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Abstract

This paper revisits the fit of disaster risk models where a representative agent has recursive

preferences and the probability of a macroeconomic disaster changes over time. We calibrate the

model as in Wachter (2013) and perform two sets of tests to assess the empirical performance of the

model in long run simulations. The model is solved using a two step projection-based method that

allows us to find the equilibrium consumption-wealth ratio and dividend-yield for different values of

the intertemporal elasticity of substitution. By fixing the elasticity of substitution to one, the first

experiment indicates that the overall fit of the model is adequate. However, we find that the amount

of aggregate stock market volatility that the model can generate is sensible to the method used to

solve the model. We also find that the model generates near unit root interest rates and a puzzling

ranking of volatilities between the risk free rate and the expected return on government bills. We

later solve the model for values of the elasticity of substitution that differ from one. This second

experiment shows that while a higher elasticity of substitution helps to increase the aggregate stock

market volatility and hence to reduce the Sharpe Ratio, a lower elasticity of substitution generates

a more reasonable level for the equity risk premium and for the volatility of the government bond

returns without compromising the ability of the price-dividend ratio to predict excess returns.
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1 Introduction

Consumption capital asset pricing models (C-CAPM) constitute a fundamental tool for the study of

aggregate asset prices in financial economics. They impose economic structure into the well-known

capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin (1966) by explicitly

modeling the consumption and asset choice decisions of a representative agent. Different asset pricing

theories refer then to different assumptions on the shocks that drive aggregate consumption and on the

preferences of the agent. In endowment economies of the Lucas (1978) type, the evolution of aggregate

consumption is taken as given by the agents so when an unexpected shock hits the economy, all the

adjustment to restore the general equilibrium of the economy is done through the price system.

The Rietz-Barro hypothesis, also referred to as the disaster risk model, is one of those theories. It is

based on the assumption that the probability of severe economic downturns is the key to understanding

the observed behavior of asset prices. The idea was originally proposed in Rietz (1988) as a response to

the equity premium puzzle of Mehra and Prescott (1985). Rietz argued that the high levels of equity

premium in the U.S. economy, i.e. the excess return of stocks relative to the returns offered by Treasuries,

could be reconciled by models where risk averse agents demand extra compensation for the unlike, but

catastrophic, events that might happen not to occur. Rietz’ hypothesis was initially overlooked due to

the lack of empirical evidence on the severity and duration of such disasters (See Mehra and Prescott,

1988). However, the work of Barro (2006) raised a renewed interest in rare macroeconomic disasters to

explain fluctuation in aggregate asset prices. By collecting annual data on aggregate GDP growth and

asset prices for twenty countries over the 20th century, he showed that the world economy has indeed

experienced mayor and rather frequent depressions capable of explaining not only the high equity risk

premium but also the behavior of the risk-free rate. Barro’s initial work led to a fast growing literature

on disaster risk models that focus on a number of extensions associated with the stochastic properties of

the size and the probability of an economic catastrophe.

The theoretical framework developed in Rietz (1988) and Barro (2006) assumed a constant probability

of a disaster over time. Recently, Gabaix (2012) acknowledged that this probability changes over time.

Allowing for a time-varying disaster probability increases the ability of the model to match the observed

behavior of asset prices in many dimensions. In fact, it has been shown that it provides a mechanism

to understand what otherwise is defined as an asset pricing puzzle. In particular, the model provides a

consistent framework to solve the following puzzles: (i) the equity premium puzzle of Mehra and Prescott

(1985); (ii) the risk-free rate puzzle of Weil (1989); (iii) the excess volatility puzzle of Shiller (1981); (iv)

the aggregate market return predictability puzzle of Campbell and Shiller (1988); (v) the cross-section

predictability of stocks puzzle of Daniel and Titman (1997); (vi) the yield curve slope puzzle of Campbell

(2003); (vii) the long term bond return predictability puzzle of Macaulay (1938), Fama and Bliss (1987)

and Campbell and Shiller (1991); (viii) the credit spread puzzle of Almeida and Philippon (2007); (ix)

the deep out-of-the money put prices vs. Black-Scholes mismatch of Jackwerth and Rubinstein (1996);

and (x) the positive relation between high put option prices and their high future returns of Bollerslev

et al. (2009).

The time-varying disaster risk model has been also studied in Wachter (2013). She shows that this
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model can explain many features of the aggregate stock market and in particular it is able to generate

high level of stock market volatility. Her model also accounts for the predictability of excess returns by

valuation ratios without generating counterfactual long-run predictability in consumption and dividend

growth. To do so, she employs an endowment economy in which aggregate consumption growth is subject

to discrete, permanent and instantaneous downward jumps with time-varying arrival rate, and where the

representative investor has recursive preferences. Her setup allows for an approximated analytical solution

when the intertemporal elasticity of substitution is equal to one.

The purpose of this paper is twofold. We first revisit the empirical fit of the time-varying disaster

risk model using the framework and calibration of Wachter (2013). We depart from her setup in the

way the general equilibrium of the model is approximated. Instead of using her approximated analytical

solution, we use a two step projection method to solve for the consumption-wealth ratio and the price-

dividend ratio that ensure no arbitrage in each of the asset classes. The method used in this paper

provides arbitrary accuracy and low computation time for any set of model parameters including the case

of intertemporal elasticity of substitution above or below unity. Projection methods have been recently

studied in discrete-time models with recursive preferences by Pohl et al. (2014) for endowment asset

pricing models and in Caldara et al. (2012) and van Binsbergen et al. (2012) for DSGE models.

Second, we use the proposed solution method to solve the model for different values of the intertem-

poral elasticity of substitution (IES) while keeping the remaining parameters as in Wachter (2013). We

then study the implications of different IES for asset pricing within the time-varying disaster risk frame-

work. While unitary IES is a convenient assumption to obtain closed form expressions for asset prices,

the evidence on its correct value is mixed and its choice is usually made by fixing its value such that some

features of the data can be replicated. In the asset pricing literature, and more recently in the macro-

financial literature, it is customary to impose values for the IES greater than one in order to generate

predictability of excess returns and countercyclicality of the equity risk premium. However, when using

aggregate macroeconomic data, the IES is usually estimated to be below one or close to zero as shown in

Hall (1988). More recently, Havranek et al. (2014) found an average estimate of 0.5 in a comprehensive

meta-analysis of more than 2500 available estimates from 169 published studies1.

Our results confirm the virtues of the time-varying disaster risk and reveals some of its limitations.

We compare simulations of the model with those from the data conditional on no crisis. For the case of

unitary IES, we find that the solution method is crucial to generate aggregate stock market volatility close

to that observed in the data. Whereas the approximated closed form solution of Wachter (2013) generates

a standard deviation of stock returns of around 17.66% per year, the two step projection method only

produces a annual volatility of 11.54%. While still being an outstanding result relative to other asset

pricing theories, we stress the importance of not overstating the advantages of the time-varying disaster

risk model. We also find that the model generates near unit root risk free and government bill returns

which is at odds with the U.S. postwar data. The model also generates the counterfactual implication

that the volatility of the risk free rate is higher than that on the returns of Treasury bills.

Our numerical experiments show that opposite to previous results in the literature, the predictability

1Half of the values used in their analysis correspond to estimates for the U.S. economy.
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properties of the time-varying disaster risk model do not require the IES to be greater or equal to one. In

fact, for the cases studied in the paper we always find a negative correlation between the price-dividend

ratio and excess returns. These results suggest that a low IES it is consistent with a countercyclical

equity risk premium as long as the representative agent prefers an early resolution of uncertainty. In

general, we find that an IES lower than one has the potential effect of generating appropriate levels of

equity risk premium and volatility of government bonds, while an IES greater than one can generate

higher price-dividend volatility and stock market volatility, and hence a lower Sharpe Ratio.

The remainder of the paper is organized as follows. In section (2) we present the model and derive

general equilibrium results for various assets in the economy. In Section (3) we present the general

solution algorithm. Section (4) discusses the calibration of the model and investigates its the empirical

implications. Finally Section (5) concludes.

2 Model

We study a continuous-time representative agent, fruit-tree model of asset pricing with exogenous,

stochastic endowment. Our economy coincides with that studied in Wachter (2013). However, we do

not require the IES to be equal to one. The endowment of fruit in any period t is given by Yt, and the

number of trees is fixed. Since we assume that the economy is closed and there is no investment, neither

depreciation, all output is consumed, that is, Ct = Yt at each point in time.

2.1 Endowment process

In what follows we assume that the growth rate of aggregate consumption in the economy is subject to

both continuous fluctuations and discrete, instantaneous and permanent downwards jumps. The latter

are modeled through a Poisson process, Nt, with time-varying arrival rate λt, that captures the idea

of low-probability disasters. Large downward jumps are regarded as disasters or catastrophic events.

Moreover, the Poisson Zero-One Jump Law guarantees that only one disaster can occur per unit of time

(See Hanson, 2007). If a disaster occurs, consumption falls by a fraction (1− Zt), where 0 < Zt ≤ 1 is a

random variable with well-defined probability density function ζ (Zt). On the other hand, the continuous

fluctuations are captured by a standard Brownian motion, Bt. Therefore, the dynamics of aggregate

consumption, Ct, can be represented by the jump-diffusion process:

dCt = µCt−dt+ σCt−dBt − (1− Zt)Ct−dNt (2.1)

where Ct− denotes the level of consumption before a jump occurs, and µ and σ capture the constant mean

and volatility of consumption growth in normal times, i.e. when no disaster occurs2. The assumptions

2An alternative way to define an economic disaster would be to introduce a small probability of declines in the average
growth rate of consumption, µ. This would accommodate the definition of great depression used in Kehoe and Prescott
(2002): “... First, it must be a sufficiently large deviation. Our working definition is that a great depression is a deviation
at least 20% below trend. Second, the deviation must occur rapidly. Our working definition is that detrended output per
working-age person must fall at least 15% within a decade of the depression.”
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in Equation (2.1) differ from those in the long-run risk model of Bansal and Yaron (2004) where it is

assumed that both mean and volatility of consumption growth change over time while no role is given to

rare events.

We assume that the Poisson arrival rate or disaster probability, λt, follows a square-root process of

the form:

dλt = κ
(
λ̄− λt

)
dt+ σλ

√
λtdBλ,t (2.2)

where Bλ,t is a standard Brownian motion. Equation (2.2) is a continuous-time version of an heteroskedas-

tic autoregressive process with mean reversion parameter κ, unconditional mean λ̄, and scale parameter

σλ. The square-root process ensures that the random variable λt only takes positive values. In fact, if

λt → 0, then the drift term κλ̄ > 0 and the variance σ2
λλt → 0, implying that the process will remain

positive w.p.1. Furthermore, if we add the restriction σ2
λ < 2κλ̄, then the process never reaches zero: in

this case, the drift will be very high relative to the variance, shooting up the process even before it reaches

zero. In addition to this, the positive skewness, excess kurtosis and the boundedness from below of the

λt−process implies large but infrequent declines or disasters in consumption. Finally and for simplicity,

we assume independence between Bt, Bλ,t, Nt and Zt.

2.2 Preferences

The representative agent of this economy has preferences over streams of consumption described by the

stochastic differential utility framework developed in Duffie and Epstein (1992a,b). These preferences

correspond to the continuous-time version of the recursive preferences proposed in Kreps and Porteus

(1978), Epstein and Zin (1989) and Weil (1989) which generalize the standard case of power utility by

disentangling the agent’s risk aversion from the intertemporal elasticity of substitution.

Let Vt denote the utility function of the agent at time t. Then, his preferences are described by:

Vt = Et

 ∞̂
t

f (Cs, Vs) ds

 (2.3)

where f (Cs, Vs) is a normalized aggregator of current consumption, Cs, and continuation utility, Vs, for

s ≥ t. In its more general form, the aggregator is given by:

f (Cs, Vs) = βθVs

( Cs

((1− γ)Vs)
1

1−γ

)1− 1
ψ

− 1

 . (2.4)

Here β > 0 is the rate of time preference, γ > 0 denotes the agent’s coefficient of relative risk aversion,

and ψ > 0 his intertemporal elasticity of substitution. We have also defined the constant θ = 1−γ
1−ψ−1 . If

γ > ψ−1, the agent prefers early over later resolution of uncertainty. Furthermore, for the relevant case

of γ > 1, the parameter θ < 0 if and only if ψ > 1. In the limiting case of unitary IES the aggregator

reduces to:
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f (Cs,Vs) = β (1− γ)Vs

(
logCs −

1

1− γ log ((1− γ)Vs)

)
. (2.5)

The standard case of power time-additive separable preferences is nested in Equation (2.4) and can

be obtained whenever ψ = 1/γ. In this case, the agent is indifferent about the timing of the resolution of

uncertainty. The properties of the stochastic differential utility in Equation (2.3) for the case of jump-

diffusion process like the one specified in Equation (2.1) have been previously studied in Benzoni et al.

(2011).

2.3 Model implications

The model outlined previously can be solved as a social planning problem in which the competitive

equilibrium is reached by allocating all the endowment to consumption. Solving for the competitive

equilibrium amounts to finding economic quantities such as the consumption-wealth ratio and/or the

price-dividend ratio that ensure complete markets and no-arbitrage opportunities among the different

asset classes. Once we have solved for the equilibrium allocations, we can use the representative agent’s

marginal utility to derive the equilibrium stochastic discount factor (SDF) that prices all the assets in the

economy. In particular, we will be interested in pricing claims to aggregate consumption, claims to aggre-

gated dividends, a riskless bond and a partially defaultable short-term government bond. Under recursive

preferences, the agent’s marginal utility depends both on aggregate consumption and continuation utility.

Therefore, to compute the equilibrium asset prices we first need to find the optimal value function which

measures the utility obtained by the representative agent for any given path of the aggregate consumption

in Equation (2.1).

2.3.1 Optimal value function

In general equilibrium the optimal allocation of the endowment satisfies the Hamilton-Jacobi-Bellman

(HJB) equation:

0 = f (Ct, V (Ct, λt;ψ)) + µCtVC (Ct, λt;ψ) + κ
(
λ̄− λt

)
Vλ (Ct, λt;ψ)

+
1

2
C2
t σ

2VCC (Ct, λt;ψ) +
1

2
σ2
λλtVλλ (Ct, λt;ψ) + λtEζ (V (ZtCt, λt;ψ)− V (Ct, λt;ψ)) (2.6)

where Eζ (·) is the expectation operator taken with respect to the distribution function ζ (Zt), and where

we have used the fact that the utility function in Equation (2.3) can be written as V (Ct, λt;ψ) given the

Markov properties of Ct and λt. The dependence of the value function on the IES is made explicit for

interpretation purposes in later sections of the paper where we consider the implications of the model

for different values of this parameter. As shown in Appendix (A.1), the utility function is homogeneous

of degree (1− γ) in consumption which implies that Equation (2.6) can be reduced to a quasi-linear

differential equation in λt. In particular, by choosing:
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V (Ct, λt;ψ) =
1

1− γC
1−γ
t H (λt;ψ) , (C, λ) ∈ (0,∞)× R+ (2.7)

the HJB equation becomes:

0 =
f (Ct, V (Ct, λt;ψ))

V (Ct, λt;ψ)
H (λt;ψ) +

[
(1− γ)µ− 1

2
γ (1− γ)σ2 + λtEζ

(
Z1−γ
t − 1

)]
H (λt;ψ)

+ κ
(
λ̄− λt

)
Hλ (λt;ψ) +

1

2
σ2
λλtHλλ (λt;ψ) (2.8)

where the non-linear term is given by

f (Ct, V (Ct, λt;ψ))

V (Ct, λt;ψ)
H (λt;ψ) =


β

1−qH (λt;ψ)
q − β

1−qH (λt;ψ) if ψ 6= 1

−βH (λt;ψ) logH (λt;ψ) if ψ = 1

with q = 1 − 1
θ . We will refer to Equation (2.8) as the reduced HJB equation. A complete derivation

of Equation (2.8) can be found in Appendix (A.2). The function H (λt;ψ) defines the elasticity of the

life-time utility of the representative investor with respect to the disaster risk:

∂V (Ct, λt;ψ)

∂λt

λt
V (Ct, λt;ψ)

= λt
Hλ (λt;ψ)

H (λt;ψ)

and its magnitude will ultimately depend on the level of IES.

2.3.2 Stochastic discount factor, risk free rate and partially defaultable liabilities

Standard asset pricing theory suggests that in the absence of arbitrage and complete markets, the price

Pt of any given asset in the economy that pays dividends at a rate Ds for s ≥ t solves the present-value

relation:

Pt = Et

 ∞̂
t

πs
πt
Dsds

 , (2.9)

where πt denotes the equilibrium stochastic discount factor (SDF), or pricing kernel of the economy.

Equation (2.9) can be rewritten as a partial differential equation of the form:

0 = πtDt + Et [d (πtPt)] (2.10)

which becomes useful for some of the derivations below.

Duffie and Skiadas (1994) have shown that when the representative agent has recursive preferences

as in Equation (2.3), the SDF is given by:
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πt (λt;ψ) = exp


tˆ

0

fV (Cs, V (Cs, λs;ψ)) ds

 fC (Ct, V (Ct, λt;ψ)) (2.11)

where fV (·, ·) and fC (·, ·) are the derivates of utility aggregator with respect to the value function and

the aggregate consumption respectively. For a given value of H (λt;ψ), the following proposition provides

a characterization of the level and dynamics of the equilibrium SDF together with the equilibrium risk

free rate.

Proposition 2.1 (Stochastic Discount Factor and Risk free rate). Given the optimal value of H (λt;ψ),

the SDF for this economy is given by:

πt (λt;ψ) =


exp

{
β

1−q
´ t

0

[
qH (λs;ψ)

q−1 − 1
]
ds
}
βC−γt H (λt;ψ)

q
, if ψ 6= 1

exp
{
−β
´ t

0
[logH (λs;ψ) + 1] ds

}
βC−γt H (λt;ψ) , if ψ = 1.

(2.12)

The dynamics of the SDF is governed by:

dπt (λt;ψ)

πt (λt;ψ)
= µπ,t (λt;ψ) dt+ σπ,t (λt;ψ)

[
dBt dBλ,t

]′
+
(
Z−γt − 1

)
dNt (2.13)

where µπ,t (λt;ψ) and σπ,t (λt;ψ) are given by:

µπ,t (λt;ψ) =



− β
1−q − γµ+ 1

2γ (1 + γ)σ2 + q
[
β

1−qH (λt;ψ)
q−1

+ κ
(
λ̄− λt

) Hλ(λt;ψ)
H(λt;ψ) + 1

2

(
(q − 1)

(
Hλ(λt;ψ)
H(λt;ψ)

)2

+ Hλλ(λt;ψ)
H(λt;ψ)

)
σ2
λλt

]
if ψ 6= 1

−β − γµ+ 1
2γ (1 + γ)σ2

−β logH (λt;ψ) + κ
(
λ̄− λ

) Hλ(λt;ψ)
H(λt;ψ) + 1

2
Hλλ(λt;ψ)
H(λt;ψ) σ

2
λλt if ψ = 1

(2.14)

and

σπ,t (λt;ψ) =


[
−γσ qHλ(λt;ψ)

H(λt;ψ) σλ
√
λt

]
if ψ 6= 1

[
−γσ Hλ(λt;ψ)

H(λt;ψ) σλ
√
λt

]
if ψ = 1

(2.15)

respectively.

Consider now the case of an asset that has a constant price equal to one and pays the risk free rate, rft ,

as a dividend. Then, Equations (2.9) and (2.10) imply that:

rft (λt;ψ) = −µπ,t (λt;ψ)− λtEζ
(
Z−γt − 1

)
. (2.16)

Proof. See Appendix (A.3)
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As documented in Barro (2006), economic disasters are usually followed by partial default or loss of

property rights on the risk free investment. One way in which the government defaults on its debt is

through the depreciation of its real value via high inflation. Hence, allowing for some form of partial

default is of empirical relevance in order to match the model’s risk free asset to the observed rate of

return on government securities in the data.

Let Lt (λt;ψ) be the price process resulting from rolling over instantaneous government debt:

dLt (λt;ψ)

Lt (λt;ψ)
= rLt (λt;ψ) dt− (1− ZL,t) dNt (2.17)

where rLt (λt;ψ) is the amount investors receive if there is no default. In the event of a disaster, there

will be a partial default on government liabilities with constant probability p ≥ 0 where the fraction

(1− ZL,t) of the bill’s gross return is lost. If the likelihood of default is zero, then the government bill

pays the risk free rate in Equation (2.16). We follow Barro (2006) and Wachter (2013) and assume that

in the event of default, the percentage loss is equal to the percentage decline in consumption:

ZL,t =

Zt with probability p

1 otherwise.

Equation (2.10) states that the price of the government liability must satisfy:

0 = rLt (λt;ψ) + µπ,t (λt;ψ) + λtEζ
[
Z−γt ZL,t − 1

]
where:

Eζ
[
Z−γt ZL,t − 1

]
= pEζ

[
Z1−γ
t − 1

]
+ (1− p)Eζ

[
Z−γt − 1

]
.

Then, the equilibrium rate promised by governments on short-term debt can be characterized by the

following proposition.

Proposition 2.2 (Return on short-term government liabilities). The instantaneous interest rate on

defaultable short-term debt issued by the government is given by:

rLt (λt;ψ) = rft (λt;ψ) + λtpEζ
[
Z−γt (1− Zt)

]
. (2.18)

Let rbt (λt;ψ) denote the expected return on government liabilities which includes an adjustment on the

promised rate of return rLt (λt;ψ) for the unconditional expected loss in the event of a government default.

Hence:

rbt (λt;ψ) = rft (λt;ψ) + λtpEζ
[(
Z−γt − 1

)
(1− Zt)

]
. (2.19)

Proof. See Appendix (A.4).

The second term in Equation (2.19) has the interpretation of a disaster risk premium required by
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investors in order to hold government bonds relative to an otherwise risk free asset: the percentage

change in marginal utility is multiplied by the loss in the asset.

2.3.3 Returns on consumption claims, dividend claims and risk premiums

Let St denote the value of a claim to aggregate consumption. In general equilibrium, St equals the

representative agent’s wealth Wt. Hence, Equation (2.9) states that the aggregate level of wealth at

time t is given by the present value of all future expected consumption. In other words, we are pricing

a financial asset that pays aggregate consumption as its dividend. The valuation ratio for this asset is

given by the wealth-consumption ratio and it is related to the unknown function H (λt;ψ). The following

proposition defines this relation and the consumption risk premium.

Proposition 2.3 (Wealth-consumption ratio and consumption risk premium). The value of a claim to

aggregate consumption is given by:

Wt =
1

β
CtH (λt;ψ)

1−q
. (2.20)

When ψ = 1, 1− q = 0 and the wealth-consumption ratio becomes:

Wt =
1

β
Ct. (2.21)

Now let rpCt denote the excess return of an asset that pays consumption as dividend relative to the risk

free rate. The instantaneous consumption risk premia is given by:

rpCt (λt;ψ) = γσ2 − q(1− q)
(
Hλ (λt;ψ)

H (λt;ψ)

)2

σ2
λλt + λtEζ

[(
Z−γt − 1

)
(1− Zt)

]
. (2.22)

Equation (2.22) is inclusive of jumps. The consumption risk premium conditional on no disasters, which

we denote by r̃pCt (λt;ψ), is given by:

r̃pCt (λt;ψ) = rpCt (λt;ψ) + λtEζ [1− Zt] . (2.23)

Proof. See Appendix (A.5).

The first two terms in Equation (2.22) represent the portion of the consumption risk premium that

is compensation for diffusion risk, which includes a compensation for the time-variation in λt. The last

term is the compensation for jump risk. In general, r̃pCt > rpCt given the reduction in realized returns

when a disaster occurs.

While the first and last terms of Equation (2.22) contribute positively to the consumption risk pre-

mium, the compensation for fluctuations in the disaster risk depends on the sign of q (1− q). Consider the

case of power utility which is obtained when γ = ψ−1. In this case q (1− q) = 0 implying that investors

are not compensated for fluctuations in the probability of a disaster. For a given level of risk aversion,

the same result holds under recursive preferences and unitary IES. In this scenario the substitution and

wealth effects offset each other implying that the consumption-wealth ratio is constant to variations in
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the disaster risk. Therefore, no extra compensation for changes in the probability of a disaster is required

by the investor in order to hold the risky asset.

Now consider the case of IES different from one. The compensation for time variation in the disaster

risk will depend on whether the agent prefers early or late resolution of uncertainty. It can be shown

that q (1− q) < 0 if and only if γ > ψ−1, that is, if the representative agent prefers early resolution of

uncertainty. However, if γ < ψ−1, then the agent will prefer late resolution of uncertainty which implies

q (1− q) > 0, suggesting that the risk premium on consumption claims relative to the risk free will be

lower.

Following Wachter (2013) we model the aggregate stock market by assuming that its cash flow at

time t, Dt, is related to the level of aggregate consumption as in Abel (1999) and Campbell (2003). In

particular we assume that Dt = Cϕt , where ϕ > 1 is a leverage parameter. Itô’s lemma implies that:

dDt

Dt
= µDdt+ σϕdBt − (1− Zϕt ) dNt (2.24)

where

µD = ϕµ+
1

2
σ2ϕ (ϕ− 1) . (2.25)

A simple log transformation shows that under the maintained assumption of ϕ > 1 dividends fall by more

than consumption in the event of a disaster.

Let Ft (λt;ψ) denote the price of a claim to future dividends and G (λt;ψ) the log price-dividend ratio.

Thus:

Ft (λt;ψ) = Dt exp [G (λt;ψ)] . (2.26)

The martingale property implicit in Equation (2.10) together with the dynamics of the SDF in Equa-

tion (2.13) and the dynamics of the equity price yield a quasi-linear ODE for the log price-dividend ratio.

The following proposition defines the equilibrium price-dividend ratio and provides an expression for the

equity risk-premium relative to the risk free asset, and to the expected return on government liabilities.

Proposition 2.4 (Price-dividend ratio and equity risk-premium). For a given value of H (λt;ψ), the log

price-divend ratio G (λt;ψ) is the solution to the ODE:

1

exp (G (λt;ψ))
− rft (λt;ψ) + λtEζ

(
Z

(ϕ−γ)
t − Z−γt

)
+ ϕµ+

1

2
σ2ϕ (ϕ− 1− 2γ)

+

(
κ
(
λ̄− λt

)
+ q

Hλ (λt;ψ)

H (λt;ψ)
σ2
λλt

)
Gλ (λt;ψ) +

1

2
σ2
λλtGλλ (λt;ψ) +

1

2
σ2
λλtGλ (λt;ψ)

2
= 0. (2.27)

The instantaneous equity risk premium with respect to the risk free rate is given by:

rpDt (λt;ψ) = ϕγσ2 − qHλ (λt;ψ)

H (λt;ψ)
Gλ (λt;ψ)σ2

λλt + λtEζ
[(
Z−γt − 1

)
(1− Zϕ)

]
. (2.28)
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Equation (2.28) is inclusive of jumps. The equity risk premium conditional on no disasters, which we

denote by r̃pDt (λt;ψ), is given by:

r̃pDt (λt;ψ) = rpDt (λt;ψ) + λtEζ [1− Zϕt ] . (2.29)

The intantaneous equity risk premium with respect to the return on government bills is given by:

rpDb,t (λt;ψ) = ϕγσ2 − qHλ (λt;ψ)

H (λt;ψ)
Gλ (λt;ψ)σ2

λλt

+ λtEζ
[(
Z−γt − 1

)
((1− p) (1− Zϕ) + p (Z − Zϕ))

]
(2.30)

Proof. See Appendix (A.6).

The first two terms in Equations (2.28) and (2.30) represent that part of the equity risk premium that

constitutes compensation for the risk in normal times. The third term is the compensation for jump risk.

The latter is indeed a premium for catastrophic events since it is made of changes in marginal utility and

the potential losses in the asset due to a disaster.

Similar to the consumption risk premium, the first and third terms in Equations (2.28) and (2.30)

contribute positively to the equity risk premium. However, the compensation effect from time-variation

in the probability of a disaster is not clear at a glance. As it will be shown below, its contribution is

always positive as long as the agent prefers early resolution of uncertainty (q > 0) since this will generate,

consistent with the empirical evidence, a decreasing price-dividend ratio, Gλ < 0, and an increasing

Hλ > 0.

As argued in Wachter (2013), introducing stochastic variation in the disaster risk generates time

variation in the valuation ratios, the risk premium and the interest rates allowing us to test the pre-

dictability properties of Rietz-Barro hypothesis. An additional feature that makes the model attractive

is the fact that it creates not just time variation but also higher levels of volatility in the aggregate stock

market. Using the implied dynamics of Equation (2.26), the instantaneous volatility of the stock market

conditional on no jumps occurring is given by:

(
σF,tσ

′
F,t

) 1
2 =

(
ϕ2σ2 +Gλ (λt;ψ)

2
σ2
λλt

) 1
2

. (2.31)

Relative to a model with no disasters as in Mehra and Prescott (1985), and to those with constant

probability of a disaster as in Rietz (1988) and Barro (2006), the time varying disaster risk model generates

stock market volatility that exceeds that of dividends as long as λt > 0.

3 Model solution

As discussed in Section (2) a solution to the time-varying disaster risk model is given by the unknown

functions H (λt;ψ) and G (λt;ψ). Once they have been computed, it is possible to approximate the

12



consumption-wealth ratio and the price-dividend ratio. In general, the model does not admit a closed

form solution. However, Wachter (2013) shows that it is possible to derive an exact analytical solution

for H (λt;ψ) and an approximate closed form solution for G (λt;ψ) for the case ψ = 1. The latter

is approximate since it can only be computed in close form up to a definite integral that has to be

numerically approximated. The approximation method used in Wachter (2013) was first introduced for

models with external habits in Wachter (2005).

In the more general case of ψ 6= 1, no closed form solution is available and hence it is necessary to

resort to numerical approximation methods to find the optimal allocations. The standard approach used

in the asset pricing literature is to derive approximate analytical solutions using log-linear approximation

techniques. This method, based on the Campbell and Shiller decomposition (see Campbell and Shiller,

1988), has been implemented in discrete time dynamic asset allocation models by Campbell and Viceira

(2002) and Chacko and Viceira (2005) and by Campbell et al. (2004) for continuous time models. An

application to the time-varying disaster risk model can be found in Nowotny (2011).

While linearization methods are very fast and accurate around the point of reference, the approxima-

tion errors can become fairly large for more complex models where nonlinearities play an important role.

In fact, Kraft et al. (2014) use the time-varying disaster risk model of Wachter (2013) to show that, for a

risk aversion of 6, the Campbell and Shiller approximation deviates considerably from the true solution

for values of the IES greater than 1.4. Similar conclusions have been obtained in Pohl et al. (2014) for

the models of Tallarini (2000) and Bansal and Yaron (2004). To overcome these difficulties, we propose

the use of global methods which are both efficient and accurate, and robust to changes in the model

specification. They also provide an arbitrary degree of accuracy in the whole state space of the unknown

functions. In particular, we use collocation methods which were first introduced in economics by Judd

(1992), and have been extensively used by macroeconomists and financial economists to solve fixed point

problems. A general treatment of the collocation method can be found in Judd (1998) and in Miranda

and Fackler (2002). Formally, we use a two-step collocation method in line with the procedure described

in Pohl et al. (2014).

In a first step, we solve for the H (λt;ψ) function. As seen from Equation (2.8) this function must

satisfy the reduced HJB equation. Since it is not possible to solve an infinite dimensional problem

numerically, we use Chebyshev basis functions to approximate the unknown function by the closest

function in the polynomial space. The approximation to the H (λt;ψ) function and its derivatives are

then plugged back into the original functional equation and solved for exactly at a discrete set of grid

points.

Once the approximation for H (λt;ψ) is obtained, we proceed to compute the risk free rate using

Equations (2.14) and (2.16) at each point in the grid. Using these approximants as input, the second

step solves for the unknown function G (λt;ψ) by using once again Chebyshev basis functions. The

approximation to the G (λt;ψ) function and its derivatives are then plugged back into Equation (2.27)

and solved for exactly at the same discrete set of grid points used in the first step. The grid points for both

steps in the algorithm are chosen as the zeros of the Chebyshev polynomials; this choice of polynomial

representation and choice of grid points ensures that the numerical problem is well conditioned. A
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complete description of the algorithm is given in Table (1).

[Table 1 about here.]

Figure (1) plots the annual log consumption-wealth ratio, (ct − wt), and the annual log price-dividend

ratio, (ft − dt), for different values of the IES as a function of the disaster risk λt. Both ratios have been

normalized by their corresponding values when the probability of a disaster is null3. Under the standing

assumption that γ > ψ−1, the bottom panel indicates that higher disaster risk implies lower prices of

the claims to aggregated dividends. This result is independent of the value of the IES. It also indicates

that the degree by which equity prices fall in response to increases in the probability of a disaster is

negatively related to the IES. Contrary to the case where λt is assumed to be i.i.d. (see Gourio, 2008),

the price-dividend ratio always decreases as the disaster risk increases.

[Figure 1 about here.]

The same does not hold for claims to aggregate consumption. The time-varying disaster risk model

generates three different correlations between the disaster risk and the consumption-wealth ratio which

depends on the value of the IES relative to unity. These scenarios are directly related to the way

aggregate wealth adjust when the perceived probability of a disaster changes. The way in which the price

to consumption claims react is ultimately related to the interplay between the substitution and income

effects. If agents have an unitary IES then both effects cancel out, making the agent indifferent to changes

in λt. However, if ψ > 1, the substitution effect will dominate and for a given level of consumption, prices

should fall. The opposite occurs when ψ < 1. The intuition behind this reasoning will be further analyzed

in Section (4).

The role played by the IES is better understood by looking at the implications of the model for asset

prices. Figure (2) plots the expected return on government bills, the expected returns on equity, the

equity risk premium and the aggregate stock market volatility for different values of the IES as a function

of the disaster risk, λt. The graphs reveal a monotonic relation between each of the variables under

consideration and the disaster intensity which is independent of the IES.

[Figure 2 about here.]

In panel (a) we see that the the expected rate of return on government bills is always decreasing in

λt. First, by definition (as in Equation (2.19)) it corresponds to the sum of the risk free rate and an

adjustment term from the probability of a default. A higher probability of disaster reduces the expected

growth rate in the economy leading the representative agent to increase his savings and reducing this

way the return on the risk free asset. On the other hand a high probability of default leads to the agent

to demand a higher return to hold the asset.

Panel (b) shows that the expected return on equity is always increasing in λt. This implication is

opposite to that obtained in the case of i.i.d. λt, where Gourio (2008) has shown that equity returns

3The final degree of the approximation for Ĥ
(
λt;ωH

)
and Ĝ

(
λt;ωG

)
was obtained by iteratively evaluating RMSE

and MAE measures until no considerable gains were obtained by further increasing the number of basis functions.
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are decreasing in λt if ψ < 1, while they could be either increasing or decreasing for ψ > 1. Bansal

and Yaron (2004) have argued that the IES must be greater than one for the long-run risk model to be

able to generate a positive correlation between expected consumption growth and equity prices and at

the same time a negative correlation between consumption growth volatility and equity prices. However,

our results suggest that those correlations can be obtained in economies subject to disaster risks with

arbitrary values of IES as long as agents prefer earlier resolution of uncertainty. From Equation (2.1),

the expected consumption growth is given by Et (d logCt) =
(
µ− 1

2σ
2 + λtEζ (logZt)

)
∆t. Given that

0 < Zt ≤ 1, an increase in the disaster intensity lowers the expected consumption growth and at the same

time lowers the value of equity. Analogously, a higher probability of disaster increases the volatility of

consumption growth, Vart (d logCt) =
(
σ2 + λt [Eζ (logZt)]

2
)

∆t, while bringing the equity price down.

In panel (c) we show that the equity risk premium is increasing in λt. As opposed to Gourio (2008) and

Gourio (2012), the model is able to generate countercyclical equity risk premium and Sharpe Ratios, and

a negative correlation between excess returns and the price-dividend ratio for both IES greater and lower

than one. The latter can be seen by comparing panels (b) and (c) from Figures (1) and (2) respectively.

Panel (d) shows that the level of volatility in the stock market is positively related to the level of

IES. The intuition behind this result becomes clear after looking in detail at Figures (1) and (2). An

IES below unity is suggestive of agents being more averse to intertemporal gambles and hence less likely

to invest in risky assets. Therefore, equity prices are less responsive to changes in the probability of a

disaster given that it is through the risk free rate that the economy mostly adjusts in order to maintain

the general equilibrium. The opposite occurs when ψ > 1. Since agents invest more of their wealth

in the risky asset, more variation in the equity prices are allowed to guarantee the equilibrium of the

economy when the disaster intensity changes over time, explaining the higher levels of volatility in the

aggregate stock market. As discussed in Wachter (2013), the ability of the model to generate high levels

of volatility in stock returns does not compromise its ability to generate low variability in the return

on government liabilities. The latter is explained by two competing effects: A higher disaster intensity

reduces the return offered by safer assets due to an increased desire to save. But at the same time, an

increase in the probability of a disaster leads the agent to demand a higher compensation in order to

hold the asset because a higher probability of government default.

4 An empirical assessment of the disaster risk model

This section revisits the fit of the the time-varying disaster risk model in different dimensions by comparing

the predictions of the model from simulated data with some stylized facts from the postwar period in

the U.S. economy. We choose the postwar period since it allows us to study the virtues and limitations

of the time-varying disaster risk model in times where no disasters have occurred. The purpose of the

simulation is twofold. By using the exact same calibration as in Wachter (2013), we first reassess the fit

of the model using the two-step projection method introduced in Section (3). Second, we evaluate the

asset pricing implications of the model for different values of IES while keeping the remaining parameters

fixed as in the first experiment.

15



4.1 Calibration

Table (2) describes the parameter values used to solve and simulate the model. The endowment and

disaster intensity processes are calibrated to match salient features of the data set on macroeconomic

crises around the world built by Barro and Ursúa (2008). In the data, a macroeconomic disaster refers

to declines in aggregate consumption of 10% or more over a given period of time. Using a sample of

22 countries, the average probability of observing such a contraction in aggregate consumption, λ̄, was

found to be 3.55% per year. We approximate the distribution of percentage declines in consumption of

10% or more, ζ (Zt), with the empirical distribution (histogram) of such events in the data. The annual

consumption growth in normal times in Barro and Ursúa’s data set is 2.52% while its standard deviation

is 2.00%. The probability of a partial default by the government is reported to be 0.4 in Barro (2006).

Wachter (2013) calibrates the remaining parameters in a way that they replicate the average real return

on the 3-month Treasury bill, the autocorrelation of the price-dividend ratio and the volatility of stock

returns observed in the data.

[Table 2 about here.]

The simulation results are compared against annual U.S. data for the sample periods 1947-2008 and

1947-2013. We use monthly data on nominal stock returns and aggregate dividends from CRSP4. To

calculate returns we first construct simple monthly returns, then take logs and finally add the monthly

returns within a year. The yearly dividends correspond to the sum of dividends within the year. We

then calculate the log year over year growth in dividends. The price-dividend ratio is the price in the last

month of the year divided by the sum of dividends paid in the last twelve months. To transform returns

and dividend growth to real terms, we use the CPI series from the Bureau of Labor Statistics. Yearly

inflation is computed from seasonally unadjusted CPI, and it corresponds to the logarithmic change from

December to December. For both dividends and stock returns we subtract log inflation to form real

growth rates or returns.

The risk free rate used in the paper is built following Beeler and Campbell (2012). We use the three

month nominal yields from the CRSP Fama Risk Free Rates and subtract three month ahead log inflation

to initially create a measure of the ex-post real three month real return. We then regress it on the average

quarterly log inflation over the previous year, and the three month nominal yield. The predicted value

from this regression defines a monthly ex-ante risk free rate. For the expected return on government

liabilities we follow Cochrane (2008) and use the nominal 90 day Treasury bill yield from CRSP. We then

4Following Cochrane (2008), the stock market returns and aggregated dividends are constructed using the CRSP value-
weighted index including (VWRETD) and excluding (VWRETX) distributions. A monthly price index for the stock
market can be constructed as:

Ft+1 = Ft (1 + VWRETXt+1) , F0 = 1.

Similarly, a monthly index for dividends is computed according to:

Dt+1 = Ft+1

[
(1 + VWRETDt+1)

(1 + VWRETXt+1)
− 1

]
.
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subtract quarterly inflation to construct a proxy for the real return on partially defaultable government

bills.

The consumption data from the Bureau of Economic Analysis shows that the annual average growth

rate of per capital real consumption of non durables and services was 1.87% with a standard deviation of

1.32% during the postwar period 1947-2013. If we condition out the Great Recession, the average growth

rate increases to 2.00% and its volatility falls to 1.25%.

4.2 Simulation results

To simulate the model, we first discretize the continuous-time state processes in Equations (2.1), (2.2)

and (2.24) using a Euler approximation. We then simulate 50.000 years of data at a monthly frequency

for the disaster risk λt, log consumption growth, ∆ct, and log dividend growth, ∆dt. The technical details

regarding the simulation procedure can be found in Glasserman (2003).

Given the simulated values for λt, we proceed to compute the consumption-wealth ratio and the

price-dividend ratio for each possible value of ψ ∈ {0.5, 1.0, 1.5} using linear interpolation techniques on

the approximants constructed from the solution of the model. We use the simulated series for the price-

dividend ratio and dividend growth to compute equity returns. Returns on government liabilities are

computed using the results from Proposition (2.2), while the risk free rate is computed from Proposition

(2.1). Finally, all monthly returns and growth rates are compounded to an annual frequency. In what

follows we report two different sets of moments from the simulated data. The first one, under the

label “population”, is computed using all the years in the simulation. The second set, under the label

“conditional”, is calculated after first removing those years in which one or more disasters occurred during

the simulation.

Table (3) reports the sample moments of the simulated process for consumption growth and dividend

growth together with those observed in the data. Conditional on no disasters, the stochastic process

for the endowment generates an average growth rate and volatility of consumption consistent with the

data. The inclusion of disasters in the simulation generates a lower expected consumption growth and

a higher volatility reflecting the uncertain times associated with large economic downturns. The jump-

diffusion specification in Equation (2.1) can not replicate the autocorrelation observed in the data since, by

construction and conditional on no disasters, consumption growth follows a random walk. The inclusion

of simulated disasters does not generate further autocorrelation. Given that, by construction, log dividend

growth is just a scaled version of log consumption growth, similar conclusions can be drawn from the

simulation of aggregate dividends.

[Table 3 about here.]

4.2.1 Revisiting the case of unitary IES

Table (4) reports some basic moments of asset returns from annual U.S. data and from the simulation

of the model when the IES equals one. The same exercise was carried out in Wachter (2013) using an

approximate closed form solution for the price-dividend ratio.
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The overall fit of the time-varying disaster risk model is good. The model generates high levels of

equity premium and at the same time produces volatility in the stock market that far exceeds that of

dividends without generating counterfactual high volatility of more secure assets like the government

liabilities. Conditional on no disasters, the model produces an equity risk premium of 7.97% per year,

while this number falls to 6.75% per year when disasters are included in the sample. The average

volatility and autocorrelation of price-dividend ratio are all in the vicinity of their data counterparts,

while an expected return on government liabilities of 1.36% exactly matches that in the data.

However, the model does not generate as much volatility in the stock market as suggested in Wachter

(2013). While still being high relative to other models of asset pricing, we find that when the two step

projection method is used the model only produces a standard deviation of stock returns of 11.54%

conditional on no jumps, versus 17.7% reported by Wachter. The lower volatility explains the higher

levels of the Sharpe Ratio. Therefore, the ability of the time-varying disaster risk model to generate

excess volatility is sensible to approximation method used to solve the model and hence any concluding

statements in this regards should be taken with caution. As it will be shown later, the level of volatility

can be amplified by allowing higher levels of the IES.

[Table 4 about here.]

A deeper look into the results reveals that the model generates highly persistent interest rates. While

the autocorrelation of the risk free rate and the returns on government bills has been around 0.43 and 0.55

in the postwar period respectively, conditional on no jumps, the model generates an autocorrelation of 0.94

for both assets. The poor fit comes directly from the fact that all the dynamics in the model are driven by

a single state variable, the disaster risk, which has been calibrated to replicate an autocorrelation of 0.92

of the price-dividend ratio. One way to disentangle this issue is to allow for an additional state variable

with an autocorrelation level that is negatively related to that of the disaster risk. One alternative could

be to include persistence to the expected consumption growth as in the long-run risk literature. By doing

so, it will be possible to add persistence to the diffusive component of the stochastic discount factor which

will ultimately mitigate the high persistence of the disaster risk that explains both the risk free rate and

the expected return on government bonds (see Equations (2.1), (2.16) and (2.19)).

Finally, we find that the model produces a puzzling ranking of volatilities between the risk free rate

and the expected return on government liabilities. The model generates the counterfactual implication

that the volatility of the risk free rate is higher than that of the government bonds in times of no

disasters5. While one could argue that this result is consistent with the two opposing effects that explain

why the expected return on government bonds is higher than that of the riskless asset, this implication

is inconsistent with the risk-return trade-off pillar of the asset pricing literature.

4.2.2 The role of the intertemporal elasticity of substitution

What are the asset pricing implications of lower and higher values of the IES? To address this question

we keep the calibration used in the previous section fixed and only change the value of ψ. The correct

5Notice that the ranking of volatility is correct for the population moments, where the volatility of government bonds is
higher than the volatility of the risk free rate.
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value of this parameter is subject to much discussion in the field and it is usually calibrated in such a

way that the model delivers implications that are consistent with the data.

The standard view in macroeconomics is that the IES is small or even close to zero when estimated

from macroeconomic aggregates (see Hall, 1988). However, the asset pricing literature has challenged this

assumption by providing arguments in favor of ψ > 1 based on the predictability and countercyclicality

properties of the equity risk premium (see Bansal and Yaron, 2004, Gourio, 2008 and Gourio, 2012).

Macroeconometricians have also found empirical evidence of IES greater than one in more structural

macrofinancial models of the DSGE-type that explain the behavior of the term structure of interest rates

(see van Binsbergen et al., 2012)6.

To understand the role played by the IES, suppose for a moment that the economy is hit by a negative

shock to the disaster risk, i.e. it experiences a reduction in the probability of a disaster. The lower is the

likelihood of a catastrophe, the higher is the expected growth of consumption which materializes through

a change in the level of the consumption-wealth ratio. Since consumption is exogenously given in this

economy, all the adjustment is done through the reallocation of wealth. The direction of the adjustment

depends on the level of the IES. If the substitution effect dominates the wealth effect, i.e. if ψ > 1, then

the representative investor would demand more of the risky asset bringing its price up. Otherwise, if the

wealth effect dominates the substitution effect, i.e. if ψ < 1, then the agent prefers to consume more

today driving the prices of the risky asset down.

Table (5) reports sample moments from simulated data of the model for different values of the IES

conditional on no jumps under the assumption that the representative agent prefers early resolution

of uncertainty. The results suggest that the expected return on government bills and its volatility are

decreasing in the IES. We also find that the expected equity returns are decreasing in the IES, while the

stock market volatility is increasing in the IES. The autocorrelation of the equity return and of the risk

free rate are independent of the IES. The same holds for the government bills. The overall effect on the

equity risk premium is dominated by the movements in the expected returns on government bills which

lead to a premium that is decreasing in the IES.

[Table 5 about here.]

When compared to the the postwar data, the calibration used in this paper favors an IES below

unity since it brings the model’s equity risk premium from 7.97% to 6.34% per year, closer to the 5.11%

observed in the data. A IES below unity is also able to generate a more volatile return on government

bonds, closer to the postwar period levels. On the other hand, a model where ψ > 1 is needed to account

for the large volatility in the stock market and the volatility of the price-dividend ratio, which ultimately

will lead to a lower Sharpe Ratio.

6However, some results in favor of ψ < 1 coming from the asset pricing literature have been documented recently when
the model incorporates limited asset market participation. See Vissing-Jørgensen (2002) and Guvenen (2006).
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4.3 Predictability

Contrary to the implications of the constant probability model of Barro (2006), the time-varying disaster

risk model is able to generate time variation in the valuation ratios as well as in the market returns.

Thus, it is natural to assess the ability of the model to match some of the empirical facts regarding excess

return, consumption growth and dividend growth predictability. It is important to keep in mind that all

the time variation in the model comes directly from the assumptions on the exogenous process for the

disaster risk.

Empirical evidence suggests that both the stock returns and the excess returns are forecastable in

long horizons. It has also been argued that equity returns are predictable, because the risk premium are

forecastable, and not because the risk free interest rate is forecastable (see Cochrane, 2008 and Gourio,

2008). More important is the fact that the explanatory power of valuation ratios to predict the risk

premium, measured by standard R2, increases with the forecast horizon as documented in Fama and

French (1988). Therefore, as argued in Cochrane (2008), given the lack of evidence on price-dividend

ratios predicting dividend growth, it must be the case that all variation in the price-dividend ratio is

due to changes in risk premium and none to changes in expected dividend growth. Given the close link

between variation in dividend and consumption growth with future expected changes in returns we also

test the ability the price-dividend ratio to predict consumption and dividend growth.

We test the forecasting ability of the model by regressing simulated excess equity returns (log return

on equity minus log return on the government bill), consumption growth and dividend growth measured

over horizons of 1, 3 and 5 years, onto the simulated log price-dividend ratio. We run all the regressions in

both the population sample and the conditional sample. We then compare these results to those obtained

by performing the same regressions with observed data from the postwar period.

[Table 6 about here.]

Table (6) indicates that in the data the price-dividend ratio predicts excess returns with a negative

sign, and its predictive power is increasing with the time horizon. In fact, its forecast ability increases

from 10% at one year horizon to 26% at a 5 year horizon. Consistent with the results from Section (3),

the model’s implied price-dividend ratio predicts a negative correlation with excess returns given that

a high valuation ratio can only be obtained by a low probability of a disaster, which at the same time

explains a low equity risk premium. Conditional on no jumps, the model also generates an increasing

predictability of the price-dividend ratio, close to that observed in the data. As argued in Wachter (2013),

the R2 measures from the simulation that include disasters are much lower since most of the variation in

the equity risk premium is due to changes in the dividend growth after a disaster occurs and not in the

price-dividend ratio. Notice that for large IES values the model’s R2 is lower and closer to the data. For

these parameters, a higher IES is needed to reduce the excess predictability of the price-dividend ratio.

[Table 7 about here.]

Tables (7) reports regression results for consumption growth. Similar results are obtained for dividend
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growth since in the model they are just an affine transformation of consumption7. Recall that the time-

varying disaster risk model tries to explain the variability of asset returns by assuming large but infrequent

drops in aggregate consumption. Panel (C) indicates that there is little predictability of consumption

growth at long horizons during the postwar period. Similar results have been found in Hall (1988),

Cochrane (1994) and Campbell (2003). The results displayed in Panel (B) are consistent with the

fact that conditional on no disasters, both consumption and dividend growth follow random walks and

hence are not predictable. When we include realized disasters in the simulation the model generates

predictability in consumption growth that exceeds that observed in the data. However, this excess, which

comes entirely from the occurrence of a disaster, is not big and never rises above 4.8%. Regarding the role

played by the IES, this parameter does not compromise the predictability properties of the model, even

though the relative effect of the price-dividend ratio on both consumption and dividend growth rates is

decreasing in ψ.

Our results suggest that the time-varying disaster risk model produces consistent implications in terms

of predictability as opposed to those from the long-run risk framework of Bansal and Yaron (2004). As

shown in Beeler and Campbell (2012), their model generates predictability for consumption and dividend

growth that far exceeds that found in the data.

5 Conclusions

Time-varying disaster risk models have the potential to reconcile several asset pricing puzzles in a single

unified framework. The first models of this type focused on a constant probability of disaster aiming at

explaining the equity premium puzzle. The latest generation of models incorporate time-varying disaster

probabilities (See Gourio, 2012 and Wachter, 2013) which allow them to improve the performance of the

model by explaining other asset pricing puzzles.

In this paper we revisit the fit of time-varying disaster risk models to the postwar U.S. data. Our

results confirm the virtues of the model and reveals some of its limitations. We calibrate the model

using standard values and compare the model simulations with those from the data conditional on no

crisis. Crucially, we allow the elasticity of intertemporal substitution parameter to accommodate different

values.

For the case of unitary IES, we find that the approximation method is decisive to generate aggregate

stock market volatility close to that observed in the data. Whereas the approximated closed form solution

of Wachter (2013) generates a standard deviation of stock returns of around 17.7 percent per year, the

two step projection method proposed in this paper only produces an annual volatility of 11.5 percent.

We also find that the model produces near unit root risk free and expected government bill returns

which is at odds with the U.S. postwar data. The model also generates the counterfactual implication

that the volatility of the risk free rate is higher than that on the returns of Treasury bills.

Our numerical experiments show that opposite to previous results in the literature, the predictability

properties of the time-varying disaster risk model do not require the IES to be greater or equal to one.

7We omit them because of space considerations but are available upon request.
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In fact, for reasonable parameters, we always find a negative correlation between the price-dividend ratio

and excess returns. These results suggest that a low IES is consistent with a countercyclical equity risk

premium as long as the representative agent prefers an early resolution of uncertainty. In general, we find

that an IES lower than one has the potential effect of generating appropriate levels of equity risk premium

and volatility of government bonds, while an IES greater than one can generate higher price-dividend

volatility and stock market volatility, and hence a lower Sharpe Ratio.
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A Appendix

A.1 Homogeneity of the value function

Lemma 1 (Homogeneity of the value function). Let Vt denote the indirect utility associated with a

stream of consumption {Cs}∞s=t. Now let Cκ = {κCs}∞s=t. Indirect utility V κs associated with Cκ is

V κs = κ1−γVs.

Proof. We first establish that the aggregator satisfies f
(
κCs, κ

1−γVs
)

= κ1−γf (Cs, Vs). If ψ = 1 then

f
(
κCs, κ

1−γVs
)

= β (1− γ)κ1−γVs

(
log κCs −

1

1− γ log
(
(1− γ)κ1−γVs

))
= κ1−γβ (1− γ)Vs

(
logCs −

1

1− γ log ((1− γ)Vs)

)
= κ1−γf (Cs, Vs) .

If ψ 6= 1 then

f
(
κCs, κ

1−γVs
)

= βθκ1−γVs

( κCs

((1− γ)κ1−γVs)
1

1−γ

)1− 1
ψ

− 1


= κ1−γβθVs

( Cs

((1− γ)Vs)
1

1−γ

)1− 1
ψ

− 1


= κ1−γf (Cs, Vs) .

Hence,

V κt = Et

 ∞̂
t

f (κCs, V
κ
s ) ds


= Et

 ∞̂
t

f
(
κCs, κ

1−γVs
)
ds


= κ1−γEt

 ∞̂
t

f (Cs, Vs) ds


= κ1−γVt.

A.2 Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman equation (HJB) for the planner’s problem is given by:
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0 = f (Ct, Vt) + µCtVC + κ
(
λ̄− λt

)
Vλ +

1

2
C2
t σ

2VCC +
1

2
σ2
λλtVλλ + λtEζ (V (ZtCt, λt)− V (Ct, λt)) .

We now conjecture that the value function V (C, λ) takes the form:

Vt =
1

1− γC
1−γ
t H (λt) , (C, λ) ∈ (0,∞)× R+.

Substitute the conjecture back into the HJB equation to obtain:

0 = f (Ct, Vt) + µC1−γ
t H (λt) + κ

(
λ̄− λt

) 1

1− γC
1−γ
t Hλ (λt)−

1

2
σ2C1−γ

t H (λt)

+
1

2
σ2
λλt

1

1− γC
1−γ
t Hλλ (λt) + λt

1

1− γC
1−γ
t Hλ (λt)Eζ

(
Z1−γ
t − 1

)
.

Dividing by Vt yields:

0 =
f (Ct, Vt)

Vt
+ (1− γ)µ+ κ

(
λ̄− λt

) Hλ (λt)

H (λt)
− 1

2
γ (1− γ)σ2 +

1

2
σ2
λλt

Hλλ (λt)

H (λt)
+ λtEζ

(
Z1−γ
t − 1

)
,

where

f (Ct, Vt)

Vt
=


βθ
[
H (λt)

− 1
θ − 1

]
, if ψ 6= 1

−β logH (λt) , if ψ = 1

and θ = 1−γ
1−ψ−1 . Reorganizing terms results in a quasi-linear PDE of the form:

0 =
f (Ct, Vt)

Vt
H (λt) +

[
(1− γ)µ− 1

2
γ (1− γ)σ2 + λtEζ

(
Z1−γ
t − 1

)]
H (λt)

+ κ
(
λ̄− λt

)
Hλ (λt) +

1

2
σ2
λλtHλλ (λt) ,

where the non-linear term is given by:

f (Ct, Vt)

Vt
H (λt) =


β

1−qH (λt)
q − β

1−qH (λt) if ψ 6= 1

−βH (λt) logH (λt) if ψ = 1

and q = 1− 1
θ .
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A.3 Stochastic discount factor and risk free rate

From the definition of the utility aggregator in Equations (2.4) and (2.5) we can compute:

fC (Ct, Vt) =

βC
−γ
t H (λt)

q
, if ψ 6= 1

βC−γt H (λt) , if ψ 6= 1

and

fV (Ct, Vt) =


β

1−q

[
qH (λt)

q−1 − 1
]
, if ψ 6= 1

−β (1 + logH (λt)) , if ψ = 1.

Itô’s lemma combined with the Leibniz rule yields the following dynamics for the SDF in Equation

(2.11):

dπt
πt

= fV (Ct, Vt) dt+
dfC (Ct, Vt)

fC (Ct, Vt)
.

where the second term on the right hand side is given by:

dfC
fC

=

(
−γµ+

1

2
γ (1 + γ)σ2 + κ

(
λ̄− λt

)
q
Hλ (λt)

H (λt)
+

1

2
q

(
(q − 1)

(
Hλ (λt)

H (λt)

)2

+
Hλλ (λt)

H (λt)

)
σ2
λλt

)
dt

− γσdBt + q
Hλ (λt)

H (λt)
σλ
√
λtdBλ,t +

(
Z−γt − 1

)
dNt

when ψ 6= 1 and by

dfC
fC

=

(
−γµ+

1

2
γ (1 + γ)σ2 + κ

(
λ̄− λ

) Hλ (λt)

H (λt)
+

1

2

Hλλ (λt)

H (λt)
σ2
λλ

2

)
dt

− γσdBt +
Hλ (λt)

H (λt)
σλ
√
λtdBλ,t +

(
Z−γt − 1

)
dNt

when ψ = 1.

Therefore:

dπt
πt

= µπ,tdt+ σπ,t

[
dBt dBλ,t

]′
+
(
Z−γt − 1

)
dNt

where
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µπ,t =



− β
1−q − γµ+ 1

2γ (1 + γ)σ2

+q

[
β

1−qH (λt)
q−1

+ κ
(
λ̄− λt

) Hλ(λt)
H(λt)

+ 1
2

(
(q − 1)

(
Hλ(λt)
H(λt)

)2

+ Hλλ(λt)
H(λt)

)
σ2
λλt

]
if ψ 6= 1

−β − γµ+ 1
2γ (1 + γ)σ2 − β logH (λt) + κ

(
λ̄− λ

) Hλ(λt)
H(λt)

+ 1
2
Hλλ(λt)
H(λt)

σ2
λλt if ψ = 1

and

σπ,t =


[
−γσ qHλ(λt)

H(λt)
σλ
√
λt

]
if ψ 6= 1

[
−γσ Hλ(λt)

H(λt)
σλ
√
λt

]
if ψ = 1.

The basic asset pricing Equation (2.10) implies that for an asset that has a constant price of one and

pays the risk free rate, rft , as dividend the following holds:

rft = − 1

dt
Et
(
dπt
πt

)
= −µπ,t − λtEζ

(
Z−γt − 1

)
.

A.4 Return on short-term government liabilities

The price of a government liability satisfies (dividend are zero):

0 =
1

dt
Et [d (πtLt)]

= rLt + µπ,t + λtEζ
[
Z−γt ZL,t − 1

]
From the definition of ZL,t it follows that:

Eζ
[
Z−γt ZL,t − 1

]
= pEζ

[
Z1−γ
t − 1

]
+ (1− p)Eζ

[
Z−γt − 1

]
.

Hence,

rLt = −µπ,t − λt
[
pEζ

[
Z1−γ
t − 1

]
+ (1− p)Eζ

[
Z−γt − 1

]]
rLt = rft + λtpEζ

[
Z−γt (1− Zt)

]
Let rbt denote the instantaneous expected return on government debt. Then:
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rbt =
1

dt
Et
(
dLt
Lt

)
= rLt + λtpEζ (Zt − 1)

= rft + λtpEζ
[
Z−γt (1− Zt)

]
+ λtpEζ (Zt − 1)

= rft + λtpEζ
[
Z−γt − Z1−γ

t + Zt − 1
]

= rft + λtpEζ
[(
Z−γt − 1

)
(1− Zt)

]
.

A.5 Wealth-consumption ratio and consumption risk premium

Recall that

πt = exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

βC−γt H (λt)
q
,

and

Wt = St =

 1
βCtH (λt;ψ)

1−q
if ψ 6= 1

1
βCt if ψ = 1.

Therefore:

πtSt = exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

C1−γ
t H (λt) .

The value function for the representative agent is given by:

Vt =
1

1− γC
1−γ
t H (λt) ,

and hence:

πtSt = (1− γ) exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

Vt.

Itô’s lemma yields:

d (πtSt) = (1− γ)

exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

 dVt

+Vt exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds


(
− β

1− q +
β

1− q qH (λt)
q−1

)
dt

 ,
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which can be simplified to:

d (πtSt) = (1− γ) exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds


[
dVt − Vt

(
β

1− q −
β

1− q qH (λt)
q−1

)
dt

]
.

From the definition of recursive preferences we know that V (Ct, λt) +
´ t

0
f (Cs, V (Cs, λs)) ds is a

martingale. Therefore:

Et [dV (Ct, λt) + f (Ct, V (Ct, λt)) dt] = 0,

and hence:

dVt = −f (Ct, Vt) dt+ dMt

for some P−martingale Mt. Now recall that:

f (Ct, Vt)

Vt
=

β

1− q
[
H (λt)

q−1 − 1
]

and thus:

dVt = −Vt
β

1− q
[
H (λt)

q−1 − 1
]
dt+ dMt.

Substituting back yields:

d (πtSt) = (1− γ) exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

[
−Vt

β

1− q
[
H (λt)

q−1 − 1
]
dt+ dMt − Vt

(
β

1− q −
β

1− q qH (λt)
q−1

)
dt

]

= (1− γ) exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds


[
− β

1− q VtH (λt)
q−1

(1− q) dt+ dMt

]

= exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

[−CtβC−γt H (λt)
q
dt+ (1− γ) dMt

]

= −πtCtdt+ exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

 (1− γ) dMt

where we have used the fact that:

VtH (λt)
q−1

=
1

1− γC
1−γ
t H (λt)

q
.
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Now integrate from t to T to obtain:

πTST − πtSt = −
T̂

t

πsCsds+ (1− γ)

T̂

t

exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

 dMt.

Taking expectations, letting T →∞, and assuming that the transversality condition, limT→∞ E [πTST ] =

0:

lim
T→∞

Et [πTST ]−Et [πtSt] = −Et

 ∞̂
t

πsCsds

+(1− γ)Et

 ∞̂
t

exp

 β

1− q

tˆ

0

[
qH (λs)

q−1 − 1
]
ds

 dMt


Therefore:

πtSt = Et

 ∞̂
t

πsCsds

 .
This shows that the wealth-consumption ratio in Equations (2.20) and (2.21) satisfy the basic asset

pricing equation.

Itô’s lemma implies that that the dynamics of the price of a consumption claim is given by:

dSt
St

= µS,tdt+ σS,t

[
dBt dBλ,t

]′
+ (Zt − 1) dNt

where

µS,t = µ+ (1− q) Hλ (λt)

H (λt)
κ
(
λ̄− λt

)
+

1

2
(1− q)

(
−q
(
Hλ (λt)

H (λt)

)2

+
Hλλ (λt)

H (λt)

)
σ2
λλt

and

σS,t =
[
σ (1− q) Hλ(λt)

H(λt)
σλ
√
λt

]
.

The risk premium on the aggregate consumption claim is derived from the Martingale condition (The

basic asset pricing equation for risky assets):

Et
[
d (πtSt)

πtSt

]
+
Ct
St
dt = 0.

Itô’s lemma implies:

1

dt
Et
[
d (πtSt)

πtSt

]
=

1

dt
Et
[
dπt
πt

+
dSt
St

+
dπt
πt

dSt
St

]
= −rft +

1

dt
Et
[
dSt
St

+
dπt
πt

dSt
St

]
.
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Hence, the consumption risk premium, rpCt , can be computed from:

1

dt
Et
[
dSt
St

]
+
Ct
St
dt− rft︸ ︷︷ ︸

:=rpCt

= − 1

dt
Et
[
dπt
πt

dSt
St

]

where the term on the right hand side is the covariance of the asset return with the SDF. In particular:

rpCt = − 1

dt
Et
[(
σπ,tσ

′
S,tdt+

(
Z−γt − 1

)
(Zt − 1) dNt

)]
= −σπ,tσ′S,t − λtEζ

[(
Z−γt − 1

)
(Zt − 1)

]
= γσ2 − q(1− q)

(
Hλ (λt)

H (λt)

)2

σ2
λλt + λtEζ

[(
Z−γt − 1

)
(1− Zt)

]
The expression for the equity premium just derived is inclusive of jumps as can be seen from the definition

of rpCt . More specifically, note that:

rpCt =
1

dt
Et
[
dSt
St

]
+
Ct
St
dt− rt

= µS,t + λtEζ [Zt − 1] .

Hence, the risk premium conditional on no disasters, which we denote by r̃pCt , is given by:

r̃pCt = rpCt − λtEζ [Zt − 1] .

A.6 Price-dividend ratio and equity risk premium

Using the definition of the log-price dividend ratio in Equation (2.26), Itô’s lemma implies:

dFt
Ft

= µF,tdt+ σF,t

[
dBt dBλ,t

]′
− (1− Zϕt ) dNt.

where

µF,t (λt;ψ) = µD +Gλ (λt;ψ)κ
(
λ̄− λt

)
+

1

2
σ2
λλt

(
Gλ (λt;ψ)

2
+Gλλ (λt;ψ)

)
and

σF,t =
[
ϕσ Gλ (λt;ψ)σλ

√
λt

]
.

Recall that the price of a claim to future dividends can be written as:
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πtFt = Et

 ∞̂
t

πsDsds


which also holds for u > t:

πsFs = Es

 ∞̂
s

πsDsds

 .
Hence:

πtFt = Et

 ∞̂
t

πsDsds


= Et

 uˆ

t

πsDsds+

∞̂

u

πsDsds


= Et

πuFu +

uˆ

t

πsDsds

 .
Now add and subtract

´ t
0
πsDsds:

πtFt +

tˆ

0

πsDsds = Et

πuFu +

tˆ

0

πsDsds+

uˆ

t

πsDsds


πtFt +

tˆ

0

πsDsds = Et

πuFu +

uˆ

0

πsDsds

 ,
which shows that πtFt +

´ t
0
πsDsds is a martingale. Now apply Itô’s lemma to the product πtFt and

integrate in the interval [0, t]:

πtFt − π0F0 =

tˆ

0

πsFs
(
µπ,s + µF,s + σπ,sσ

′
F,s

)
ds

+

tˆ

0

πsFs (σπ,s + σF,s)
[
dBs dBλ,s

]′
+

tˆ

0

πsFs

(
Z(ϕ−γ)
s − 1

)
dNs.

We now add and subtract the term
´ t

0
πsDsds to obtain:
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πtFt +

tˆ

0

πsDsds− π0F0 =

tˆ

0

πsFs

(
µπ,t + µF,s +

Ds

Fs
+ σπ,sσ

′
F,s

)
ds

+

tˆ

0

πsFs (σπ,s + σF,s)
[
dBs dBλ,s

]
+

tˆ

0

πsFs

(
Z(ϕ−γ)
s − 1

)
dNs,

By noticing that the mean of the jump component is given by λtEζ
(
Z

(ϕ−γ)
t − 1

)
dt, we add and

subtract the compensation term
´ t

0
πsFsλsEζ

(
Z

(ϕ−γ)
s − 1

)
ds to obtain:

πtFt +

tˆ

0

πsDsds− π0F0 =

tˆ

0

πsFs

(
µπ,s + µF,s +

Ds

Fs
+ σπ,sσ

′
F,s + λsEζ

(
Z(ϕ−γ)
s − 1

))
ds

+

tˆ

0

πsFs (σπ,s + σF,s)
[
dBs dBλ,s

]′
+

 tˆ

0

πsFs

(
Z(ϕ−γ)
s − 1

)
dNs −

tˆ

0

πsFsλsEζ
(
Z(ϕ−γ)
s − 1

)
ds

 .

Using the properties of stochastic integrals, the second and third terms on the right hand side are

martingales. Since the term on the left hand side is a martingale, then the first term on the right hand

side must be also a martingale implying that:

µπ,t + µF,t +
Dt

Ft
+ σπ,tσ

′
F,t + λtEζ

(
Z

(ϕ−γ)
t − 1

)
= 0

which reduces to:

−rft − λtEζ
(
Z−γt − 1

)
+ µF,t +

Dt

Ft
+ σπ,tσ

′
F,t + λtEζ

(
Z

(ϕ−γ)
t − 1

)
= 0.

Using the definition of the price-dividend ratio yields:

1

exp (G (λt))
− rt + λtEζ

(
Z

(ϕ−γ)
t − Z−γt

)
+ ϕµ+

1

2
σ2ϕ (ϕ− 1− 2γ)

+

(
κ
(
λ̄− λt

)
+ q

Hλ (λt)

H (λt)
σ2
λλt

)
Gλ (λt) +

1

2
σ2
λλtGλλ (λt) +

1

2
σ2
λλtGλ (λt)

2
= 0.

The risk premium on the aggregate dividend claim is derived from the Martingale condition:

Et
[
d (πtFt)

πtFt

]
+
Dt

Ft
= 0.

Itô’s lemma implies:
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1

dt
Et
[
d (πtFt)

πtFt

]
=

1

dt
Et
[
dπt
πt

+
dFt
Ft

+
dπt
πt

dFt
Ft

]
= −rft +

1

dt
Et
[
dFt
Ft

+
dπt
πt

dFt
Ft

]
.

Hence the equity risk premium, rpDt , can be computed from:

1

dt
Et
[
dFt
Ft

]
+
Dt

Ft
− rft︸ ︷︷ ︸

:=rpDt

= − 1

dt
Et
[
dπt
πt

dFt
Ft

]

where the term on the right hand side is the covariance between the equity return and the stochastic

discount factor. In particular:

rpDt = −σπ,tσ′F,t − λtEζ
[
−Z−γt + 1 + Zϕ−γt − Zϕ

]
= −σπ,tσ′F,t + λtEζ

[(
Z−γt − 1

)
(1− Zϕt )

]
= ϕγσ2 − qHλ (λt)

H (λt)
Gλ (λt)σ

2
λλt + λtEζ

[(
Z−γt − 1

)
(1− Zϕt )

]
.

The instantaneous equity premium relative to the government bill rate, rpDb,t, is equal to rpDt minus

the default premium rbt − rt:

rpDb,t = −σπ,tσ′F,t − λtEζ
[
−Z−γt + 1 + Zϕ−γt − Zϕ + p

[
Z−γt − 1− Z1−γ

t + Zt

]]
= −σπ,tσ′F,t + λtEζ

[(
Z−γt − 1

)
((1− p) (1− Zϕt ) + p (Zt − Zϕt ))

]
= ϕγσ2 − qHλ (λt)

H (λt)
Gλ (λt)σ

2
λλt + λtEζ

[(
Z−γt − 1

)
((1− p) (1− Zϕt ) + p (Zt − Zϕt ))

]
.

33



References

Abel, A. B. (1999): “Risk premia and term premia in general equilibrium,” Journal of Monetary

Economics, 43, 3–33.

Almeida, H. and T. Philippon (2007): “The Risk-Adjusted Cost of Financial Distress,” Journal of

Finance, 62, 2557–2586.

Bansal, R. and A. Yaron (2004): “Risk for the Long Run: A Potential Resolution of Asset Pricing

Puzzles,” Journal of Finance, 59, 1481–1509.

Barro, R. J. (2006): “Rare disasters and asset markets in the twentieth century,” Quarterly Journal of

Economics, 823–866.
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Table 1. Algorithm: Solving the time-varying disaster risk model

Initialization.

1. Define the approximation space λ ∈ [λmin, λmax] and choose n+1 Chebyshev approximation nodes,

λ = {λk : 0 ≤ k ≤ n} ⊂ λ. In particular we set λ ∈ [0,mσ∞] where σ∞ = σλ

[
λ̄
2κ

] 1
2

is the limiting

standard deviation of the λ−process and m ∈ N+.

2. Choose functional forms for Ĥ
(
λ;ωH

)
and Ĝ

(
λ;ωG

)
. In particular:

Ĥ
(
λ;ωH

)
=

n∑
k=0

wHk φk (λ) , Ĝ
(
λ;ωG

)
=

n∑
k=0

wGk φk (λ)

where ωH and ωG are (n+ 1)× 1 vectors of unknown coefficients, and φk (λ) is the k−th member
of the family of Chebyshev orthogonal polynomials.

Step 1. Use the reduced Hamilton-Jacobi-Bellman Equation (2.8) together with the approximant
Ĥ
(
λ;ωH

)
and for λ0, . . . , λn compute the residual function:

RH
(
λk,ω

H
)

=
f (C, V )

V
Ĥ
(
λk;ωH

)
+

[
(1− γ)µ− 1

2
γ (1− γ)σ2 + λkEζ

(
Z1−γ − 1

)]
Ĥ
(
λk;ωH

)
+ κ

(
λ̄− λk

)
Ĥλ

(
λk;ωH

)
+

1

2
σ2
λλĤλ

(
λk;ωH

)
.

Find the vector of unknown coefficients ωH that make RH
(
λk;ωH

)
“as close to zero as possible” by

solving the resulting (n+ 1) square system of non-linear equations.

Step 2. Take Ĥ
(
λ;ωH

)
from step 1. Compute the model’s risk-free rate using Equations (2.14) and

(2.16). Use the approximant Ĝ
(
λ;ωG

)
and for λ0, . . . , λn compute the residual function for Equation

(2.27) in Proposition (2.4):

RG
(
λk;ωG

)
=

1

exp
(
Ĝ (λk;ωG)

) − r̂f (λk,ωH)+ λkEζ
(
Z(ϕ−γ) − Z−γ

)
+ ϕµ+

1

2
σ2ϕ (ϕ− 1− 2γ)

+

(
κ
(
λ̄− λk

)
+ q

(
Ĥλ

(
λk;ωH

)
Ĥ (λk;ωH)

)
σ2
λλt

)
Ĝλ
(
λk;ωG

)
+

1

2
σ2
λλkĜλλ

(
λk;ωG

)
+

1

2
σ2
λλk

(
Ĝλ
(
λk;ωG

))2

.

Find the vector of unknown coefficients ωG that make RG
(
λk;ωG

)
“as close to zero as possible” by

solving the resulting (n+ 1) square system of non-linear equations.

Evaluation. Choose a set of equally spaced evaluation nodes λe = {λek : 0 ≤ k ≤ ne} ⊂ λ with ne � n
and compute approximation errors in both residual functions. If the errors do not fulfill a predefined
error bound, start over at the initialization and change the degree of approximation, n.
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Table 2. Parameters for the time-varying disaster risk model

The table replicates the parameter values used in Wachter (2013). In the model, time is measured in years and
parameter values should be interpreted accordingly. The endowment of aggregate consumption is given by:

dCt = µCt−dt+ σCt−dBt − (1− Zt)Ct−dNt

where Nt is a Poisson process with intensity rate λt. The process for the disaster intensity is given by:

dλt = κ
(
λ̄− λt

)
dt+ σλ

√
λtdBλ,t.

The aggregate dividends in the economy Dt are equal to Cϕt . The representative agent has recursive preferences
defined by Vt = Et

[´∞
t
f (Cs, Vs) ds

]
with normalized aggregator:

f (Ct, Vt) =
1− γ

1− ψ−1
βVt

( Ct

((1− γ)Vt)
1

1−γ

)1− 1
ψ

− 1


when ψ 6= 1 and

f (Ct, Vt) = β (1− γ)Vt

(
logCt −

1

1− γ log ((1− γ)Vt)

)
when ψ = 1.

Relative risk aversion, γ 3.0

Elasticity of intertemporal substitution, ψ {0.5, 1, 1.5}
Rate of time preference, β 0.012

Average growth in consumption (normal times), µ 0.0252

Volatility of consumption growth (normal times), σ 0.02

Leverage, ϕ 2.6

Average probability of a rare disaster, λ̄ 0.0355

Mean reversion, κ 0.08

Volatility parameter, σλ 0.067

Probability of default, p 0.4

*Parameter values are in annual terms
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Table 3. Empirical and simulated moments for consumption and dividend growth

The table reports moments inclusive of jumps and conditional on no jumps from the simulated model, as well
as empirical moments for the U.S. economy between 1947 and 2008, and between 1947 and 2013. The model is
simulated at a monthly frequency and then aggregated to an annual frequency. All averages and volatilities are
expressed in percentage terms. The simulation is carried out by first discretizing the continuous-time stochastic
processes using a Euler scheme. For the model, the first column reports moments from simulated data that
contains realizations of disasters. The second column reports moments of simulated data over years where no
disasters occurred. ρ1 (·) denotes the coefficient of autocorrelation of order one. Consumption growth is simulated
from:

d logCt =

(
µ− 1

2
σ2

)
dt+ σdBt + log (Zt) dNt,

while dividend growth is given by:

d logDt =

(
µD,t −

1

2
σ2ϕ2

)
dt+ σϕdBt + ϕ log (Zt) dNt.

The last two columns report data moments calculated using annual observations constructed from monthly U.S.
data from 1947 through 2008 and 2013 respectively.

Model US Data

Moment Population Conditional 1947-2008 1947-2013

E(∆c) 1.60 2.49 2.00 1.87
σ(∆c) 6.35 2.00 1.25 1.32
ρ1(∆c) -0.00 -0.01 0.35 0.46

E(∆d) 4.17 6.47 2.49 2.40
σ(∆d) 16.52 5.20 5.26 6.19
ρ1(∆d) -0.00 -0.01 0.46 0.34
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Table 4. Empirical and simulated moments for asset returns when ψ = 1

The table reports moments inclusive of jumps and conditional on no jumps from the simulated model when ψ = 1.
The model is solved and then simulated at a monthly frequency. Simulated data are aggregated to an annual
frequency. All averages and volatilities of asset returns are expressed in percentage terms. The second column
reports moments from simulated data that contains realizations of disasters. The third column reports moments
of simulated data over years where no disasters occurred. rb denotes the gross return on government liabilities;
re, the gross return on equities; rf , the gross return on a risk free asset; and (f − d) the log price-dividend ratio.
ρ1 (·) denotes the coefficient of autocorrelation of order one. The last two columns report data moments calculated
using annual observations constructed from monthly U.S. data from 1947 through 2008 and 2013 respectively.

Model US Data

Moment Population Conditional 1947-2008 1947-2013

E(re) 7.74 9.34 6.47 7.04
σ(re) 14.77 11.54 16.95 16.64
ρ1(re) -0.02 0.00 -0.00 -0.04

E(rf ) -0.21 -0.12 0.46 0.33

σ(rf ) 3.33 3.25 0.91 0.92

ρ1(rf ) 0.95 0.94 0.43 0.46

E(rb) 0.99 1.36 1.37 1.12

σ(rb) 3.79 2.00 2.88 2.91

ρ1(rb) 0.35 0.94 0.55 0.57

E(re − rb) 6.75 7.97 5.11 5.92

E(f − d) 4.01 4.02 3.40 3.43
σ(f − d) 0.38 0.37 0.38 0.38
ρ1(f − d) 0.92 0.92 0.89 0.88

Sharpe Ratio 0.48 0.66 0.30 0.36
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Table 5. Empirical and simulated moments for asset returns for ψ ∈ {0.5, 1.0, 1.5}

The table reports moments conditional on no jumps from the simulated model. The model is solved for different
values of the intertemporal elasticity of substitution. The model is then simulated at a monthly frequency and
simulated data are aggregated to an annual frequency. All averages and volatilities of asset returns are expressed
in percentage terms. rb denotes the gross return on government liabilities; re, the gross return on equities; rf ,
the gross return on a risk free asset; and (f − d) the log price-dividend ratio. ρ1 (·) denotes the coefficient of
autocorrelation of order one. The last two columns report data moments calculated using annual observations
constructed from monthly U.S. data from 1947 through 2008 and 2013 respectively.

Model
(ψ = 0.5)

Model
(ψ = 1.0)

Model
(ψ = 1.5)

US Data

Moment 1947-2008 1947-2013

E(re) 9.57 9.34 9.15 6.47 7.04
σ(re) 4.41 11.54 13.55 16.95 16.64
ρ1(re) 0.12 0.00 -0.01 -0.00 -0.04

E(rf ) 1.73 -0.12 -0.74 0.46 0.33

σ(rf ) 3.99 3.25 3.04 0.91 0.92

ρ1(rf ) 0.94 0.94 0.94 0.43 0.46

E(rb) 3.23 1.36 0.74 1.37 1.12

σ(rb) 2.75 2.00 1.79 2.88 2.91

ρ1(rb) 0.94 0.94 0.94 0.55 0.57

E(re − rb) 6.34 7.97 8.41 5.11 5.92

E(f − d) 3.67 4.02 4.25 3.40 3.43
σ(f − d) 0.20 0.37 0.41 0.38 0.38
ρ1(f − d) 0.92 0.92 0.92 0.89 0.88

Sharpe Ratio 1.04 0.66 0.60 0.30 0.36
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Table 6. Long-horizon excess return predictability

Excess returns measured over horizons of 1, 3 and 5 years are regressed on the log price-dividend ratio for simulated
data from the model and from the sample data under different assumptions of the IES. We report estimated slope
coefficient (β̂1), t-statistic, and R2 statistic from a Newey-West estimator of the regression:

h∑
i=1

(
ret+i − rbt+i

)
= β0 + β1 (ft − dt) + εt

where ret and rbt are the log returns on stocks and government bill respectively. Panel A reports results from
simulated time series inclusive of jumps. Panel B reports results from simulated time series conditional on no
disasters occurring. Panel C reports estimates using U.S. data for the period 1947-2008.

Horizon in years

1 3 5

ψ = 0.5 ψ = 1.0 ψ = 1.5 ψ = 0.5 ψ = 1.0 ψ = 1.5 ψ = 0.5 ψ = 1.0 ψ = 1.5

Panel A: Model- Inclusive of jumps

β̂1 -0.20 -0.15 -0.14 -0.55 -0.40 -0.38 -0.85 -0.62 -0.58

t -69.83 -62.75 -59.41 -80.38 -77.60 -73.18 -79.44 -84.40 -79.96

R2 0.18 0.15 0.13 0.37 0.36 0.33 0.46 0.49 0.46

Panel B: Model- Conditional on no jumps

β̂1 -0.23 -0.16 -0.15 -0.64 -0.45 -0.42 -0.99 -0.70 -0.64

t -210.52 -96.14 -84.58 -217.54 -133.10 -114.88 -163.70 -150.67 -132.04

R2 0.59 0.25 0.20 0.76 0.53 0.46 0.75 0.66 0.60

Panel C: Data

β̂1 -0.13 -0.29 -0.44

t -2.60 -2.92 -3.05

R2 0.10 0.20 0.26
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Table 7. Long-horizon consumption growth predictability

Aggregate consumption growth measured over horizons of 1, 3 and 5 years are regressed on the log price-dividend
ratio for simulated data from the model and from the sample data under different assumptions of the IES. We
report estimated slope coefficient (β̂1), t-statistic, and R2 statistic from a Newey-West estimator of the regression:

h∑
i=1

(∆ct+i) = β0 + β1 (ft − dt) + εt

where ∆ct denotes the change in log consumption. Panel A reports results from simulated time series inclusive of
jumps. Panel B reports results from simulated time series conditional on no disasters occurring. Panel C reports
estimates using U.S. data for the period 1947-2008.

Horizon in years

1 3 5

ψ = 0.5 ψ = 1.0 ψ = 1.5 ψ = 0.5 ψ = 1.0 ψ = 1.5 ψ = 0.5 ψ = 1.0 ψ = 1.5

Panel A: Model- Inclusive of jumps

β̂1 0.036 0.020 0.017 0.099 0.054 0.048 0.152 0.083 0.073

t 18.778 18.615 18.648 20.461 20.300 20.332 20.062 19.907 19.933

R2 0.014 0.014 0.014 0.034 0.034 0.034 0.048 0.048 0.048

Panel B: Model- Conditional on no jumps

β̂1 -0.000 -0.000 -0.000 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001

t -0.284 -0.313 -0.307 -0.935 -0.977 -0.970 -0.989 -1.034 -1.028

R2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: Data

β̂1 0.003 0.003 0.005

t 0.807 0.287 0.372

R2 0.013 0.002 0.005
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Figure 1. Consumption-wealth ratio and price-dividend ratio. The graph shows normalized measures

of the log consumption-wealth ratio (top panel) and the log price-dividend ratio (bottom panel) under different

assumptions of the IES as a function of λt. The dotted vertical line is located at the unconditional mean of the

disaster risk, λ̄. For the collocation method an 11-degree approximation is used. For the discretization 11 nodes

are used with m = 11. The evaluation step uses ne = 200. The parameters for the consumption process, dividend

process, disaster risk process and preferences are µ = 0.0252, σ = 0.02, ϕ = 2.6, κ = 0.08, λ̄ = 0.0355, σλ = 0.067,

γ = 3.0 and β = 0.012.
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Figure 2. Asset prices, equity premium and aggregate volatility. The graph shows the expected return

on government liabilities (top left panel), the expected return on equities (top right panel), the equity risk premium

(bottom left panel) and the aggregate stock market volatility (bottom right panel) under different assumptions

of the IES as a function of λt. The dotted vertical line is located at the unconditional mean of the disaster risk,

λ̄. For the collocation method an 11-degree approximation is used. For the discretization 11 nodes are used with

m = 11. The evaluation step uses ne = 200. The parameters for the consumption process, dividend process,

disaster risk process and preferences are µ = 0.0252, σ = 0.02, ϕ = 2.6, κ = 0.08, λ̄ = 0.0355, σλ = 0.067, γ = 3.0

and β = 0.012. The probability of default is set to p = 0.4.
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