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Abstract: We develop a class of Poisson autoregressive models with additional covariates
(PARX) that can be used to model and forecast time series of counts. We establish the

time series properties of the models, including conditions for stationarity and existence of

moments. These results are in turn used in the analysis of the asymptotic properties of

the maximum-likelihood estimators of the models. The PARX class of models is used to

analyse the time serie properties of monthly corporate defaults in the US in the period 1982-

2011 using �nancial and economic variables as exogeneous covariates. Results show that our

model is able to capture the time series dynamics of corporate defaults well, including the

well known default counts clustering found in data. Moreover, we �nd that while in general

current defaults do indeed a¤ect the probability of other �rms defaulting in the future, in

recent years economic and �nancial factors at the macro level are capable to explain a large

portion of the correlation of US �rms defaults over time.

Keywords: corporate defaults, count data, exogeneous covariates, Poisson autoregression,
estimation.

JEL codes: C13, C22, C25, G33.
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1 Introduction

There is a strong ongoing interest in modelling and forecasting time series of corporate

defaults. A stylized fact of defaults is that they tend to cluster over time. The default

clustering phenomenon has been explored in the �nancial literature, giving rise to a debate

about its causes, with several works trying to distinguish between �contagion�e¤ects and

comovements in corporate solvency due to common macroeconomic and �nancial factors;

see, for example, Das et al. (2007) and Lando and Nielsen (2010) who investigate the role

of systematic risk in default correlation by using the monthly count of industrial �rms�

bankruptcies.

We here propose a novel class of dynamic Poisson models for describing and forecast-

ing corporate defaults, which we call Poisson AutoRegressions with eXogeneous covariates

(PARX). PARX models are an extension of the Poisson autoregression in Fokianos, Rahbek

and Tjøstheim (2009), which is here augmented by including �in addition to lagged intensity

and counts �a set of exogenous covariates as predictors. They provide a �exible framework

within which we are able to analyze dependence of default intensity on past default intensi-

ties as well as on other relevant �nancial and economic variables. These additional predictors

are meant to summarize the level of uncertainty during periods of �nancial turmoil and/or

economic downturns; that is, when corporate defaults are more likely to cluster together. We

also consider the impact of auxiliary information on the estimates of persistence parameters

which express the degree of dependence on the past history of the process.

Our modelling approach radically di¤ers from those appearing in the available literature

on corporate defaults dynamics. Most existing papers (see, e.g., Das et al., 2007; Lando and

Nielsen, 2010) model corporate defaults in terms of a bivariate continuous-time model for

the timing of default together with the �rm�s debt outstanding at default. The timings are

modelled using a proportional hazards model where a latent frailty risk factor is included

to capture the over-all �nancial risk together with observed economic factors. These models

tend to be di¢ cult to implement due to the dynamic latent variables and require careful

handling of macroeconomic factors since these are not observed at the precise times of de-

faults. An exception is Koopman, Lucas and Schwaab (2012) who model defaults using

a binomial speci�cation where, similar to the PARX model, the probability of default is a

time-varying functions of underlying factors. Similar to the frailty models, their speci�cation

involve unobserved components which have to be integrated out in the estimation which is

done using computationally burdensome Monte Carlo methods. In contrast, PARX models

defaults through a dynamic Poisson process, can easily handle exogeneous covariates, and

estimation and forecasting is straightforward to implement in standard software packages.

PARX provides new insights into the dynamics of corporate defaults among Moody�s

rated US �rms during the period 1982-2011. Various macroeconomic and �nancial variables,
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meant to capture the state of the US economy and �nancial markets, are included to in-

vestigate whether corporate defaults are driven by economic fundamentals and/or contagion

e¤ects during this period. We �nd that important explanators of corporate defaults are the

over-all volatility of the US stock market and the Leading Index of the US economy, but that

there are also contagion e¤ects present in the dynamics. A structural break analysis shows

that these relationships are not stable over time though and the relative importance of the

di¤erent factors have been changing over the sample period. Interestingly, we �nd that the

contagion e¤ects have been diminishing over time and that corporate defaults during the

recent �nancial crisis were mostly driven by macroeconomic and �nancial fundamentals.

This paper also contributes to the literature on econometric and statistical analysis of

Poisson autoregressions. First, we provide new results on the time series properties of PARX

models, including conditions for stationarity and existence of moments. Second, we provide

an asymptotic theory for the maximum likelihood estimators of the parameters entering the

model. These results extend and complement the ones found in, among others, Rydberg

and Shephard (2000), Streett (2000), Ferland et al. (2006) and Fokianos, Rahbek and

Tjøstheim (2009). As an important tool in the econometric analysis is the concept of � -weak

dependence; this is a relatively new stability concept which proves to be simpler to verify

for discrete-valued Markov chains compared to existing stability concepts such as geometric

ergodicity.

PARX models are also related to a recent literature on GARCH models augmented by

additional co-variates with the aim of improving the forecast performance. These mod-

els include GARCH-X models, the so-called HEAVY model as proposed by Shephard and

Sheppard (2010), and the Realized GARCH model of Hansen et al (2012); see also Han and

Kristensen (2014) for econometric analysis of such models. In these models, the time-varying

volatility is explained by past returns, volatilities together with additional co-variates, usu-

ally a realized volatility measure. PARX share the same motivation and modelling approach,

except that the variable of interest in our case is discrete and so the technical analysis and

the applications are di¤erent.

The paper is organized as follows. In Section 2 we introduce the class of PARX models

and discuss them in relation to existing models. Time series properties of the models are

investigated in Section 3. Maximum-likelihood based inference is formally analyzed in Section

4. Speci�cally, our reference maximum likelihood estimator is discussed in Section 4.1, while

its �nite sample properties are studied in Section 4.2 by Monte Carlo simulations. Moreover,

Section 4.3 illustrates how the estimated PARX speci�cation can be used for forecasting

purposes. Section 5 contains the empirical analysis of US default counts. Section 6 concludes.

All auxiliary lemmas and mathematical proofs are contained in the Appendix.

4



2 Modelling Defaults with PARX

We here set up a general dynamic model for time series count data, motivated by the empiri-

cal application where we analyze the dynamics of US corporate defaults. Let yt 2 f0; 1; 2; :::g,
t � 1, be a time series of counts, such as the number of defaults in a given period, say, a

month; we then wish to model the dynamics of this process both in terms of its own past,

yt�m, m � 1, but also in terms of additional covariates xt := (x1t; x2t; :::; xdxt)
0 2 Rdx. In

the empirical application these include relevant macroeconomic and �nancial factors such

as realized volatility measures, recession indicators, and measures of economic activity and

�nancial stability. We do so by modelling yt as following a conditional Poisson distribution

with time-varying intensity, �t, expressed as a function of past counts and factors, that is,

ytj Ft�1 � Poisson (�t) , (1)

where Ft�1 := F fyt�m; xt�m : m � 1g and Poisson(�) denotes a Poisson random variable

with intensity parameter �.

The time-varying intensity �t is speci�ed as a linear function of past counts and past

intensities as considered in Fokianos, Rahbek and Tjøstheim (2009) which is here augmented

by the exogenous variables contained in xt. Speci�cally, xt enters the intensity through a

function f : Rdx ! [0;1),

�t = ! +

pX
i=1

�iyt�i +

qX
i=1

�i�t�i + f (xt�1) . (2)

The parameters of interest are given by ! > 0, �i (i = 1; 2; :::; p) and �i � 0 (i = 1; 2; :::; q),
together with the additional parameters entering the function f . A possible speci�cation of

the function f , which will be extensively used in the empirical analysis of Section 5, is the

following additive speci�cation,

f (x) :=
dxX
i=1

ifi (xi) ; (3)

where fi : R 7! [0;1), i = 1; :::; dx, are known functions, while  :=
�
1; :::; dx

�0 2 [0;1)dx
is a vector of unknown parameters. Observe that with  = 0, the model reduces to the Pois-

son autoregression (PAR) considered in Fokianos, Rahbek and Tjøstheim (2009). However,

in general, the inclusion of additional covariates xt will improve on in- and out-of-sample

performance of the model, as we demonstrate in the empirical analysis, and provide further

insights into how economic factors in�uence defaults.

The above speci�cation allows for �exible dynamics of the number of defaults in terms of

past defaults, captured by
Pp

i=1 �iyt�i, and exogenous factors, as described by f (xt�1). The
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component
Pq

i=1 �i�t�i is a parsimonious way of incorporating "long memory" of these two

components in a fashion similar to GARCH models. For example, with p = 1 and q = 1,

�t =
!

1� �
+ �

1X
i=1

�i�1yt�i +

1X
i=1

�i�1f (xt�i) ;

where we have assumed that �+� = �1+�1 < 1. Thus, when � > 0, the model allows for all

past defaults to e¤ect the current number of defaults, and for long-run e¤ects of exogeneous

covariates. More generally, one can interpret the value of �1 + ::: + �p as a measure of

dynamic contagion e¤ects since a large value of �1 + :::+ �p implies that past defaults have

a large impact on current default probabilities. In the extreme case, when �1 + :::+ �p = 0,

the model implies conditional (on xt�1) independence between current and past defaults; see

Lando and Nielsen (2010) for a further discussion.

The PARX model for default counts has strong similarities with the GARCH class of

processes with exogenous covariates, or GARCH-X; see Han and Kristensen (2014) and

references therein. Speci�cally, GARCH-X speci�cations model the conditional volatility,

say ht, of a given return rt as

ht = ! +

pX
i=1

�iy
2
t�i +

qX
i=1

�iht�i + f (xt�1) ,

where xt is a set of covariates. It is also worth noticing the connection to the so-called

HEAVY model of Shephard and Sheppard (2010) as well as the realized GARCH model of

Hansen et al (2012). These two models consider GARCH-type speci�cations where, in its

simplest form, the volatility process ht satis�es

ht = ! + �xt�1 + �ht�1; (4)

here the exogenous variable xt�1 is usually a (realized) measure of past volatility obtained

from high-frequency data. An important di¤erence with respect to our PARX models (as

well as to GARCH-X models) is that in (4) the exogenous variable does not enter as an

additional regressor but instead it replaces the past squared return y2t�1. However, the

PARX speci�cation in (2) reduces to an HEAVY-type speci�cation when the parameters

linking past counts to current intensity are set to zero; i.e., �i = 0, i = 1; 2; :::; p. In this

case, the PARX model has the simpler form

�t = ! + f (xt�1) +

qX
i=1

�i�t�i, (5)

corresponding to the case of conditional independence discussed earlier. While parts of

the structure of GARCH-X type models are similar to that of the PARX model, a crucial

di¤erence is that while the former class of models are designed to capture the evolution of

the (conditional) variance of a continuously distributed variable, the latter are modelling the

full distribution of a count process.
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3 Properties of PARX processes

In this section we provide su¢ cient conditions for a PARX process to be stationary and

ergodic with polynomial moments of a given order. This result will be used in the estimation

theory; in particular, we use these time series properties to show that estimators of model

parameters are normally distributed in large samples. This result in turn allows us to use

standard tools for inference.

The analysis is carried out by applying results on so-called � -weak dependence, hence-

forth weak dependence, recently developed in Doukhan and Wintenberger (2008). Weak

depencence is a stability concept for Markov chains that implies stationarity and ergodicty

and so establishes, amongst other things, a (uniform) law of large numbers [LLN] for the

process. It is related to alternative concepts of stability and mixing of time series such as

(geometric) ergodicity (see, for example, Fokianos, Rahbek and Tjøstheim, 2009) but is sim-

pler to verify for discrete-valued data. Christou and Fokianos (2013) employed the same

techniques in the analysis of a class of negative binomial time seriers models.

Weak dependence basically requires that the time series is a stochastic contraction. To

establish this property for the PARX model, we �rst rewrite the Poisson model (1) in terms

of an i.i.d. sequence Nt (�) of Poisson processes with unit-intensity,

yt = Nt (�t) . (6)

Next, we complete the model by imposing a Markov-structure on the set of covariates; that

is,

xt = g (xt�1; "t) ; (7)

for some function g (x; ") and with "t being an i.i.d. error term. The above structure could

be generalized to xt = g (xt�1; ::::; xt�m; "t) for some m � 1, thereby allowing for more

�exible dynamics of the covariates included in the model. However, we maintain eq. (7) for

simplicity in the following.

We then impose the following assumptions on the complete model:

Assumption 1 (Markov) The innovations "t and Nt (�) are i.i.d.

Assumption 2 (Exogenous stability) E [kg (x; "t)� g (~x; "t)ks] � � kx� ~xks, for some
� < 1, and E [kg (0; "t)ks] <1, for some s � 1.

Assumption 3 (PARX stability) (i)
Pmax(p;q)

i=1 (�i + �i) < 1 and (ii) jf (x)� f (~x)j �
L kx� ~xk, for some L > 0.

Assumption 1 implies that (yt; xt) can be embedded in a Markov chain and so we can

employ the theory of weak dependence. Assumption 2 imposes a stochastic contraction
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condition on g (x; ") w.r.t. x which is satis�ed for many popular time series models such

as (stable) linear autoregressive ones. This assumption is used to show, as a �rst step,

that xt is weakly dependent. Finally, Assumption 3(i) implies that the function L (y; �) =

! +
Pp

i=1 �iyi +
Pq

i=1 �i�i, where y = (y1; :::; yp) and � = (�1; :::; �q), is a contraction

mapping with contraction coe¢ cient
Pmax(p;q)

i=1 (�i + �i). It is identical to the conditions

imposed in Fokianos, Rahbek and Tjøstheim (2009) for the Poisson autoregressive model

(without exogenous regressors and with p = q = 1) to be stationary. Assumption 3(ii)

restricts how xt can enter the Poisson intensity; it excludes certain functions, such as the

exponential one. This assumption will, however, be weakened at the end of this section.

Together the three assumptions imply that the PARX model admits a stationary and

weakly dependent solution, as shown in the following theorem.

Theorem 1 Under Assumptions 1�3, there exists a weakly dependent stationary and ergodic
solution, which we denote X�

t = (y�t ; �
�
t ; x

�0
t )
0, to eqs. (1)-(2) and (7) with E [kX�

t k
s] < 1

and s � 1 given in Assumption 2.

The above theorem complements the results of Fokianos, Rahbek and Tjøstheim (2009),

who derive su¢ cient conditions for an approximate Poisson Autoregression to be geomet-

rically ergodic. We here allow for exogeneous variables to enter the model, and provide

su¢ cient conditions for weak dependence directly for this extended model.

One particular consequence of the above theorem is that the expected long-run number

of defaults equals

E[yt] = E[�t] = � =
! + E [f (xt�1)]

1�
Pmax(p;q)

i=1 (�i + �i)
,

and furthermore, that Var[yt] > E[yt]. Thus, by including past values of the response as

well as covariates in the evolution of intensity, PARX models generate overdispersion in

the marginal distribution, a feature that is prominent in many count time series, including

corporate defaults.

One further consequence of Theorem 1 is that it gives us access to the strong Law of

Large Numbers (LLN) for stationary and ergodic processes, T�1
PT

t=1 h (X
�
t )

P! E [h (X�
t )]

for any function h (�) of Xt = (yt; �t; x
0
t)
0 provided E[jjh(X�

t )jj] < 1. In the asymptotic
theory of the proposed estimators, the likelihood function is computed based on a set of

�xed initial values for the Poisson intensity. In order to analyze the asymptotic behaviour

of the likelihood function in this setting, we need to generalize the LLN result to hold for

any solution with arbitrary intialization. This extension is stated in the following lemma:

Lemma 1 Let fXtg be a process satisfyingXt = F (Xt�1; �t) with �t i.i.d., E [kF (x; �t)� F (~x; �t)k
s] �

� kx� ~xk and E [kF (0; �t)k
s] < 1 for some s � 1. For any function h (x) satisfying (i)

kh (x)k1+� � C (1 + kxks) for some C; � > 0 and (ii) for some c > 0, there exists Lc > 0
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so that kh (x)� h(~x)k � Lc kx� xk for kx� ~xk � c, it then holds that T�1
PT

t=1 h (Xt)
P!

E [h (X�
t )].

Remark 1 Suppose that the assumptions of Lemma 1 are satis�ed for some s � 1. Then
for any sequence futg satisfying E [utjFt�1] = 0 and E [utu0tjFt�1] = � (Xt�1) w.r.t. some

�ltration Ft, where the conditional variance � (x) satis�es k� (x)k � C(1 + kxks), it holds
that:

1p
T

TX
t=1

ut
d! N (0; E [� (X�

t )]) : (8)

This result follows readily from standard CLT for stationary martingale di¤erences (see e.g.

Brown, 1971). This CLT proves to be important for the asymptotic analysis of the maximum

likelihood estimator provided in the next section. �

We end this section by noticing that the Lipschitz condition in Assumption 1 rules out

some unbounded transformations f (xt) of xt, such as the speci�cation in (3) with fi (xi) =

exp (xi) for some 1 � i � dx. Such situations can be handled by introducing a truncated

model,

�ct = ! +

pX
i=1

�iy
c
t�i +

qX
i=1

�i�
c
t�i + f (xt�1) I fkxt�1k � cg ,

for some cut-o¤ point c > 0, and with yct the corresponding Poisson process. We can then

relax f (x) to be locally Lipschitz in the following sense:

Assumption 1�For all c > 0, there exists some Lc <1 such that

jf (x)� f (~x)j � Lc kx� ~xk ; kxk ; k~xk � c.

By replacing Assumption 1 with Assumption 1�we now obtain, by identical arguments

as in the proof of Theorem 1, that the truncated process has a weakly dependent stationary

and ergodic solution. While this approach is similar to the approximation of Poisson AR

process as used in Fokianos, Rahbek and Tjøstheim (2009), the reasoning here is di¤erent.

In Fokianos, Rahbek and Tjøstheim (2009), an approximating process was needed in order

to establish geometric ergodicity of the Poisson GARCH process, while here we introduce the

truncated process in order to handle the often applied practice of introducing non�bounded

or exponential transformations of the regressors in the model.

In the next Lemma we formally prove that, as c!1, the truncated process approximates
the untruncated one (c = +1).
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Lemma 2 Under Assumptions 1�-3 together with E [f (x�t )] <1,

jE [�ct � �t]j = jE [yct � yt]j � �1 (c) ,

E
�
(�ct � �t)

2� � �2 (c) , E
�
(yct � yt)

2� � �3 (c) ,

where �k (c)! 0 as c! +1, k = 1; 2; 3.

The above result is akin to Lemma 2.1 in Fokianos, Rahbek and Tjøstheim (2009). The

additional assumption of E [f (x�t )] being �nite needs to be veri�ed on a case-by-case basis.

For example, with fi (xi) = exp (xi), then this assumption holds if x�t has e.g. a Gaussian

distribution, or some other distribution for which the moment generating function, or Laplace

transform, is well-de�ned.

4 Estimation and Forecasting

In this section, we describe how the PARX model can be estimated and the estimated

model used for forecasting. We provide an asymptotic theory for the estimated parameters

allowing for statistical inference, and present the results of a simulation study investigating

the �nite-sample properties of the estimator.

4.1 Estimation

We consider the model for yt as speci�ed in (1)-(2) and (7), that is with conditional intensity

given by

�t(�) = ! +

pX
i=1

�iyt�i +

qX
i=1

�i�t�i (�) +
dxX
i=1

if (xit�1) ;

where � = (!; �; �; ) 2 � � (0;1)� [0;1)p+q+dx, where � = (�1; :::; �p)0, � =
�
�1; :::; �q

�0
,

and  =
�
1; :::; dx

�0
. We let �0 = (!0; �0; �0; 0), where �0 = (�0;1; :::; �0;p)

0, �0 =�
�0;1; :::; �0;q

�0
, and 0 =

�
0;1; :::; 0;dx

�
, denote the true, data-generating parameter value.

The conditional log-likelihood function of � in terms of the observations (y1; x0) ; :::; (yT ; xT�1),

given some initial values �0; ��1; :::; �1�q; y0; ::; y1�p and x0, takes the form

LT (�) =
TX
t=1

lt (�) , lt (�) : = yt log �t (�)� �t (�) (9)

where we have left out any constant terms. The maximum likelihood estimator (MLE) is

then computed as

�̂ := argmax
�2�

LT (�) : (10)

In order to analyze the large sample properties of �̂, we impose the following conditions on

the parameters and the exogeneous regressors:
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Assumption 4 � is compact and for all � = (!; �; �; ) 2 �, �i � �U < 1=q for i = 1; 2; ::; q

and ! � !L > 0, with !L and �
U being �xed.

Assumption 5 The polynomials A (z) =
Pp

i=1 �0;iz
i and B (z) =

Pq
i=1 �0;iz

i have no com-

mon roots; for any (a; b) 6= (0; 0),
Pmaxfp;qg

i=1 aiyt�i+
Pdx

i=1 bif (xi;t) has a nondegenerate

distribution.

Assumption 4 imposes weak restrictions on the parameter space; these are similar to the

ones imposed in the analysis of estimators of GARCH models and rule out ��s greater than

one (for which �t (�) is explosive) and !�s equal to zero. The latter is used to ensure that

�t (�) is bounded away from zero.

Assumption 5 is an identi�cation condition which is similar to the one found for GARCH

models with exogenous regressors: The �rst part is the standard condition found for GARCH

models (see, e.g., Berkes et al, 2003), while the second part rules out that the exogeneous co-

variates are colinear with each other and the observed count process (see Han and Kristensen,

2014 for a similar condition).

Under this assumption, together with those used earlier to establish stationarity and

existence of moments, we obtain the following asymptotic result for the MLE conditional on

the inital values:

Theorem 2 Under Assumptions 1�4 with s � 1, �̂ is consistent. Furthermore, if �0 2 int�
and s � 2,

p
T (�̂ � �0)

d! N(0; H�1 (�0)); H (�) := �E
�
@2l�t (�)

@�@�0

�
,

where l�t (�) denotes the likelihood function evaluated at the stationary solution.

Remark 2 If the model is mis-speci�ed, we expect the asymptotic properties of the MLE to
remain correct except that �0 is now the pseudo-true value maximizing the pseudo-likelihood

and the asymptotic variance takes the well-known sandwich form H�1 (�0) 
 (�0)H
�1 (�0),

where


 (�) = E

�
@l�t (�)

@�

@l�t (�)

@�0

�
;

see White (1982) and Gourieroux, Monfort and Trognon (1984). �

Remark 3 The assumption �0 2 int� rules out cases where some of the parameters are zero.
We detail how this assumption can be relaxed at the end of this section. The requirement on

s, as de�ned in Assumption 2, is used to ensure that the likelihood function has a well-de�ned

limit and that the moments in the information matrix H (�) exist. �
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The above theorem generalizes the result of Fokianos, Rahbek and Tjøstheim (2009) to

allow for estimation of parameters associated with additional regressors in the speci�cation of

�t. It is established under the assumption that f is globally Lipschitz as stated in Assumption

1. By combining the arguments in Fokianos, Rahbek and Tjøstheim (2009) with Lemma 2,

the asymptotic result can be extended to allow f to be locally Lipschitz, see Assumption 1�.

More precisely, de�ne the likelihood quantities for the approximating, or truncated, model

as

LcT (�) =
TX
t=1

lct (�) , where lct (�)=y
c
t log �

c
t (�)� �ct (�) :

It immediately follows that the results of Theorem 2 holds for the QMLE of LcT (�), �̂
c
say.

However, as the approximating likelihood function can be made arbitrarily close to the true

likelihood as c ! 1; one can show that we can replace Assumption 1 in Theorem 2 by

Assumption 1�.

Theorem 3 Under Assumptions 1�, 2�5, and E[fi (x�it)] <1, i = 1; :::; dx, the conclusions
of Theorem 2 remain valid.

It will often be of interest to investigate if some of the elements of � are zero, as for

example i = 0 or �i = 0. In order to allow for this, where under the null the parameter

vector � is on the boundary of the parameter space�, we complement the results of Theorems

2-3. To do so, we apply the general theory of Andrews (1999), see also Demos and Sentana

(1998) and Francq and Zakoian (2009) to obtain the following corollary where we state this

explicitly for the case of testing one parameter equal to zero (more general cases of multiple

parameters on the boundary can be handled as in Francq and Zakoian, 2009). Here, we

denote the standard t statistic for the null hypothesis H0 : �i0 = 0 with ti =
p
T �̂i=�̂ii, where

�̂2ii is a consistent estimator of the i-th diagonal element of H
�1 as de�ned in Theorem 2.

The likelihood ratio test for the same null hypothesis is denoted by LRi.

Corollary 1 Under Assumptions 1�5 and H0 with �j0 6= 0 for all j 6= i,

ti
d! max f0; Zg ; (11)

LRi
d! (max f0; Zg)2; (12)

where Z is standard normally distributed.

Remark 4 For a given signi�cance level � < 1=2, the (1 � �) quantile of the asymptotic

distribution in (11) equals the (1� �) quantile of the standard normal distribution, see e.g.

Andrews (2000, p.404). Hence, in this case standard normal critical values apply to the

t-statistic. The same does not hold for the LR statistic, as for any � 2 (0; 1), the (1 � �)
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quantile of the asymptotic distribution in (12) equals the (1 � 2�) quantile of the �2 (1)
distribution, see e.g. Francq and Zakoian (2009). �

4.2 Finite Sample Performance

In this section we present results from a small simulation study aimed at evaluating the

�nite-sample performance of the MLE presented in the previous section. We consider the

PARX(1,1) model (1) with conditional intensity given by

�t = ! + �yt�1 + ��t�1 +  exp(xt�1):

The use of an exponential link function is motivated by the empirical application where this

is employed for some of the covariates. We examine the performance under two di¤erent

data generating processes (DGP�s) for the covariate xt:

DGP 1 xt is a stationary autoregressive process, xt = 'xt�1 + "t, with "t �i.i.d.N (0; 1),
initialized at x0 �i.i.d.N (0; 1= (1� '2)); the AR parameter is set to ' = 1=2.

DGP 2 xt is a stationary fractionally integrated process, �d
+xt = "t, where the operator

�d
+ is given by �

d
+zt := �dztI (t � 1) =

Pt�1
i=0 �i (�d) zt�i with �i (v) = (i!)�1(v(v +

1) : : : (v+ i�1)) denoting the coe¢ cients in the usual binomial expansion of (1� z)�v;
"t is i.i.d.N (0; 1) and d = 1=4.

These two DGP�s represent typical time series behavior found in the factors used in

the empirical application. The �rst DGP satis�es the theoretical conditions used in the

asymptotic analysis of the MLE, while the second one does not since it is not a Markov

chain. However, DGP 2 remains stationary and so we expect that the theory remains valid

for this DGP as well.

Since the distribution of yt is not invariant to the scale of the covariate xt, in each case xt
has been re-scaled by its unconditional variance. We report results for ! = 0:10; � = 0:30;

 = 0:5 and four alternative scenarios for �: � = 0 (no feedback from lagged intensity

to current intensity), � = 0:20 (low persistence) and � = 0:70 (high persistence). In all

cases considered, the model admits a stationary solution, see section 3. Finally, we consider

samples of size T 2 f100; 250; 500; 1000g. For each experiment, the number of Monte Carlo
replications is set to N = 1000.

Results for the case of DGP 1 are presented in Table 1. For each parameter, the mean and

root mean square error (RMSE) (over the N = 1000 Monte Carlo replications) of the cor-

responding estimator are reported. Furthermore, the p-value obtained from a Kolmogorov-

Smirnov (KS) test for the hypothesis of N(0; 1) distribution of each parameter estimator is

reported.
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The performance of the MLE for DGP 1 seems largely satisfactory for moderate and

large sample sizes. For samples of T � 250 observations and for all scenarios considered,

the hypothesis of N (0; 1) distribution of �̂i is never rejected at any conventional signi�cance

level. For samples of T = 100, the degree of persistence of the process (here captured by the

� coe¢ cient) seems to a¤ect the distribution of the estimators. Speci�cally, while in the case

of lowest persistence (� = 0) the hypothesis of N (0; 1) distribution of �̂i is never rejected, in

the cases of stronger persistence (� = 0:2 and � = 0:7) normality is rejected for the estimator

constant term ! (both when � = 0:2 and � = 0:7) and for the PAR parameters � and �

(when � = 0:7). These deviations from normality, however, do not persist for larger sample

sizes. Finally, it is worth noticing that the parameter which delivers the highest RMSE is

the constant term, !.

Next, consider the results for DGP 2 as presented in Table 2: Compared to DGP 1, xt now

has higher persistence. Despite this, for T � 250, with the only exception of the constant

term !, results do not show substantial di¤erences relative to the ones for DGP 1; that is,

the asymptotic N (0; 1) approximation is largely satisfactory. In the case of high persistence

(� = 0:7), normality of !̂ is rejected at the 1% signi�cance level even when T = 1000. This

is consistent with the �ndings of Han and Kristensen (2014) for the GARCH-X model who

also �nd that the intercept is less precisely estimated in the presence of persistent regressors.

[Table 1 and Table 2 about there]

4.3 Forecasting

Once the PARX model has been estimated, it can be used to forecast future number of de-

faults, yt. Forecasting of Poisson autoregressive processes is similar to forecasting of GARCH

processes (see, e.g., Hansen et al, 2012, Sec. 6.2) in that it proceeds in two steps: First,

a forecast of the time-varying parameter (variance in the case of GARCH, intensity in the

case of PARX) is obtained. This is then substituted into the conditional distribution of the

observed process yt. Consider �rst the forecasting of �t. A natural one-step ahead forecast,

given available information at time T and parameters �, is

�T+1jT (�) = ! +

pX
i=1

�iyT+1�i +

qX
i=1

�i�T+1�i (�) + f (xT ) : (13)

More generally, a multi-step ahead forecast of �T+h, for some h � 1, solves the following

recursive scheme,

�T+kjT (�) = ! +

maxfp;qgX
i=1

f�i + �ig�T+k�ijT (�) + f
�
xT+k�1jT

�
; k = 1; ::::::; h; (14)
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with initial value �T+1jT (�) coming from eq. (13). Here, xT+kjT , k = 1; :::; h�1, is a forecast
of xT+h given available information at time T . This is similar to GARCH-X, HEAVY and

realized GARCHmodels, that also take as input a forecasting model for exogenous covariates.

Once we have computed a forecast of the underlying intensity, �T+hjT (�), this can in turn

be used to generate a forecast distribution of yT+h,

P (yT+h = yjFT ) = Poisson
�
yj�T+1jT (�)

�
; y 2 f0; 1; 2; :::g ;

where Poisson(yj�) = �y exp (��) =y! is the probability function of a Poisson distribution
with intensity �. This is related to the well-known concept of density forecasts (see Tay and

Wallis, 2000, for a review) except that we are here working with a discrete-valued distribution.

A simple way of representing the forecast distribution is by reporting a measure of central

tendency, such as

yT+hjT := E [yT+hjFt] = �T+hjT (�) ;

together with the 1�� con�dence interval (as implied by the forecast distribution) for some
� 2 (0; 1). The symmetric 1� � con�dence interval takes the form

CI1�� =
�
Q
�
�=2j�T+1jT (�)

�
; Q
�
(1� �) =2j�T+1jT (�)

��
;

where p 7! Q (pj�) denotes the quantile function of a Poisson distribution with intensity �.

5 Empirical Analysis

The aim of this section is to provide an empirical analysis of US corporate default counts using

PARX models. Speci�cally, by including exogenous regressors in the intensity speci�cation

and by testing whether they cause a signi�cant decrease in the impact of past default counts,

we are able to investigate to what extent autocorrelation (as well as clustering over time) in

default counts depends on common (aggregate) risk factors. That is, testing the existence of

autocorrelation in default counts after correcting for common risk factors can be viewed as

testing the existence of contagion e¤ects over time. The alternative hypothesis �i.e., default

counts, after correcting for the common risk factors, do not depend on the number of past

defaults �is similar to the idea of conditional independence of default counts as discussed

in the recent literature by Das et al. (2007), Lando and Nielsen (2010) and Lando et al.

(2013), among others. With respect to this literature, however, by means of PARX models

we are able to model explicitly the conditional dependence through the speci�cation of the

time-dependent intensity process.

The data set on defaults consist of monthly number of bankruptcies among Moody�s

rated industrial �rms in the United States in the 1982�2011 period (T = 360 observations),
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collected from Moody�s Credit Risk Calculator (CRC). Figure 1(a, b), which shows default

counts and the corresponding autocorrelation function, reveals three important stylized facts

of defaults: (i) the high temporal dependence in default counts; (ii) the existence of default

clusters over time; (iii) overdispersion of the distribution of default counts (the average is

3:51 while the variance is 15:57). It will be shown later in this section that all these empirical

properties are well explained using PARX speci�cations.

[Figure 1(a, b) about here]

The choice of covariates to be included in our PARX models is important, as they repre-

sent the common risk factors conditional on which defaults could be independent over time.

Following Lando and Nielsen (2010) we consider the following �nancial, credit market and

macroeconomic variables: Baa Moody�s rated to 10-year Treasury spread (SP ), the number

of Moody�s rating downgrades (DG), year-to-year change in Industrial Production Index

(IP ), Leading Index released by the Federal Reserve (LI), the recession indicator released

by the National Bureau of Economic Research1 (NB).2 Moreover, in order to shed some

light on the possible impact of uncertainty in the �nancial markets on the number of fu-

ture defaults, we also consider realized volatility (RV ) on the S&P 500. RV is computed

as a proxy of the S&P 500 monthly realized volatility using daily squared returns (that is,

RVt :=
Xnt

i=1
r2i;t with ri;t denoting the i-th daily return on the S&P 500 index in month t

and nt being the number of trading days in month t).

Since Industrial Production and Leading Index take on both negative and positive values,

we decompose them into their negative and positive parts and let IP (+) := IfIP�0g jIP j,
IP (�) := IfIP<0g jIP j and similarly for LI. This gives us a total of eight candidate covariates.

5.1 Full-sample Analysis

We here provide an analysis for the full sample 1982-2011. Preliminary covariate and lag

selection using all eight covariates suggests the following speci�cation of default intensity,

�t = !+
2X
i=1

�iyt�i+��t�1+1RVt�1+2SPt�1+3DGt�1+4NBt�1+5IP
(�)
t�1 +6LI

(�)
t�1;

(15)
1This time series is released by the Federal Reserve Bank of St. Louis interpreting the Business Cycle

Expansions and Contractions data provided by The National Bureau of Economic Research (NBER) at

http://www.nber.org/cycles/cyclesmain.html. A value of 1 indicates a recessionary period, while a value of

0 denotes an expansionary period.
2Data are obtained from the FRED website, provided by the Federal Reserve Bank of St. Louis,

http://research.stlouisfed.org/, except for the number of Moody�s rating downgrades, which we collect from

Moody�s CRC.
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which is a special case of model (1)-(2) where we set p = 2, q = 1 and � = �1.

[Table 3 about there]

Table 3 shows the estimation results for the full PARX(2,1) model in (15), along with

the PAR(2,1) model (i.e., the model without covariates) and nested speci�cations based on

subsets of the six included covariates. For each speci�cation, we report parameter estimates

together with corresponding t statistics, standard (AIC and BIC) information criteria and the

LR statistic relative to the maintained PARX model. Among the various models considered,

the preferred PARX model, in terms of the information criteria as well as by the LR tests,

is the one only including realized volatility and the leading index.

To our knowledge, the link between realized volatility (re�ecting uncertainty in �nancial

markets) and defaults of industrial �rms has not been documented earlier in the literature.

Similarly, signi�cance of the Leading Index highlights a clear link between macroeconomic

factors and corporate defaults, which is not generally found using standard econometric

techniques. For instance, recent empirical results of Du¢ e et al. (2009) and Giesecke et

al. (2011) do not show a signi�cant role of production growth while Lando et al. (2013)

�nd that, conditional on individual �rm risk factors, no macroeconomic covariate seems to

explain signi�cantly default intensity. However, once we control for the information contained

in realized volatility and the negative component of the Leading Index, none of the other

four covariates (NBER recession indicator, interest rate spread, and number of downgrades)

are found to be relevant in predicting future defaults.

We analyze the existence of contagion e¤ects by investigating whether by including co-

variates, past default counts have a smaller impact, i.e. a signi�cant decrease in �̂1 and �̂2 in

a given model with covariates (PARX) relative to the corresponding one without covariates

(PAR). As remarked previously, conditional independence over time would require that �1
and �2 are both zero,3 which would imply that conditional intensity can fully be explained

by past covariates only. Indeed, the inclusion of covariates leads to a decrease in �̂1+ �̂2 for

almost all the models considered. On the other hand, the null hypothesis H0 : �1+�2 = 0 is

rejected for all spe�cations. Therefore, although part of the dependence over time in default

counts can be explained by the set of covariates considered, even after correcting for such

covariates a strong link between conditional intensity and past default counts remains. This

result seems to indicate that �at least on the basis of the exogenous regressors considered �

signi�cant evidence of contagion e¤ects over time is likely to occur.

3It is worth noticing that this approach is related to empirical studies aiming at measuring the impact

of covariates, such as the trading volumes, on future volatility using GARCH models (see, for instance,

Lamoureux and Lastrapes, 1990 and Gallo and Pacini, 2000).
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We run a number of model (mis)speci�cation tests on the selected model. First, to check

in-sample �t, we plot in Figure 2 the actual default counts (yt) together with the predicted

defaults (ŷt := �̂t = �t(�̂)) and its con�dence bands (see Section 4.3). As can be seen from

this �gure, the model captures the default counts dynamics well. The associated generalized,

or Pearson, residuals (see Gourieroux et al., 1987; Kedem and Fokianos, 2002) �formally

de�ned as êt = �̂
�1=2
t (yt � �̂t) (t = 1; :::; T ) and reported in Figure 3 �also appear to be

uncorrelated over time (the corresponding Ljung-Box test has p-value 0:661 when computed

using êt and 0:373 when computed using ê2t ).

We also evaluate the goodness of �t of the assumed Poisson conditional distribution of yt
by comparing the observed zero counts with the corresponding model-implied probabilities,

P̂ (yt = 0jFt�1) = e��̂t (t = 1; :::; T ), i.e. the (conditional on the past) probability that a

Poisson(�̂t) random variable equals zero under the selected model speci�cation. Figure 4

shows the relation between the observed zeros and such model-implied probabilities. There

is a clear correspondence between periods characterized by high number of zeros and the

conditional probability of observing yt = 0, given the speci�ed model.

5.2 Structural Instabilities

We found in the previous subsection that the preferred model does a reasonable good job in

terms of in-sample �t. To further examine the �t, we also perform a pseudo-out-of-sample

forecasting exercise for the preferred model (the PARX(2; 1) with RV and LI(�) as included

covariates) along the lines of, for example, Stock and Watson (1996): we split the sample in

two with the �rst part of the sample of size T0(= 120), f(yt; xt�1) : t = 1; :::; T0g being used for
initial estimation of the model, and the remaining observations f(yt; xt�1) : t = T0 + 1; :::; Tg
being used for a forecasting exercise described below.

Let

�̂t = argmax
�
Lt (�)

be the MLE using observations up to time t � T0, where

Lt (�) =

tX
s=1

ls (�) , ls (�) : = ys log �s (�)� �s (�) :

Given �̂t, we then compute the corresponding one-step-ahead forecast of �t+1 using only

information up to time t,

�̂t+1jt = �t+1(�̂t):

We then repeat the above exercise for t = T0 + 1; :::; T , thereby providing us with a time

series of estimators, f�̂t : t = T0; :::; Tg, and corresponding intensity forecasts, f�̂t+1jt : t =
T0; :::; Tg. This procedure mimicks what a forecaster would obtain as (s)he starts forecasting
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at time T0 and updates his (her) estimates and forecasts as more data arrive. Given the

forecast path �̂t+1jt, we evaluate the performance of the preferred PARX speci�cation by

computing the following estimate of the mean-square forecasting error,

MSFEt =
1

t� T0

tX
s=T0

(ys+1 � �̂s+1js)
2; t = T0; :::; T;

and the forecasting score (FS),

FSt =
1

t� T0

tX
s=T0

(ys+1 log �̂s+1js � �̂s+1js); t = T0; :::; T:

In Figure 5, we plot MSFEt and FSt as functions of time. The forecasting objectives vary

a lot. In particular, there appears to be radical structurals breaks around the outset of the

�nancial crisis in the early 2000�s and in 2008. This could seem to indicate that there are

structural instabilities as caused by time-varying parameters during the sample period.

To formally test whether there indeed are structural breaks in the sample, we implement

the Nyblom (1989) test (NT)

NTT;t = St(�̂T )
0H�1

t (�̂T )St(�̂T ) = (�̂t � �̂T )
0Ht(�̂T )(�̂t � �̂T ) + oP (1=

p
T );

where ST (�) and HT (�) are de�ned in eqs. (A.2) and (A.3), respectively. We clearly reject

parameter constancy using this test. This is also evident from the plots of �̂t reported in

Figure 4 where there appears to be structural breaks around the early 2000�s and in 2007.

[Figure 5 and Table 4 about here]

Based on these �ndings, we split the full sample into three subsamples, 1982-1998, 1998-

2007, and 2007-2011, and for each subsample re-do model selection and estimation. In Table

5, we report the preferred model with corresponding estimated parameters for each subsam-

ple. In the early period (1982-1998), all macro factors (incl. RV and LI(�)) are irrelevant

and there are strong contagion e¤ects (�̂1 + �̂2 = 0:65). During the second subsample, RV

is a very strong explanator of defaults while contagion e¤ects are weak (�̂1 + �̂2 = 0:09).

Finally, during the Great Recession (2007-2011), we �nd that RV and LI(�) are very strong

explanatory variables and there are no contagion e¤ects (�̂1 + �̂2 = 0:00). This last �nding

goes against much of the recent discussion of the �nancial crisis and how contagion e¤ects

and systemic risk played a big role in its evolution. One possible explanation is the relatively

small sample used for the last set of estimates.
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[Table 5 about there]

We also note that the estimated models for the three regimes match well with the pa-

rameter estimates we reported for the full sample, which are basically an average over the

three di¤erent regimes.

6 Conclusions

In this paper, we have developed a class of Poisson autoregressive models with exogenous

covariates (PARX) for time series of counts. Since PARX models allow for overdispersion

arising from persistence, they are suitable to model count time series of corporate defaults,

which are strongly correlated over time and exhibit high peaks, known as default clusters.

Our empirical analysis, based on application of di¤erent PARX speci�cations (i.e. including

di¤erent sets of covariates) to a thirty year-long time series of US default counts, reveals

that our model is capable to capture the dynamic features of default counts very satisfacto-

rily. Our PARX models also allow to test to what extent dependence over time in default

counts can be explained by exogenous factors. We �nd that the lagged realized volatility of

�nancial returns, together with macroeconomic variables, signi�cantly explains the number

of defaults. A full sample analysis shows that the estimated dependence over time is signif-

icant even when the exogenous covariates are included, hence indicating that the so-called

"conditional independence" hypothesis on �rm defaults is not supported by the data. How-

ever, a further econometric investigation reveals that such dependence is not constant over

time. Speci�cally, while in the early period 1982�1998 all macro factors considered are not

signi�cant and, accordingly, default counts are strongly characterized by contagion e¤ects

over time, in the subsequent periods 1999�2006 and 2007-2011 we �nd that �nancial volatil-

ity and macroeconomic factors are strong explanators of defaults, while contagion e¤ects

(captured by the parameters linking current intensity to past default counts) become weak,

or even absent during the Great Recession (2007-2011). The latter result, which contrasts

with much of the recent literature on the role of contagion e¤ects in the �nancial crisis,

shows that while in general current defaults do indeed a¤ect the probability of other �rms

defaulting in the future, in recent years economic and �nancial factors at the macro level are

capable to explain a large portion of the correlation of US �rms defaults over time.

Further issues are left to future research. First, our analysis is limited to defaults of U.S.

industrial �rms. It would be interesting to assess whether similar results characterize di¤erent

sectors (e.g., �nancial) and/or countries. Second, the PARX speci�cations developed in this

paper are univariate, in the sense that they can be used to model a single time series of default

counts. The multivariate PARX case, which would permit to analyze the cross linkages
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between di¤erent time series of defaults, represents an obvious extension of the econometric

theory proposed in this paper and is currently under investigation by the authors.

A Appendix

A.1 Proof of Theorem 1

De�ne � := max
nPmax(p;q)

i=1 (�i + �i) ; �
o
< 1 and the norm k(x; �)kw := wx kxk + w� k�k ;

where wx; wy > 0 are chosen below. Observe that the Markov chain zt = (xt; �t) solves

zt = F (zt�1; "t; Nt), where, with � = (�1; :::; �p) and � =
�
�1; :::; �q

�
, and correspondingly,

N of dimension p and � of dimension q,

F (x; �; ";N) := (g (x; ") ; ! + �N + ��+ f (x))0 :

We then wish to show that F (x; �; ";N) is a stochastic contraction mapping w.r.t. (x; �).

To this end, observe that, with �Nt = (Nt; :::; Nt�p)
0,

E
hF �x; �; "t; �Nt (�)�� F

�
~x; ~�; "t; �Nt (�)

�
w

i
= wxE [kg (x; ")� g (~x; ")k] + w�E

h����n �Nt (�)� �Nt

�
~�
�o
+ �

n
�� ~�

o
+  ff (x)� f (~x)g

���i
� wx�

1=s kx� ~xk+ w�

max(p;q)X
i=1

(�i + �i)
�� ~�+ w�L kx� ~xk

=
�
wx�

1=s + w�L
�
kx� ~xk+ w�

max(p;q)X
i=1

(�i + �i)
�� ~� :

If � =
Pmax(p;q)

i=1 (�i + �i), then choose w� = wx
�
� � �1=s

�
= (L) such that,

E
hF �x; �; "t; �Nt (�)�� F (~x; ~�; "t; �Nt (�))


w

i
� �

(x; �)� �~x; ~��
w
.

If � = �1=s, then choose,

wx�
1=s + w�L = (1 + �) �1=swx,

or w� = ��1=swx= (L), for some small � > 0, such that (1 + �) � < 1, and hence

E
hF �x; �; "t; �Nt (�)�� F

�
~x; ~�; "t; �Nt (�)

�
w

i
� (1 + �) �

(x; �)� �~x; ~��
w
.

Finally, E
�F �0; 0; "t; �Nt�w� = wxE [kg (0; ")k] + w� (f (0) + !) < 1 by Assumption 2.

This veri�es the assumptions of Corollary 3.1 in Doukhan and Wintenberger (2008) with

� (z) = kzkw, which yields that zt is weakly dependent.
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The next step is to show that Xt = (yt; zt) is jointly stationary and weakly dependent

using arguments similar to the ones for Meitz and Saikkonen (2008): First note that yt is

obviously stationary since �t is. Next, consider

P (Xt 2 A�B j My;t�p;Mz;t�p) = P (yt 2 A j zt 2 B,My;t�p;Mz;t�p)P (zt 2 B j My;t�p;Mz;t�p) ;

whereMx;t�k = � (xt�k; xt�k�1; :::). By de�nition of the process,

P (yt 2 A j zt 2 B,My;t�p;Mz;t�p) = P (yt 2 A j zt 2 B) :

Next, using the Markov chain property of zt,

P (zt 2 B j My;t�p;Mz;t�p) = P (zt 2 B j Mz;t�p) ;

where the right hand side by � weak dependence of zt converges to the marginal P (zt 2 B)
as p ! 1. Hence so does P (Xt 2 A�B j My;t�p;Mz;t�p) for any A;B and p, p ! 1.
This shows stationarity and weak dependence of Xt.

To complete the proof, we verify existence of moments: Observe thatE [jy�t js] =
Ps

j=0

�
s
j

�
E[(��t )

j]

where, with �yt = (yt; :::; yt�p+1)
0 and ��t = (�t; :::; �t�q+1)

0,

E[��t ] =

max(p;q)X
i=1

(�i + �i)E [�
�
t ] + E

�
f
�
x�t�1

��
+ !;

and

(��t )
s =

sX
j=0

�
s

j

��
��y�t�1 + ���

�
t�1
�j �

! + f
�
x�t�1

��s�j
:

Hence,

E[(��t )
s] =

sX
j=0

�
s

j

�
E
h�
��y�t�1 + ���

�
t�1
�j �

! + f
�
x�t�1

��s�ji
= E

��
��y�t�1 + ���

�
t�1
�s
+ E

�
! + f

�
x�t�1

��s�
+ E

�
rs�1

�
�y�t�1;

��
�
t�1; f

�
x�t�1

���
;

with rs�1 (y; �; z) being an (s� 1)-order polynomial in
�
�y; ��; z

�
and soE

�
rs�1

�
�y�t�1;

��
�
t�1; f

�
x�t�1

���
<

1 by induction. Moreover, E
��
! + f

�
x�t�1

��s�
< 1 by applying Doukhan and Winten-

berger (2008, Theorem 3.2) on xt together with Assumption 2. Thus, we are left with

considering terms of the form,

E
��
�iy

�
t�1�i + �i�

�
t�1�i

�s�
=

sX
j=0

�
s

j

�
�ji�

s�j
i E

h�
y�t�1�i

�j �
��t�1�i

�s�ji
=

sX
j=0

�
s

j

�
�ji�

s�j
i

jX
k=0

�
j

k

�
E
h
(��t )

s+(k�j)
i

=
sX
j=0

�
s

j

�
�ji�

s�j
i E [(��t )

s] + C

= (�i + �i)
sE [(��t )

s] + C;
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where by induction E
h
(��t )

k
i
<1, for k < s: Collecting terms,

E [(��t )
s] =

24max(p;q)X
i=1

(�i + �i)

35sE [(��t )s] + ~C;

which, since
Pmax(p;q)

i=1 (�i + �i) < 1 (Assumption 3), has a well-de�ned solution.

A.2 Proof of Lemma 1

By the assumptions made, there exists a � -weakly dependent solution to the dynamic system,

c.f. Doukhan and Wintenberger (2008, Corollary 3.1). With X�
t denoting the stationary

solution, write

1

T

TX
t=1

h (Xt) =
1

T

TX
t=1

[h (Xt)� h (X�
t )] +

1

T

TX
t=1

h (X�
t ) ;

where, by the LLN for stationary and ergodic sequences, 1
T

PT
t=1 h (X

�
t ) !P E [h (X�

t )]. To

show that the �rst term vanishes, �rst note that, by repeated use of iterated expectations

and the contration condition,

E [kXt �X�
t k
s] � E

�
E
�
kXt �X�

t k
s jXt�1; X

�
t�1
��

� �E
�Xt�1 �X�

t�1
s�

...

= �tE [kX0 �X�
0k
s] ;

and

E
h
kh (Xt)k1+�

i
� E [kXtks] = E [kF (Xt�1; �t)k

s] � E [kF (Xt�1; �t)� F (0; �t)k
s] + E [kF (0; �t)k

s]

� �E [kXt�1ks] + E [kF (0; �t)k
s]

...

� �tE [kX0ks] + E [kF (0; �t)k
s]
t�1X
i=0

�i

� E [kX0ks] + E [kF (0; �t)k
s]

1� �
= :M:

Now, with c > 0 given in the lemma, de�ne Ic;t = I fkXt �X�
t k � cg and write

1

T

TX
t=1

[h (Xt)� h (X�
t )] =

1

T

TX
t=1

[h (Xt)� h (X�
t )] Ic;t +

1

T

TX
t=1

[h (Xt)� h (X�
t )] [1� Ic;t]

= : AT;1 + AT;2:
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Using that, by assumption, kh (Xt)� h (X�
t )k Ic;t � Lc kXt �X�

t k,

E [kAT;1k] �
1

T

TX
t=1

E [kh (Xt)� h (X�
t )k Ic;t] �

Lc
T

TX
t=1

kXt �X�
t k �

LcE [kX0 �X�
0k]

T

TX
t=1

�t

� 1

T

LcE [kX0 �X�
0k]

1� �
;

while, using Holder�s inequality,

E [jAT;2j] �
1

T

TX
t=1

E [kh (Xt)� h (X�
t )k I fkXt �X�

t k > cg]

� 2M

T

TX
t=1

P (kXt �X�
t k > c)(1+�)=�

� 2M

cs(1+�)=�
1

T

TX
t=1

E [kXt �X�
t k
s]
(1+�)=�

=
2ME [kX0 �X�

0k
s]

cs(1+�)=�
1

T

TX
t=1

�t

� 2ME [kX0 �X�
0k
s]

cs(1+�)=� (1� �)

1

T
:

Thus, AT;k !P 0, k = 1; 2, which completes the proof.

A.3 Proof of Lemma 2

The proof mimics the proof of Lemma 2.1 in Fokianos, Rahbek and Tjøstheim (2009) where

the case of p = q = 1 is treated. Set here p = q without loss of generality, such that by

de�nition,

�ct � �t =

pX
i=1

�
�i
�
yct�i � yt�i

�
+ �i

�
�ct�i � �t�i

��
+ ect ;

with ect := f (xt�1) I (kxt�1k � c). Hence E [�ct � �t] =
Pt�1

i=0

�Pp
j=1

�
�j + �j

��i
E
�
ect�i

�
;

and as
Pp

j=1

�
�j + �j

�
< 1,

��E �ect�i��� � �1 (c) with �1 (c) ! 0 as c ! 1, the �rst result
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holds with �1 (c) := �1 (c) =
�
1�

Pp
j=1

�
�j + �j

��
. Next,

E (�ct � �t)
2 =

pX
i=1

�2iE
�
yct�i � yt�i

�2
+ �2iE

�
�ct�i � �t�i

�2
+ 2E (ect)

2

+ 2

pX
i;j=1;i<j

�i�jE
�
�ct�j � �t�j

� �
yct�i � yt�i

�
+ 2

pX
i=1

�iE
��
�ct�i � �t�i

�
ect
�
+ 2

pX
i=1

�iE
�
ect
�
yct�i � yt�i

��
+ 2

pX
i;j=1;i<j

�i�jE
�
yct�j � yt�j

� �
yct�i � yt�i

�
+ 2

pX
i;j=1;i<j

�i�jE
�
�ct�j � �t�j

� �
�ct�i � �t�i

�
With �ct � �t; and t � s;

E [(�ct � �t) (y
c
s � ys)] = E [E ((�ct � �t) (y

c
s � ys)j Fs�1)]

= E [(�ct � �t)E (Ns [�s; �
c
s])] = E (�ct � �t) (�

c
s � �s) ;

where Fs�1 = F fxk; Nk : k � s� 1g and Nt [�t; �ct ] the number of events in [�t; �ct ] for the
unit-intensity Poisson process Nt: Likewise for �t � �ct . Also observe that, still for t � s;

E [(yct � yt) (y
c
s � ys)] = E [E ((yct � yt) (y

c
s � ys)j Fs�1)]

= E [(yct � yt)E ((y
c
s � ys)j Fs�1)]

= E (yct � yt) (�
c
s � �s) ;

For t � s; note that the recursion for (�ct � �t) above gives,

�ct � �t =

pX
i=1

�
�i
�
yct�i � yt�i

�
+ �i

�
�ct�i � �t�i

��
+ ect

=

pX
i=1

�i

(
pX
j=1

�
�j
�
yct�i�j � yt�i�j

�
+ �j

�
�ct�i�j � �t�i�j

��
+ ect�i

)

+

pX
i=1

�
�i
�
yct�i � yt�i

�
+ ect

�
= :::

=

t�sX
j=1

�
aj
�
yct�j � yt�j

�
+ gjet�j

	
+

pX
j=1

�
cj
�
�cs�j � �s�j

�
+ dje

c
s + hj

�
ycs�j � ys�j

�	
:
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Observe that aj; gj; cj; dj and hj are all summable. Using this, we �nd,

E [(�ct � �t) (y
c
s � ys)] = E

"
t�sX
j=1

�
aj
�
yct�j � yt�j

�
+ gjet�j

�
(ycs � ys)

#

+ E

"
pX
j=1

�
cj
�
�cs�j � �s�j

�
+ dje

c
s + hj

�
ycs�j � ys�j

��
(ycs � ys)

#

Collecting terms, one �nds E
�
(�ct � �t)

2� is bounded by, CPt
j=1  jE

�
ect�j

�2
for some con-

stant C, some  i with
P1

i=1  i <1 and which therefore tends to zero. Finally, using again

the properties of the Poisson process Nt we �nd,

E
�
(yct � yt)

2� � E
�
(�ct � �t)

2�+ jE [�ct � �t]j � E
�
(�ct � �t)

2�+ �1 (c) :

This completes the proof of Lemma 2.

A.4 Proof of Theorem 2

We consider here the case of p = q = dx = 1 and write the model as

�t (�) = ! + �yt�1 + ��t�1 (�) + f (xt�1) ;

the following arguments are easily extended to the general case since this is alone complicated

in terms of notation. We show consistency by verifying the general conditions provided in

Kristensen and Rahbek (2005, Proposition 2). Given the LLN established in Lemma 1, these

are easily veri�ed apart from the condition, E [sup�2� l
�
t (�)] <1, and showing identi�cation.

Since �t (�) � !L,

E

�
sup
�2�

l�t (�)

�
� 1

!L
E

�
�t (�0) sup

�2�
jlog ��t (�)j

�
:

Using Hölder�s inequality, the right-hand side is �nite if E [sup�2� �
�
t (�)] <1, but this holds

by Theorem 1. Regarding identi�cation, we need to show that

L (�) := E [l�t (�)] = E [��t (�0) log �
�
t (�)� ��t (�)]

has a unique maximum at � = �0. To this end, �rst note that

L (�)� L (�0) = E

�
��t (�0) log

�
��t (�)

��t (�0)

�
+ ��t (�0)� ��t (�)

�
� E

�
��t (�0)

�
��t (�)

��t (�0)
� 1
�
+ ��t (�0)� ��t (�)

�
= 0;
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with equality if and only if

��t (�0) = ��t (�) almost surely. (A.1)

The stationary solution can be represented as

��t (�) =
!

1� �
+

1X
i=1

ai (�) y
�
t�i +

1X
i=1

bi (�) f
�
x�t�i

�
;

where ai (�) = ��i�1 and bi (�) = �i�1. Suppose now that there exists � 2 � so that

eq. (A.1) holds. We then claim that !0 = ! and ci (�0) = ci (�) for all i � 1, where

ci (�) = (ai (�) ; bi (�)), which in turn implies � = �0. We show this by contradiction: Let

m > 0 be the smallest integer for which ci (�0) 6= ci (�) (if ci (�0) = ci (�) for all i � 1, then
obviously !0 = !). Eq. (A.1) can then be rewritten as

a0y
�
t�m + b0f

�
x�t�m

�
= ! � !0 +

1X
i=1

aiy
�
t�m�i +

1X
i=1

bif
�
x�t�m�i

�
;

where ai := �0�
i�1
0 ���i�1 and bi := 0�

i�1
0 ��i�1, i = 1; 2; :::: The right hand side belongs

to Ft�m�1 and so a0yt�m + b0f (xt�m) jFt�m�1 is constant. This is ruled out by Assumption
5.

To establish asymptotic normality we follow Kristensen and Rahbek (2005, proof of

Theorem 2) and analyse the asymptotic behaviour of the score and information which is

done below.

A.4.1 Score

The score ST (�) = @LT (�) = (@�) is given by,

ST (�) =

TX
t=1

st (�) , where st (�) =
�

yt
�t (�)

� 1
�
@�t (�)

@�
. (A.2)

Here, with � = (!; �; )0 and vt = (1; yt�1; f (xt�1))
0

@�t (�)

@�
= vt + �

@�t�1 (�)

@�

@�t (�)

@�
= �t�1 (�) + �

@�t�1 (�)

@

In particular, with �t = �t (�0) and _�t = @�t (�) = (@�) �=�0, st (�0) =
_�t(yt=�t�1). The score

function is a Martingale di¤erence w.r.t. the �ltration Ft satisfying E
�
st (�0) st (�0)

0 jFt�1
�
=

_�t _�
0
t=�t. Note that _�t = (v

0
t; �t�1)

0 + � _�t�1, with _�0 = 0. Thus, by the same arguments as in
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the proof of Theorem 1, it is easily checked that the augmented process ~Xt :=
�
X 0
t;
_�
0
t

�0
, with

Xt de�ned in Theorem 1, is weakly dependent with �nite second moments. Furthermore,

since �t � !,
 _�t _�0t=�t �  _�t2. It now follows by the remark following Lemma 1 that

p
TST (�0)

d! N (0;
 (�0)) where, with H (�) de�ned in the theorem,


 (�) = E
�
s�t (�) s

�
t (�)

0� = E
h
_�
�
t (
_�
�
t )
0=��t

i
= �H (�) :

A.4.2 Information

The information is de�ned as

HT (�) = �
1

T

TX
t=1

@2lt (�)

@�@�0
; (A.3)

where

�@
2lt (�)

@�@�0
=

yt

�2t (�)

@�t (�)

@�

@�t (�)

@�0
�
�

yt
�t (�)

� 1
�
@2�t (�)

@�@�0
;

and

@2�t (�)

@�@�
=
@�t�1 (�)

@�
+ �

@2�t�1 (�)

@�@�
;

@2�t (�)

@�2
= 2

@�t�1 (�)

@�
+ �

@2�t�1 (�)

@�2
;

@2�t (�)

@�2
= �

@2�t (�)

@�2
= ::: = 0:

These recursions can be used to show that the augmented process ~Xt (�) :=
�
X 0
t (�) ;

_�
0
t (�) ; vec(

��t (�))
0
�0

is weakly dependent with second moments for � 2 � in the same way that Theorem 1 was

proved. In particular, for all � 2 �, we can apply Lemma 1 to obtain

HT (�) =
1

T

TX
t=1

@2lt (�)

@�@�0
P! E

�
@2l�t (�)

@�@�0

�
:

Moreover, � 7! @2lt (�) = (@�@�
0) is continuous and, with �� = (!U ; �U ; �U ; U) containing

the maximum values of the individual parameters, we obtain

@�t (�)

@�
= �t�1 (�) + �

@�t�1 (�)

@
�

t�1X
i=0

�iU�t�1�i
�
��
�
=
@�t

�
��
�

@�
;

@2�t (�)

@�2
= 2

@�t�1 (�)

@�
+ �

@2�t�1 (�)

@�2
� 2

t�1X
i=0

�iU
_�t�1�i

�
��
�
=
@2�t

�
��
�

@�2
;
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and similar for the other second order derivatives. while, by the same arguments as in Han

and Kristensen (2014), there exists a function B(~x) so that �t (�0) =�t (�) � B
�
~Xt

�
for all

� in a neighbourhood of �0, where

E

24B � ~X�
t

�@�t
�
��
�

@�


2
35 <1; E

"
B
�
~Xt

�@2�t
�
��
�

@�@�0


#
<1:

In total,

@2lt (�)@�@�0

 � �D( ~Xt

�
��
�
), �D( ~Xt

�
��
�
) := B

�
~Xt

�8<:
@�t

�
��
�

@�


2

+

@2�t
�
��
�

@�@�0


9=; ;

where E[ �D( ~X�
t (�))] < 1 with ~X�

t denoting the stationary version of ~Xt. It now follows

by Proposition 1 in Kristensen and Rahbek (2005) that sup�2� kHT (�)�H (�)k P! 0 with

H (�) de�ned in the theorem.

Finally, we show that H (�0) is non-singular. To see this, we use the same arguments as

in the proof of identi�cation that we provided as part of showing consistency: First note that

H (�0) = E[ _�
�
t

�
_�
�
t

�0
=��t ] is singular if and only if there exists a 2 R4n f0g and t � 1 such

that a0 _�
�
t = 0 a.s. Since _�

�
t is stationary, this must hold for all t. Recall that _�

�
t 2 R4 can

be written as _�
�
t = V �

t + � _�
�
t�1:, where V

�
t =

�
1; y�t�1; f

�
x�t�1

�
; ��t�1

�0
is a vector of positive

elements. So a0 _�
�
t = 0 a.s. holds if and only if a

0Vt = 0 a.s. for all t � 1. However, this is
ruled out by Assumption 5, c.f. proof of identi�cation.

A.5 Proof of Theorem 3

The proof follows by noting that Lemmas 3.1-3.4 in Fokianos, Rahbek and Tjøstheim (2009)

carry over to our setting with only minor modi�cations. The only di¤erence is that the

parameter vector � here include  as related to the link function f (xt�1) : However, as

E
�
f
�
x�t�1

��
< 1, all arguments remain identical as is easily seen upon inspection of the

proofs of the lemmas in Fokianos, Rahbek and Tjøstheim (2009).

A.6 Proof of Corollary 1

It su¢ ces to verify the regularity conditions of Andrews (1999, Theorem 3). First, in the

proof of Theorem 2 we establish consistency and classic convergence of the score and infor-

mation. Second, the parameter set satis�es the geometric conditions needed by arguments

identical to the ones in Francq and Zakoian (2009).
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Table 1: Results of simulations for PARX(1,1) with DGP 1.

Scenario 1 (� = 0) Scenario 2 (� = 0:2) Scenario 3 (� = 0:7)

T True Mean RMSE KS Mean RMSE KS Mean RMSE KS

100 ! 0:10 0:09 0:16 0:36 0:10 0:18 0:01 0:15 0:30 0:07

� 0:30 0:28 0:13 0:32 0:27 0:11 0:97 0:18 0:15 0:00

� 0:00 0:02 0:15 0:31 0:22 0:14 0:34 0:77 0:15 0:00

 0:50 0:51 0:07 0:85 0:51 0:07 0:32 0:51 0:11 0:84

250 ! 0:10 0:09 0:07 0:85 0:10 0:08 0:19 0:13 0:21 0:13

� 0:30 0:30 0:07 0:87 0:29 0:07 0:99 0:23 0:06 0:72

� 0:00 0:00 0:08 0:93 0:21 0:08 0:63 0:72 0:06 0:64

 0:50 0:50 0:04 0:49 0:50 0:04 0:92 0:50 0:05 0:81

500 ! 0:10 0:10 0:05 0:66 0:10 0:05 0:35 0:11 0:13 0:21

� 0:30 0:30 0:04 0:33 0:30 0:04 0:87 0:24 0:04 0:86

� 0:00 0:00 0:05 0:17 0:20 0:05 0:16 0:71 0:04 0:96

 0:50 0:50 0:02 0:34 0:50 0:02 0:75 0:50 0:02 0:95

1000 ! 0:10 0:10 0:03 0:38 0:10 0:04 0:42 0:10 0:10 0:24

� 0:30 0:30 0:03 0:52 0:30 0:03 0:61 0:24 0:02 0:79

� 0:00 0:00 0:03 0:98 0:20 0:03 0:71 0:71 0:02 0:81

 0:50 0:50 0:02 0:74 0:50 0:02 0:32 0:50 0:02 0:99
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Table 2: Results of simulations for PARX(1,1) with DGP 2.

Scenario 1 (� = 0) Scenario 2 (� = 0:2) Scenario 3 (� = 0:7)

T True Mean RMSE KS Mean RMSE KS Mean RMSE KS

100 ! 0:10 0:12 0:20 0:00 0:11 0:18 0:00 0:16 0:30 0:02

� 0:30 0:29 0:13 0:47 0:27 0:13 0:43 0:17 0:16 0:00

� 0:00 �0:01 0:23 0:16 0:21 0:19 0:31 0:78 0:16 0:00

 0:50 0:51 0:13 0:50 0:51 0:12 0:32 0:51 0:14 0:81

250 ! 0:10 0:10 0:09 0:14 0:12 0:12 0:08 0:18 0:25 0:00

� 0:30 0:30 0:07 0:70 0:29 0:07 0:57 0:23 0:05 0:58

� 0:00 0:00 0:10 0:33 0:20 0:10 0:81 0:71 0:06 0:84

 0:50 0:50 0:06 0:39 0:50 0:07 0:85 0:51 0:14 0:30

500 ! 0:10 0:10 0:07 0:22 0:10 0:07 0:54 0:13 0:14 0:00

� 0:30 0:30 0:05 0:95 0:30 0:05 0:96 0:24 0:04 0:47

� 0:00 0:00 0:07 1:00 0:20 0:07 0:90 0:71 0:04 0:29

 0:50 0:50 0:04 0:59 0:50 0:05 0:97 0:51 0:07 0:46

1000 ! 0:10 0:10 0:05 0:73 0:10 0:05 0:14 0:12 0:11 0:02

� 0:30 0:30 0:03 0:81 0:30 0:03 0:56 0:24 0:02 0:95

� 0:00 0:00 0:05 0:82 0:20 0:05 0:80 0:70 0:03 0:97

 0:50 0:50 0:03 0:74 0:50 0:03 0:43 0:51 0:05 0:77

Figure 1: (a) Number of defaults per month among Moody�s rated US industrial �rms in

the period 1982-2011. (b) Autocorrelation function of the default data.
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Table 3: Estimation results of di¤erent PARX models.
PAR RV SP DG NB IP LI RV & LI(�) All

!̂ 0:301 0:169 0:116 0:206 0:289 0:202 0:295 0:232 0:208

(3:625) (2:467) (0:716) (2:219) (3:551) (2:142) (2:013) (3:242) (1:001)

�̂1 0:241 0:197 0:227 0:221 0:228 0:213 0:193 0:185 0:180

(5:441) (4:395) (5:159) (4:933) (5:119) (4:716) (4:265) (4:109) (3:944)

�̂2 0:215 0:179 0:2217 0:198 0:206 0:145 0:198 0:188 0:183

(3:221) (2:908) (3:348) (3:026) (3:138) (2:262) (3:117) (3:039) (2:898)

�̂ 0:459 0:526 0:4298 0:455 0:469 0:552 0:498 0:518 0:512

(6:094) (7:939) (5:430) (6:063) (6:296) (8:173) (6:881) (7:547) (7:087)

RV 63:99 28:09 24:31

(4:111) (2:057) (1:692)

SP 0:241 0:000

(2:802) (0:000)

DG 0:017 0:006

(1:893) (0:640)

NB 0:419 0:000

(2:229) (0:000)

IP 0:695 0:000

(3:287) (0:000)

LI 0:941 0:729 0:754

(4:194) (3:733) (1:561)

�̂1 + �̂2 0:465 0:376 0:449 0:419 0:434 0:358 0:391 0:373 0:363

(7:452) (8:069) (9:635) (8:743) (9:249) (7:380) (7:726) (6:679) (7:235)

AIC �1352:04 �1368:82 �1359:86 �1352:88 �1354:94 �1360:52 �1375:06 �1377:52 �1365:84
BIC �1336:47 �1349:36 �1340:40 �1333:42 �1335:48 �1337:17 �1351:71 �1354:17 �1319:14

LR statistic 29:81 11:02 19:99 26:96 24:89 17:32 2:79 0:33

Notes: t statistics in parentheses. For any signi�cance level � < 1=2 standard critical values for one sided t tests apply, see Remark 4.

Figure 2: Actual number of defaults (blue) and estimated intensity (red).
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Figure 3: Sample autocorrelation function of Pearson residuals.

Figure 4: Empirical zero counts (asterisks) and probability of having a zero count under the

estimated model (crosses).
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Figure 5: Out-of-sample forecasting performance of preferred PARX model.

Table 4: Time-variation of parameter estimates
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Table 5: Preferred models and their parameter estimates, 1982-1998, 1998-2007 and 2007-

2011
! �1 �2 � RV LI(�)

1982-1998 - PAR(1,1) 0.80 0.22 0.43 - - -

t-stats (7.04) (5.29) (8.32) - - -

1998-2007 - PARX(1,1) 0.00 0.09 - 0.73 168.34 -

t-stats 0.10 (2.04) - (7.31) (8.65) -

2007-2011 - PARX(2,1) 0.00 - - 0.82 99.23 0.70

t-stats (0.00) - - (6.81) (2.17) (2.38)
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