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Abstract

We propose a new family of easy-to-implement realized volatility based forecasting models.

The models exploit the asymptotic theory for high-frequency realized volatility estimation

to improve the accuracy of the forecasts. By allowing the parameters of the models to vary

explicitly with the (estimated) degree of measurement error, the models exhibit stronger

persistence, and in turn generate more responsive forecasts, when the measurement error

is relatively low. Implementing the new class of models for the S&P500 equity index and

the individual constituents of the Dow Jones Industrial Average, we document significant

improvements in the accuracy of the resulting forecasts compared to the forecasts from some

of the most popular existing models that implicitly ignore the temporal variation in the

magnitude of the realized volatility measurement errors.
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JEL: C22, C51, C53, C58

1. Introduction

Volatility, and volatility forecasting in particular, plays a crucial role in asset pricing and

risk management. Access to accurate volatility forecasts is of the utmost importance for
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many financial market practitioners and regulators. A long list of competing GARCH and

stochastic volatility type formulations have been proposed in the literature for estimating and

forecasting financial market volatility. The latent nature of volatility invariably complicates

implementation of these models. The specific parametric models hitherto proposed in the

literature generally also do not perform well when estimated directly with intraday data,

which is now readily available for many financial assets. To help circumvent these complica-

tions and more effectively exploit the information inherent in high-frequency data, Andersen,

Bollerslev, Diebold, and Labys (2003) suggested the use of reduced form time series forecast-

ing models for the daily so-called realized volatilities constructed from the summation of the

squared high-frequency intraday returns.1

Set against this background, we propose a new family of easy-to-implement volatility

forecasting models. The models directly exploit the asymptotic theory for high-frequency

realized volatility estimation by explicitly allowing the dynamic parameters of the models,

and in turn the forecasts constructed from the models, to vary with the degree of estimation

error in the realized volatility measures.

The realized volatility for most financial assets is a highly persistent process. Ander-

sen, Bollerslev, Diebold, and Labys (2003) originally suggested the use of fractionally in-

tegrated ARFIMA models for characterizing this strong dependency. However, the simple

and easy-to-estimate approximate long-memory HAR (Heterogeneous AR) model of Corsi

(2009) has arguably emerged as the preferred specification for realized volatility based fore-

casting. Empirically, the volatility forecasts constructed from the HAR model, and other

related reduced-form time series models that treat the realized volatility as directly observ-

able, generally perform much better than the forecasts from traditional parametric GARCH

and stochastic volatility models.2

Under certain conditions, realized volatility (RV ) is consistent (as the sampling frequency

goes to zero) for the true latent volatility, however in any given finite sample it is, of course,

subject to measurement error. As such, RV will be equal to the sum of two components:

the true latent Integrated Volatility (IV ) and a measurement error. The dynamic modeling

1The use of realized volatility for accurately measuring the true latent integrated volatility was originally
proposed by Andersen and Bollerslev (1998), and this approach has now become very popular for both mea-
suring, modeling and forecasting volatility; see, e.g., the discussion and many references in the recent survey
by Andersen, Bollerslev, Christoffersen, and Diebold (2013).

2Andersen, Bollerslev, and Meddahi (2004) and Sizova (2011) show how minor model misspecification
can adversely affect the forecasts from tightly parameterized volatility models, thus providing a theoretical
explanation for this superior reduced-form forecast performance.
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of RV for the purposes of forecasting the true latent IV therefore suffers from a classical

errors-in-variables problem. In most situations this leads to what is known as an attenuation

bias, with the directly observable RV process being less persistent than the latent IV process.

The degree to which this occurs obviously depends on the magnitude of the measurement

errors; the greater the variance of the errors, the less persistent the observed process.3

Standard approaches for dealing with errors-in-variables problems treat the variance of

the measurement error as constant through time.4 In contrast, we explicitly take into account

the temporal variation in the errors when modeling the realized volatility, building on the

asymptotic distribution theory for the realized volatility measure developed by Barndorff-

Nielsen and Shephard (2002). Intuitively, on days when the variance of the measurement

error is small, the daily RV provides a stronger signal for next day’s volatility than on days

when the variance is large (with the opposite holding when the measurement error is large).

Our new family of models exploits this heteroskedasticity in the error, by allowing for time-

varying autoregressive parameters that are high when the variance of the realized volatility

error is low, and adjusted downward on days when the variance is high and the signal is

weak. Our adjustments are straightforward to implement and can easily be tailored to any

autoregressive specification for RV . For concreteness, however, we focus our main discussion

on the adaptation to the popular HAR model, which we dub the HARQ model. But, in our

empirical investigation we also consider a number of other specifications and variations of the

basic HARQ model.

Our empirical analysis relies on high-frequency data from 1997-2013 and corresponding

realized volatility measures for the S&P 500 index and the individual constituents of Dow

Jones Industrial Average. By explicitly incorporating the time-varying variance of the mea-

surement errors into the parameterization of the model, the estimated HARQ models exhibit

more persistence in “normal times” and quicker mean reversion in “erratic times” compared

3Alternative realized volatility estimators have been developed byBarndorff-Nielsen, Hansen, Lunde, and
Shephard (2008); Zhang, Mykland, and Aı̈t-Sahalia (2005); Jacod, Li, Mykland, Podolskij, and Vetter (2009)
among others. Forecasting in the presence of microstructure “noise” has also been studied by Aı̈t-Sahalia
and Mancini (2008); Andersen, Bollerslev, and Meddahi (2011); Ghysels and Sinko (2011); Bandi, Russell,
and Yang (2013). The analysis below effectively abstracts from these complications, by considering a coarse
five-minute sampling frequency and using simple RV . We consider some of these alternative estimators in
Section 4.1 below.

4General results for the estimation of autoregressive processes with measurement error are discussed in
Staudenmayer and Buonaccorsi (2005). Hansen and Lunde (2014) have also recently advocated the use of
standard instrumental variable techniques for estimating the persistence of the latent IV process, with the
resulting estimates being significantly more persistent than the estimates for the directly observable RV
process.
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to the standard HAR model with constant autoregressive parameters.5 Applying the HARQ

model in an extensive out-of-sample forecast comparison, we document significant improve-

ments in the accuracy of the forecasts compared to the forecasts from a challenging set of

commonly used benchmark models. Interestingly, the forecasts from the HARQ models are

not just improved in times when the right-hand side RV s are very noisy, and thus contain

little relevant information, but also during tranquil times, when the forecasts benefit from

the higher persistence afforded by the new models. Consistent with the basic intuition, the

HARQ type models also offer the largest gains over the standard models for the assets for

which the temporal variation in the magnitudes of the measurement errors are the highest.

The existing literature related to the dynamic modeling of RV and RV -based forecasting

has largely ignored the issue of measurement errors, and when it has been considered, the er-

rors have typically been treated as homoskedastic. Andersen, Bollerslev, and Meddahi (2011),

for instance, advocate the use of ARMA models as a simple way to account for measurement

errors, while Asai, McAleer, and Medeiros (2012) estimate a series of state-space models for

the observable RV and the latent IV state variable with homoskedastic innovations. The

approach for estimating stochastic volatility models based on realized volatility measures de-

veloped by Dobrev and Szerszen (2010) does incorporate the variance of the realized volatility

error into the estimation of the models, but the parameters of the estimated models are as-

sumed to be constant, and as such the dynamic dependencies and the forecasts from the

models are not directly affected by the temporal variation in the size of the measurement

errors. The motivation for the new family of HARQ models also bears some resemblance

to the GMM estimation framework recently developed by Li and Xiu (2013). The idea of

the paper is also related to the work of Bandi, Russell, and Yang (2013), who advocate the

use of an “optimal,” and possibly time-varying, sampling frequency when implementing RV

measures, as a way to account for heteroskedasticity in the market microstructure “noise.” In

a similar vein, Shephard and Xiu (2014) interpret the magnitude of the parameter estimates

associated with different RV measures in a GARCH-X model as indirect signals about the

quality of the different measures: the lower the parameter estimate, the less smoothing, and

the more accurate and informative the specific RV measure.

The rest of the paper is structured as follows. Section 2 provides the theoretical motivation

5The persistence of the estimated HARQ models at average values for the measurement errors is very
similar to the unconditional estimates based on Hansen and Lunde (2014), and as such also much higher than
the persistence of the standard HAR models. We discuss this further below.
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for the new class of models, together with the results from a small scale simulation study

designed to illustrate the workings of the models. Section 3 reports the results from an

empirical application of the basic HARQ model for forecasting the volatility of the S&P 500

index and the individual constituents of the Dow Jones Industrial Average. Section 4 provides

a series of robustness checks and extensions of the basic HARQ model. Section 5 concludes.

2. Realized Volatility-Based Forecasting and Measurement Errors

2.1. Realized Variance and High-Frequency Distribution Theory

To convey the main idea, consider a single asset for which the price process Pt is deter-

mined by the stochastic differential equation,

d log(Pt) = µtdt+ σtdWt, (1)

where µt and σt denote the drift and the instantaneous volatility processes, respectively, and

Wt is a standard Brownian motion assumed to be independent of σt. For simplicity and ease

of notation, we do not include jumps in this discussion, but the main idea readily extends

to discontinuous price processes, and we investigate this in Section 4 below. Following the

vast realized volatility literature, our aim is to forecast the latent Integrated Variance (IV )

over daily and longer horizons. Specifically, normalizing the unit time interval to a day, the

one-day integrated variance is formally defined by,

IVt =

∫ t

t−1
σ2
sds. (2)

The integrated variance is not directly observable. However, the Realized Variance (RV )

defined by the summation of high-frequency returns,

RVt ≡
M∑
i=1

r2
t,i, (3)

where M = 1/∆, and the ∆-period intraday return is defined by rt,i ≡ log(Pt−1+i∆) −

log(Pt−1+(i−1)∆), provides a consistent estimator as the number of intraday observations

increases, or equivalently ∆→ 0 (see, e.g., Andersen and Bollerslev, 1998).

In practice, data limitations invariably put an upper bound on the value of M . The result-

ing estimation error in RV may be characterized by the asymptotic (for ∆→ 0) distribution
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theory of Barndorff-Nielsen and Shephard (2002),

RVt = IVt + ηt, ηt∼N(0, 2∆IQt), (4)

where IQt ≡
∫ t
t−1 σ

4
sds denotes the Integrated Quarticity (IQ). In parallel, to the integrated

variance, the integrated quarticity may be consistently estimated by the Realized Quarticity

(RQ),

RQt ≡
M

3

M∑
i=1

r4
t,i. (5)

2.2. The ARQ model

The consistency of RV for IV , coupled with the fact that the measurement error is serially

uncorrelated under general conditions, motivate the use of reduced form time series models

for the observable realized volatility as a simple way to forecast the latent integrated volatility

of interest.6

To illustrate, suppose that the dynamic dependencies in IV may be described by an

AR(1) model,

IVt = φ0 + φ1IVt−1 + ut. (6)

If ut and the measurement error ηt are both i.i.d., with variances σ2
u and σ2

η, then it follows

by standard arguments that RV follows an ARMA(1,1) model, with AR-parameter equal to

φ1 and (invertible) MA-parameter equal to,

θ1 =
−σ2

u−(1+φ21)σ2
η+

√
σ4
u+2(1+φ21)σ2

uσ
2
η+(1−φ21)

2
σ4
η

φ1σ2
η

, for σ2
η > 0 and φ1 6= 0. (7)

It is possible to show that θ is increasing (in absolute value) in the variance of the measurement

error, σ2
η, and that θ1 → 0 as σ2

η → 0 or φ1 → 0.

Now suppose that instead of an ARMA(1,1) model, the researcher estimates an approxi-

mate and easy-to-implement AR(1) model for RV ,

IVt + ηt = β0 + β1(IVt−1 + ηt−1) + ut. (8)

6A formal theoretical justification for this approach is provided by Andersen, Bollerslev, Diebold, and
Labys (2003). Further, as shown by Andersen, Bollerslev, and Meddahi (2004), for some of the most popular
stochastic volatility models used in the literature, simple autoregressive models for RV provide close to efficient
forecasts for IV .
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The measurement error on the left hand side is unpredictable, and merely results in an

increase in the standard errors of the parameter estimates. The measurement error on the

right hand side, however, directly affects the parameter β1, and in turn propagates into the

forecasts from the model. Again, assuming for simplicity that ut and ηt are both i.i.d., so

that Cov(RVt, RVt−1) = φ1V ar(IVt) and V ar(RVt) = V ar(IVt) + σ2
η, the population value

for β1 may be expressed as,

β1 = φ1

(
1 +

σ2
η

V ar(IVt)

)−1

. (9)

The estimated autoregressive coefficient for RV will therefore be smaller than the φ1 coeffi-

cient for IV .7 This discrepancy between β1 and φ1 is directly attributable to the well-known

attenuation bias arising from the presence of measurement errors. The degree to which β1 is

attenuated is a direct function of the measurement error variance: if σ2
η = 0, then β1 = φ1,

but if σ2
η is large, then β1 goes to zero and RV is effectively unpredictable.8

The standard expression for β1 in equation (9) is based on the assumption that the

variance of the measurement error is constant. However, from equation (4) the variance

pertaining to the estimation error in RV generally changes through time: there are days

when IQ is low and RV provides a strong signal about the true IV , and days when IQ

is high and the signal is relatively weak. The OLS-based estimate of β1 will effectively be

attenuated by the average of this measurement error variance. As such, the assumption of a

constant AR parameter is suboptimal from a forecasting perspective. Instead, by explicitly

allowing for a time-varying autoregressive parameter, say β1,t, this parameter should be close

to φ1 on days when there is little measurement error, while on days where the measurement

error variance is high, β1,t should be low and the model quickly mean reverting.9

The AR(1) representation for the latent integrated volatility in equation (6) that under-

7The R2 from the regression based on RV will similarly be downward biased compared to the R2 from
the infeasible regression based on the latent IV . Andersen, Bollerslev, and Meddahi (2005) provide a simple
adjustment for this unconditional bias in the R2.

8As previously noted, Hansen and Lunde (2014) propose the use of an instrumental variable procedure for
dealing with this attenuation bias and obtain a consistent estimator of the autoregressive parameters of the
true latent IV process. For forecasting purposes, it is β1 and not φ1 that is the parameter of interest, as the
explanatory variable is the noisy realized variance, not the true integrated variance.

9These same arguments carry over to the θ1 parameter for the ARMA(1,1) model in equation (7) and the
implied persistence as a function of the measurement error variance. Correspondingly, in the GARCH(1,1)
model, in the usual notation of that model, the autoregressive parameter given by α+ β should be constant,
while the values of α and β should change over time so that β is larger (smaller) and α is smaller (larger)
resulting in more (less) smoothing when the variance of the squared return is high (low).
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lies these ideas merely serves as an illustration. Hence, rather than relying directly on the

expression in equation (9) involving the inverse of the measurement error variance, in our

practical implementation we use a more flexible and robust specification in which we allow

the time-varying AR parameter to depend linearly on an estimate of IQ1/2. We term this

specification the ARQ model for short,10

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + ut. (10)

For ease of interpretation, we suggest demeaning RQ1/2 so that the estimate of β1 has the

interpretation of the average autoregressive coefficient, directly comparable to β1 in equation

(8). The simple specification above has the advantage that it can easily be estimated by

standard OLS, so both estimation and forecasting is straightforward and fast. Importantly,

the value of the autoregressive β1,t parameter will vary with the estimated measurement

error variance. (In our additional empirical investigations reported in Section 4.3 below,

we also consider models that allow the intercept, or β0, to vary with RQ.) In particular,

assuming that β1Q < 0 it follows that uninformative days with large measurement errors will

have smaller impact on the forecasts than days where RV is estimated precisely and β1,t is

larger. If RQ is constant over time, the ARQ model reduces to a standard AR(1) model.

Thus, the greater the temporal variation in the measurement error variance, the greater the

expected benefit of modeling and forecasting the volatility with the ARQ model, a prediction

we confirm in our empirical analysis below.

2.3. The HARQ model

The AR(1) model in equation (8) is too simplistic to satisfactorily describe the long-run

dependencies in most realized volatility series. Instead, the Heterogeneous Autoregression

(HAR) model of Corsi (2009) has arguably emerged as the most popular model for daily

realized volatility based forecasting,

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut, (11)

10IQ is notoriously difficult to estimate in finite samples, and its inverse even more so. The use of the
square-root as opposed to the inverse of RQ imbues the formulation with a degree of built-in robustness.
However, we also consider a variety of other estimators and transformations of IQ in the robustness section
below.
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where RVt−j|t−h = 1
h

∑h
i=j RVt−i. The choice of a daily, weekly and monthly lag on the

right-hand-side conveniently captures the approximate long-memory dynamic dependencies

observed in most realized volatility series.

Of course, just like the simple AR(1) model discussed in the previous section, the beta

coefficients in the HAR model are affected by measurement errors in the realized volatilities.

In parallel to the ARQ model, this naturally suggests the following extension of the basic HAR

model that directly adjust the coefficients in proportion to the magnitude of the corresponding

measurement errors,

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + (β2 + β2QRQ
1/2
t−1|t−5)︸ ︷︷ ︸

β2,t

RVt−1|t−5

+ (β3 + β3QRQ
1/2
t−1|t−22)︸ ︷︷ ︸

β3,t

RVt−1|t−22 + ut, (12)

where RQt−1|t−k = 1
k

∑k
j=1RQt−j . Of course, the magnitude of the (normalized) measure-

ment errors in the realized volatilities will generally decrease with the horizon k as the errors

are averaged out, indirectly suggesting that adjusting for the measurement errors in the daily

lagged realized volatilities is likely to prove more important than the adjustments for the

weekly and monthly coefficients. Intuitively, this also means that in the estimation of the

standard HAR model some of the weight will be shifted away from the noisy daily lag to the

“cleaner,” though older, weekly and monthly lags that are less prone to measurement errors.

To directly illustrate how the measurement errors manifest over different sampling fre-

quencies and horizons, Figure 1 plots the simulated RV measurement errors based on ten,

five, and one-“minute” sampling (M = 39, 78, 390) and horizons ranging from “daily,” to

“weekly,” to “monthly” (k = 1, 5, 22); the exact setup of the simulations are discussed in

more detail in Section 2.4 and Appendix A. To facilitate comparison across the different

values of M and k, we plot the distribution of RV/IV − 1, so that a value of 0.5 may be

interpreted as an estimate that is 50% higher than the true IV . Even with an observation

every minute (M = 390), the estimation error in the daily (k = 1) simulated RV can still be

quite substantial. The measurement error variance for the weekly and monthly (normalized)

RV are, as expected, much smaller and approximately 1/5 and 1/22 that of the daily RV .

Thus, the attenuation bias in the standard HAR model will be much less severe for the weekly

and monthly coefficients.

9



Figure 1: Estimation Error of RV
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Note: The figure shows the simulated distribution of RV/IV − 1. The top, middle and bottom

panels show the results for M = 39, 78, and 390, respectively, while the left, middle and right panels

show the results for daily, weekly, and monthly forecast horizons, respectively.

Motivated by these observations, coupled with the difficulties in precisely estimating the

βQ adjustment parameters, we will focus our main empirical investigations on the simplified

version of the model in equation (12) that only allows the coefficient on the daily lagged RV

to vary as a function of RQ1/2,

RVt = β0 + (β1 + β1QRQ
1/2
t−1)︸ ︷︷ ︸

β1,t

RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut. (13)

We will refer to this model as the HARQ model for short, and the model in equation (12)

that allows all of the parameters to vary with an estimate of the measurement error variance

as the “full HARQ” model, or HARQ-F.

To illustrate the intuition and inner workings of the HARQ model, Figure 2 plots the HAR

and HARQ model estimates for the S&P 500 for ten consecutive trading days in October

2008; further details concerning the data are provided in the empirical section below. The

left panel shows the estimated RV along with 95% confidence bands based in the asymptotic

approximation in (4). One day in particular stands out: on Friday, October 10 the realized

volatility was substantially higher than for any of the other ten days, and importantly, also

10



Figure 2: HAR vs. HARQ
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Note: The figure illustrates the HARQ model for ten successive trading days. The left-panel shows

the estimated RV s with 95% confidence bands based on the estimated RQ. The middle panel shows

the β1,t estimates from the HARQ model, together with the estimate of β1 from the standard HAR

model. The right panel shows the resulting one-day-ahead RV forecasts from the HAR and HARQ

models.

far less precisely estimated, as evidenced by the wider confidence bands.11. The middle panel

shows the resulting β1 and β1,t parameter estimates. The level of β1,t from the HARQ model

is around 0.5 on “normal” days, more than double that of β1 of just slightly above 0.2 from

the standard HAR model. However, on the days when RV is estimated imprecisely, β1,t can

be much lower, as illustrated by the precipitously drop to less than 0.1 on October 10, as well

as the smaller drop on October 16. The rightmost panel shows the effect that this temporal

variation in β1,t has on the one-day-ahead forecasts from the HARQ model. In contrast to the

HAR model, where the high RV on October 10 leads to an increase in the fitted value for the

next day, the HARQ model actually forecasts a lower value than the day before. Compared

to the standard HAR model, the HARQ model allows for higher average persistence, together

with forecasts closer to the unconditional volatility when the lagged RV is less informative.

2.4. Simulation Study

To further illustrate the workings of the HARQ model, this section presents the results

from a small simulation study. We begin by demonstrating non-trivial improvements in the

in-sample fits from the ARQ and HARQ models compared to the standard AR and HAR

models. We then then show how these improved in-sample fits translates into superior out-of-

11October 10 was marked by a steep loss in the first few minutes of trading followed by a rise into positive
territory and a subsequent decline, with all of the major indexes closing down just slightly for the day, including
the S&P 500 which fell by 1.2%.
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sample forecasts. Finally, we demonstrate how these improvements may be attributed to the

increased average persistence of the estimated ARQ and HARQ models obtained by shifting

the weights of the lags to more recent observations.

Our simulations are based on the two-factor stochastic volatility diffusion with noise pre-

viously analyzed by Huang and Tauchen (2005), Gonçalves and Meddahi (2009) and Patton

(2011), among others. Details about the exact specification of the model and the parame-

ter values used in the simulation are given in Appendix A. We report the results based on

M = 39, 78, 390 “intraday” return observations, corresponding to ten, five, and one-“minute”

sampling frequencies. We consider five different forecasting models: AR, HAR, ARQ, HARQ

and HARQ-F. The AR and HAR models help gauge the magnitude of the improvements

that may realistically be expected in practice. All of the models are estimated by OLS based

on T = 1, 000 simulated “daily” observations. Consistent with the OLS estimation of the

models, we rely on a standard MSE measure to assess the in-sample fits,

MSE(RVt, Xt) ≡ (RVt −Xt)
2,

where Xt refers to the fit from any one of the different models. We also calculate one-day-

ahead out-of-sample forecasts from all of the models. For the out-of-sample comparisons we

consider both the MSE(RVt, Ft), and the QLIKE loss,

QLIKE(RVt, Ft) ≡
RVt
Ft
− log

(
RVt
Ft

)
− 1,

where Ft refers to the one-day-ahead forecasts from the different models.12 To facilitate di-

rect comparisons of the in- and out-of-sample results, we rely on a rolling window of 1,000

observations for the one-step-ahead forecasts and use these same 1,000 forecasted observa-

tions for the in-sample estimation. All of the reported simulation results are based on 1,000

replications.

Table 1 summarizes the key findings. To make the relative gains stand out more clearly,

we standardize the relevant loss measures in each of the separate panels by the loss of the

HAR model. As expected, the ARQ model systematically improves on the AR model, and

the HARQ model similarly improves on the HAR model. This holds true both in- and out-

12Very similar out-of-sample results and rankings of the different models are obtained for the MSE and
QLIKE defined relative to the true latent integrated volatility within the simulations; i.e., MSE(IVt, Ft) and
QLIKE(IVt, Ft), respectively.
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Table 1: Simulation Results

AR HAR ARQ HARQ HARQ-F

M In-Sample MSE

39 1.0291 1.0000 0.9980 0.9773 0.9718
78 1.0285 1.0000 0.9996 0.9791 0.9735
390 1.0277 1.0000 1.0064 0.9851 0.9793

Out-of-Sample MSE

39 1.0438 1.0000 1.0166 0.9878 0.9900
78 1.0425 1.0000 1.0188 0.9901 0.9920
390 1.0413 1.0000 1.0268 0.9968 0.9985

Out-of-Sample QLIKE

39 1.0893 1.0000 1.0258 0.9680 0.9850
78 1.0881 1.0000 1.0186 0.9644 0.9821
390 1.0841 1.0000 1.0187 0.9678 0.9859

Persistence

39 0.4303 0.6593 0.6552 0.8132 0.9200
78 0.4568 0.6736 0.6876 0.8328 0.9449
390 0.4739 0.6803 0.6913 0.8297 0.9621

Mean Lag

39 5.6598 4.2410 4.6956
78 5.4963 4.1026 4.5968
390 5.3685 4.1196 4.6530

Note: The table reports the MSE and QLIKE losses for the different approximate
models. The average losses are standardized by the loss of the HAR model. The bot-
tom panel reports the average estimated persistence and mean lag across the different
models. The two-factor stochastic volatility model and the exact design underlying
the simulations are further described in the Appendix.

of-sample. The difficulties in accurately estimating the additional adjustment parameters

for the weekly and monthly lags in the HARQ-F model manifest in this model generally

not performing as well out-of-sample as the simpler HARQ model that only adjusts for the

measurement error in the daily realized volatility. Also, the improvements afforded by the

(H)ARQ models are decreasing in M , as more high-frequency observations help reduce the

magnitude of the measurement errors, and thus reduce the gains from exploiting them.

Figure 3 further highlights this point. The figure plots the simulated quantiles of the ratio

distribution of the HARQ to HAR models for different values of M . Each line represents one

quantile, ranging from 5% to 95% in 5% increments. For all criteria, in- and out-of-sample

MSE and out-of-sample QLIKE, the loss ratio shows a U-shaped pattern, with the gains of

the HARQ model relative to the standard HAR model maximized somewhere between 2- and

10-“minute” sampling. When M is very large, the measurement error decreases and the gains

13



Figure 3: Distribution of HARQ/HAR ratio
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Note: The figures depicts the quantiles ranging from 0.05 to 0.95 in increments of 0.05 for the simulated

MSE and QLIKE loss ratios for the HARQ model relative to the standard HAR model. The horizontal

axis shows the number of observations used to estimate RV , ranging from 13 to 390 per “day.”

from using information on the magnitude of the error diminishes. When M is very small,

estimating the measurement error variance by RQ becomes increasingly more difficult and

the adjustments in turn less accurate. As such, the adjustments that motivate the HARQ

model are likely to work best in environments where there is non-negligible measurement

error in RV , and the estimation of this measurement error via RQ is at least somewhat

reliable. Whether this holds in practice is an empirical question, and one that we study in

great detail in the next section.

The second half of Table 1 reports the persistence for all of the models defined by the

estimates of β1 +β2 +β3, as well as the mean lags for the HAR, HARQ and HARQ-F models.

In the HAR models, the weight on the first lag equals b1 = β1 + β2/5 + β3/22, on the second

lag b2 = β2/5 + β3/22, on the sixth lag b6 = β3/22, and so forth, so that these mean lags

are easily computed as 22
∑22

i=1 ibi/
∑22

i=1 bi. For the HARQ models, this corresponds to the

mean lag at the average measurement error variance. The mean lag gives an indication of the

location of the lag weights. The lower the mean lag, the greater the weight on more recent

RV s.

The results confirm that at the mean measurement error variance, the HARQ model is

far more persistent than the standard HAR model. As M increases, and the measurement

error decreases, the gap between the models narrows. However, the persistence of the HARQ

model is systematically higher, and importantly, much more stable across the different values

of M . As M increases and the measurement error decreases, the loading on RQ diminishes,

but this changes little in terms of the persistence of the underlying latent process that is
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being approximated by the HARQ model.13 The result pertaining to the mean lags reported

in the bottom panel further corroborates the idea that on average, the HARQ model assigns

more weight to more recent RV s than the does the standard HAR model.

3. Modeling and Forecasting Equity Return Volatility

3.1. Data

We focus our empirical investigations on the S&P 500 aggregate market index. High-

frequency futures prices for the index are obtained from Tick Data Inc. We complement our

analysis of the aggregate market with additional results for the 27 Dow Jones Constituents

as of September 20, 2013 that traded continuously from the start to the end of our sample.

Data on these individual stocks comes from the TAQ database. Our sample starts on April

21, 1997, one thousand trading days (the length of our estimation window) before the final

decimalization of NASDAQ on April 9, 2001. The sample for the S&P 500 ends on August

30, 2013, while the sample for the individual stocks ends on December 31, 2013, yielding a

total of 3,096 observations for the S&P 500 and 3,202 observations for the DJIA constituents.

The first 1,000 days are only used to estimate the models, so that the in-sample estimation

results and the rolling out-of-sample forecasts are all based on the same samples.

Table 2 provides a standard set of summary statistics for the daily realized volatilities.

Following common practice in the literature, all of the RV s are based on five-minute returns.14

In addition to the usual summary measures, we also report the first order autocorrelation

corresponding to β1 in equation (8), the instrumental variable estimator of Hansen and Lunde

(2014) denoted AR-HL, and the estimate of β1 from the ARQ model in equation (10) cor-

responding to the autoregressive parameter at the average measurement error variance. The

AR-HL estimates are all much larger than the standard AR estimates, directly highlighting

the importance of measurement errors. By exploiting the heteroskedasticity in the measure-

ment errors, the ARQ model allows for far greater persistence on average than the standard

AR model, bridging most of the gap between the AR and AR-HL estimates.

13Interestingly, the HARQ-F model is even more persistent. This may be fully attributed to an increase
in the monthly lag parameter, combined with a relatively high loading on the interaction of the monthly RV
and RQ.

14Liu, Patton, and Sheppard (2015) provide a recent discussion and empirical justification for this common
choice. In some of the additional results discussed below, we also consider other sampling frequencies and RV
estimators. Our main empirical findings remain intact to these other choices.
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Table 2: Summary Statistics

Company Symbol Min Mean Median Max AR AR-HL ARQ

S&P 500 0.043 1.175 0.629 60.563 0.651 0.953 0.983

Microsoft MSFT 0.166 3.087 1.824 59.164 0.718 0.952 0.889
Coca-Cola KO 0.049 2.011 1.154 54.883 0.618 0.949 0.834
DuPont DD 0.093 3.327 2.165 81.721 0.707 0.950 0.956
ExxonMobil XOM 0.114 2.348 1.476 130.667 0.668 0.947 0.997
General Electric GE 0.131 3.440 1.794 173.223 0.681 0.915 0.987
IBM IBM 0.115 2.464 1.340 72.789 0.657 0.959 0.890
Chevron CVX 0.105 2.286 1.483 139.984 0.653 0.966 0.954
United Technologies UTX 0.126 2.793 1.658 92.105 0.648 0.943 0.883
Procter & Gamble PG 0.085 2.007 1.064 80.124 0.587 0.866 0.786
Caterpillar CAT 0.207 3.810 2.401 127.119 0.727 0.954 0.896
Boeing BA 0.167 3.371 2.147 79.760 0.630 0.936 0.822
Pfizer PFE 0.176 2.822 1.809 60.302 0.570 0.933 0.837
Johnson & Johnson JNJ 0.062 1.680 0.999 58.338 0.613 0.946 0.933
3M MMM 0.140 2.278 1.358 123.197 0.495 0.952 0.748
Merck MRK 0.127 2.758 1.718 223.723 0.372 0.913 0.708
Walt Disney DIS 0.135 3.641 2.030 129.661 0.629 0.916 0.772
McDonald’s MCD 0.090 2.678 1.680 130.103 0.390 0.937 0.672
JPMorgan Chase JPM 0.114 5.420 2.552 261.459 0.716 0.832 0.940
Wal-Mart WMT 0.148 2.761 1.443 114.639 0.611 0.925 0.810
Nike NKE 0.192 3.431 1.980 84.338 0.581 0.943 0.785
American Express AXP 0.088 4.603 2.184 290.338 0.602 0.948 0.949
Intel INTC 0.208 4.654 2.674 89.735 0.731 0.949 0.968
Travelers TRV 0.098 3.579 1.637 273.579 0.646 0.933 0.915
Verizon VZ 0.145 2.788 1.637 99.821 0.646 0.952 0.859
The Home Depot HD 0.171 3.798 2.161 133.855 0.633 0.946 0.992
Cisco Systems CSCO 0.234 5.120 2.742 96.212 0.715 0.939 0.942
UnitedHealth Group UNH 0.222 4.145 2.304 169.815 0.616 0.920 0.846

Note: The table provides summary statistics for the daily RV s for each of the series. The column
labeled AR reports the standard first order autocorrelation coefficients, the column labeled AR-HL gives
the instrumental variable estimator of Hansen and Lunde (2014), while β1 refers to the corresponding
estimates from the ARQ model in equation (10)

.

3.2. In-Sample Estimation Results

We begin by considering the full in-sample results. The top panel in Table 3 reports

the parameter estimates for the S&P 500, with robust standard errors in parentheses, for

the benchmark AR and HAR models, together with the ARQ, HARQ and HARQ-F models.

For comparison purposes, we also include the AR-HL estimates, even though they were never

intended to be used for forecasting purposes. The second and third panel report the R2, MSE

and QLIKE for the S&P500, and the average of those three statistics across the 27 DJIA

individual stocks. Further details about the model parameter estimates for the individual

stocks are available in Appendix A.

As expected, all of the β1Q coefficients are negative and strongly statistically significant.
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Table 3: In-Sample Estimation Results

AR HAR AR-HL ARQ HARQ HARQ-F

β0 0.4109 0.1123 0.0892 -0.0098 -0.0187
(0.1045) (0.0615) (0.0666) (0.0617) (0.0573)

β1 0.6508 0.2273 0.9529 0.9830 0.6021 0.5725
(0.1018) (0.1104) (0.0073) (0.0782) (0.0851) (0.0775)

β2 0.4903 0.3586 0.4368
(0.1352) (0.1284) (0.1755)

β3 0.1864 0.0976 0.0509
(0.1100) (0.1052) (0.1447)

β1Q -0.5139 -0.3602 -0.3390
(0.0708) (0.0637) (0.0730)

β2Q -0.1406
(0.3301)

β3Q 0.0856
(0.3416)

R2 0.4235 0.5224 0.3323 0.5263 0.5624 0.5628
MSE 3.1049 2.5722 3.5964 2.5512 2.3570 2.3546
QLIKE 0.2111 0.1438 0.1586 0.1530 0.1358 0.1380

R
2

Stocks 0.3975 0.4852 0.2935 0.4676 0.5090 0.5139

MSE Stocks 17.4559 14.9845 20.0886 15.2782 14.1702 14.0154

QLIKE Stocks 0.2095 0.1496 0.1759 0.1804 0.1470 0.1547

Note: The table provides in-sample parameter estimates and measures of fit for the various
benchmark and (H)ARQ models. The top two panels report the actual parameter estimates
for the S&P500 with robust standard errors in parentheses, together with the R2s, MSE and
QLIKE losses from the regressions. The bottom panel summarizes the in-sample losses for
the different models averaged across all of the individual stocks.

This is consistent with the simple intuition that as the measurement error and the current

value of RQ increases, the informativeness of the current RV for future RV s decreases, and

therefore the β1,t coefficient on the current RV decreases towards zero. Directly comparing

the AR coefficient to the autoregressive parameter in the ARQ model also reveals a marked

difference in the estimated persistence of the models. By failing to take into account the time-

varying nature of the informativeness of the RV measures, the estimated AR coefficients are

sharply attenuated.

The findings for the HARQ model are slightly more subtle. Comparing the HAR model

with the HARQ model, the HAR places greater weight on the weekly and monthly lags,

which are less prone to measurement errors than the daily lag, but also further in the past.

These increased weights on the weekly and monthly lags hold true for the S&P500 index,

and for every single individual stock in the sample. By taking into account the time-varying

nature of the measurement error in the daily RV , the HARQ model assigns a greater average

weight to the daily lag, while down-weighting the daily lag when the measurement error is
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large. The HARQ-F model parameters differ slightly from the HARQ model parameters, as

the weekly and monthly lags are now also allowed to vary. However, the estimates for β2Q

and β3Q are not statistically significant, and the improvement in the in-sample fit compared

to the HARQ model is minimal.

To further corroborate the conjecture that the superior performance of the HARQ model

is directly attributable to the measurement error adjustments, we also calculated the mean

lags implied by the HAR and HARQ models estimated with less accurate realized volatilities

based on coarser sampled 10- and 15-minute intraday returns. Consistent with the basic

intuition of the measurement errors on average pushing the weights further in the past, the

mean lags are systematically lower for the models that rely on the more finely sampled RV s.

For instance, the average mean lag across all of the individual stocks for the HAR models

equal 5.364, 5.262 and 5.003 for 15-, 10- and 5-minute RV s, respectively. As the measurement

error decreases, the shorter lags become more accurate and informative for the predictions.

By comparison, the average mean lag across all of the stocks for the HARQ models equal

4.063, 3.877 and 3.543 for 15-, 10- and 5-minute RV s, respectively. Thus, on average the

HARQ models always assign more weight to the more recent RV s than the standard HAR

models, and generally allow for a more rapid response, except, of course, when the signal is

poor.

3.3. Out-of-Sample Forecast Results

Many other extensions of the standard HAR model have been proposed in the literature.

To help assess the forecasting performance of the HARQ model more broadly, in addition

to the basic AR and HAR models considered above, we therefore also consider the forecasts

from three alternative popular HAR type formulations.

Specifically, following Andersen, Bollerslev, and Diebold (2007) we include both the the

HAR-with-Jumps (HAR-J) and the Continuous-HAR (CHAR) models in our forecast com-

parisons. Both of these models rely on a decomposition of the total variation into a continuous

and a discontinuous (jump) part. This decomposition is most commonly implemented using

the Bi-Power Variation (BPV ) measure of Barndorff-Nielsen and Shephard (2004b), which

affords a consistent estimate of the continuous variation in the presence of jumps. The HAR-J

model, in particular, includes a measure of the jump variation as an additional explanatory

variable in the standard HAR model,

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + βJJt−1 + ut, (14)
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where Jt ≡ max[RVt −BPVt, 0], and the BPV measure is defined as,

BPVt ≡ µ−2
1

M−1∑
i=1

|rt,i||rt+1,i|, (15)

with µ1 =
√

2/π = E(|Z|), and Z a standard normally distributed random variable. Em-

pirically, the jump component has typically been found to be largely unpredictable. This

motivates the alternative CHAR model, which only includes measures of the continuous vari-

ation on the right hand side,

RVt = β0 + β1BPVt−1 + β2BPVt−1|t−5 + β3BPVt−1|t−22 + ut. (16)

Several empirical studies have documented that the HAR-J and CHAR models often perform

(slightly) better than the standard HAR model.

Meanwhile, Patton and Sheppard (2015) have recently argued that a Semivariance-HAR

(SHAR) model sometimes performs even better than the HAR-J and CHAR models. Build-

ing on the semi-variation measures of Barndorff-Nielsen, Kinnebrock, and Shephard (2010),

the SHAR model decomposes the total variation in the standard HAR model into the

variation due to negative and positive intraday returns, respectively. In particular, let

RV −t ≡
∑M

i=1 r
2
t,iI{rt,i<0} and RV +

t ≡
∑M

i=1 r
2
t,iI{rt,i>0}, the SHAR model is then defined

as:

RVt = β0 + β+
1 RV

+
t−1 + β−1 RV

−
t−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut. (17)

Like the HARQ models, the HAR-J, CHAR and SHAR models are all easy to estimate and

implement.

We focus our discussion on the one-day-ahead forecasts for the S&P500 index starting on

April 9, 2001 through the end of the sample. However, we also present summary results for

the 27 individual stocks, with additional details available in Appendix A. The forecast are

based on re-estimating the parameters of the different models each day with a fixed length

Rolling Window (RW ) comprised of the previous 1,000 days, as well as an Increasing Window

(IW ) using all of the available observations. The sample sizes for the increasing window for

the S&P500 thus range from 1,000 to 3,201 days.

The average MSE and QLIKE for the S&P500 index are reported in the top panel in
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Table 4: Out-of-Sample Forecast Losses

AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

S&P 500

MSE RW 0.9166 1.0000 0.9176 0.9583 0.8375 0.8115 0.8266 0.9750
IW 1.2315 1.0000 0.9676 0.9707 0.9012 0.9587 0.8944 0.9312

QLIKE RW 1.4559 1.0000 1.0062 1.0124 0.9375 0.9570 0.9464 0.9934
IW 1.7216 1.0000 0.9716 0.9829 0.8718 1.1845 0.8809 0.8686

Individual Stocks

MSE RW Avg 1.1505 1.0000 1.0151 1.0080 1.0083 0.9659 0.9349 1.0149
Med 1.1730 1.0000 1.0115 1.0158 1.0020 0.9864 0.9418 1.0263

IW Avg 1.2130 1.0000 1.0040 1.0013 0.9947 1.0371 0.9525 1.0071
Med 1.2161 1.0000 1.0028 1.0010 0.9968 1.0396 0.9525 0.9660

QLIKE RW Avg 1.4204 1.0000 1.0018 0.9999 0.9902 1.1498 0.9902 1.1516
Med 1.4044 1.0000 0.9976 1.0025 0.9941 1.1781 0.9916 1.1051

IW Avg 1.5803 1.0000 0.9930 1.0148 0.9829 1.2024 0.9487 0.9843
Med 1.5565 1.0000 0.9959 1.0163 0.9887 1.1732 0.9550 0.9630

Note: The table reports the ratio of the losses for the different models relative to the losses of the HAR
model. The top panel shows the results for the S&P500. The bottom panel reports the average and median
loss ratios across all of the individual stocks. The lowest ratio in each row is highlighted in bold.

Table 4, with the results for the individual stocks summarized in the bottom panel.15,16 The

results for S&P500 index are somewhat mixed, with each of the three “Q” models performing

the best for one of the loss functions/window lengths combinations, and the remaining case

being won by the SHAR model. The lower panel pertaining to the individual stocks reveals

a much cleaner picture: across both loss functions and both window lengths, the HARQ

model systematically exhibits the lowest average and median loss. The HARQ-F model fails

to improve on the HAR model, again reflecting the difficulties in accurately estimating the

weekly and monthly adjustment parameters. Interestingly, and in contrast to the results for

the S&P 500, the CHAR, HAR-J and SHAR models generally perform only around as well

as the standard HAR model for the individual stocks.

In order to formally test whether the HARQ model significantly outperforms all of the

other models, we use a modification of the Reality Check (RC) of White (2000). The standard

RC test determines whether the loss from the best model from a set of competitor models

is significantly lower than a given benchmark. Instead, we want to test whether the loss of

15Due to the estimation errors in RQ, the HARQ models may on are occasions produce implausibly large or
small forecasts. Thus, to make our forecast analysis more realistic, we apply an “insanity filter” to the forecasts;
see, e.g., Swanson and White (1997). If a forecast is outside the range of values of the target variable observed
in the estimation period, the forecast is replaced by the unconditional mean over that period: “insanity” is
replaced by “ignorance.” This same filter is applied to all of the benchmark models. In practice this trims
fewer than 0.1% of the forecasts for any of the series, and none for many.

16Surprisingly, the rolling window forecasts provided by the AR model have lower average MSE than the
HAR model. However, in that same setting the ARQ model also beats the HARQ model.
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a given model (HARQ) is lower than that from the best model among a set of benchmark

models. As such, we adjust the hypotheses accordingly, testing

H0 : min
k=1,...,K

E[Lk(RV,X)− L0(RV,X)] ≤ 0,

versus

HA : min
k=1,...,K

E[Lk(RV,X)− L0(RV,X)] > 0,

where L0 denotes the loss of the HARQ model, and Lk, k = 1, ...,K refers to the loss from

all of the other benchmark models. A rejection of the null therefore implies that the loss

of the HARQ model is significantly lower than all benchmark models. As suggested by

White (2000), we implement the Reality Check using the stationary bootstrap of Politis and

Romano (1994) with 999 re-samplings and an average block length of five. (The results are

not sensitive to this choice of block-length.)

For the S&P500 index, the null hypothesis is rejected at the 10% level for the MSE loss

with a p-value of 0.063, but not for QLIKE where the p-value equals 0.871. For the individual

stocks, we reject the null in favor of the HARQ model under the MSE loss for 44% (63%) of

stocks at the 5% (10%) significance level, respectively, and for 30% (37%) of the stocks under

QLIKE loss. On the other hand, none of the benchmark models significantly outperforms

the other models for more than one of the stocks. We thus conclude that for a large fraction

of the stocks, the HARQ model significantly beats a challenging set of benchmark models

commonly used in the literature.

3.4. Dissecting the Superior Performance of the HARQ Model

Our argument as to why the HARQ model improves on the familiar HAR model hinges

on the model’s ability to place a larger weight on the lagged daily RV on days when RV

is measured relatively accurately (RQ is low), and to reduce the weight on days when RV

is measured relatively poorly (RQ is high). At the same time, RV is generally harder to

measure when it is high, making RV and RQ positively correlated. Moreover, days when

RV is high often coincide with days that contain jumps. Thus, to help alleviate concerns

that the improvements afforded by the HARQ model are primarily attributable to jumps, we

next provide evidence that the model works differently from any of the previously considered

models that explicitly allow for distinct dynamic dependencies in the jumps. Consistent with

the basic intuition underlying the model, we demonstrate that the HARQ model achieves
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Figure 4: Individual Stock Loss Ratios
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Note: The graph plots the rolling window forecast MSE and QLIKE loss ratios of the HARQ model to

the HAR model against the standard deviation of RQ (StDev(RQ)) for each of the individual stocks.

the greatest forecast improvements in environments where the measurement error is highly

heteroskedastic. In particular, in an effort to dissect the forecasting results in Table 4, Table 5

further breaks down the results in the previous table into forecasts for days when the previous

day’s RQ was very high (Top 5% RQ) and the rest of the sample (Bottom 95% RQ). As

this breakdown shows, the superior performance of the HARQ model isn’t merely driven

by adjusting the coefficients when RQ is high. On the contrary, most of the gains in the

QLIKE loss for the individual stocks appear to come from “normal” days and the increased

persistence afforded by the HARQ model on those days. The results for the HARQ-F model

underscores the difficulties in accurately estimating all of the parameters for that model, with

the poor performance mostly stemming from the high RQ forecast days. These results also

demonstrate that the HARQ model is distinctly different from the benchmark models. The

CHAR and HAR-J models primarily show improvements on “high” RQ days, whereas most

of the SHAR model’s improvements occur for the quieter “normal” days.

If the measurement error variance is constant over time, the HARQ model reduces to

the standard HAR model. Correspondingly, it is natural to expect that the HARQ model

offers the greatest improvements when the measurement error is highly heteroskedastic. The

results in Figure 4 corroborates this idea. The figure plots the MSE and QLIKE loss ratio of

the HARQ model relative to the HAR model for the rolling window (RW) forecasts against

the standard deviation of RQ (StDev(RQ)) for each of the 27 individual stocks. Although

StDev(RQ) provides a very noisy proxy, there is obviously a negative relation between the

improvements afforded by the HARQ model and the heteroskedasticity in the measurement
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Table 5: Stratified Out-of-Sample Forecast Losses

AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F

Bottom 95% RQt

S&P 500

MSE RW 1.0745 1.0000 0.9874 0.9629 0.9038 0.9202 0.8997 0.9419
IW 1.1566 1.0000 0.9777 0.9745 0.9139 0.9697 0.9051 0.9116

QLIKE RW 1.5431 1.0000 1.0040 1.0252 0.9298 1.1146 1.0145 1.2032
IW 1.7730 1.0000 0.9718 0.9849 0.8620 1.2025 0.8730 0.8575

Individual Stocks

MSE RW Avg 1.2081 1.0000 0.9939 1.0044 0.9869 1.0324 0.9557 0.9928
Med 1.1987 1.0000 0.9957 1.0034 0.9915 1.0459 0.9693 0.9802

IW Avg 1.2823 1.0000 0.9944 1.0053 0.9865 1.0814 0.9633 0.9581
Med 1.2114 1.0000 0.9971 1.0067 0.9937 1.0675 0.9697 0.9684

QLIKE RW Avg 1.4379 1.0000 0.9962 1.0067 0.9888 1.1309 0.9787 1.1212
Med 1.4399 1.0000 0.9958 1.0127 0.9934 1.1180 0.9820 1.0673

IW Avg 1.6204 1.0000 0.9979 1.0257 0.9787 1.1920 0.9353 0.9639
Med 1.5941 1.0000 0.9995 1.0258 0.9833 1.1616 0.9395 0.9532

Top 5% RQt

S&P 500

MSE RW 0.8992 1.0000 0.9099 0.9578 0.8302 0.7995 0.8186 0.7789
IW 1.2410 1.0000 0.9663 0.9702 0.8995 0.9573 0.8930 0.9337

QLIKE RW 1.4311 1.0000 1.0615 0.9869 1.0049 1.2250 1.0310 1.2755
IW 1.3650 1.0000 0.9703 0.9691 0.9397 1.0594 0.9357 0.9456

Individual Stocks

MSE RW Avg 1.1426 1.0000 1.0228 1.0112 1.0163 0.9461 0.9268 1.0222
Med 1.1591 1.0000 1.0212 1.0175 1.0073 0.9614 0.9217 1.0383

IW Avg 1.1933 1.0000 1.0053 0.9981 0.9983 1.0243 0.9476 1.0124
Med 1.1984 1.0000 1.0052 1.0007 0.9979 1.0417 0.9479 0.9677

QLIKE RW Avg 1.3380 1.0000 1.0308 0.9633 1.0056 1.3161 1.0916 1.3535
Med 1.3408 1.0000 0.9998 0.9377 1.0097 1.3052 1.0846 1.3250

IW Avg 1.3112 1.0000 0.9564 0.9350 1.0130 1.2864 1.0464 1.1301
Med 1.3049 1.0000 0.9636 0.9371 1.0111 1.2186 1.0180 1.0045

Note: The table reports the same loss ratios given in Table 4 stratified according to RQ. The bottom panel
shows the ratios for days following a value of RQ in the top 5%. The top panel shows the results for the
remaining 95% of the days. The lowest ratio in each rows is indicated in bold.

error variance. This is true for both of the loss ratios, but especially so for the QLIKE loss.17

3.5. Longer Forecast Horizons

Our analysis up until now has focused on forecasting daily volatility. In this section, we

extend the analysis to longer weekly and monthly horizons. Our forecast will be based on

17These same negative relations between the average gains afforded by the HARQ model and the magnitude
of the heteroskedasticity in the measurement error variance hold true for the increasing window (IW) based
forecasts as well.
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direct projection, in which we replace the daily RV s on the left-hand-side of the different

models with the weekly and monthly RV s.

Our previous findings indicate that for the one-day forecasts, the daily lag is generally the

most important and receives by far the largest weight in the estimated HARQ models. Antic-

ipating our results, when forecasting the weekly RV the weekly lag increases in importance,

and similarly when forecasting the monthly RV the monthly lag becomes relatively more

important. As such, allowing only a time-varying parameter for the daily lag may be sub-

optimal for the longer-run forecasts. Hence, in addition to the HARQ and HARQ-F models

previously analyzed, we also consider a model in which we only adjust the lag corresponding

to the specific forecast horizon. We term this model the HARQ-h model. Specifically, for the

weekly and monthly forecasts analyzed here,

RVt+5|t = β0 + β1RVt−1 + (β2 + β2QRQ
1/2
t−1|t−5)︸ ︷︷ ︸

β2,t

RVt−1|t−5 + β3RVt−1|t−22 + ut (18)

and

RVt+22|t = β0 + β1RVt−1 + β2RVt−1|t−5 + ut,+ (β3 + β3QRQ
1/2
t−1|t−22)︸ ︷︷ ︸

β3,t

RVt−1|t−22 + ut, (19)

respectively. Note that for the daily horizon, the HARQ and HARQ-h models coincide. Table

6 reports the in-sample parameter estimates for the S&P 500 index for each of the different

specifications. The general pattern is very similar to that reported in Table 3. Compared

to the standard HAR model, the HARQ model always shifts the weights to the shorter lags.

Correspondingly, the HARQ-h model shifts most of the weight to the lag that is allowed to be

time-varying. Meanwhile, the HARQ-F model increases the relative weight of the daily and

weekly lags, while reducing the weight on the monthly lag, with the estimates for β1,t and

β2,t both statistically significant and negative. The mean lags reported in the bottom panel

also shows, that aside from the monthly HARQ-22 model, all of the HARQ specifications on

average assign more weight to the more immediate and shorter lags than do the standard

HAR models. The estimated HARQ-F models have the shortest mean lags among all of the

models.

Turning to the out-of-sample forecast results for the weekly and monthly horizons reported

in Tables 7 and 8, respectively, the CHAR and HAR-J benchmark models now both struggle
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Table 6: In-Sample Weekly and Monthly Model Estimates

h = 5 h = 22
HAR HARQ HARQ-F HARQ-h HAR HARQ HARQ-F HARQ-h

β0 0.1717 0.0977 0.0576 0.0170 0.3417 0.2914 0.2845 0.2930
(0.0432) (0.0429) (0.0392) (0.0466) (0.0276) (0.0297) (0.0339) (0.0346)

β1 0.1864 0.4078 0.3408 0.1898 0.1049 0.2547 0.2124 0.1043
(0.0597) (0.0717) (0.0699) (0.0492) (0.0502) (0.0595) (0.0617) (0.0495)

β2 0.3957 0.3159 0.5623 0.6825 0.3342 0.2802 0.4537 0.3364
(0.0768) (0.0762) (0.1056) (0.0980) (0.0662) (0.0658) (0.0959) (0.0678)

β3 0.2709 0.2172 0.0862 0.1609 0.2695 0.2332 0.1122 0.3225
(0.0655) (0.0659) (0.0852) (0.0725) (0.0540) (0.0557) (0.0658) (0.0509)

β1Q -0.2182 -0.1488 -0.1476 -0.1032
(0.0420) (0.0415) (0.0278) (0.0309)

β2Q -0.4404 -0.5648 -0.3158
(0.1514) (0.1246) (0.1132)

β3Q 0.2173 0.2458 -0.1847
(0.2508) (0.1519) (0.1353)

Mean Lag

S&P500 5.2626 4.0952 3.0520 3.9564 5.9369 4.9173 3.6799 6.3185
Stocks 6.2593 5.0054 4.6427 4.4950 7.1939 6.0099 5.7646 7.9598

Note: The top panel reports the in-sample parameter estimates for the S&P 500 for the standard HAR model
and the various HARQ models for forecasting the weekly (h = 5) and monthly (h = 22) RV s. Newey and
West (1987) robust standard errors allowing for serial correlation up to order 10 (h = 5), and 44 (h = 22),
respectively, are reported in parentheses. The bottom panel reports the mean lag implied by the estimated
S&P 500 models, as well as the mean lags averaged across the models estimates for each of the individual
stocks.

to beat the HAR model. The SHAR model, on the other hand, offers small improvements

over the HAR model in almost all cases. However, the simple version of the HARQ model

substantially outperforms the standard HAR model in all of the different scenarios, except for

the monthly rolling window MSE loss. The alternative HARQ-F and HARQ-h specifications

sometimes perform even better, although there does not appear to be a single specification

that systematically dominates all other.

The HARQ-F model, in particular, performs well for the increasing estimation window

forecasts, but not so well for the rolling window forecasts. This again underscores the dif-

ficulties in accurately estimating the extra adjustment parameters in the HARQ-F model

based on “only” 1,000 observations. The HARQ-h model that only adjusts the lag param-

eter corresponding to the forecast horizon often beats the HARQ model that only adjusts

the daily lag parameter. At the weekly horizon, the HARQ and HARQ-h models also both

perform better than the standard HAR model. For the monthly horizon, however, it appears

more important to adjust the longer lags, and as a result the HARQ-F and HARQ-h models

typically both do better than the HARQ model. Of course, as the forecast horizon increases,
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Table 7: Weekly Out-of-Sample Forecast Losses

AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F HARQ-h

S&P500

MSE RW 1.1450 1.0000 1.4030 0.9919 0.9018 1.0798 0.9475 1.2138 0.8884
IW 1.3509 1.0000 1.1549 0.9673 0.8365 1.0861 0.9031 0.9171 0.9232

QLIKE RW 1.5589 1.0000 1.3047 1.0417 0.9350 1.1892 0.9159 1.2529 0.9491
IW 1.8801 1.0000 1.0898 0.9870 0.8735 1.3717 0.8537 0.7540 0.7996

Individual Stocks

MSE RW Avg 1.2902 1.0000 1.0580 0.9960 0.9864 1.0985 0.9838 1.0234 0.9765
Med 1.2859 1.0000 1.0504 0.9948 0.9904 1.1109 0.9806 1.0051 0.9517

IW Avg 1.4259 1.0000 1.0500 1.0003 0.9955 1.2126 0.9627 0.9601 0.9477
Med 1.4322 1.0000 1.0435 1.0005 0.9922 1.2110 0.9596 0.9378 0.9311

QLIKE RW Aveg 1.6564 1.0000 1.1034 1.0124 0.9820 1.2111 0.9309 1.0665 0.9873
Med 1.6554 1.0000 1.0980 1.0156 0.9827 1.2010 0.9422 1.0673 0.9869

IW Avg 1.9062 1.0000 1.0894 1.0279 0.9770 1.4147 0.9066 0.8529 0.8530
Med 1.8762 1.0000 1.0721 1.0265 0.9781 1.4044 0.9186 0.8420 0.8579

Note: The table reports the same loss ratios for the weekly forecasting models previously reported for the one-
day-ahead forecasts in Table 4. The top panel shows the results for the S&P 500, while the bottom panel gives
the average and median ratios across the individual stocks. The lowest ratio in each row is indicated in bold.

Table 8: Monthly Out-of-Sample Forecast Losses

AR HAR HAR-J CHAR SHAR ARQ HARQ HARQ-F HARQ-h

S&P500

MSE RW 1.1407 1.0000 0.9841 0.9642 0.9558 1.0964 1.0708 1.3485 1.2191
IW 1.2411 1.0000 1.0312 1.0107 1.0119 1.1456 0.9667 0.9339 0.9832

QLIKE RW 1.2455 1.0000 1.0552 0.9919 0.9532 1.0518 0.9808 1.1150 1.0450
IW 1.4159 1.0000 1.0773 0.9937 0.9842 1.2144 0.9368 0.8448 0.8843

Individual Stocks

MSE RW Avg 1.2246 1.0000 1.0173 1.0159 0.9924 1.0969 0.9953 1.0198 0.9756
Med 1.2613 1.0000 1.0118 1.0105 0.9949 1.1005 0.9965 0.9963 0.9619

IW Avg 1.4127 1.0000 1.0181 1.0123 0.9907 1.2366 0.9770 0.9723 0.9815
Med 1.4052 1.0000 1.0172 1.0145 0.9927 1.2182 0.9692 0.9480 0.9705

QLIKE RW Avg 1.4125 1.0000 1.0385 1.0143 0.9909 1.1335 0.9485 0.9127 0.8804
Med 1.4300 1.0000 1.0367 1.0125 0.9928 1.1228 0.9481 0.8778 0.8635

IW Avg 1.6612 1.0000 1.0360 1.0257 0.9885 1.3519 0.9371 0.8185 0.8278
Med 1.6294 1.0000 1.0224 1.0296 0.9912 1.3619 0.9442 0.8245 0.8442

Note: The table reports the same loss ratios for the monthly forecasting models previously reported for the
one-day-ahead forecasts in Table 4. The top panel shows the results for the S&P 500, while the bottom panel
gives the average and median ratios across the individual stocks. The lowest ratio in each row is indicated in
bold.

the forecasts become smoother and closer to the unconditional volatility, and as such the

relative gains from adjusting the parameters are invariably reduced.
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4. Robustness

4.1. Alternative Realized Variance Estimators

The most commonly used 5-minute RV estimator that underly all of our empirical re-

sults discussed above provides a simple way of mitigating the contaminating influences of

market microstructure “noise” arising at higher intraday sampling frequencies.18 However,

a multitude of alternative RV estimators that allow for the use of higher intraday sampling

frequencies have, of course, been proposed in the literature. In this section we consider some

of the most commonly used of these robust estimators, namely: sub-sampled, two-scales,

kernel, and pre-averaged RV , each described in more detail below. Our implementation of

these alternative estimators will be based on 1-minute returns.19 We begin by showing that

the HARQ model based on the simple 5-minute RV outperforms the standard HAR models

based on these alternative 1-minute robust RV estimators. We also show that despite the

increased efficiency afforded by the use of a higher intraday sampling frequency, the HARQ

models based on these alternative RV estimators still offer significant forecast improvements

relative to the standard HAR models based on the same robust RV estimators. To allow

for a direct comparison across the different estimators and models, we always take daily

5-minute RV as the forecast target. As such, the set-up mirrors that of the CHAR model

in equation (16) with the different noise-robust RV estimators in place of the jump-robust

BPV estimator.

The subsampled version of RV (SS-RV ) was introduced by Zhang, Mykland, and Aı̈t-

Sahalia (2005). Subsampling provides a simple way to improve on the efficiency of the

standard RV estimator, by averaging over multiple time grids. Specifically, by computing

the 5-minute RV on time grids with 5-minute intervals starting at 9:30, 9:31, 9:32, 9:33 and

9:34, the SS-RV estimator is obtained as the average of these five different RV estimators.

The two-scale RV (TS-RV ) of Zhang, Mykland, and Aı̈t-Sahalia (2005), bias-corrects the

SS-RV estimator through a jackknife type adjustment and the use of RV at the highest

possible frequency. It may be expressed as,

TS-RV = SS-RV− M

M (all)
RV (all), (20)

18As previously noted, the comprehensive comparisons in Liu, Patton, and Sheppard (2015) also show that
HAR type models based on the simple 5-minute RV generally perform quite well in out-of-sample forecasting.

19Since we only have access to 5-minute returns for the S&P 500 futures contract, our results in this section
pertaining to the market index will be based on the SPY ETF contract. We purposely do not use the SPY in
the rest of the paper, as it is less actively traded than the S&P 500 futures for the earlier part of our sample.
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whereM (all) denotes the number of observations at the highest frequency (here 1-minute), and

RV (all) refers to the resulting standard RV estimator. The realized kernel (RK), developed

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), takes the form,

RK =
H∑

h=−H
k

(
h

H + 1

)
γh, γh =

M∑
j=|h|+1

rt,irt,i−|h|, (21)

where k(x) is a kernel weight function, and H is a bandwidth parameter. We follow Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2009) and use a Parzen kernel with their recom-

mended choice of bandwidth. Finally, we also implement the pre-averaged RV (PA-RV )

estimator of Jacod, Li, Mykland, Podolskij, and Vetter (2009), defined by,

PA-RV =
1√

Mθψ2

M−H+2∑
i=1

r̄2
t,i −

ψ1

2Mθ2ψ2
RV, (22)

where r̄t,i =
∑H−1

j=1 g(j/H)rt,j . For implementation we follow Jacod, Li, Mykland, Podolskij,

and Vetter (2009) in choosing the weighting function g(x) = min(x, 1 − x), along with

their recommendations for the data-driven bandwidth H, and tuning parameter θ. The ψi

parameters are all functionals of the weighting function g(x).

Table 9 compares the out-of-sample performance of the standard HAR model based on

these more efficient noise-robust estimators with the forecasts from the HARQ model that

uses 5-minute RV . (For comparison, the first column of this table shows the performance of

the HAR model using 5-minute RV; the entries here are the inverses of those in the “HARQ”

column in Table 4.) As the table shows, the HARQ model based on the 5-minute RV easily

outperforms the forecasts from the standard HAR models based on the 1-minute robust RV

estimators. In fact, in line with the results of Liu, Patton, and Sheppard (2015), for most

of the series the HAR models based on the noise-robust estimators do not systematically

improve on the standard HAR model based on the 5-minute RV . While still inferior, the

HAR model based on SS − RV gets closest in performance to the HARQ model, while

the standard HAR model based on the other three estimators generally perform far worse.

Of course, the TS − RV , RK, and PA − RV estimators were all developed to allow for

the consistent estimation of IV through the use of ever finely sampled returns. Thus, it is

possible that even finer sampled RV s than the 1-minute frequency used here might outweigh

the additional complexity of the estimators and result in better out-of-sample forecasts.
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Table 9: HAR Models based on Noise-Robust RV s versus HARQ Model

RV SS-RV TS-RV RK PA-RV

S&P 500

MSE RW 1.2574 1.0801 1.3472 1.3443 1.3521
IW 1.1290 1.1882 1.2468 1.1769 1.1604

QLIKE RW 1.0025 1.0149 1.1476 1.0493 1.0331
IW 1.1487 1.1424 1.2637 1.4182 1.3608

Individual Stocks

MSE RW Average 1.0714 1.0523 1.1641 1.0446 1.0476
Median 1.0628 1.0430 1.1665 1.0604 1.0542

IW Average 1.0531 1.0502 1.1319 1.0603 1.0579
Median 1.0499 1.0544 1.1206 1.0695 1.0479

QLIKE RW Average 1.0100 1.0438 1.0890 1.0615 1.1107
Median 1.0064 1.0457 1.0923 1.0587 1.0988

IW Average 1.0552 1.0535 1.1297 1.1557 1.1425
Median 1.0471 1.0491 1.1240 1.1520 1.1458

Note: The table reports the loss ratios of the HAR model using 1-minute noise-robust RV estimators and
the 5-minute RV used previously, compared to the loss of the HARQ model using 5-minute RV . The S&P
500 results are based on returns for the SPY.

Further along these lines, all of the noise-robust 1-minute RV estimators are, of course,

still subject to some measurement errors. To investigate whether adjusting for these errors

remains useful, we also estimate HARQ models based on each of the alternative RV mea-

sures.20 Table 10 shows the ratios of the resulting losses for the HARQ to HAR models

using a given realized measure. For ease of comparison, we also include the previous results

for the simple 5-minute RV estimator. The use of higher 1-minute sampling and the more

efficient RV estimators, should in theory result in smaller measurement errors. Consistent

with this idea, the improvements afforded by the HARQ model for the 1-minute noise-robust

estimators are typically smaller than for the 5-minute RV . However, the HARQ models for

the 1-minute RV s still offer clear improvements over the standard HAR models, with most

of the ratios below one.21

20Since the measurement error variance for all of the estimators are proportional to IQ (up to a small noise
term, which is negligible at the 1-minute level), we continue to rely on the 5-minute RQ for estimating the
measurement error variance in these HARQ models.

21Chaker and Meddahi (2013) have previously explored the use of RV (all) as an estimator (up to scale) for
the variance of the market microstructure noise in the context of RV -based volatility forecasting. Motivated by
this idea, we also experimented with the inclusion of an RV (all)1/2 ·RV interaction term in the HAR and HARQ
models as a simple way to adjust for the temporal variation in the magnitude of the market microstructure
noise. The out-of-sample forecasts obtained from these alternative specifications were generally inferior to the
forecasts from the basic HARQ model. Additional details of these results are available in Appendix D.
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Table 10: HARQ versus HAR Models based on Noise-Robust RV s

RV SS-RV TS-RV RK PA-RV

S&P 500

MSE RW 0.7953 1.0059 0.8606 0.7873 0.7896
IW 0.8857 0.8837 0.9749 0.8956 0.8952

QLIKE RW 0.9975 1.0585 0.9776 0.9711 1.0504
IW 0.8705 0.9195 0.9317 0.8971 0.9262

Individual Stocks

MSE RW Average 0.9333 0.9496 0.9547 1.0072 0.9698
Median 0.9409 0.9593 0.9521 1.0012 0.9719

IW Average 0.9496 0.9582 0.9723 0.9755 0.9700
Median 0.9525 0.9590 0.9730 0.9710 0.9771

QLIKE RW Average 0.9901 0.9462 0.9804 1.0874 0.9748
Median 0.9936 0.9600 0.9831 0.9973 0.9793

IW Average 0.9477 0.9474 0.9665 0.9492 0.9443
Median 0.9550 0.9447 0.9624 0.9431 0.9445

Note: The table reports the loss ratios of the HARQ models to the HAR models for the 1-minute noise-robust
estimators. The S&P 500 results are based on returns for the SPY.

4.2. Alternative Quarticity Estimators

The integrated quarticity is notoriously difficult to estimate. To investigate the sensitivity

of our results to this additional layer of estimation uncertainty, we consider a number of

alternative estimators of IQ in place of the standard RQ estimator used in the HARQ models

throughout the rest of the paper.

One such estimator is provided by the Tri-Power Quarticity of Barndorff-Nielsen and

Shephard (2006),

TPQt ≡Mµ−3
4/3

M−2∑
i=1

|rt,i|4/3|rt+1,i|4/3|rt+2,i|4/3, (23)

where µ4/3 ≡ 22/3Γ(7/6)/Γ(1/2) = E(|Z|4/3). In contrast to the standard RQ estimator,

TPQ remains consistent for IQ in the presence of jumps. Further along these lines, we also

consider the jump-robust MedRQ estimator developed by Andersen, Dobrev, and Schaum-

burg (2012, 2014),

MedRQ ≡ 3π

9π + 72− 52
√

3

M2

M − 2

M−2∑
i=1

median (|rt,i|, |rt,i+1|, |rt,i+2|)4 , (24)

as well as the Truncated RQ estimator based on the ideas of Mancini (2009), formally defined

by,

TrRQ ≡M
M∑
i=1

|r4
t,i|I{|rt,i|≤αiM$}, (25)
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Table 11: Alternative IQ estimators.

IQ-estimator RQ TPQ MedRQ TrRQ RQ15min Bootstrap

S&P500

MSE RW 1.0000 1.0497 1.0254 1.0208 1.0590 0.9925
IW 1.0000 1.1635 1.0328 0.9948 0.9805 0.9981

QLIKE RW 1.0000 1.0933 1.1227 0.9971 1.0231 0.9933
IW 1.0000 0.9814 1.0548 1.2060 1.0414 0.9998

Individual Stocks

MSE RW Avg 1.0000 1.0403 1.0139 1.0531 1.0586 0.9936
Med 1.0000 1.0497 1.0201 1.0378 1.0238 1.0003

IW Avg 1.0000 1.0211 1.0191 1.0491 1.0229 0.9994
Med 1.0000 1.0220 1.0259 1.0558 1.0125 0.9998

QLIKE RW Avg 1.0000 1.0040 1.0089 1.0541 1.0254 0.9995
Med 1.0000 0.9980 0.9968 1.0376 1.0015 0.9992

IW Avg 1.0000 1.0050 1.0047 1.0390 1.0014 1.0001
Med 1.0000 1.0040 1.0065 1.0303 0.9989 1.0001

Note: The table reports the out-of-sample forecast losses from the HARQ model using different IQ estima-
tors. All of the losses are reported relative to the losses from the HARQ model based on the the standard
RQ estimator used throughout the rest of the paper. The top panel shows the results for the S&P500, while
the bottom panel reports the average and median ratios across each of the individual stocks. The lowest
ratio in each row is indicated in bold.

with the tuning parameters αi and $ implemented as in Bollerslev, Todorov, and Li (2013).

It has also previously been suggested that the integrated quarticity may be more accurately

estimated using a coarser time grid than that used for estimating integrated variance; see,

e.g., Bandi and Russell (2008). To this end, we consider estimating RQ based on coarser

15-minute returns. The approximation in equation (4) that motivates the HARQ model is, of

course, asymptotic (for M →∞). Finally, we also consider the wild bootstrap of Gonçalves

and Meddahi (2009). Specifically, re-sampling the high-frequency returns 999 times for each

of the days in the sample, we use the sample variance of the relevant RV across the bootstrap

replications as the estimator of the measurement error variance.

For ease of comparison, Table 11 summarizes the out-of-sample forecast losses from the

HARQ models based on each of these different IQ estimators relative to the losses for the

HARQ model based on the standard 5-minute RQ estimator used in the rest of the paper. As

the results show, the performance of the HARQ models based on the different IQ estimators

are generally close. The only alternative estimator that possibly improves on the standard

RQ estimator in a systematic fashion is the bootstrapped variance of RV . However, the

improvements are at best minor.
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Table 12: Alternative HARQ Specifications

Alternative RQ Transformations Adding RQ1/2

RQ RQ1/2 RQ−1/2 RQ−1 Log(RQ) HAR HARQ

S&P 500

MSE RW 1.0037 1.0000 1.2123 1.2334 1.3313 1.1552 1.0004
IW 1.0344 1.0000 1.1166 1.1357 1.0736 1.1166 1.1402

QLIKE RW 0.9484 1.0000 1.0952 1.0950 1.8104 0.9919 0.9731
IW 1.0222 1.0000 1.1327 1.3217 2.0107 1.0452 1.0089

Individual Stocks

MSE RW Avg 1.0108 1.0000 1.0808 1.0931 1.0329 1.0339 1.0207
Med 1.0112 1.0000 1.0577 1.0664 1.0336 1.0050 0.9904

IW Avg 1.0189 1.0000 1.0495 1.0644 1.0143 0.9979 0.9895
Med 1.0198 1.0000 1.0403 1.0598 1.0082 0.9986 0.9863

QLIKE RW Avg 0.9973 1.0000 1.0678 1.0814 1.3723 1.0377 1.0639
Med 0.9847 1.0000 1.0458 1.0579 1.3324 1.0219 1.0133

IW Avg 1.0263 1.0000 1.0961 1.1155 1.2903 1.0394 1.0081
Med 1.0241 1.0000 1.0778 1.0886 1.2084 1.0279 0.9937

Note: The table reports the out-of-sample forecast losses for HARQ models based on different transforma-
tions of RQ. All of the losses are reported relative to those for the HARQ model the rely on RQ1/2. The
left panel reports the results based on alternative RQ interaction terms. The right panel reports the results
from models that include RQ1/2 as an explanatory variable. The top panel pertains to the S&P 500, while
the bottom panel gives the average and median ratios across all of the individual stocks. The lowest ratio
in each row is indicated in bold.

4.3. Alternative HARQ Specifications

The HARQ model is designed to allow for temporal variation in the degree of attenuation

bias based on an estimate of the heteroskedastic measurement error variance. The exact

specification of the model, and the interaction of RV with the square root of RQ, is, how-

ever, somewhat ad hoc and primarily motivated by concerns related to numerical stability.

Equation (9), in particular, naturally suggests allowing the parameters of the model to vary

with the inverse of RQ, as opposed to RQ1/2. But, RQ may be close to zero, and as such the

inverse of RQ is prone to amplify any estimation errors, resulting in inaccurate estimates of

the inverse of IQ, and in turn unstable time-varying autoregressive parameter estimates. To

further investigate this issue, we consider the out-of-sample forecasts from alternative HARQ

specifications in which we substitute RQ, RQ−1/2, RQ−1, and log(RQ) in place of RQ1/2

in equation (2.3). All of the HARQ specifications that we have considered so far have also

restricted the intercept in the models, or β0, to be constant. We now consider two alterna-

tive specifications, where we add RQ1/2 as an additional explanatory variable to the standard

HAR and HARQ models, thereby allowing for a time-varying intercept in the HAR(Q) model.

Table 12 reports the out-of-sample forecast results from each of these alternative HARQ spec-
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ifications. For ease of comparison, we again normalize all of the losses relative to the losses

of the HARQ model based on RQ1/2 analyzed throughout. The first set of columns show

the results for the alternative RQ transformations. The models based on RQ1/2 and RQ

perform roughly the same. Meanwhile, as expected, the modified HARQ models that rely

on negative powers of RQ, or the log-transform of RQ, all result in numerically unstable

parameter estimates and correspondingly inferior out-of-sample forecasts.22

The last two columns of the table give the results from directly including RQ1/2 in the

HAR and HARQ models. While the HAR model with RQ1/2 tend to performs worse than

the HARQ model, it does improve on the standard HAR model, as it is able to mimic the

HARQ model and reduce the forecasts in situations with large measurement errors. However,

the model does so less effectively than the HARQ model forecasts. The HARQ model that

includes RQ1/2 does improve on the standard HARQ model for some of the forecast scenarios,

but performs worse in others, and in no case is the forecast improvement very large. Overall,

we conclude that the simple HARQ model in equation (2.3) appears the more stable and

generally superior model compared to any of these alternative specifications.

4.4. Alternative Q-Models

The motivation behind the HARQ model is equally applicable to other realized volatility

based forecasting models, including the benchmark models analyzed in our forecast com-

parisons. In particular, the HAR-J model defined in equation (14) is readily modified in a

manner completely analogous to the HARQ model, resulting in the HARQ-J model,

RVt = β0 + (β1 + β1QRQ
1/2
t−1)RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + βJJt−1 + ut. (26)

The CHAR model in (16) relies on the jump-robust bi-power variation (BPV ) measure in

place of the realized volatility for predicting the future volatility. As shown by Barndorff-

Nielsen and Shephard (2006), the asymptotic variance of BPV equals 2.61∆IQt. This asymp-

totic variance is naturally estimated by the Tri-Power Quarticity (TPQ) previously defined

in equation (23), which remains consistent for IQ in the presence of jumps. Correspondingly,

we define the CHARQ model as,

RVt = β0 + (β1 + β1QTPQ
1/2
t−1)BPVt−1 + β2BPVt−1|t−5 + β3BPVt−1|t−22 + ut. (27)

22We also experimented with “higher-order” models, allowing the autoregressive parameters to depend on
multiple RQ terms; e.g., both RQ1/2 and RQ. However, the difficulties in accurately estimating the parameters
for these more elaborate models, again translate into inferior out-of-sample forecasts.
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Table 13: Alternative Q-Model In-Sample Estimates

HAR-J HARQ-J CHAR CHARQ SHAR SHARQ

β0 0.1208 0.0045 0.1361 -0.0064 0.0692 -0.0766
(0.0606) (0.0561) (0.0595) (0.0618) (0.0667) (0.0613)

β1 0.3599 0.6035 0.2657 0.5834
(0.0891) (0.0882) (0.0958) (0.0967)

β2 0.4341 0.3519 0.4980 0.4189 0.4176 0.3527
(0.1300) (0.1285) (0.1489) (0.1524) (0.1223) (0.1260)

β3 0.1856 0.1057 0.1751 0.1131 0.1530 0.0822
(0.1068) (0.1034) (0.1201) (0.1138) (0.1013) (0.0997)

βJ -1.0033 -0.3393
(0.3668) (0.2857)

β+
1 -0.3734 -0.2027

(0.1772) (0.2054)
β−
1 1.1282 1.5723

(0.2773) (0.2658)
β1Q -0.3266 -0.5410

(0.0617) (0.1800)
β+
1Q -1.3227

(0.3632)
β−
1Q 0.2485

(0.1316)

R2 0.5376 0.5638 0.5347 0.5526 0.5751 0.5972
MSE 2.4908 2.3495 2.5064 2.4097 2.2887 2.1693
QLIKE 0.1538 0.1336 0.1442 0.1377 0.3315 0.2154

R
2

Stocks 0.4913 0.5110 0.4891 0.5106 0.4986 0.5239

MSE Stocks 14.8224 14.0916 14.9265 14.1891 14.5431 13.6915

QLIKE Stocks 0.1492 0.1470 0.1509 0.1449 0.1496 0.1534

Note: The table reports the S&P 500 in-sample parameter estimates and measures of fit for the different
benchmark models and HARQ-adaptations discussed in the main text. The bottom panel shows the average
R2s, MSEs, and QLIKEs across the individual stocks.

The asymptotic distribution of the RV +
t and RV −t measures included in the SHAR model

in equation (17) is unknown. However, a measure that is strongly correlated with their

asymptotic variances should work well in terms of adjusting the parameters for measurement

errors, as the estimated regression coefficients will automatically make up for any proportional

differences. Hence, as a shortcut we simply rely on RQ to proxy the asymptotic variance of

both RV + and RV −, defining the SHARQ model,

RVt = β0+(β+
1 +β+

1QRQ
1/2
t−1)RV +

t−1+(β−1 +β−1QRQ
1/2
t−1)RV −t−1+β2RVt−1|t−5+β3RVt−1|t−22+ut.

(28)

Table 13 reports the parameter estimates for each of these Q-models and their baseline

counterparts. The general pattern directly mirrors that of the estimates for the HARQ and

HAR models. All of the models shift the weights from the weekly and monthly lags to the
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Table 14: Alternative Q-Model Out-of-Sample Forecast Losses

HARQ HARQ-J CHARQ SHARQ

S&P500

MSE RW 0.8266 0.9243 0.8951 1.4412
IW 0.8944 0.9335 1.0609 1.1027

QLIKE RW 0.9464 0.9653 1.0235 1.4576
IW 0.8809 0.9015 0.8825 1.2849

Individual Stocks

MSE RW Avg 0.9349 0.9397 0.9525 1.1308
Med 0.9418 0.9513 0.9539 1.0840

IW Avg 0.9525 0.9666 0.9451 1.0870
Med 0.9525 0.9662 0.9548 1.0554

QLIKE RW Avg 0.9902 0.9902 0.9879 1.1706
Med 0.9916 0.9952 0.9900 1.1609

IW Avg 0.9487 0.9548 0.9306 1.1305
Med 0.9550 0.9594 0.9277 1.1154

Note: The table reports the loss ratios for the alternative Q-model specifications discussed in the main text.
All of the losses are reported relative the relevant baseline models without the Q-adjustment terms. The
top panel shows the results for the S&P 500, while the bottom panel reports the average and median ratios
across all of the individual stocks.

daily lag, with higher measurement error variances pulling the daily lag parameters closer

to zero. Looking specifically at the HAR-J model, the parameter associated with the jump

component is significantly negative: on days where part of the total RV is attributable to

jumps, the next day’s RV is reduced by -1.003 times the jump component. In the HARQ-J

model, however, the measurement error subsumes a large portion of this jump variation: the

βJ coefficient is reduced by two-thirds, and is no longer statistically significant. This same

result holds true for the individual stocks, where the jump parameters are significant at the

5% level for 60% of the stocks for the HAR-J models, compared to only 10% of the stocks

for the HARQ-J models. Also, comparing the SHAR and SHARQ models, the latter shifts

the weight even further away from the positive part of RV to the negative part, so that only

RV − is significant in the SHARQ model.

The out-of-sample forecast results from each of these different Q-models are summarized

in Table 14. For comparison purposes, we also include the results for the basic HARQ model.

To facilitate the interpretation of the results, we report the loss ratios with respect to the

relevant baseline models, that is the losses for the HARQ model is reported relative to the

losses for the standard HAR model, the CHARQ model losses relative to the CHAR model

losses, and so forth. The improvements obtained for the HARQ-J and CHARQ models are

generally in line with those for the basic HARQ model. This is true both for the S&P 500
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losses given in the top panel and the average losses across the individual stocks reported in the

bottom panel. The SHARQ model, however, does not improve on the standard SHAR model.

Of course, in contrast to the other Q-models, our specification of the SHARQ model relies

on an imperfect proxy for the asymptotic variance of the measurement errors. This might

help explain the relatively poor performance of that model, and also indirectly highlight the

importance of using a proper approximation for the distribution of the measurement errors

to guide the adjustments of the autoregressive parameters and the forecasts from the models.

5. Conclusion

We propose a simple-to-implement new class of realized volatility based forecasting mod-

els. The models improve on the forecasts from standard volatility forecasting models, by

explicitly accounting for the temporal variation in the magnitude of the measurement errors

in the realized volatilities and the way in which the errors attenuate the parameters of the

models. A particularly simple member of this new class of models, which we term the HARQ

model, outperforms the forecasts from several other commonly used models. This holds true

both in simulations and in- and out-of-sample forecasts of the volatility of the S&P 500

aggregate market portfolio and a number of individual stocks.

The new models developed here may usefully be applied in many other situations. The

volatility risk premium, for example, defined as the difference between the so-called risk

neutral expectation of the future volatility of the aggregate market portfolio and the actual

statistical expectation of the market volatility, has recently received a lot of attention in

the literature. The risk neutral expectation of the volatility is readily inferred from options

prices in an essentially model-free manner. The actual volatility forecasts, however, invariable

depends on the model used for constructing the forecasts. Bekaert and Hoerova (2014) and

Conrad and Loch (2015) have both recently demonstrated how the use of different realized

volatility based forecasting models, including versions of the HAR, HAR-J and CHAR models

analyzed here, can materially affect the estimates of the volatility risk premium and the

interpretation thereof. The HARQ models, of course, hold the promise of even more accurate

forecasts and better volatility risk premium estimates, and in turn new insights and a deeper

understanding of the economic mechanisms behind the temporal variation in the premium.

All of the forecasting models developed here are univariate. However, most practical ques-

tions related to risk measurement and management are intrinsically multivariate in nature,

requiring the forecasts of both asset return variances and covariances. Building on the distri-
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butional results of Barndorff-Nielsen and Shephard (2004a), the realized volatility based Vech

HAR model of Chiriac and Voev (2010) may readily be extended to incorporate the effect of

the measurement errors in the realized variances and covariance in a manner analogous to

the one employed here for the univariate HARQ models. The multivariate HEAVY model of

Noureldin, Shephard, and Sheppard (2012) and the Realized Beta GARCH model of Hansen,

Lunde, and Voev (2014) may similarly be extended to allow the parameters of the models to

vary with the degree of the measurement errors in the realized covariance matrix. We leave

further work along these lines for future research.
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Appendix A. Simulation Design

Our simulations are based on the two-factor stochastic volatility model previously ana-

lyzed by Huang and Tauchen (2005) among others,

d logSt = µdt+ σutνt

(
ρ1dW1t + ρ2dW2t +

√
1− ρ2

1 − ρ2
2dW3t

)
ν2
t = s-exp

{
β0 + β1ν

2
1t + β2ν

2
2t

}
dν2

1t = α1ν
2
1tdt+ dW1t

dν2
2t = α2ν

2
2tdt+ (1 + φν2

2t)dW2t

σut = C +Ae−at +Be−b(1−t),

where s-exp denotes the exponential function with a polynomial splined at high values to

avoid explosive behavior. We follow Huang and Tauchen (2005) in setting α = 0.03, β0 =

−1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137, α2 = −1.386, φ1 = 0.25, and ρ1 = ρ2 = −0.3.

We initialize the persistent factor ν1 by drawing ν1,0 ∼ N(0, −1
2α1

) from its unconditional

distribution. The ν2 factor is initialized at 0. The intraday volatility pattern is modeled by

means of the diurnal U-shape σut function. Following Andersen, Dobrev, and Schaumburg

(2012), we set A = 0.75, B = 0.25, C = 0.88929198, and a = b = 10, respectively. The

simulations are generated using an Euler scheme based on 23,400 intervals for each of the

T = 2,000 “days” in the sample. We then aggregate these prices to sparsely sampled M =

39, 78, 390 return observations per day, corresponding to 10-, 5- and 1-“minute” returns.

To allow for empirically more realistic high-frequency prices, we further add “noise” to the

simulated price process. In line with the empirical evidence in Bandi and Russell (2006) and

Hansen and Lunde (2006), we allow the variance of the noise to increase with the volatility of

the simulated efficient price. In particular, mirroring the design in Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008), on each day we generate an i.i.d. noise term ut,i ∼ N(0, ω2
t )

with ω2
t = ξ2

∫ t
t−1 σ

2
usν

2
sds, so that the variance of the noise is constant throughout the day,

but changes from day to day. This noise is then added to the St,i price process to obtain the

time series of actual high-frequency simulate prices S∗t,i = St,i + ut,i.
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Appendix B. Out-of-sample forecast results

Table B.1: MSE Ratios - Rolling Window

AR HAR HAR-J CHAR SHAR ARQ HARQ

MSFT 1.1934 1.0000 1.0071 1.0205 1.0182 1.0488 0.9878
KO 1.1780 1.0000 1.0665 1.0228 1.0045 0.9393 0.8889
DD 1.1730 1.0000 1.0299 1.0166 0.9867 1.0175 0.9652
XOM 1.0300 1.0000 1.3184 1.0558 0.9921 1.0212 0.9792
GE 1.0379 1.0000 1.0941 1.1415 1.1253 0.9958 0.9564
IBM 1.2765 1.0000 1.0171 1.0357 0.9868 0.9681 0.9204
CVX 1.2671 1.0000 1.0023 1.0370 0.9478 0.9160 0.8825
UTX 1.1472 1.0000 1.0815 1.0395 0.9853 0.9094 0.9159
PG 1.1036 1.0000 0.9494 0.9489 1.0258 1.0175 1.0098
CAT 0.9671 1.0000 0.9488 0.9081 1.0047 0.9888 0.9571
BA 1.1498 1.0000 0.9663 0.9624 0.9796 1.0112 0.9456
PFE 1.1789 1.0000 1.0103 0.9995 1.0263 0.9896 0.9418
JNJ 0.9323 1.0000 0.9926 1.0158 1.0041 0.8428 0.9990
MMM 1.2289 1.0000 0.9328 1.0820 0.9370 0.8540 0.8706
MRK 1.0721 1.0000 0.7373 0.7634 0.7480 0.7277 0.7378
DIS 1.0038 1.0000 0.9019 0.9735 1.0704 0.9586 0.9093
MCD 1.1102 1.0000 1.1189 1.1168 1.1028 0.9412 0.9388
JPM 1.0389 1.0000 1.0733 1.0047 0.9924 0.8247 0.8342
WMT 1.2096 1.0000 1.0236 0.9895 1.0020 1.0502 1.0403
NKE 1.2602 1.0000 1.0376 1.0401 1.0049 1.0804 0.9614
AXP 1.3382 1.0000 1.0115 1.0219 0.9872 0.8759 0.8572
INTC 1.2063 1.0000 1.0007 0.9971 0.9917 0.9953 0.9400
TRV 1.1022 1.0000 1.0188 1.0107 1.2486 1.1935 1.1221
VZ 1.2448 1.0000 1.0043 0.9909 1.0488 0.9570 0.8631
HD 1.2732 1.0000 1.0560 1.0458 1.0018 0.9263 0.8758
CSCO 1.1999 1.0000 0.9865 0.9784 1.0070 1.0415 0.9662
UNH 1.1402 1.0000 1.0193 0.9974 0.9952 0.9864 0.9750

Note: The table reports the loss ratios of the HARQ to HAR models for
each of the individual stocks.
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Table B.2: MSE Ratios - Increasing Window

AR HAR HAR-J CHAR SHAR ARQ HARQ

MSFT 1.2165 1.0000 1.0082 1.0125 1.0129 1.0941 0.9690
KO 1.2337 1.0000 0.9761 0.9644 1.0311 1.0015 0.9209
DD 1.1998 1.0000 1.0028 0.9968 0.9805 1.0962 0.9910
XOM 1.1875 1.0000 1.0012 1.0519 0.9550 1.0270 0.9278
GE 1.1065 1.0000 1.0047 0.9914 0.9519 0.9615 0.9484
IBM 1.2835 1.0000 1.0038 1.0165 0.9919 1.0701 0.9447
CVX 1.2589 1.0000 1.0048 1.0401 0.9352 0.9666 1.0317
UTX 1.1922 1.0000 1.0082 1.0145 0.9692 1.0396 0.9525
PG 1.2092 1.0000 1.0423 1.0081 1.0028 1.0724 0.9794
CAT 1.1902 1.0000 0.9739 0.9523 1.0003 1.1058 1.0036
BA 1.2571 1.0000 0.9623 0.9620 0.9936 1.0872 0.9538
PFE 1.2161 1.0000 0.9989 0.9942 1.0060 1.0197 0.9399
JNJ 1.2026 1.0000 0.9949 0.9905 1.0042 1.0207 0.9478
MMM 1.2182 1.0000 1.0123 1.0233 0.9556 0.9522 0.9242
MRK 1.1207 1.0000 1.0925 1.0811 1.0656 0.8663 0.8485
DIS 1.1535 1.0000 0.9985 0.9625 1.0765 1.0879 0.9793
MCD 1.1813 1.0000 0.9901 0.9797 0.9908 1.0236 0.9515
JPM 1.0496 1.0000 1.0289 1.0115 0.9605 0.8818 0.8537
WMT 1.3765 1.0000 1.0061 0.9901 0.9768 1.1509 0.9851
NKE 1.3517 1.0000 1.0008 1.0012 0.9969 1.1293 0.9525
AXP 1.3136 1.0000 0.9892 1.0010 0.9758 0.9586 0.8794
INTC 1.2275 1.0000 0.9896 0.9923 0.9872 1.0323 0.9541
TRV 1.1002 1.0000 1.0242 1.0111 1.0283 1.0517 1.0134
VZ 1.2547 1.0000 0.9911 0.9831 1.0055 1.0928 0.9614
HD 1.2470 1.0000 1.0134 1.0142 1.0012 0.9756 0.9006
CSCO 1.2340 1.0000 0.9802 0.9745 1.0051 1.0820 0.9755
UNH 1.1690 1.0000 1.0096 1.0130 0.9968 1.1536 1.0282

Note: The table reports the loss ratios of the HARQ to HAR models for
each of the individual stocks.
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Table B.3: QLIKE Ratios - Rolling Window

AR HAR HAR-J CHAR SHAR ARQ HARQ

MSFT 1.3690 1.0000 0.9984 1.0264 0.9970 1.1894 0.9900
KO 1.4975 1.0000 0.9762 0.9595 1.0113 1.1143 0.9389
DD 1.3252 1.0000 1.0087 1.0014 0.9816 1.1994 1.0444
XOM 1.3568 1.0000 0.9866 1.0049 1.0019 1.1434 0.9828
GE 1.4602 1.0000 1.0552 1.0113 0.9565 0.9702 0.8334
IBM 1.5559 1.0000 0.9860 1.0025 0.9824 1.2305 0.9789
CVX 1.3802 1.0000 0.9858 1.0209 1.0142 1.2134 0.9971
UTX 1.3484 1.0000 0.9836 1.0017 0.9645 1.2397 1.0662
PG 1.4715 1.0000 0.9601 0.9572 0.9817 1.0758 0.9863
CAT 1.3267 1.0000 0.9976 1.0071 0.9939 1.1781 1.0224
BA 1.2353 1.0000 1.0031 0.9945 1.0001 1.2240 1.0497
PFE 1.2521 1.0000 0.9896 0.9868 0.9995 1.0744 0.9881
JNJ 1.4044 1.0000 1.0330 1.0052 1.0061 1.1279 1.0389
MMM 1.3493 1.0000 1.0068 1.0282 0.9527 1.0553 0.9599
MRK 1.3383 1.0000 1.0325 0.9855 0.9887 1.0005 0.9210
DIS 1.3685 1.0000 1.0082 1.0527 0.9955 1.1561 1.0147
MCD 1.4891 1.0000 0.9418 0.9317 0.9677 1.0341 0.9128
JPM 1.4688 1.0000 0.9926 0.9803 0.9977 1.1916 1.1107
WMT 1.4935 1.0000 0.9929 0.9831 0.9830 1.2255 1.0203
NKE 1.4670 1.0000 0.9960 1.0068 0.9870 1.2282 1.0004
AXP 1.7802 1.0000 1.0762 0.9868 0.9511 1.2099 0.9435
INTC 1.4305 1.0000 0.9966 1.0004 0.9884 1.1133 0.9698
TRV 1.4883 1.0000 1.0036 1.0308 1.0194 1.1947 0.9276
VZ 1.3952 1.0000 0.9908 0.9771 0.9941 1.1832 1.0224
HD 1.5055 1.0000 1.0014 1.0184 1.0057 1.1130 1.0177
CSCO 1.4370 1.0000 1.0445 1.0144 1.0107 1.2513 1.0054
UNH 1.3574 1.0000 0.9996 1.0218 1.0033 1.1082 0.9916

Note: The table reports the loss ratios of the HARQ to HAR models for
each of the individual stocks.
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Table B.4: QLIKE Ratios - Increasing Window

AR HAR HAR-J CHAR SHAR ARQ HARQ

MSFT 1.5419 1.0000 1.0111 1.0391 0.9929 1.2737 0.9714
KO 1.6397 1.0000 0.9845 0.9978 0.9985 1.2566 0.9441
DD 1.4166 1.0000 0.9964 1.0080 0.9806 1.1544 0.9726
XOM 1.4475 1.0000 1.0030 1.0316 0.9857 1.0781 0.9550
GE 1.6703 1.0000 0.9929 1.0281 0.9694 1.1592 0.9028
IBM 1.7969 1.0000 0.9780 0.9881 0.9441 1.3047 0.9039
CVX 1.3868 1.0000 0.9898 1.0409 1.0019 1.1856 0.9888
UTX 1.4787 1.0000 0.9827 1.0111 0.9621 1.1716 0.9606
PG 1.7407 1.0000 0.9609 0.9711 0.9559 1.2534 0.9059
CAT 1.3894 1.0000 1.0001 1.0261 0.9934 1.2128 1.0264
BA 1.4558 1.0000 0.9959 1.0100 0.9915 1.1569 0.9550
PFE 1.4837 1.0000 0.9842 0.9961 1.0007 1.1430 0.9318
JNJ 1.5782 1.0000 1.0068 1.0565 0.9795 1.1359 0.9241
MMM 1.4569 1.0000 0.9996 1.0338 0.9574 1.1669 0.9694
MRK 1.3740 1.0000 0.9918 0.9918 0.9965 1.0626 0.9217
DIS 1.5515 1.0000 0.9902 0.9716 0.9997 1.2901 0.9654
MCD 1.8009 1.0000 0.9773 0.9931 0.9767 1.3586 0.9087
JPM 1.5565 1.0000 1.0022 1.0200 0.9887 1.1505 1.0101
WMT 1.9259 1.0000 0.9587 0.9298 0.9338 1.3100 0.8977
NKE 1.8064 1.0000 0.9922 1.0166 0.9901 1.4343 0.9302
AXP 1.7946 1.0000 1.0097 1.0065 0.9608 1.1732 0.8869
INTC 1.5868 1.0000 0.9987 1.0163 0.9916 1.1464 0.9922
TRV 1.4615 1.0000 1.0124 1.1004 1.0198 1.2069 0.9632
VZ 1.5604 1.0000 0.9843 0.9972 0.9948 1.2401 0.9584
HD 1.6611 1.0000 1.0026 1.0447 0.9845 1.0779 0.9732
CSCO 1.7259 1.0000 1.0046 1.0384 0.9791 1.1942 0.9193
UNH 1.3785 1.0000 1.0009 1.0362 1.0077 1.1677 0.9767

Note: The table reports the loss ratios of the HARQ to HAR models for
each of the individual stocks.
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Appendix C. Individual stock in-sample estimates

Table C.1: Average parameter estimates across stocks

AR HAR AR-HL ARQ HARQ HARQ-F

β0 1.1252 0.3050 0.4600 0.0960 -0.0295
(0.3612) (0.1011) (0.2617) (0.1155) (0.1161)

β1 0.6263 0.2661 0.9350 0.8874 0.5233 0.4710
(0.0844) (0.0908) (0.0271) (0.0974) (0.1142) (0.1188)

β2 0.3629 0.2929 0.4386
(0.1205) (0.1188) (0.1325)

β3 0.2686 0.1764 0.1381
(0.0852) (0.0893) (0.1090)

β1Q -0.2324 -0.1504 -0.1300
(0.1371) (0.0929) (0.0930)

β2Q -0.1142
(0.1301)

β3Q 0.0250
(0.1466)

HAR-J HARQ-J CHAR CHARQ SHAR SHARQ

β0 0.3184 0.1102 0.3704 0.1631 0.2741 0.0388
(0.1062) (0.1171) (0.1181) (0.1077) (0.1090) (0.1198)

β1 0.3284 0.5392 0.2996 0.5700
(0.1001) (0.1090) (0.1036) (0.1118)

β2 0.3477 0.2915 0.3980 0.3257 0.3434 0.2845
(0.1227) (0.1191) (0.1282) (0.1244) (0.1161) (0.1183)

β3 0.2575 0.1746 0.2659 0.1738 0.2572 0.1608
(0.0844) (0.0883) (0.0932) (0.0863) (0.0820) (0.0863)

βJ -0.3813 -0.1637
(0.3489) (0.3005)

β+
1 -0.0052 0.1758

(0.2559) (0.2367)
β−
1 0.6307 0.9797

(0.3179) (0.3125)
β1Q -0.1463 -0.2262

(0.0878) (0.1510)
β+
1Q -0.3539

(0.3446)
β−
1Q -0.0473

(0.2052)

Note: This table reports the average parameter estimates across the individual stocks. The standard
deviations of the estimates obtained across the stocks are reported in parentheses.
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Appendix D. Models including RV (all)

Table D.1: HAR(Q) models including RV (all)

Baseline Model HARQ HAR HAR HARQ HARQ

Added Variable RV (All)1/2·RV RV (All)1/2 RV (All)1/2·RV RV (All)1/2

S&P500

MSE RW 0.7953 0.8175 0.8396 0.8188 0.8079
IW 0.8857 0.9269 1.0049 0.8904 0.8886

QLIKE RW 0.9975 0.9251 1.0246 1.0710 1.2329
IW 0.8705 0.8694 1.0120 0.8579 0.9091

Individual Stocks

MSE RW Average 0.9333 0.9403 0.9964 0.9807 0.9678
Median 0.9409 0.9451 0.9888 0.9353 0.9560

IW Average 0.9496 0.9611 1.0054 0.9832 0.9751
Median 0.9525 0.9646 1.0042 0.9593 0.9752

QLIKE RW Average 0.9901 1.0081 1.0197 1.1126 1.0350
Median 0.9936 1.0057 1.0122 0.9995 1.0151

IW Average 0.9477 0.9671 1.0127 0.9647 0.9721
Median 0.9550 0.9596 0.9964 0.9647 0.9485

Note: The table reports the loss ratios for each of the different models relative to the HAR model. The augmented
HAR(Q) models include RV (All)1/2 or RV (All)1/2 · RV as an additional explanatory variable, as indicated in the
table. RV (all) is estimated with 1-minute returns. The results for the S&P500 are based on the SPY ETF contract.
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