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Abstract

The implied volatility surface is the collection of volatilities implied by option contracts

for different strike prices and time-to-maturity. We study factor models to capture the

dynamics of this three-dimensional implied volatility surface. Three model types are

considered to examine desirable features for representing the surface and its dynamics:

a general dynamic factor model, restricted factor models designed to capture the key

features of the surface along the moneyness and maturity dimensions, and in-between

spline-based methods. Key findings are that: (i) the restricted and spline-based mod-

els are both rejected against the general dynamic factor model, (ii) the factors driving

the surface are highly persistent, (iii) for the restricted models option ∆ is preferred

over the more often used strike relative to spot price as measure for moneyness.
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1 Introduction

The value and pay-off of an option depends on the price of the underlying asset relative

to the strike price (also called the moneyness) and the remaining time-to-maturity (or

simply maturity). The maturity and strike are given in the option contract and for a given

underlying asset typically a range of options with different maturities and strikes can be

traded in financial markets. Because the prices of these different option contracts with the

same underlying are difficult to interpret and compare, option prices often are converted

into implied volatility. The implied volatility is obtained by backing out the volatility in

such a way that the observed market price of the option contract matches the price implied

by a certain pricing model, usually the Black and Scholes (1973) model or a binomial tree

(introduced by Cox, Ross, and Rubinstein, 1979). The collection of implied volatilities

across both the maturity and moneyness dimensions is referred to as the implied volatility

surface.1 An extant literature, pioneered by Rubinstein (1994), shows that at any given

point of time there are typical and common patterns for the implied volatility across the

strike price (or moneyness more generally) and maturity dimensions. The pattern for given

maturity across different strikes is often referred to as the volatility smile (because of its

U-shape). The pattern for given moneyness across different maturities is referred to as the

volatility term structure.

Since the pay-offs of option contracts for different strikes and maturities ultimately de-

pend on the same underlying, a strong comovement in the different option prices is expected.

As the implied volatility is a transformation of the prices, this feature carries over to the

implied volatility surface. It is a natural idea to represent the comovement of different parts

of the volatility surface in terms of common factors. However, there is no clear guidance in

the literature on what type of factor model to use for this purpose. On one side of the spec-

trum, Fengler, Härdle, and Mammen (2007) suggest a flexible semiparametric factor model.

On the other side of the spectrum, Christoffersen, Fournier, and Jacobs (2013) suggest a

restricted factor model that decomposes the volatility surface into three factors representing

1The model used to obtain the volatility surface is not crucial. Important is that a (nonlinear) unique
transformation of the prices is taken, to be able to compare options using a common unit of measurement.
Another interpretation of the volatility surface is that outstanding options on the same underlying with
the same maturity can be used to extract an implied risk-neutral distribution, which in turns implies a
particular shape of the volatility surface. We are agnostic about the causes of the volatility surface and
solely focus on the econometric modeling of the surface using factor modeling techniques.
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the implied volatility level, smile and term structure.

The contribution of this paper is to compare different factor model specifications for the

implied volatility surface and examine desirable and undesirable features of such models.

We use three different set-ups. First, we consider a general dynamic factor model (DFM)

where only identification restrictions are imposed. Second, we examine restricted model

specifications, where the factors are forced to represent comovement in the implied volatili-

ties along the moneyness and maturity dimensions. Such a set-up is commonly used in the

economics and finance literature, see, e.g., Dumas, Fleming, and Whaley (1998), Christof-

fersen, Fournier, and Jacobs (2013) and Christoffersen, Goyenko, Jacobs, and Karoui (2012).

Third, we propose spline-based models that offer a flexible approach to capture the shape

of the implied volatility surface. For this third set-up, we follow the smooth dynamic factor

modeling approach of Jungbacker, Koopman, and van der Wel (2014). As in the second

set-up, the factor loadings are structured in such a way that the corresponding factors repre-

sent smile and term structure effects, but the restrictions imposed on the loadings are much

less strict. The spline-based models can be seen as a likelihood-based alternative of the

semiparametric implementation using basis functions, as in Fengler, Härdle, and Mammen

(2007) and Park, Mammen, Härdle, and Borak (2009). All the different DFM specifications

are estimated with maximum likelihood adopting the framework of Jungbacker and Koop-

man (2014). Since both the restricted economic models and spline-based models are nested

in the general dynamic factor model we use likelihood-ratio tests (LR-tests) to compare the

models, besides comparing models based on information criteria.

We examine the merits of the different DFM set-ups in an empirical setting, using daily

implied volatilities for European options on the S&P500 index from 1999 through 2013. This

is one of the most actively traded derivative securities, with contracts being available for a

wide range of strike prices and maturities. We construct the implied volatility surface using

six different groups of moneyness (measured by the ∆ of the option2) and four different

groups of time-to-maturity. On each day we find a contract nearest to the midpoint of each

of the 24 moneyness-maturity pairs. We consider the balanced panel of the 24 daily selected

contracts to capture the implied volatility surface.

2The ∆ is defined as the sensitivity of the option price with respect to movements in the price of the
underlying. The ∆ is close to the implied probability that an option will end up in-the-money and is thus
often used as measure for moneyness.
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Our results provide three key implications. First, the economic and spline-based mod-

els are both rejected against the general dynamic factor model; although the spline-based

models perform much better than the restricted economic models. In all three model spec-

ifications, we find that the level of the volatility surface is the most important factor. The

second and the third factors differ, however, and the preference for the general DFM suggests

that the remaining comovement in the volatility surface does not correspond with the (eco-

nomically plausible) smile and term structure effects as imposed by the restricted models.

Second, for all estimated models the factors driving the surface are highly persistent. Third,

to capture moneyness in the restricted economic models the option ∆ performs better than

the strike price relative to the spot price. This is an important implication, as many of the

existing models use the strike relative to the spot price rather than ∆. An explanation for

this finding is that, unlike ∆, the strike relative to the spot price does not take into account

that the likelihood of the option being in-the-money at expiration depends on the (current)

volatility of the stock and remaining time-to-maturity, as Bollen and Whaley (2004) point

out.

We consider four extensions to our baseline model set-up. First, an alternative surface

construction strategy is used based on moneyness measured by strike relative to spot price.

Even when the data are constructed based on this measure, the models favor using ∆ for

moneyness. Second, while our main analysis is based on 3-factor models we also examine

higher-dimensional restricted models. We consider all models of Dumas, Fleming, and

Whaley (1998), which have up to six factors. Only two of the 6-factor models provide a

likelihood that is better to the general 3-factor DFM. Third, we consider alternatives for

the factor dynamics and report similar results when random walks are taken for the factors.

Fourth, the importance of the crisis period is examined by taking a log-transformation of

the data and considering a sub-sample that omits the crisis period. While some factors are

less persistent, the factor structure is also strong outside of the crisis period and when using

logs.

We contribute to two strands of literature. First, our approach contributes to the dy-

namic factor modeling literature by studying a surface. Many applications of factor models

are ‘two-dimensional’ in nature and can be categorized as to whether the data can be log-

ically structured in a particular way. Popular data sets as provided by Stock and Watson
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(2002) and related studies are a collection of macroeconomic variables where no immediate

logical or natural ordering of the variables exists. However, in other cases such as Treasury

yields, as in Jungbacker, Koopman, and van der Wel (2014), a natural ordering exists as

the 3-month bond logically comes before the 6-month bond. Intermediate data sets are

somewhat organized, such as housing prices as studied in Mönch and Ng (2011). We offer

an approach to deal with organized three-dimensional data, by stacking the surface to get

back to the case of two-dimensional data but benefiting from the resulting block-structure

in the factor models.

Second, we contribute to the literature on the modeling of volatility surface. To the

best of our knowledge we are the first to model the surface using a likelihood-based general

dynamic factor approach. Alternative statistical implementations of factor models for the

surface include Skiadopoulos, Hodges, and Clewlow (1999), Cont and da Fonseca (2002)

and Fengler, Härdle, and Villa (2003). The restricted setting based on Dumas, Fleming,

and Whaley (1998) has been extended by Gonçalves and Guidolin (2006) to include factor

dynamics. The analysis is however done in a two-step framework, where the factors are first

obtained by OLS and then modeled using vector-autoregressions. We provide an efficient

approach to estimate the factors and their dynamics in one step. The closest paper to the

spline-based set-up is Bedendo and Hodges (2009), who decompose the volatility smile using

cubic polynomials and treat the knot values of these polynomials as factors. This can be

seen as a restricted version of our approach and as the polynomials are based on moneyness

it is fairly close to the restricted economic setting. Moreover we provide a unified framework

for the surface, whereas the surface extension in their work is a separate treatment of the

smile for different maturity groups.

The rest of the paper is organized as follows. Section 2 describes the data used in

the analysis, summary statistics and a preliminary analysis of the data based on principal

component analysis. Section 3 details the three different set-ups of the dynamic factor

model. Section 4 provides the main estimation results. Section 5 discusses the outcomes

of various robustness checks and extensions of the main modeling approach. Section 6

concludes.
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2 Volatility Surface Data

This section describes how we construct the implied volatility surface and provides a pre-

liminary investigation of its characteristics. Knowledge of the key empirical features of the

volatility surface provides useful input for the specification of the factor models as discussed

in the next section. Section 2.1 discusses the data construction. Section 2.2 provides sum-

mary statistics and some insights into the possible usefulness of factor models based on

principal component analysis.

2.1 Constructing the Volatility Surface

We use a daily dataset of European options on the S&P500 index traded on the Chicago

Board Options Exchange (CBOE). This is one of the most actively traded derivative secu-

rities. On an average day over a thousand option contracts are quoted. These vary along

several dimensions: option type (call or put), expiry/maturity date, and strike price. The

dataset, retrieved from OptionMetrics, consists of end-of-day values for all available option

bid and ask quotes, as well as the corresponding time-to-maturity and strike price values.

For each option contract, OptionMetrics calculates the implied volatility and other relevant

characteristics, such as ∆ and the strike price relative to spot price. Our sample period

spans almost 15 years, from January 4, 1999, through August 30, 2013. Days on which

the market is closed due to holidays or other reasons (such as the week following 9/11) are

excluded, resulting in 3,688 daily observations.

The data are filtered to remove options that are inactive or may contain data errors.

Our filtering procedures follow Barone-Adesi, Engle, and Mancini (2008). Specifically, we

delete options (i) with a maturity longer than 360 days or shorter than 10 days, (ii) with an

implied volatility above 70%,3 (iii) with a price below $0.05, or (iv) with missing values for

either the implied volatility or ∆. Moreover, we only consider out-of-the-money put and call

options as these are more actively traded than in-the-money options. Because of the put-call

parity considering out-of-the-money options is identical to studying in-the-money options or

both types. Every in-the-money call (put) option can be matched to an out-of-the-money

3During the financial crisis there are a few days that volatility exceeds this level. We run a robustness
analysis where we remove this second criteria and all results are similar.
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put (call) option, where the ∆ of the call option is always one plus the ∆ of the put option.

For example, an in-the-money call option with a ∆ of 0.75 should have the same implied

volatility as an out-of-the-money put with a ∆ of -0.25.

We create daily implied volatility surfaces spanning the maturity and moneyness dimen-

sions. We divide the data into four maturity groups, separated by maturities of 45, 90 and

180 days, and six moneyness groups of at-the-money, out-of-the-money, and deep out-of-

the-money options for both call and put options. Following Bollen and Whaley (2004), we

define moneyness in terms of ∆ because this also considers the volatility of the underlying

asset, unlike the ratio of the strike price to the spot index price. We consider put options

with −0.125 < ∆ < 0 as deep out-of-the-money (which we abbreviate with DOTM Put),

with −0.375 < ∆ < −0.125 as out-of-the-money (OTM Put), and with −0.5 < ∆ < −0.375

as at-the-money (ATM Put). Similarly, we label call options with 0.375 < ∆ < 0.5 as

at-the-money (ATM Call), with 0.125 < ∆ < 0.375 as out-of-the-money (OTM Call) and

with 0 < ∆ < 0.125 as deep out-of-the-money (DOTM Call). The combination of the four

maturity and six moneyness groups provides 24 different groups, each containing a subset

of all option contracts quoted on a day. For each maturity-moneyness group, we select

the contract closest to the midpoint of both dimensions.4 On an average day there are 17

contracts in each group. Only if there is no option data within a group, we consider the

closest contract across all groups. The approach to consider different groups in the large

cross-section of data follows the literature, see, e.g., Bollen and Whaley (2004) and Barone-

Adesi, Engle, and Mancini (2008). We consider a fairly large number of 24 groups, which

is chosen to strike a balance between obtaining a balanced panel of similar contracts over

the entire sample period and representing overall movements in the large cross-section of

options.5

2.2 Summary Statistics and Preliminary Analysis

Figure 1 highlights some of the stylized facts about the implied volatility surface by dis-

playing it for two specific days. Panel (A) shows the surface for June 4, 1999. The implied

4Closeness is defined by the summed squared distance for both ∆ and maturity, where we put ten times
more weight on ∆ because the smaller values compared to maturity.

5An alternative would be to consider the unbalanced set of all option contracts. While this poses no
serious challenges for our modeling approach, we leave this for further research.
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Figure 1: Volatility Surface on two days
This figure shows the volatility surface on two days: June 4, 1999, and September 19, 2008. We show the
implied volatility across four maturity groups and six moneyness groups. The maturity groups are 10-45
(group 1 in the figure), 45-90 (group 2), 90-180 (group 3) and 180-360 (group 4) days. The moneyness groups
are −0.125 < ∆ < 0 (deep out-of-the-money put options, group 6 in the figure), −0.375 < ∆ < −0.125
(out-of-the-money puts, group 5), −0.5 < ∆ < −0.375 (at-the-money puts, group 4), 0.375 < ∆ < 0.5 (at-
the-money call options, group 3), 0.125 < ∆ < 0.375 (out-of-the-money calls, group 2) and 0 < ∆ < 0.125
(deep out-of-the-money calls, group 1). On each day we select the option that is closest to the middle of
each maturity-moneyness group.

(A) June 4, 1999

Maturity Group

Moneyness Group

Im
pl

ie
d 

V
ol

10-45 days

180-360 days

DOTM Call

DOTM Put

1

2

3

4

2
3

4
5

6

0.
2

0.
3

0.
4

(B) September 19, 2008

Maturity Group

Moneyness Group

Im
pl

ie
d 

V
ol

DOTM Put

DOTM Call 10-45 days

180-360 days

1

2

3

4

2
3

4
5

6

0.
2

0.
3

0.
4

7



volatility slopes downward along the moneyness dimension for each of the four maturity

groups. It is highest for deep out-of-the-money puts having low strike prices relative to the

spot price and lowest for deep out-of-the-money calls with high strike prices relative to the

spot price. This is a usual pattern and is commonly referred to as the volatility smile.6

The same pattern is indeed also found for September 19, 2008, a day during the height of

the financial crisis, as shown in Panel (B). All implied volatilities are substantially higher

compared to June 4, 1999, but the same smile is observed for all maturity groups. Interest-

ingly, the implied volatility slopes (slightly) upward along the maturity dimension for June

4, 1999, while it slopes downward for September 19, 2008. A common explanation for this

difference in the term structure is the mean-reversion of volatility: at relatively high levels

of volatility the term structure slopes downward, while at low levels of volatility it slopes

upward.

Table 1 provides summary statistics of the implied volatility surface. The table shows

the time series mean and standard deviation of five variables for each of the 24 moneyness-

maturity groups. For each group, statistics are reported for the mid-quote (in US dollars),

the implied volatility, the option ∆, the maturity (in days), and the strike relative to spot

price (K/S). The mid-quote increases with time-to-maturity and generally displays an

inverse U-shape across the moneyness groups. The first feature reflects the options’ time

value, that is, options with longer maturity are traded at a higher price than short maturity

options with comparable moneyness. The second feature is due to our definition of the

moneyness groups and reflects the fact that options that are closer to being in-the-money

are priced higher. The numbers for implied volatility confirm the observation based on

Figure 1 that implied volatility slopes downward with moneyness. The average implied

volatility for the DOTM Put group is almost the double of the average implied volatility for

the DOTM Call group. The volatility term structure is fairly flat on average. The average

option ∆ is close to the midpoint of the relevant ranges defining the different moneyness

groups and the same is the case for the average maturity. It is interesting to note that,

whereas ∆ is fairly constant across maturity groups, this is not the case for the strike price

6In stricter terms, a smile requires the implied volatility to slope upward again for high strike prices
relative to the spot price. The observed pattern in Figure 1 is better described as a smirk due to the lack
of such symmetry. In spite of this, we continue referring to the pattern as a smile due to the widespread
usage of this term.
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Table 1: Summary Statistics
This table shows summary statistics for the option data. The table provides the mean and standard deviation
(‘Sd’) over time for the mid-quote (in dollars), implied volatility (‘Impl Vol’), option ∆, maturity (in days),
and strike relative to stock price (‘K/S’). We show these numbers across four maturity groups and six
moneyness groups. The maturity groups are 10-45, 45-90, 90-180 and 180-360 days. The moneyness groups
are −0.125 < ∆ < 0 (deep out-of-the-money put options, DOTM Put), −0.375 < ∆ < −0.125 (out-of-the-
money puts, OTM Put), −0.5 < ∆ < −0.375 (at-the-money puts, ATM Put), 0.375 < ∆ < 0.5 (at-the-
money call options, ATM Call), 0.125 < ∆ < 0.375 (out-of-the-money calls, OTM Call) and 0 < ∆ < 0.125
(deep out-of-the-money calls, DOTM Call). On each day we find the option that is closest to the middle
of each maturity-moneyness group. The numbers represent averages over time for the selected contracts in
each group.

Summary Statistics
10-45 days 45-90 days 90-180 days 180-360 days

Mean Sd Mean Sd Mean Sd Mean Sd
DOTM Put Mid-Quote 2.63 2 4.47 2.15 6.48 2.23 9.99 3.42

Impl Vol 0.288 0.11 0.3 0.101 0.306 0.0925 0.308 0.0827
∆ -0.0627 0.0075 -0.0631 0.00862 -0.0627 0.00855 -0.0643 0.0119
Maturity 27.9 10.7 67.8 9.45 133 23.3 269 26.2
K/S 0.895 0.0422 0.834 0.0489 0.775 0.0578 0.705 0.0684

OTM Put Mid-Quote 10.9 4.72 18.6 6.18 27.6 8.22 42.1 11.9
Impl Vol 0.228 0.0957 0.234 0.086 0.239 0.0769 0.243 0.0674
∆ -0.25 0.0147 -0.249 0.0154 -0.25 0.0155 -0.25 0.0178
Maturity 27.4 8.54 67.4 8.66 133 23.8 270 25.1
K/S 0.964 0.0159 0.943 0.0199 0.923 0.0252 0.899 0.0326

ATM Put Mid-Quote 21.2 8.58 35.7 11.5 52.8 15.4 80.3 21.3
Impl Vol 0.204 0.0868 0.206 0.0764 0.209 0.0678 0.211 0.0587
∆ -0.437 0.0175 -0.437 0.0185 -0.437 0.0205 -0.438 0.0162
Maturity 27.5 8.42 67.3 8.72 133 23 270 25.1
K/S 0.994 0.00378 0.993 0.00643 0.993 0.0112 1 0.0195

ATM Call Mid-Quote 18.6 6.75 29.9 8.43 42.1 10.6 59.8 13.2
Impl Vol 0.191 0.0812 0.191 0.0698 0.193 0.0612 0.195 0.0528
∆ 0.437 0.0182 0.438 0.0201 0.438 0.0226 0.438 0.0188
Maturity 27.5 8.46 67.2 9.08 133 22.9 270 25.2
K/S 1.01 0.00629 1.02 0.00984 1.03 0.0156 1.05 0.0247

OTM Call Mid-Quote 7.91 2.88 12.6 3.68 17.8 4.8 25.4 6.32
Impl Vol 0.177 0.075 0.174 0.063 0.175 0.0551 0.176 0.0473
∆ 0.25 0.0191 0.25 0.0219 0.25 0.0233 0.251 0.0215
Maturity 27.3 8.2 67.5 8.47 134 22.8 270 24.8
K/S 1.03 0.0166 1.06 0.0235 1.08 0.0314 1.13 0.0429

DOTM Call Mid-Quote 1.32 0.495 2.08 0.707 2.91 1.08 4.43 1.78
Impl Vol 0.165 0.068 0.158 0.0561 0.157 0.0485 0.156 0.0412
∆ 0.0616 0.00906 0.0617 0.0108 0.0617 0.013 0.0656 0.0168
Maturity 27.3 8.2 67.3 8.74 133 23.1 267 28.9
K/S 1.07 0.0336 1.11 0.0451 1.17 0.0591 1.25 0.078
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relative to spot price, illustrating that moneyness is measured differently by both variables.

Figures 2 and 3 provide time series plots of the volatility surface. Panel (A) of Figure 2

plots the average implied volatility across the 24 groups together with the VIX. Particularly

the high volatility of the financial crisis during the second half of 2008 stands out, but also

the increased uncertainty following 9/11, the second Gulf War in 2002-2003, the European

sovereign debt crisis in 2010, and the debt-ceiling crisis of 2011. Panel (B) of the figure

plots the time series of implied volatility for all 24 moneyness-maturity groups. We observe

a strong comovement across the groups. During times of high volatility the dispersion across

the groups is larger than the dispersion during times of low volatility. This is borne out

more clearly in Figure 3, plotting the slope of the volatility smile (Panel (A)) and the term

structure (Panel (B)). The slope of the volatility smile in each maturity group is defined as

the implied volatility of the deep out-of-the-money put options minus the implied volatility

of the deep out-of-the-money calls. The slope of the volatility term structure is defined

as the implied volatility of the longest maturity group minus the implied volatility of the

shortest maturity group. Panel (A) shows that for all days in the sample the slope of the

smile is positive for each of the maturity groups. Its magnitude varies considerably though,

between 0.05 and 0.30, approximately. The smile is larger when the level of volatility is

higher and is strongest during and following the financial crisis. The time series of the slope

of the term structure in Panel (B) indicates the term structure can be both negative and

positive. Consistent with the mean-reversion interpretation, during times of high volatility

the term structure slopes downward, while it tends to slope upward during times of low

volatility. Similar to the pattern of the average implied volatility, both the smile and term

structure slopes show strong persistence.

To investigate the degree of comovement and persistence in the implied volatilities fur-

ther, we analyze cross-correlations between the moneyness-maturity groups and (partial)

autocorrelations within each group. Table A1 in the web appendix shows cross-correlations

between the different moneyness groups for the shortest (10-45 days) and longest (180-360

days) maturity categories. Without exception, the cross-correlations are very high: Within

a maturity category they all exceed 0.9, but even across maturity categories they do not

fall below 0.8. Also, cross-correlations decline as the difference in moneyness between the

groups becomes larger. Table A2 in the web appendix reports (partial) autocorrelations
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Figure 2: Volatility Time Series
This figure shows the time series of implied volatility. Panel (A) plots the average implied volatility across
the maturity-moneyness groups, together with the VIX. Panel (B) plots the time series for each of the 24
maturity-moneyness groups.
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Figure 3: Slope of the Volatility Smile and Term Structure
This figure shows the time series of the implied volatility smile and term structure. Panel (A) plots the slope
of the implied volatility smile. For each of the four maturity groups, we define the slope in that maturity
group as the implied volatility of the deep out-of-the-money put minus the implied volatility of the deep
out-of-the-money call. This is the implied volatility of the option with the lowest strike relative to stock
price minus the implied volatility of the highest strike relative to the stock price. Panel (B) plots the slope
of the volatility term structure. For each of the six moneyness groups, we define the slope as the implied
volatility of the longest maturity minus the shortest maturity.
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at various lags for a selection of implied volatilities, for the slope of the volatility smile at

different maturities and for the slope of the term structure at different moneyness levels.

We observe strong autocorrelations in each case, particularly for contracts with longer ma-

turities. At the 20th lag, the autocorrelation of the implied volatility stays above 0.8 for all

contracts, while those of the slopes of the volatility smile and the term structure remain

above 0.6 in all cases. For implied volatilities, the partial autocorrelations with the first lag

are around 0.98 (they are by definition equal to the autocorrelations with the first lag) and

they drop dramatically to the 0.1-0.25 range for the second lag. The two slope variables

follow a similar shape in their partial autocorrelations.

The strong cross-correlations of the implied volatility across the moneyness-maturity

groups suggests that it might be useful to employ common factors to describe the features

of the implied volatility surface. To examine this further we run a principal component

analysis. Table A3 in the web appendix provides the percentage of variation explained by

the first 10 of the 24 principal components and the (partial) autocorrelation structure of

the first three principal components. The bulk of the variation in the implied volatilities

is captured by the first three principal components. Combined, they explain nearly 99% of

the variation in the panel of 24 series. Figure A1 in the web appendix shows the time series

of the first three principal components. The first principal component corresponds to the

level of the implied volatility panel. The second and third component cannot immediately

be linked to the volatility smile and term structure though. The principal component

analysis confirms the presence of a strong factor structure in the implied volatility surface

and motivates our set-up of dynamic factor modeling.

3 Models for the Volatility Surface

We now turn to the dynamic factor models for the implied volatility surface. We propose

three different set-ups. Section 3.1 describes a general dynamic factor model, which nests

all subsequent specifications. Section 3.2 discusses a restricted model recently proposed by

Christoffersen, Fournier, and Jacobs (2013). This set-up explicitly takes the structure of the

implied volatility surface data into account. Specifically, in addition to a factor representing

the level of the surface, the model is forced to contain factors representing the smile and
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the (slope of the) term structure. This is achieved by setting the factor loadings equal

to the moneyness and maturity of the corresponding option contract. Finally, Section 3.3

introduces related but more flexible specifications using splines to set the factor loadings

along the moneyness and maturity dimensions.

3.1 General Dynamic Factor Model

The observation vector in our factor models consists of the vectorized volatility surface.

Stacking the vector of implied volatilities for the T different maturities for each of the M

moneyness groups results in the (TM × 1) vector of observations

yt =



IVτ1,m1,t

...

IVτT ,m1,t

IVτ1,m2,t

...

...

IVτT ,mM ,t


,

where IVτi,mj ,t denotes the implied volatility on day t for an option with time-to-maturity τi,

with i = 1, 2, . . . , T , and moneyness mj, with j = 1, 2, . . . ,M . In our application, we have

T = 4 maturities T and M = 6 moneyness categories. It is useful to note that because of

the seasonality in option expiry dates and the variation in the option ∆ (as shown in Table

1), it is not possible to use option contracts with exactly the same moneyness and maturity

on each day and across the moneyness and maturity groups. For notational convenience,

we suppress here the time-subscripts on the maturity τ and moneyness m as well as the

moneyness subscripts for maturity and the maturity subscripts for moneyness.

We start with a general dynamic factor model, given by

yt = Λft + εt, εt ∼ N(0,Σε),

ft+1 = µ+ Φ(ft − µ) + ηt+1, ηt+1 ∼ N(0,Ση),
(1)

where yt is the observation vector as defined above, ft are the r latent dynamic factors
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that are loaded onto the implied volatilities using the (TM × r) factor loading matrix Λ

and εt is the (TM × 1) vector of measurement errors with covariance matrix Σε. Following

standard practice and in line with the results of our (partial) autocorrelation analysis, we

adopt a vector autoregressive (VAR) model of order one for the factors, with intercept µ,

VAR-coefficient matrix Φ and factor innovations ηt+1, which are assumed to be normally

distributed with covariance matrix Ση.

The model is estimated using likelihood-based methods along the lines of Jungbacker and

Koopman (2014). Motivated by the principal component analysis in Section 2.2, we focus

on models with r = 3 factors. To enable estimation, we impose identification restrictions.

One possibility is to restrict the top-square part of the loading matrix Λ and set it equal to

the identity matrix, following Geweke and Zhou (1996). We implement a slight variation of

this identification motivated by the empirical analysis of the volatility surface. We impose

restrictions on four rows of Λ, corresponding to the shortest and longest maturities in the

third and fourth moneyness groups (ATM Put and ATM Call), by setting


λ2T+1,1 λ2T+1,2 λ2T+1,3

λ3T,1 λ3T,2 λ3T,3

λ3T+1,1 λ3T+1,2 λ3T+1,3

λ4T,1 λ4T,2 λ4T,3

 =


1 −1 1

1 1 1

1 −1 −1

1 1 −1

 .

The restrictions force the first latent factor to capture the level of implied volatility across the

four selected groups, the second factor to capture the term structure for the two moneyness

groups and the third factor to capture the smile for the two maturity groups. Furthermore,

we impose diagonality on the covariance matrix Σε of the measurement errors, implying

that all comovement of the implied volatilities is attributed to the latent factors. The drop

of the partial autocorrelations after the first lag of the principal components as reported in

Table A3 motivates our use of a VAR with one lag. The VAR parameters in µ and Φ are

left unrestricted and the parameters in Ση are estimated using an LDL-decomposition. We

initialize the latent factors from a standard normal distribution.7

7We also implement variants of a diffuse initialization with large variance and an initialization from the
implied steady-state of the VAR. Results are qualitatively similar, though optimization for the steady-state
initialization was less stable due to the strong persistence in the data.
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3.2 Restricted Economic Dynamic Factor Models

Given the structure of the implied volatility surface, in the context of DFMs it is quite nat-

ural to think of the latent factors as components representing the moneyness and maturity

dimensions of the surface (or, in other words, the volatility smile and (the slope of) the term

structure). Following this intuitively plausible idea, we adopt the setting of Christoffersen,

Fournier, and Jacobs (2013) who extract the implied volatility level, moneyness slope and

maturity slope by regressing the implied volatility cross-section at a given time t on the

moneyness and the maturity:

IVτi,mj ,t = lt + τict +mjst + εi,j,t, (2)

with lt the implied volatility level, ct the implied volatility maturity curve (along the matu-

rity dimension), and st the implied volatility smile (along the moneyness dimension). This

approach can easily be cast in the dynamic factor framework. To do so, we collect the level,

curve and smile into the latent state vector to obtain ft = (lt, ct, st)
′. This results in a

special case of the DFM in (1) with restricted factor loading matrix

Λ =



1 τ1 m1

...
...

...

1 τT m1

1 τ1 m2

...
...

...
...

...
...

1 τT mM


.

This loading matrix is deterministic and contains no parameters that need to be estimated.

Also here we have suppressed variation over time and across moneyness and maturity

groups of the maturity τi and moneyness mj. Because this variation may be useful for

capturing the shape of the volatility surface, we run two variants. First, we consider spec-

ification with time-varying loading matrix Λt containing the actual time-to-maturity and

moneyness of each contract in the 24 moneyness-maturity groups on day t. Second, we

consider a specification with a constant loading matrix Λ, where we take the time-series
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average of the maturities and moneyness for each of the 24 groups.

We also consider two different definitions of moneyness mj. First, following Christof-

fersen, Fournier, and Jacobs (2013) we define moneyness as the ratio of the option’s strike

price K and the spot price S. Second, following the constructing of our volatility surface

data, we take moneyness equal to the option ∆. As discussed in Section 2.1, the latter takes

more properties of the data into account for defining the relative likelihood of the option

ending up in-the-money. We consider both variables for both the constant and time-varying

loading case.8 In all four of these restricted cases, we de-mean the second and third col-

umn to let the first factor capture movements in the level of the volatility surface (for the

time-varying cases the columns are de-meaned on a daily basis).

3.3 Spline-based Dynamic Factor Models

While the idea that the latent factors in a DFM should capture the key features of the

volatility surface along the maturity and moneyness dimensions is intuitively plausible, the

approach of Christoffersen, Fournier, and Jacobs (2013) discussed above is quite restrictive

in terms of the specification of the factor loadings. The third and final set-up is a hybrid

approach, aiming to combine the flexibility of the general DFM of Section 3.1 with the

economically plausible factor interpretation of the restricted model in Section 3.2. We

propose to specify the factor loadings using splines in order to capture the shape of the

volatility surface along both the maturity and moneyness dimensions in a flexible manner.

The splines we use follow Poirier (1976) and have been used before in a dynamic factor

modelling framework by Jungbacker, Koopman, and van der Wel (2014).

In a first variant of this approach, we impose relatively little structure on the loadings, in

the sense that we do not impose restrictions on the loadings along the maturity dimension

across the different moneyness groups, and vice versa. This is achieved by considering four

separate splines across the moneyness dimension (one spline for each maturity group) and

six separate splines across the maturity dimension (one for each moneyness group). Written

8To keep ∆ comparable for put and call options we consider 1+∆ for puts. This follows from the put-call
parity, that states that the ∆ of a call option minus the ∆ of a put option with the same strike and maturity
should be one. The necessity of this simple transformation is apparent from Table 1, where it can be seen
that average ∆ jumps from -0.437 to +0.437 when going from at-the-money put options to at-the-money
call options.
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in a manner similar to the restricted models from the previous section, we have

IVτi,mj ,t = lt + f j(τi)ct + gi(mj)st + εi,j,t,

with f j(τi) the spline for maturity i in moneyness group j, and gi(mj) the spline for money-

ness group j with maturity i. The maturity splines f j(·) capture the shape of the volatility

term structure for the different moneyness groups, while the moneyness splines gi(·) capture

the shape of the volatility smile for the different maturity groups. Also this set-up can be

written in the dynamic factor model framework, by using the factor loading matrix

Λ =



1 f 1(τ1) g1(m1)
...

...
...

1 f 1(τT ) gT (m1)

1 f 2(τ1) g1(m2)
...

...
...

...
...

...

1 fM(τT ) gT (mM)


.

For each of the splines, a number of knots has to be selected. Given that M = 6 the

moneyness splines consist of at most six knots. The maturity splines consist of at most four

knots, because T = 4. The parameters to be estimated in the loading matrix are the knot

values for each of the splines. For comparability with the restricted models of the previous

section, we restrict the average knot values for each spline to be equal to zero. Besides the

comparability, an advantage of this setting is that it imposes enough restrictions for the

model to be identified. Note that in the case of six and four knots the model is identical to

the general dynamic factor model of Section 3.1, apart from the identification restriction.

In the second variant of this approach, we restrict the moneyness splines gi(·) to be the

same across all maturity groups i = 1, . . . , T and the maturity splines f j(·) to be the same

across all moneyness groups j = 1, . . . ,M . This leads to the restricted specification for the

observed implied volatility given by

IVτi,mj ,t = lt + f(τi)ct + g(mj)st + εi,j,t,
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with f(τi) the spline value for maturity i and gi(mj) the spline value for moneyness group

j. In this case the factor loading matrix is given by

Λ =



1 f(τ1) g(m1)
...

...
...

1 f(τT ) g(m1)

1 f(τ1) g(m2)
...

...
...

...
...

...

1 f(τT ) g(mM)


.

Also for this variant, a number of knots has to be selected for each spline and the coefficients

to be estimated are called as the knot values. Similarly, we impose the restriction that the

average of the knot values is equal to zero.

A special case of this second variant is the specification with T = 4 knots for the maturity

spline and M = 6 knots for the moneyness spline. In this case the knot values are simply

the levels of each of the elements of the spline and the model is a block-version of the general

dynamic factor model with

Λ =



1 λ1,1 λ2,1

...
...

...

1 λ1,T λ2,1

1 λ1,1 λ2,2

...
...

...
...

...
...

1 λ1,T λ2,M


,

with T +M parameters to be estimated in the loading matrix, which reduces to T +M − 2

parameters after imposing the restriction that the averages of the second and third columns

must be equal to zero.
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4 Main Results

Table 2 provides key statistics concerning the fit of the three different DFM set-ups, es-

timated using the full sample of daily S&P500 implied volatility surfaces over the period

January 4, 1999 – August 30, 2013. The baseline model is the general dynamic factor model

of Section 3.1. With three factors, the model contains 102 parameters in total. The esti-

mated log-likelihood is 302,145, which serves as a benchmark for comparison with the other

models.

Table 2: Comparing Dynamic Factor Models
This table provides statistics concerning the fit of the three dynamic factor models, when estimated using
the full sample of daily S&P500 implied volatility surfaces over the period January 4, 1999 – August 30,
2013.. The first model is the general dynamic factor model (‘General DFM’), where only identification
restrictions have been imposed. The second set of models are the restricted factor models based on the
economic literature (‘Restr DFM’). We estimate four variants, depending on whether the loading matrix is
constant (‘Const’) or time-varying (‘TV’) and whether strike relative to stock price (‘K/S’) or ∆ is used
for moneyness. The third set of models are spline-based (‘Spline DFM’). We consider the block dynamic
factor model with knots on all places (‘Block DFM’), a model with one spline for the maturity and one
spline for the moneyness dimensions (‘Mat and Mon Splines’) and a model where there are separate splines
for all maturity and moneyness groups (‘Separate Splines’). For each model, we provide the log-likelihood
value (‘Loglik’), the number of parameters (‘#Pars’) and the Akaike Information Criterion (‘AIC’). For
the restricted economic and spline models, we also provide a likelihood-ratio test (‘LR-test’) relative to the
general dynamic factor model.

Comparison of Factor Models
Model and Moneyness Const/TV Loglik LR-test #Pars AIC
General DFM (only ident restr) 302132.8 102 -604061.6
Restr DFM K/S Const 257089.0 90087.6 42 -514094.0

TV 261552.8 81182.4 42 -522999.2
∆ Const 263989.1 76287.4 42 -542237.8

TV 271160.9 61943.8 42 -542260.8
Spline DFM Block DFM 291583.0 21099.6 50 -583066.0

Mat and Mon Splines 287181.4 29902.8 47 -574268.8
Separate Splines 293206.4 17852.8 66 -586280.8

For the restricted DFM discussed in Section 3.2, we consider four variants, where mon-

eyness is measured either by the strike price relative to the spot price or ∆ and where the

loading matrix is either constant or time-varying. For all four variants we find much lower

log-likelihood values, ranging between 257,089 and 271,160. This makes the general DFM

specification preferred by both an LR-test and the Akaike Information Criterion.9 These

9Besides the Akaike Information Criterion we also consider the Schwartz Information Criterion which
penalizes the general dynamic factor model more heavily due to its larger number of parameters. In all
cases identical conclusions are drawn based on this alternative information criterion.
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measures take into account that the restricted models have far less parameters, namely only

42 compared to 102 in the general DFM. Among the four restricted models, the time-varying

loading matrix is preferred over the constant loading matrix for both moneyness measures.

For both the time-varying and constant loading case, ∆ is preferred as measure of money-

ness. This is striking, as many of the existing models use the strike relative to the spot price

rather than ∆ to measure moneyness.

As discussed in Section 3.3, we consider three variants of the spline-based dynamic

factor models. Firstly, the most flexible case contains a separate moneyness spline for each

maturity group and a separate maturity spline for each moneyness group. Secondly, a more

restrictive case has a single spline for moneyness and a single spline for maturity. And

thirdly, the block DFM constitutes a special case obtained when the number of knots is

equal to the number of elements in the case of a single spline for moneyness and a single

spline for maturity. All three variants perform a lot better than the restricted models. For

example, the log-likelihood of the block dynamic factor model is more than 20,000 points

higher than the best restricted model even though the loading matrix is constant. For each

of the splines, we select three knots for the maturity spline (out of maximum four) and four

for the moneyness spline (out of maximum six). Due to the restriction that the average of the

knot values is zero, two and three parameters have to be estimated for the splines to model

the maturity and moneyness dimensions, respectively. The maturity and moneyness spline

variant performs worse than the block dynamic factor model, even though the difference

in the number of parameters is very small. The separate splines variant performs best.

Out of all restricted and spline models, it comes closest to the general dynamic factor

model. Nevertheless, it is still rejected by the LR-test and also not preferred by the Akaike

Information Criterion.10

In the remainder of this section, we show some further estimation output for a selection

of the models. We focus on one variant for each of the three model types. Besides the

general dynamic factor model, we also consider the restricted model where ∆ is used as

10As expected, the model fit improves as the number of knots increase. For example, when considering
three knots for the maturity spline and five for the moneyness spline the likelihood for the model with
one maturity and one moneyness spline increases from 287,181.4 to 291,485.0. The location of knots also
matters. A variant with the same number of knots (three and four) but on different location provides a
likelihood of 288,064.8. We leave selection of the number of knots and the location of knots as a topic for
further research.
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the measure of moneyness. For the spline-based models, we consider the most flexible case

with separate splines for maturity (moneyness) across moneyness (maturity) groups. Our

motivation for this selection is that these models provided the highest log-likelihood within

each model class. For the restricted model, we consider the constant factor loading case, for

comparability with the other models.

Table 3: Factor Dynamics
This table provides the estimates of the factor dynamics for three of the factor models we consider. We
show the coefficients for the general dynamic factor model (Panel A), the restricted dynamic factor model
with a constant loading matrix where moneyness is measured with ∆ (Panel B), and the spline dynamic
factor model where there is a separate spline for each moneyness and maturity group (Panel C). For all
three models, we plot the intercept µ, VAR coefficient matrix Φ and the innovation variance Ση.

Panel A: Factor Dynamics General DFM
Φ Ση (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t
f1,t 0.196 0.995 0.028 -0.005 1.059 -0.453 0.051
f2,t 0.003 -0.002 0.971 0.056 -0.453 0.212 -0.022
f3,t 0.008 0.001 0.001 0.967 0.051 -0.022 0.005

Panel B: Factor Dynamics Restricted DFM
Φ Ση (×10−4)

µ lt−1 ct−1 st−1 lt ct st
lt 0.200 0.995 0.054 0.006 0.939 -0.220 0.129
ct 0.001 -0.001 0.969 0.003 -0.220 0.057 -0.027
st 0.032 0.001 0.002 0.990 0.129 -0.027 0.029

Panel C: Factor Dynamics Spline DFM
Φ Ση (×10−2)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t
f1,t 0.207 0.995 0.001 0.000 0.012 -0.169 0.035
f2,t 0.135 -0.094 0.967 0.025 -0.169 2.548 -0.442
f3,t 0.694 0.017 0.001 0.988 0.035 -0.442 0.143

Figure 4 presents the estimated latent factors for the three selected models. The first

factor is very similar across the models and captures the overall level of the volatility surface.

This is expected, because in all cases the second and third columns of the loading matrix

are de-meaned. The second factor also seems fairly similar across the three model types,

though the scaling varies. This variation is particularly the case for the spline-based model.

Due to the identification restriction for the splines, the factor loading matrix has smaller

entries in the second (and third) column and hence the factors have larger variation. The
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Figure 4: Estimated Factors
This figure shows the three dynamic factors for three of the factor models we consider. We show the
smoothed factors for the general dynamic factor model (Panel A), the restricted dynamic factor model with
a constant loading matrix where moneyness is measured with ∆ (Panel B), and the spline dynamic factor
model where there is a separate spline for each moneyness and maturity group (Panel C). The red line
represents the first factor, the blue line the second factor and the red line the third factor.
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third factor differs even more across the models, particularly for the general dynamic factor

model compared to the two restricted models.

Due to the different model structure and loading matrix the factors may seem different,

but this might just be due to a rotation. To examine this possibility, we rotate the general

dynamic factor model to each of the two other models.11 Panel A of Figure A2 in the

web appendix confirms that the first and second factors of the general and restricted factor

models are similar. However, the third factor remains different, even after rotation. From

Panel B it is clear that the spline model is much closer to the general dynamic factor model,

something which was already suggested by the log-likelihood values.

Table 3 documents the factor dynamics. All factors are very persistent, with diagonal

elements very close to one. The off-diagonals are mostly zero. There is a strong correlation

between the factor innovations for all models. For the general dynamic factor model, this

correlation is -0.95 between the first and second factor, 0.72 between the first and third

factor, and -0.70 between the second and third factor.12 The correlations are similar for the

other models. The different scaling of the second and third factor for the spline-based model

compared to the other models is also clear from the estimated covariance matrix. While the

variance of the first factor is roughly in the same order of size as it is in the other models,

the variance of the second and third factors are more than a 100 times higher.

Figure 5 provides further explanation for the different findings from the three mod-

els. Based on the factor loading matrix, for all the models an implied term structure is

constructed for all six moneyness groups and an implied smile is constructed for all four

maturity groups. The restricted models allow for very little variation in the type of term

structure and smile. The unrestricted and spline-based factor models offer a lot more vari-

ation. This is a likely reason for the relatively poor performance of the restricted economic

dynamic factor models. Also the difference in scaling between the spline-based model com-

pared to the other two models is visible, explaining the larger variance for the second and

third factors in the spline-based case.

Finally, Figure 6 provides some plots for the fit of the general dynamic factor model.

11This is done by regressing the columns of one loading matrix on the columns of the other loading matrix.
The resulting square rotation matrix can be used to construct a best-fitting rotated loading matrix. By
pre-multiplying the factors with the inverse of this rotation matrix the rotated factors are found.

12These correlations are based on the covariance matrix reported in Table 3.
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Figure 5: Shape of Implied Volatility Term Structure and Smile
This figures shows the volatility term structure and volatility smile that is implied by three of the factor
models we consider. We show the term structure and smile for the general dynamic factor model (Panel
A), the restricted dynamic factor model with a constant loading matrix where moneyness is measured with
∆ (Panel B), and the spline dynamic factor model where there is a separate spline for each moneyness and
maturity group (Panel C). In all panels the left figure depicts the volatility term structure and the right
picture the volatility smile. The term structure and smile are implied by the factor loading matrix for each
model.
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(B) Term Structure and Smile – Restricted Economic Dynamic Factor Model
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Figure 6: Fit
This figure documents the fit of the volatility surface based on the general dynamic factor model. We show
the smoothed fitted values, which are obtained by pre-multiplying the smoothed factors with the estimated
factor loading matrix. In the figure the red line is the actual implied volatility, the blue line the fitted and
the green line the residual. We show six different maturity-moneyness combinations: the top plots depict
two points in the middle of the surface and the bottom plots four outer points on the surface.
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Out of the 24 groups in our data, we show a selection of six. The top two plots are fairly

in the center of the surface, while the bottom four plots are on the corners. Overall the

model fits the data fairly well for the points in the center of the surface. Fitting the corners

appears to be more problematic, since the residuals do not look like merely white noise. In

Figure A3, we provide similar figures for the restricted and spline-based factor models. The

same conclusion is drawn for these models, though the problems in fitting the corners of the

surface are much more serious for the restricted economic model.

5 Robustness and Extensions

Here we consider a number of robustness checks and extensions of our main modeling ap-

proach. First, Section 5.1 considers an alternative construction of the volatility surface

based on moneyness measured by strike relative to spot price. Second, 5.2 examines some of

the higher-dimensional restricted models that have been proposed in the literature. Third,

Section 5.3 considers random walks for the factor dynamics. Finally, to examine to what

extent the financial crisis dominates our results, 5.4 shows results when the analysis is done

using log-transformed data or a sub-sample omitting the crisis.

5.1 Alternative surface construction

One of our main findings discussed in Section 4 is that ∆ is a better measure of moneyness

for building models of the volatility surface compared to the strike relative to the spot price.

One possible explanation for this finding is that in fact it is spurious, since the construction

of the surface is based on ∆. To examine this possibility and the sensitivity of our results to

the surface construction, we re-estimate all DFM specifications with the surface constructed

using the strike relative to the spot price. Similar to before, we consider six moneyness

groups, but they are now defined based on K/S rather than ∆. The ranges of the strike-

to-spot ratio that define the six groups are: 0 < K/S < 0.9 (deep out-of-the-money put

options), 0.9 < K/S < 0.95 (out-of-the-money puts), 0.95 < K/S < 1 (at-the-money puts),

1 < K/S < 1.05 (at-the-money call options), 1.05 < ∆ < 1.1 (out-of-the-money calls) and

K/S > 1.1 (deep out-of-the-money calls). We keep the definitions for the maturity groups

the same, as given in Section 2.1. On each day we again find the option that is closest to
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the middle of each maturity-moneyness group, except for the deep out-of-the-money groups,

where for moneyness we consider options that are closest to 0.85 and 1.15 for put and call

options, respectively.13 Table A4 in the web appendix provides summary statistics for the

obtained surface.

Table 4: Comparing Restricted Dynamic Factor Models – Surface Based on K/S
This table provides statistics concerning the fit of the three dynamic factor models, when estimated using
the full sample of daily S&P500 implied volatility surfaces over the period January 4, 1999 – August 30,
2013, when the surface is constructed based on the strike price relative to the spot price. The first model
is the general dynamic factor model (‘General DFM’), where only identification restrictions have been
imposed. The second set of models are the restricted factor models based on the economic literature (‘Restr
DFM’). We estimate four variants, depending on whether the loading matrix is constant (‘Const’) or time-
varying (‘TV’) and whether strike relative to stock price (‘K/S’) or ∆ is used for moneyness. The third
set of models are spline-based (‘Spline DFM’). We consider the block dynamic factor model with knots
on all places (‘Block DFM’), a model with one spline for the maturity and one spline for the moneyness
dimensions (‘Mat and Mon Splines’) and a model where there are separate splines for all maturity and
moneyness groups (‘Separate Splines’). For each model, we provide the log-likelihood value (‘Loglik’), the
number of parameters (‘#Pars’) and the Akaike Information Criterion (‘AIC’). For the restricted economic
and spline models, we also provide a likelihood-ratio test (‘LR-test’) relative to the general dynamic factor
model.

Comparison of Factor Models – Surface based on K/S
Model and Moneyness Const/TV Loglik LR-test #Pars AIC
General DFM (only ident restr) 288112.8 102 -576021.6
Restr DFM K/S Const 252946.3 70333.0 42 -505808.6

TV 258878.7 58468.2 42 -517673.4
∆ Const 255382.1 65461.4 42 -510680.2

TV 262205.1 51815.4 42 -524326.2
Spline DFM Block DFM 260100.6 56024.4 50 -520101.2

Mat and Mon Splines 259325.6 57574.4 47 -518557.2
Separate Splines 279941.7 16342.2 66 -559751.4

Table 4 reports the estimation results based on this alternative volatility surface data.

Focusing first on the restricted models, the table shows that even when the data are con-

structed based on K/S, using ∆ in the model for the volatility surface still provides a better

fit. An explanation of the robust finding that ∆ should be preferred over the strike relative

to the spot price is that the latter measure does not take into account that the likelihood of

the option being in-the-money at expiration depends on the (current) volatility and remain-

ing time-to-maturity, as Bollen and Whaley (2004) point out. Broadening our view to all

models in the table, the ranking of the models remains unchanged relative to the baseline

13When using the middle of the deep out-of-the-money groups, the options are very deep out-of-the-money
and fairly illiquid. This is less the case for ∆, as this is a nonlinear measure. We also estimate all models
by selecting the deep out-of-the-money groups in the middle and all results are qualitatively similar (such
as the relative fit of the models), but the overall fit decreases.
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results in Table 2. Also for this alternative construction of the surface all restricted and

spline-based models are rejected. The spline models still perform better than the restricted

models, though the difference has become smaller and a model based on ∆ with time-varying

loadings outperforms two of the three spline models.

5.2 Higher-dimensional models

So far we have focused on 3-factor models. Dumas, Fleming, and Whaley (1998) consider

models of up to six factors. In this section we consider these higher-order models to examine

how they compare to the general dynamic factor model. We base our analysis on the model

set-up from Section 3.2. We extend equation (2) with additional factors to match the

higher-dimensional models. Specifically, to obtain a specification with four factors, we add

the square of moneyness as additional factor. For the 5-factor case, we further add an

interaction between moneyness and maturity and, finally, to arrive at the model with six

factors we add the square of maturity. Similar to before when considering the restricted

models, we study four variants depending on the type of the moneyness measure and whether

the loading matrix is constant or time-varying.

Table 5 provides the output from this analysis. Obviously, the log-likelihood increases

with the number of factors. The increase is not that large though, leading to the conclusion

that a substantial number of factors is needed to fit the volatility surface well using these

restricted models. In fact, out of all the higher-order models only the 6-factor time-varying

loading models perform better than a 3-factor general dynamic factor model with constant

loadings. For all dimensions, the time-varying loading matrix case outperforms the constant

loading case. Also the conclusion that ∆ is preferred over strike relative to stock price holds

up irrespective of the number of factors.

5.3 Alternative factor dynamics

The results in Table 3 document a very strong persistence in the factor dynamics. We ex-

amine this aspect in more detail by considering two alternatives for the factor dynamics. As

the persistence of the first factor is strongest in all model specifications, the first alternative

considers a random walk for this factor while retaining an unrestricted first-order autore-
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Table 5: Comparing Higher-Order Restricted Dynamic Factor Models
This table provides statistics concerning the fit of the higher-dimensional restricted dynamic factor models,
when estimated using the full sample of daily S&P500 implied volatility surfaces over the period January 4,
1999 – August 30, 2013. The model with four factors explains the surface with a constant, moneyness, the
square of moneyness and maturity. The model with five factors adds an interaction between moneyness and
maturity, and the 6-factor model adds the square of maturity as additional factor. In all cases we estimate
four variants, depending on whether the loading matrix is constant (‘Const’) or time-varying (‘TV’) and
whether strike relative to stock price (‘K/S’) or ∆ is used for moneyness. For each model, we provide the
log-likelihood value (‘Loglik’), the number of parameters (‘#Pars’) and the Akaike Information Criterion
(‘AIC’).

Comparison of Restricted Factor Models
#Factors Moneyness Const/TV Loglik #Pars AIC
4 K/S Const 260723.0 54 -521338.0

TV 266423.5 54 -532739.0
∆ Const 278090.2 54 -556072.4

TV 287811.3 54 -575514.6
5 K/S Const 284037.4 69 -567936.8

TV 292112.6 69 -584087.2
∆ Const 284469.8 69 -568801.6

TV 296794.7 69 -593451.4
6 K/S Const 294499.2 87 -588824.4

TV 305685.8 87 -611197.6
∆ Const 296505.8 87 -592837.6

TV 311932.4 87 -623690.8

gressive specification for the second and third factors. The resulting VAR-coefficient model

has a block-structure with 1 on the top-diagonal and a square block on the bottom-part with

the coefficients for the second and third factor. As also the second and third factors seem

persistent, we also run an alternative where we consider random walks for all three factors.

In this case the VAR-coefficient matrix is simply an identity matrix. In these alternatives

the intercept in the dynamics are estimated as µ, rather than (I − Φ)µ as in (1).

The alternatives are considered for all three main models that are reported in Table 3.

In all cases the likelihood decreases for the alternative factor dynamics. LR-tests reject the

imposed restrictions on the factor dynamics. Table A5 in the web appendix reports the

factor dynamics for the regular case and the two alternatives mentioned above. In both of

the alternatives the intercept is estimated at zero. When the level is modeled as a random

walk the lower-block with the VAR-coefficients for the second and third factor remains

unchanged. Also the covariance matrix is very similar. When all factors are modeled as

random walks the covariance matrix is again very similar. These findings are similar for the

restricted and spline-based models. Overall, the likelihood-ratio tests reject the imposed
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restrictions, but the similarity in findings when random walks are used for the factors hints

that they are at least close to being non-stationary.

5.4 Alternative sample period and log-transformation

Figure 2 highlights the extreme volatility during the financial crisis in 2008-2009. We ex-

amine to what extent this special period determines our key findings. First, as alternative

data we consider the log of implied volatility. Second, we consider a sub-sample from 1999

through 2007 and omit the crisis period altogether. As a first examination, Table A3 in

the web appendix documents the percentage of explained variation for these two alternative

data sets. In both cases, the first three factors combined explain close to 99% of the varia-

tion. The importance of the first factor decreases somewhat in the sub-sample analysis, but

overall the factor structure is also very strong outside of the crisis period.

We also re-run the main models with these two alternative data sets (results unreported).

The relative importance of the models does not change and also here ∆ is preferred over

strike relative to spot price as measure of moneyness. The persistence of the factors remains

high, but decreases somewhat for the second and third factors. In the case of the logarithmic

transformation the second diagonal element of Φ is equal to 0.97 and the third one equal to

0.95, while for the sub-sample analysis these are 0.95 and 0.85, respectively.

6 Conclusion

This paper considers factor models for the implied volatility surface. Three main model types

are considered. First, a general dynamic factor model where only identification restrictions

are imposed. Second, restricted factor models that are inspired by linear models commonly

used in the economic and financial literature. Third, spline-based models that offer a smooth

alternative in-between the restrictive second model class and the heavily parameterized

general dynamic factor model. The second and third model set-ups explicitly take into

account that the data modeled is a three-dimensional surface.

We report three key findings. First, the economic and spline-based models are both

rejected as restricted versions of the general dynamic factor model. The spline-based models

are able to outperform the economic models, but even the best model is rejected by a

31



likelihood-ratio test and not preferred based on information criteria. Second, the factors

driving the surface are highly persistent. The VAR coefficient matrix has diagonal elements

close to one. Third, for the restricted models ∆ is preferred as a measure for moneyness

over the strike relative to the spot price. Even if the surface is constructed based on the

strike relative to the spot, the option ∆ provides a better fit.

There are four main directions for further research. First, the spline-based models can

be improved further by considering model selection in more detail. For example, in the

context of term structure modeling Jungbacker, Koopman, and van der Wel (2014) offer

testing procedures to select optimal ‘smooth loadings’. A similar method can be used in the

current setting. Second, due to the strong persistence it may be of interest to study non-

stationary (factor) models for the volatility surface. Third, we study the factor structure

using a balanced panel of 24 selected contracts each day based on pre-defined moneyness

and maturity groups. An alternative is to consider the entire cross-section of individual

option contracts. A fourth and final direction for further research is to study the forecasting

performance of the various models. There is a recent literature finding supportive evidence

that various existing models have forecasting power for the volatility surface, see, e.g.,

Konstantinidi, Skiadopoulos, and Tzagkaraki (2008), Chalamandaris and Tsekrekos (2010)

and Bernales and Guidolin (2014). These studies consider a subset of our models and do not

include the spline-based models that combine the flexibility of the general dynamic factor

model with the economically plausible factor interpretation of the restricted models.
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Table A2: Persistence of the Volatility Surface
This table provides (partial) autocorrelations for the volatility surface. Panel A presents the persistence of
each moneyness category for the shortest (10-45 days) and longest (180-360) maturities. Panels B and C
show the persistence for the slope of the volatility smile at different maturities and the slope of the term
structure at different moneyness levels, respectively. The slope of the volatility smile in each of the four
maturity groups is defined as the implied volatility of the deep out-of-the-money put minus the implied
volatility of the deep out-of-the-money call. The slope of the volatility term structure for each of the six
moneyness groups is defined as the implied volatility of the longest maturity minus the shortest maturity.
(Partial) autocorrelations are given for lags 1, 2, 3, 5 and 20.

Panel A: Implied Volatilities
ACF PACF

Moneyness Maturity 1 2 3 5 20 1 2 3 5 20
DOTM Put 10-45 0.975 0.955 0.941 0.919 0.803 0.975 0.112 0.106 0.045 -0.014

180-360 0.992 0.986 0.980 0.971 0.902 0.992 0.145 0.056 0.045 -0.036
OTM Put 10-45 0.975 0.960 0.948 0.930 0.808 0.975 0.167 0.111 0.027 -0.011

180-360 0.991 0.985 0.980 0.970 0.900 0.991 0.142 0.073 0.050 -0.022
ATM Put 10-45 0.974 0.958 0.947 0.929 0.812 0.974 0.183 0.131 0.048 -0.033

180-360 0.991 0.986 0.981 0.971 0.905 0.991 0.180 0.054 0.036 0.002
ATM Call 10-45 0.967 0.952 0.942 0.923 0.811 0.967 0.250 0.165 0.070 -0.035

180-360 0.991 0.986 0.981 0.972 0.915 0.991 0.234 0.082 0.044 0.037
OTM Call 10-45 0.972 0.957 0.944 0.925 0.818 0.972 0.219 0.101 0.085 -0.024

180-360 0.991 0.986 0.981 0.972 0.918 0.991 0.190 0.069 0.052 -0.001
DOTM Call 10-45 0.971 0.955 0.942 0.922 0.825 0.971 0.205 0.096 0.093 -0.016

180-360 0.991 0.986 0.981 0.972 0.917 0.991 0.213 0.088 0.033 -0.014

Panel B: Slope of Volatility Smile
ACF PACF

Maturity 1 2 3 5 20 1 2 3 5 20
10-45 0.930 0.882 0.846 0.799 0.655 0.930 0.130 0.085 0.098 -0.012
45-90 0.971 0.953 0.937 0.912 0.774 0.971 0.189 0.065 0.036 -0.018
90-180 0.978 0.968 0.959 0.943 0.829 0.978 0.255 0.090 0.054 -0.008
180-360 0.984 0.976 0.970 0.958 0.874 0.984 0.252 0.098 0.058 -0.011

Panel C: Slope of Volatility Term Structure
ACF PACF

Moneyness 1 2 3 5 20 1 2 3 5 20
DOTM Put 0.934 0.889 0.861 0.821 0.648 0.934 0.137 0.131 0.065 -0.007
OTM Put 0.933 0.899 0.875 0.843 0.640 0.933 0.213 0.128 0.035 -0.015
ATM Put 0.933 0.895 0.873 0.839 0.631 0.933 0.193 0.157 0.046 -0.043
ATM Call 0.923 0.888 0.871 0.835 0.635 0.923 0.242 0.185 0.069 -0.054
OTM Call 0.932 0.897 0.869 0.831 0.632 0.932 0.219 0.091 0.088 -0.022
DOTM Call 0.925 0.886 0.853 0.811 0.631 0.925 0.209 0.085 0.092 -0.014
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Table A3: Principal Component Analysis
This table shows results of a principal component analysis on the panel of 24 implied volatilities that
represent the volatility surface at each point in time. Panel A reports the percentage of variation explained
by each individual principal component series (first column) and the cumulative percentage (second column).
Panel B reports (partial) autocorrelations of the first three principal components for lags 1, 2, 3, 5 and 20.
In addition, Panel A reports the explained variation for two alternative data sets, where either the log of
implied volatility is considered or only the 1999-2007 sub-sample.

Panel A: Expl. Variation
Regular Data Log-transformation 1999-2007

% Cum. % % Cum. % % Cum. %
PC 1 95.19 95.19 96.00 96.00 94.72 94.72
PC 2 2.69 97.88 2.08 98.08 2.80 97.52
PC 3 1.09 98.97 1.03 99.11 1.29 98.81
PC 4 0.29 99.26 0.19 99.30 0.30 99.11
PC 5 0.22 99.49 0.17 99.48 0.24 99.35
PC 6 0.15 99.63 0.14 99.61 0.15 99.50
PC 7 0.09 99.72 0.13 99.74 0.14 99.63
PC 8 0.07 99.79 0.05 99.80 0.10 99.73
PC 9 0.04 99.84 0.03 99.83 0.05 99.78
PC 10 0.03 99.87 0.03 99.86 0.04 99.82

Panel B: Persistence of Principal Components (Regular Data)
ACF PACF

1 2 3 5 20 1 2 3 5 20
PC1 0.988 0.978 0.970 0.957 0.868 0.988 0.108 0.080 0.046 -0.018
PC2 0.958 0.934 0.917 0.891 0.747 0.958 0.189 0.132 0.046 0.002
PC3 0.879 0.826 0.787 0.729 0.508 0.879 0.236 0.118 0.085 -0.040
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Table A4: Summary Statistics – Surface Construction Based on K/S
This table shows summary statistics for the option data when the surface is constructed on the strike price
relative to the stock price. The table provides the mean and standard deviation (‘Sd’) over time for the
mid-quote (in dollars), implied volatility (‘Impl Vol’), option ∆, maturity (in days), and strike relative to
stock price (K/S). We show these numbers across four maturity groups and six moneyness groups. The
maturity groups are 10-45, 45-90, 90-180 and 180-360 days. The moneyness groups are 0 < K/S < 0.9
(deep out-of-the-money put options, DOTM Put), 0.9 < K/S < 0.95 (out-of-the-money puts, OTM Put),
0.95 < K/S < 1 (at-the-money puts, ATM Put), 1 < K/S < 1.05 (at-the-money call options, ATM Call),
1.05 < ∆ < 1.1 (out-of-the-money calls, OTM Call) and K/S > 1.1 (deep out-of-the-money calls, DOTM
Call). On each day we find the option that is closest to the middle of each maturity-moneyness group,
except for the DOTM groups, where for moneyness we consider options that are closest to 0.85 and 1.15 for
put and call options, respectively. The numbers in the table represent averages over time for the selected
contracts in each group.

Summary Statistics
10-45 days 45-90 days 90-180 days 180-360 days

Mean Sd Mean Sd Mean Sd Mean Sd
DOTM Put Mid-Quote 1.82 3.6 6.44 5.85 14.7 9.38 31.1 15

Impl Vol 0.344 0.0798 0.29 0.0739 0.271 0.0675 0.258 0.0599
∆ -0.0321 0.0323 -0.079 0.0437 -0.127 0.0488 -0.18 0.0476
Maturity 27.5 8.67 67.4 8.55 133 23.1 270 24.7
K/S 0.85 0.00513 0.85 0.00682 0.85 0.0108 0.85 0.0112

OTM Put Mid-Quote 5.57 5.8 15.3 9.16 28.5 13.1 50.4 18.8
Impl Vol 0.265 0.0824 0.245 0.0753 0.238 0.0674 0.234 0.0594
∆ -0.111 0.0607 -0.192 0.0576 -0.246 0.0515 -0.287 0.0461
Maturity 27.4 8.34 67.3 8.66 133 23.8 270 26.2
K/S 0.925 0.00359 0.925 0.00494 0.925 0.00689 0.925 0.00732

ATM Put Mid-Quote 14.2 8.57 28.4 11.4 44.9 15.1 69.1 21
Impl Vol 0.219 0.085 0.215 0.0756 0.216 0.0674 0.218 0.0591
∆ -0.293 0.0623 -0.354 0.0426 -0.377 0.0406 -0.384 0.0431
Maturity 27.4 8.25 67.3 8.6 133 23 269 25.7
K/S 0.975 0.00279 0.975 0.00446 0.975 0.00729 0.975 0.00724

ATM Call Mid-Quote 11.2 8.45 25.8 12.3 44.1 17.2 73 24
Impl Vol 0.182 0.0838 0.188 0.0734 0.194 0.0648 0.201 0.0565
∆ 0.283 0.0889 0.386 0.0576 0.441 0.0503 0.487 0.0493
Maturity 27.3 8.21 67.4 8.49 134 22.8 269 25.2
K/S 1.03 0.00274 1.02 0.00441 1.03 0.0063 1.03 0.00713

OTM Call Mid-Quote 2.18 3.96 8.55 8.26 21.2 14 46 21.3
Impl Vol 0.177 0.0707 0.169 0.07 0.178 0.0639 0.188 0.056
∆ 0.0629 0.0661 0.157 0.0902 0.258 0.0864 0.36 0.068
Maturity 27.3 8.21 67.4 8.5 134 22.9 269 25
K/S 1.07 0.00435 1.07 0.00511 1.07 0.00664 1.07 0.00767

DOTM Call Mid-Quote 0.41 1.32 1.66 3.24 6.15 7.17 20.6 15.1
Impl Vol 0.22 0.0675 0.169 0.0549 0.163 0.0574 0.172 0.0542
∆ 0.0129 0.0218 0.0366 0.0441 0.0914 0.0705 0.195 0.0852
Maturity 29.2 10.7 67.2 10.4 134 23 270 25.3
K/S 1.14 0.0191 1.15 0.0143 1.15 0.0126 1.15 0.0105
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Table A5: Alternative Factor Dynamics Specifications
This table provides estimates of the factor dynamics for general dynamic factor model under three alternative
specifications. We show the coefficients for the general dynamic factor model where the factor dynamics
are estimated as usual (Panel A), when the level factor is restricted to be a unit root (Panel B), and when
all factors are unit roots (Panel C). For all three models, we plot the intercept µ, VAR coefficient matrix Φ
and the innovation variance Ση.

Panel A: Free Factor Dynamics General DFM
Φ Ση (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t
f1,t 0.196 0.995 0.028 -0.005 1.059 -0.453 0.051
f2,t 0.003 -0.002 0.971 0.056 -0.453 0.212 -0.022
f3,t 0.008 0.001 0.001 0.967 0.051 -0.022 0.005

Panel B: Restricted Factor Dynamics DFM – Level Random Walk
Φ Ση (×10−4)

µ lt−1 ct−1 st−1 lt ct st
f1,t 0.000 1 0 0 1.064 -0.454 0.051
f2,t 0.000 0 0.989 -0.002 -0.454 0.211 -0.022
f3,t 0.000 0 -0.002 0.985 0.051 -0.022 0.005

Panel C: Restricted Factor Dynamics DFM – All Random Walks
Φ Ση (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t
f1,t 0.000 1 0 0 1.064 -0.454 0.051
f2,t 0.000 0 1 0 -0.454 0.212 -0.022
f3,t 0.000 0 0 1 0.051 -0.022 0.005
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Figure A1: Principal Components of Volatility Surface
This figure shows the first three principal components of the volatility surface. We run a principal component
analysis on the panel of 24 implied volatilities that represent the volatility surface at each point in time.
The red line represents the first principal component, the blue line the second principal component and the
red line the third principal component.
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Figure A2: Estimated Factors – Rotated to Restricted Factors
This figure shows rotated dynamics factors for the factor models we consider. By regressing one factor
loading matrix on another factor loading matrix we bring the loading matrices and the models closer
together and obtain rotated factors. In this figure we show the resulting rotated factors of the general
dynamic factor model, which are brought close to the restricted dynamic factor model with a constant
loading matrix where moneyness is measured with ∆ (Panel A), and close to the spline dynamic factor
model where there is a separate spline for each moneyness and maturity group (Panel B). The red line
represents the first factor, the blue line the second factor and the red line the third factor. The solid lines
denote the rotated factors, while the dotted lines denote the factors of the restricted and spline models in
Panels A and B, respectively.
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(B) General Dynamic Factor Model rotated to Spline Factors
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Figure A3: Fit
This figure documents the fit of the volatility surface based on two dynamic factor models. The models
we consider are the restricted dynamic factor model with a constant loading matrix where moneyness is
measured with ∆ (Panel A), and the spline dynamic factor model where there is a separate spline for each
moneyness and maturity group (Panel B). We show the smoothed fitted values, which are obtained by
pre-multiplying the smoothed factors with the factor loading matrix. In the figure the red line is the actual
implied volatility, the blue line the fitted and the green line the residual. We show six different maturity-
moneyness combinations: the top plots depict two points in the middle of the surface and the bottom plots
four outer points on the surface.
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