) ]− E [ε2
i,te

2
i,x,t

]
= 2σ2

i,0 − E
[
ε2
i,te

2
i,x,t

]
.

Here the second equality follows because

E

[
ε2
i,t

fi,xx
(
σ−1
i,0 εi,t;λi,0

)
fi
(
σ−1
i,0 εi,t;λi,0

) ] =

∫
σ−1
i,0x

2fi,xx
(
σ−1
i,0x;λi,0

)
dx = σ2

i,0

∫
σ−2
i,0x

2fi,xx
(
σ−1
i,0x;λi,0

)
σ−1
i,0 dx

= σ2
i,0

∫
x2fi,xx (x;λi,0) dx = 2σ2

i,0,

where the last equality follows from the proof of part (ii).

The following lemma is used below when proving the result E [lθθ,t (θ0)] = −E[lθ,t (θ0) l′θ,t (θ0)].

We introduce the notation

In =


ι1ι
′
1

...

ιnι
′
n

 (n2 × n).

Lemma C.2. Under Assumptions 2—5, the following hold:

(i) E[ε′t ⊗ exx,t] = −E[ε′t ⊗ ex,te′x,t]
(ii) E[εt ⊗ Ex,t] = −(Σ0 ⊗ In)In
(iii) E[εt ⊗ exx,tEt] = 2(Σ2

0 ⊗ In)In − (E[E2
t E

2
x,t]⊗ In)In

(iv) E[εtε
′
t ⊗ exx,t] = 2(Σ2

0 ⊗ In)In − E[E2
t ⊗ E2

x,t]

(v) E
[
εtε
′
t ⊗ ex,te′x,t

]
= E[E2

t ⊗E2
x,t]−2(Σ2

0⊗In)In+(In⊗Σ0) [(vec(In)vec(In)′) +Knn] (In⊗Σ0)
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Proof of Lemma C.2. (i) Using Lemma C.1(vi),

E[ε′t ⊗ exx,t] = E
[
ε1,texx,t · · · εn,texx,t

]
=

[
E[ε1,te1,xx,t]ι1ι

′
1 · · · E[εn,ten,xx,t]ιnι

′
n

]
= −

[
E[ε1,te

2
1,x,t]ι1ι

′
1 · · · E[εn,te

2
n,x,t]ιnι

′
n

]
= −E[ε′t ⊗ ex,te′x,t].

(ii) Using Lemma B.1(v),

E[εt ⊗ Ex,t] =


E[ε1,tEx,t]

...

E[εn,tEx,t]

 =


−σ1,0ι1ι

′
1

...

−σn,0ιnι′n

 = −(Σ0 ⊗ In)In.

(iii) Using Lemma C.1(vii),

E[εt ⊗ exx,tEt] =


E[ε1,texx,tEt]

...

E[εn,texx,tEt]

 =


E[ε2

1,te1,xx,t]ι1ι
′
1

...

E[ε2
n,ten,xx,t]ιnι

′
n



=


(2σ2

1,0 − E[ε2
1,te

2
1,x,t])ι1ι

′
1

...

(2σ2
n,0 − E[ε2

n,te
2
n,x,t])ιnι

′
n

 = 2(Σ2
0 ⊗ In)In − (E[E2

t E
2
x,t]⊗ In)In.

(iv) First note that E[εtε
′
t ⊗ exx,t] can be written as

E[εtε
′
t ⊗ exx,t] = E


ε1,tε1,texx,t · · · ε1,tεn,texx,t

...
. . .

...

εn,tε1,texx,t · · · εn,tεn,texx,t

 =


E[ε1,tε1,texx,t]

. . .

E[εn,tεn,texx,t]

 ,
as the non-diagonal blocks are zeros. Now note that the first diagonal block can be expressed

as (using Lemma C.1(vii))

E[ε1,tε1,texx,t] =


E[ε1,tε1,te1,xx,t]

. . .

E[ε1,tε1,ten,xx,t]



=


2σ2

1,0 − E[ε2
1,te

2
1,x,t]

−σ2
1,0E[e2

2,x,t]
. . .

−σ2
1,0E[e2

n,x,t]


= 2σ2

1,0ι1ι
′
1 − E[ε2

1,tE
2
x,t],
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and so on, and the last diagonal block can be expressed as

E[εn,tεn,texx,t] =


E[εn,tεn,te1,xx,t]

. . .

E[εn,tεn,ten,xx,t]



=


−σ2

n,0E[e2
1,x,t]

. . .

−σ2
n,0E[e2

n−1,x,t]

2σ2
n,0 − E[ε2

n,te
2
n,x,t]


= 2σ2

n,0ιnι
′
n − E[ε2

n,tE
2
x,t].

Therefore,

E[εtε
′
t ⊗ exx,t] =


2σ2

1,0ι1ι
′
1

. . .

2σ2
n,0ιnι

′
n

−

E[ε2

1,tE
2
x,t]

. . .

E[ε2
n,tE

2
x,t]


= 2(Σ2

0 ⊗ In)In − E[E2
t ⊗ E2

x,t].

(v) First note that E
[
εtε
′
t ⊗ ex,te′x,t

]
can be written as

E
[
εtε
′
t ⊗ ex,te′x,t

]
= E


E[ε1,tε1,tex,te

′
x,t] · · · E[ε1,tεn,tex,te

′
x,t]

...
. . .

...

E[εn,tε1,tex,te
′
x,t] · · · E[εn,tεn,tex,te

′
x,t]

 ,
where every block is nonzero. First consider the n diagonal blocks which can be written as

E[ε2
1,te

2
1,x,t]

σ2
1,0E[e2

2,x,t]
. . .

σ2
1,0E[e2

n,x,t]

 ,

σ2

2,0E[e2
1,x,t]

E[ε2
2,te

2
2,x,t]

. . .

σ2
2,0E[e2

n,x,t]

 ,

· · · · · · · · · · · · · · · · · · · · · ,


σ2
n,0E[e2

1,x,t]
. . .

σ2
n,0E[e2

n−1,x,t]

E[ε2
n,te

2
n,x,t]

 .

The contribution of these diagonal blocks to the entire matrixE
[
εtε
′
t ⊗ ex,te′x,t

]
can be expressed

as

E[E2
t ⊗ E2

x,t].
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Now consider the off-diagonal blocks. The n− 1 remaining blocks on the first row of blocks are

0 σ1,0σ2,0 0 · · · 0

σ2,0σ1,0 0 0 · · · 0

0 0
. . .

...
...

...
. . .

...

0 0 · · · · · · 0


, · · · ,



0 0 · · · 0 σ1,0σn,0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

σn,0σ1,0 0 · · · 0 0


.

These are also the n − 1 remaining blocks on the first column of blocks. The remaining

off-diagonal blocks can be expressed in a similar fashion. Overall, the contribution of these

off-diagonal blocks to the entire matrix E
[
εtε
′
t ⊗ ex,te′x,t

]
can, after some algebra, be expressed

as

−2(Σ2
0 ⊗ In)In + (In ⊗ Σ0) [(vec(In)vec(In)′) +Knn] (In ⊗ Σ0).

Putting the contributions of the diagonal and off-diagonal blocks together, the entire matrix

E
[
εtε
′
t ⊗ ex,te′x,t

]
can be expressed as

E
[
εtε
′
t ⊗ ex,te′x,t

]
= E[E2

t ⊗E2
x,t]− 2(Σ2

0 ⊗ In)In + (In ⊗Σ0) [(vec(In)vec(In)′) +Knn] (In ⊗Σ0).

This completes the proof.

Proof of the result E [lθθ,t (θ0)] = −E[lθ,t (θ0) l′θ,t (θ0)]. In order to show that E [lθθ,t (θ0)] =

−E[lθ,t (θ0) l′θ,t (θ0)], we’ll go through the blocks one by one. Recall the propertyB−1
0 ut (π0) = εt,

and also that xt−1 is independent of εt (and functions of εt).

E[lππ,t (θ0)]: Because E[lππ,t (θ0)] can be written as

E[lππ,t (θ0)] = E[xt−1x
′
t−1]⊗B−1′

0 Σ−1
0 E[exx,t]Σ

−1
0 B−1

0 ,

it suffi ces to show that E[exx,t] = −Vex = −Cov[ex,t]. This holds by Lemma B.1(i) and Lemma

C.1(i).

E[lπβ,t (θ0)]: Because E[ex,t] = 0 by Lemma B.1(i) and using matrix algebra we obtain

E[lπβ,t (θ0)] = E[xt−1]⊗
[
(In ⊗ E[e′x,t])(B

−1′

0 ⊗ Σ−1
0 B−1

0 )H
]

+E
[
xt−1 ⊗

(
B−1′

0 Σ−1
0 (ε′t ⊗ exx,t)(In ⊗ Σ−1

0 B−1
0 )H

)]
= (E[xt−1]⊗B−1′

0 Σ−1
0 )E[ε′t ⊗ exx,t](In ⊗ Σ−1

0 B−1
0 )H.
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The desired result follows because E[ε′t ⊗ exx,t] = −E[ε′t ⊗ ex,te′x,t] by Lemma C.2(i).

E[lββ,t (θ0)]: Regarding E[lββ,t (θ0)], note that lββ,t (θ0) can be written as

lββ,t (θ0) = H ′(In ⊗B−1′

0 Σ−1
0 )(εtε

′
t ⊗ exx,t)(In ⊗ Σ−1

0 B−1
0 )H

+H ′(In ⊗ In)
(
εte
′
x,t ⊗ In

) (
Σ−1

0 B−1
0 ⊗B−1′

0

)
KnnH

+H ′Knn(B−1′

0 Σ−1
0 ⊗B−1

0 ) (ex,tε
′
t ⊗ In) (In ⊗ In)H

+H ′(B−1
0 ⊗B−1′

0 )KnnH.

Note that by Lemma B.1(v) E[εte
′
x,t] = E[ex,tε

′
t] = −Σ0, so that

E[lββ,t (θ0)] = H ′(In ⊗B−1′

0 Σ−1
0 )E[εtε

′
t ⊗ exx,t](In ⊗ Σ−1

0 B−1
0 )H

−H ′(B−1
0 ⊗B−1′

0 )KnnH −H ′Knn(B−1′

0 ⊗B−1
0 )H +H ′(B−1

0 ⊗B−1′

0 )KnnH

= H ′(In ⊗B−1′

0 Σ−1
0 )E[εtε

′
t ⊗ exx,t](In ⊗ Σ−1

0 B−1
0 )H −H ′Knn(B−1′

0 ⊗B−1
0 )H.

According to Lemma C.2(iv,v),

E[εtε
′
t ⊗ exx,t] = −E

[
εtε
′
t ⊗ ex,te′x,t

]
+ (In ⊗ Σ0) [(vec(In)vec(In)′) +Knn] (In ⊗ Σ0).

Therefore

E[lββ,t (θ0)] = −H ′(In ⊗B−1′

0 Σ−1
0 )E

[
εtε
′
t ⊗ ex,te′x,t

]
(In ⊗ Σ−1

0 B−1
0 )H

+H ′(In ⊗B−1′

0 Σ−1
0 )(In ⊗ Σ0) [(vec(In)vec(In)′) +Knn] (In ⊗ Σ0)(In ⊗ Σ−1

0 B−1
0 )H

−H ′Knn(B−1′

0 ⊗B−1
0 )H.

Noting that

H ′(In ⊗B−1′

0 )vec(In)vec(In)′(In ⊗B−1
0 )H = H ′vec(B−1′

0 )vec(B−1′

0 )′H

and

H ′(In ⊗B−1′

0 Σ−1
0 )(In ⊗ Σ0)Knn(In ⊗ Σ0)(In ⊗ Σ−1

0 B−1
0 )H

L 9.2.2(5)(a)
= H ′Knn(B−1′

0 ⊗B−1
0 )H

gives

E[lββ,t (θ0)] = −H ′(In ⊗B−1′

0 Σ−1
0 )E

[
εtε
′
t ⊗ ex,te′x,t

]
(In ⊗ Σ−1

0 B−1
0 )H +H ′vec(B−1′

0 )vec(B−1′

0 )′H

= −Cov [lβ,t (θ0)] .
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E[lπσ,t (θ0)]: By Lemma B.1(i), E[Ex,t] = 0, and by Lemma C.1(vi), E[εi,tei,xx,t] = −E
[
εi,te

2
i,x,t

]
,

so that

E[lπσ,t (θ0)] = E[xt−1]⊗B−1′

0

[
Σ−2

0 E[Ex,t] + Σ−3
0 E[exx,tEt]

]
= −E[xt−1]⊗B−1′

0 Σ−3
0 E[ex,t(εt � ex,t)′]

= −E[lπ,t (θ0) l′σ,t (θ0)].

E[lβσ,t (θ0)]: Recall that Σ0, exx,t, and Et are diagonal matrices and write lβσ,t (θ0) as

lβσ,t (θ0) = H ′(B−1
0 ⊗B−1′

0 )(ut (π0)⊗
[
Σ−2

0 Ex,t + Σ−3
0 exx,tEt

]
)

= H ′(In ⊗B−1′

0 )(εt ⊗ Ex,t)Σ−2
0 +H ′(In ⊗B−1′

0 )(εt ⊗ exx,tEt)Σ−3
0

= H ′(In ⊗B−1′

0 Σ−1
0 )(εt ⊗ Ex,t)Σ−1

0 +H ′(In ⊗B−1′

0 Σ−1
0 )(εt ⊗ exx,tEt)Σ−2

0

= H ′(In ⊗B−1′

0 Σ−1
0 )
[
(εt ⊗ Ex,t)Σ−1

0 + (εt ⊗ exx,tEt)Σ−2
0

]
.

Thus, using Lemma C.2(ii,iii),

E[lβσ,t (θ0)] = H ′(In ⊗B−1′

0 )E[(εt ⊗ Ex,t)]Σ−2
0 +H ′(In ⊗B−1′

0 )E[(εt ⊗ exx,tEt)]Σ−3
0

= −H ′(In ⊗B−1′

0 )(Σ0 ⊗ In)InΣ−2
0 + 2H ′(In ⊗B−1′

0 )(Σ2
0 ⊗ In)InΣ−3

0

−H ′(In ⊗B−1′

0 )(E[E2
t E

2
x,t]⊗ In)InΣ−3

0

= H ′(In ⊗B−1′

0 )
{
−(Σ0 ⊗ In)In + 2(Σ2

0 ⊗ In)InΣ−1
0 − (E[E2

t E
2
x,t]⊗ In)InΣ−1

0

}
Σ−2

0 ,

where InΣ−1
0 = (Σ−1

0 ⊗ In)In and hence the term in curly brackets can be expressed as

−(Σ0 ⊗ In)In + 2(Σ2
0 ⊗ In)InΣ−1

0 − (E[E2
t E

2
x,t]⊗ In)InΣ−1

0

= −(Σ0 ⊗ In)In + 2(Σ1
0 ⊗ In)In − (Σ−1

0 E[E2
t E

2
x,t]⊗ In)In

= (Σ0 ⊗ In)In − (Σ−1
0 E[E2

t E
2
x,t]⊗ In)In.

On the other hand, note that

Cov [lβ,t (θ0) , lσ,t (θ0)] = H ′(In ⊗B−1′

0 Σ−1
0 )E

[
(εt ⊗ ex,t) (εt � ex,t)′

]
Σ−2

0 −H ′vec(B−1′

0 )σ′0Σ−2
0

= H ′(In ⊗B−1′

0 Σ−1
0 )E

[
(εt ⊗ ex,t) (εt � ex,t)′

]
Σ−2

0 −H ′(In ⊗B−1′

0 )vec(In)σ′0Σ−2
0

= H ′(In ⊗B−1′

0 )
{

(In ⊗ Σ−1
0 )E

[
(εt ⊗ ex,t) (εt � ex,t)′

]
− vec(In)σ′0

}
Σ−2

0 .
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Let’s examine the expression in curly brackets piece by piece:

E
[
(εt ⊗ ex,t) (εt � ex,t)′

]
= E


ι1ε1,te1,x,t (εt � ex,t)′

...

ιnεn,ten,x,t (εt � ex,t)′



=


ι1(E[ε2

1,te
2
1,x,t] σ1,0σ2,0 · · · σ1,0σn,0)

...
...

...
...

ιn(σ1,0σn,0 · · · σn−1,0σn,0 E[ε2
n,te

2
n,x,t])

 ,
(In ⊗ Σ−1

0 )E
[
(εt ⊗ ex,t) (εt � ex,t)′

]
=


Σ−1

0 ι1(E[ε2
1,te

2
1,x,t] σ1,0σ2,0 · · · σ1,0σn,0)

...
...

...
...

Σ−1
0 ιn(σ1,0σn,0 · · · σn−1,0σn,0 E[ε2

n,te
2
n,x,t])



=


ι1(σ−1

1,0E[ε2
1,te

2
1,x,t] σ2,0 · · · σn,0)

...
...

...
...

ιn(σ1,0 · · · σn−1,0 σ−1
n,0E[ε2

n,te
2
n,x,t])

 ,
(In ⊗ Σ−1

0 )E
[
(εt ⊗ ex,t) (εt � ex,t)′

]
− vec(In)σ′0

=


ι1(σ−1

1,0E[ε2
1,te

2
1,x,t] σ2,0 · · · σn,0)

...
...

...
...

ιn(σ1,0 · · · σn−1,0 σ−1
n,0E[ε2

n,te
2
n,x,t])

−

ι1[σ1,0 : σ2,0 : · · · : σn,0]

...

ιn[σ1,0 : σ2,0 : · · · : σn,0]



=


ι1(σ−1

1,0(E[ε2
1,te

2
1,x,t]− σ2

1,0)) 0 · · · 0
...

...
...

...

0 · · · 0 ιn(σ−1
n,0(E[ε2

n,te
2
n,x,t]− σ2

n,0))


= (Σ−1

0 (E[E2
t E

2
x,t]− Σ2

0)⊗ In)In.

These calculations show that E[lβσ,t (θ0)] = −Cov [lβ,t (θ0) , lσ,t (θ0)].

E[lσσ,t (θ0)]: Note that lσσ,t (θ0) is a diagonal matrix with diagonal elements

σ−2
i,0 + 2σ−3

i,0 εi,tei,x,t + σ−4
i,0 ε

2
i,tei,xx,t.

By Lemma B.1(v), E[εi,tei,x,t] = −σi,0. By Lemma C.1(vii), E[ε2
i,tei,xx,t] = 2σ2

i,0 − E
[
ε2
i,te

2
i,x,t

]
.

Thus, the diagonal elements of E[lσσ,t (θ0)] are

σ−2
i,0 − 2σ−2

i,0 + σ−4
i,0 (2σ2

i,0 − E
[
ε2
i,te

2
i,x,t

]
)

= −σ−4
i,0

(
E
[
ε2
i,te

2
i,x,t

]
− σ2

i,0

)
,
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which yields the desired result.

E[lπλ,t (θ0)]: By Lemma C.1(iv), E[exλ,t] = −E[ex,te
′
λ,t], and thus

E[lπλ,t (θ0)] = −E[xt−1]⊗B−1′

0 Σ−1
0 E[exλ,t]

= E[xt−1]⊗B−1′

0 Σ−1
0 E[ex,te

′
λ,t],

establishing the desired result.

E[lβλ,t (θ0)]: Note that

lβλ,t (θ0) = −H ′(In ⊗B−1′

0 Σ−1
0 )(εt ⊗ exλ,t).

By Lemma C.1(v), E[εt ⊗ exλ,t] = −E[εt ⊗ ex,te′λ,t], yielding the desired result.

E[lσλ,t (θ0)]: Note that lσλ,t (θ0) = −Σ−2
0 Etexλ,t, where Etexλ,t is a block diagonal matrix with

diagonal blocks εi,texλi,t. By Lemma C.1(v), E[εi,texλi,t] = −E[εi,tei,x,te
′
i,λi,t

], and thus (also

using Lemma B.1(iii))

E[lσλ,t (θ0)] = −Σ−2
0 E[Etexλ,t] = Σ−2

0 E[(εt � ex,t)e′λ,t] = −E[lσ,t (θ0) l′λ,t (θ0)].

E[lλλ,t (θ0)]: By Lemma C.1(iii) and Lemma B.1(iii)

E[lλλ,t (θ0)] = E[eλλ,t] = −E[eλ,te
′
λ,t] = −Veλ ,

as desired.
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