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Abstract

Under very general conditions, the total quadratic variation of a jump-di¤usion process

can be decomposed into di¤usive volatility and squared jump variation. We use this

result to develop a new option valuation model in which the underlying asset price

exhibits volatility and jump intensity dynamics. The volatility and jump intensity dy-

namics in the model are directly driven by model-free empirical measures of di¤usive

volatility and jump variation. Because the empirical measures are observed in discrete

intervals, our option valuation model is cast in discrete time, allowing for straight-

forward �ltering and estimation of the model. Our model belongs to the a¢ ne class

enabling us to derive the conditional characteristic function so that option values can

be computed rapidly without simulation. When estimated on S&P500 index options

and returns the new model performs well compared with standard benchmarks.
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1 Introduction

State-of-the-art derivative valuation models assume that price changes in the underlying

asset are driven by a di¤usive component as well as a jump component.1 The volatility

of the di¤usive component is typically assumed to be stochastic and the jump intensity

is sometimes assumed to be constant. The econometric literature has developed powerful

model-free methods for detecting statistically signi�cant jumps and for separating the daily

total di¤usive volatility from the total quadratic variation via the use of high-frequency

observations.2

Our contribution is to combine these insights and develop a new derivative valuation

model that directly uses the observable realized di¤usive volatility and realized jump vari-

ation to model dynamics in the di¤usive volatility and in the jump intensity. We cast our

model within the broad class of a¢ ne discrete time models which implies that volatility and

jump intensity �ltering is straightforward and that derivative valuation can be done without

relying on simulation-based methods. We develop a stochastic discount factor for the model

that enables us to compute European option values using Fourier inversion of the conditional

characteristic function.

The development of rigorous statistical foundations for the use of intraday returns to

construct daily realized volatility measures is arguably one of the most successful branches

of �nancial econometrics. For early references, see Andersen and Bollerslev (1998), Barndor¤-

Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold, and Labys (2003), and Zhang,

Mykland, and Aït-Sahalia (2005). For an early application of realized volatility in �nance,

see for example Bakshi, Cao and Chen (1997).

The �nance literature has recently developed models that use daily total quadratic vari-

ation from intraday data to specify and estimate daily models of option valuation which

outperform models estimated only on daily returns. See for example Stentoft (2008), Corsi,

Fusari and La Vecchia (2013), and Christo¤ersen, Feunou, Jacobs and Meddahi (2014).

However, we are the �rst to develop an option valuation model with separate dynamics for

observable realized di¤usive volatility and realized jump variation.

The econometric literature has shown that decomposing total quadratic variation into

its di¤usive and jump variation parts leads to improved forecasts of future volatility. See

for example Andersen, Bollerslev, and Diebold (2007), and Busch, Christensen, and Nielsen

1See for example Bates (2000, 2012), Eraker (2004), Huang and Wu (2004), and Santa-Clara and Yan
(2010).

2See Barndor¤-Nielsen and Shephard (2004, 2006), Huang and Tauchen (2005), and the recent survey in
Aït-Sahalia and Jacod (2012).
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(2011).3 Our goal is to assess if the improvements found in the volatility forecasting literature

carry over to option valuation. We �nd that they do.

When estimating the new model on returns, realized di¤usive volatility, and realized jump

variation we �nd that it outperforms standard benchmark models in the literature including

the Heston and Nandi (2000) a¢ ne GARCH model which is a special case of our model. The

general model also outperforms a special case that models only the total quadratic variation

dynamic, as well a special case that assumes the entire quadratic variation is attributable to

the jump component.

When estimating the new model on S&P500 index options as well as returns and realized

variation measures and evaluating the option �t then the model again performs well. The

option implied volatility root mean squared error of the new model is 17% below that of the

a¢ ne GARCH model. The improvement in option �t arises in virtually all the moneyness,

maturity and market volatility categories that we consider.

One key advantage of our approach is that we avoid the �ltering issues that arise in related

discrete time jump models, for example, Maheu and McCurdy (2004), Christo¤ersen, Jacobs,

and Ornthanalai (2012), and Ornthanalai (2014) who either rely on particle �ltering or ignore

the impact of estimated state variables when constructing the likelihood. More generally, we

argue that using high-frequency information to discern between daily jumps and di¤usive

volatility is likely to lead to a much more accurate identi�cation of the two components than

relying only on daily returns, or only on daily returns and options.

The remainder of the paper proceeds as follows: In Section 2 we brie�y review the

theory for separating di¤usive volatility from jumps and we show the two time series for the

S&P500 index which is the underlying asset in our empirical study. In Section 3 we develop

the physical return process. Section 4 estimates the physical process on returns, realized

bipower and jump variation measures. In Section 5, we derive an option valuation formula

for the model. In Section 6 we estimate the model on options and analyzes its �t. Finally,

Section 6 concludes. The proofs of our propositions are relegated to the appendices.

2 Daily Returns and Realized Variation Measures

In this section we �rst brie�y review the key theoretical results that allows us to separate

daily di¤usive volatility and jump variation using intraday data. We then construct empir-

ical measures of realized di¤usive volatility and realized jumps and plot the daily realized

3Dynamic models for daily returns and volatility using high-frequency information have been developed
in Forsberg and Bollerslev (2002), Engle and Gallo (2006), Bollerslev, Kretschmer, Pigorsch, and Tauchen
(2009), Shephard and Sheppard (2010), and Hansen, Huang, and Shek (2012).
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variation series along with daily returns.

2.1 Separating Volatility and Jumps: Theory

Barndor¤-Nielsen and Shephard (2004) assume the stock price follows a jump-di¤usion

process of the form

d log(St) =
p
V tdWt + Jtdqt

where dqt is a Poisson jump process with intensity �J ; and Jt is the normally distributed

log jump size with mean �J and standard deviation �J . Under this very general assumption

about the instantaneous return process, Barndor¤-Nielsen and Shephard (2004) show the

following limit result as the sampling frequency goes to in�nity

RVt !
Z t

t�1
Vsds+

Z t

t�1
J2s dqs (1)

RBVt !
Z t

t�1
Vsds;

where RVt denotes realized variance measuring total quadratic variation, and RBVt denotes

bipower variation measuring di¤usive volatility. These quantities will be de�ned in detail

below. We can now de�ne realized jump variation using

RJVt � RVt �RBVt !
Z t

t�1
J2s dqs;

which provides the decomposition of total quadratic variation that we need.

The next step in our analysis is to construct empirical measures of RVt, RBVt, and RJVt.

2.2 Separating Volatility and Jumps: Empirics

Our empirical investigation begins by constructing a grid of one-minute equity index prices

each day from which we compute �ve series of overlapping �ve minute log-returns. Each

day we can compute �ve realized variance measures from the sum of squared �ve-minute

returns. The �ve overlapping realized variance series are then averaged to obtain a single

market microstructure robust measure of total quadratic variation as follows

RV
0

t+1 =
1

5

4X
i=0

RV 5;it+1 =
1

5

4X
i=0

m=5X
j=1

R2t+(i+5j)=m
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where Rt+(i+5j)=m denotes the jth period 5-min intraday return, and m denotes the number

of 1-minute returns available on day t + 1. Following Hansen and Lunde (2005) the RVt+1
computed above is �nally rescaled so that the average value of RVt+1 is equal to the sample

variance of daily log-returns.

RVt+1 =

PT
t=1R

2
tPT

t=1RV
0
t

RV
0

t+1

where Rt = log (St)� log (St�1) is the daily log return computed from closing prices.

Di¤usive volatility is computed using realized bipower variation de�ned from

RBV
0

t+1 =
1

5

4X
i=0

RBV 5;it+1 =
1

5

4X
i=0

�

2

m=5�1X
j=1

jRt+(i+5j)=mjjRt+(i+5(j+1))=mj

Then, in order to ensure the empirical version of the theoretical relationship in equation (1)

holds, namely,

RVt+1 = RBVt+1 +RJVt+1

and also in order to ensure that RJVt+1 � 0, we use the following de�nitions,

RBVt+1 = min(RVt+1; RBV
0

t+1)

RJVt+1 = RVt+1 �RBVt+1

Figure 1 plots the four Rt (top left), RVt (top right), RBVt (bottom left), and RJVt
(bottom right) series from January 2, 1990 through December 31, 2013. Note from Figure 1

that the RVt, RBVt, and RJVt series share broadly similar patterns including the fact that

their largest values occur during the 2008 �nancial crises. This commonality suggests that

when RVt is high then both RBVt and RJVt are high and vice versa. Note also that RBVt
is an order of magnitude larger than RJVt.

Figure 2 plots the sample autocorrelation functions for the four series. Note that, as

expected, the autocorrelation of returns (top-left) are close to zero across lag orders. Also as

expected, the autocorrelations of realized variance (top-right) and bipower variation (bottom-

left) are both very high and statistically signi�cant throughout the 60 trading-day period

considered. More interestingly, the realized jump variation measure in the bottom-right panel

shows strong evidence of persistence as well. To be sure, the autocorelations for realized jump

variation are lower at short lags than for realized variance and bipower variation, but they

are very persistent. It is thus clear that the realized jump measure requires a dynamic

speci�cation of its own and likely one that is di¤erent from the dynamic speci�cation of
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bipower variation. Building a dynamic return model with such features is our next task.

3 A New Dynamic Model for Asset Returns

The goal of this section is to build a model for end-of-day t option valuation that incorporates

the information in the Rt, RBVt, and RJVt series computed at the end of the day. We want

to build a model in which state variables are explicitly �ltered using our observables and in

which option valuation can be done without Monte Carlo simulation.

3.1 The Asset Return Process

Consider �rst the following generic speci�cation of daily log returns

Rt+1 = r +
�
�z � 1

2

�
hz;t + (�y � �)hy;t + zt+1 + yt+1 (2)

where r denotes the risk-free rate, and the �rst innovation, zt+1, denotes a heteroskedastic

Gaussian innovation

zt+1 =
p
hz;t"1;t+1; with "1;t+1

iid� N (0; 1) : (3)

The second innovation, yt+1; denotes a compound jump process

yt+1 =

nt+1X
j=0

xjt+1; with x
j
t+1

iid� N(�; �2); (4)

where the number of Gaussian jumps per day is Poisson distributed

nt+1 � Ps (hy;t) : (5)

Note that this general framework allows for dynamic volatility via hz;t and dynamic jump

intensity via hy;t. These dynamics still need to be speci�ed and crucially for us they need to

be linked with the daily realized bipower and jump variation measures.

Finally, note that in our timing convention, hz;t denotes the expected �di¤usive�variance

for day t+1 constructed at the end of day t. Similarly, hy;t denotes the expected number of

jumps on day t+ 1 constructed at the end of day t.
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3.2 Incorporating Realized Bipower and Jump Variation

Each day the realized bipower variation provides new information about di¤usive volatil-

ity, hz;t. However, RBVt+1 is measured with error and we therefore specify the following

measurement equation

RBVt+1 = hz;t + �

��
"2;t+1 � 


p
hz;t

�2
�
�
1 + 
2hz;t

��
; (6)

where we have introduced a measurement error variable

"2;t+1
iid� N(0; 1);

which has a correlation � with the di¤usive return shock, "1;t+1, de�ned in equation (3).

The innovation term inside the brackets in equation (6) is constructed to have zero mean

ensuring that

Et [RBVt+1] = hz;t:

Note also that equation (6) allows for a nonlinear impact of "2;t+1 on RBVt+1 via 
.

Our daily realized jump variation measure constructed from intraday data is naturally

linked with the sum of squared daily jump variation in the model as follows:

RJVt+1 =

nt+1X
j=0

�
xjt+1

�2
:

This relationship implies that

Et [RJVt+1] =
�
�2 + �2

�
hy;t;

where we have used the second moment of the Poisson distribution.

3.3 Volatility and Jump Dynamics

We are now ready to specify the dynamics of the expected volatility and jump intensity. In

the empirical sections below, we will focus on a special case of our modeling framework in

which we simply pose that

hz;t+1 = !z + bzhz;t + azRBVt+1, and (7)

hy;t+1 = !y + byhy;t + ayRJVt+1: (8)
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Note that in this speci�cation, hz;t+1 and hy;t+1 are both univariate AR(1) processes, which

we can write as

hz;t+1 = !z � az� +
�
bz + az � az�
2

�
hz;t + az�

�
"2;t+1 � 


p
hz;t

�2
hy;t+1 = !y + byhy;t + ay

nt+1X
j=0

�
xjt+1

�2
:

The dynamics in (7-8) imply that RBVt+1 and RJVt+1 are both univariate ARMA(1; 1)

processes. We will refer to this as the BPJVM model.

3.4 The General Case

Our dynamic modelling framework is more general than the BPJVM model. De�ne the

bivariate processes

ht � (hz;t; hy;t)
0 , and

RVMt+1 � (RBVt+1; RJVt+1)
0 :

The general dynamic vector process is then of the form,

ht+1 = ! + bht + aRVMt+1;

where the parameter vector and matrices are

! = (!z; !y)
0 ; b =

 
bz bz;y

by;z by

!
; a =

 
az az;y

ay;z ay

!
:

Note that by construction ht+1 is a vector autoregressive process of order one, V AR (1),

and RVMt+1 is a vector autoregressive moving average model, V ARMA(1; 1). In particular,

note that the expected value of the vector ht+1 is

Et [ht+1] = ! + bht + a

 
hz;t�
�2 + �2

�
hy;t

!

� ! +

"
bz + az bz;y +

�
�2 + �2

�
az;y

by;z + ay;z by +
�
�2 + �2

�
ay

#
ht:

Below we will focus on the BPJVM version of the model in which az;y = ay;z = bz;y =

by;z = 0.
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3.5 Expected Returns and Risk Premiums

It is clear from equation (2) that the one-day-ahead conditionally expected log returns in

the model is simply

Et [Rt+1] = r +
�
�z � 1

2

�
hz;t + (�y � � + �)hy;t:

The jump compensator parameter, �, in our model is itself a particular function of other

parameters

� = e�+
1
2
�2 � 1: (9)

This functional form ensures that conditionally expected total return is

Et [exp (Rt+1)] = exp (r + �zhz;t + �yhy;t) ; (10)

which in turn ensures that �z and �y can be viewed as compensation for di¤usive volatility

and jump exposure, respectively. Substituting equation (2) into (10), taking expectations,

and solving for � yields equation (9). The � parameter will therefore not be estimated below

but instead simply set to is value implied by equation (9).

3.6 Conditional Second Moments

From the model above, it is relatively straightforward to derive the following one-day-ahead

conditional second moments

V art [Rt+1] = hz;t +
�
�2 + �2

�
hy;t (11)

V art [RBVt+1] = 2�2
�
1 + 2
2hz;t

�
V art [RJVt+1] =

�
�4 + 3�4 + 6�2�2

�
hy;t

Covt (Rt+1; RBVt+1) = �2�
�hz;t
Covt (Rt+1; RJVt+1) = �

�
�2 + 3�2

�
hy;t

Covt (RBVt+1; RJVt+1) = 0

Note that the model allows for two types of leverage e¤ects: One via the return covariance

with bipower variation and another via the return covariance with jumps.
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4 Physical Parameter Estimates

Above we have laid out the general framework for incorporating bipower variation and real-

ized jump variation when modeling return dynamics. In this section we develop a likelihood-

based estimation method that enables us to estimate the physical parameters using daily

observations on returns, as well as the realized variation measures from Figure 1. We also

develop two special cases of the general model and we brie�y describe the Heston and Nandi

(2000) benchmark GARCH model as well.

4.1 Deriving the Likelihood Function

When deriving the conditional quasi-likelihood function note �rst that the contribution to

the total conditional likelihood by day t + 1 can be obtained by summing over the number

of jumps occurring on that day. We can write

ft (Rt+1; RBVt+1; RJVt+1) =
1X
j=0

ft (Rt+1; RBVt+1; RJVt+1; nt+1 = j)

=
1X
j=0

ft (Rt+1; RBVt+1; RJVt+1jnt+1 = j)Pt [nt+1 = j]

with the number of jumps drawn from the Poisson distribution,

Pt [nt+1 = j] =
e�hy;thjy;t
!j

:

Separating out the days with exactly zero jumps, we get

ft (Rt+1; RBVt+1; RJVt+1jnt+1 = j) =
(
ft (Rt+1; RBVt+1) ; if j = 0

ft (j) ; if j > 0

In order to save on notation, de�ne the variable vectors

Xt+1 � (Rt+1; RBVt+1; RJVt+1)0 X
(1;2)
t+1 � (Rt+1; RBVt+1)

0

and the corresponding conditional �rst and second moments

�t (nt+1) � Et [Xt+1jnt+1] �
(1;2)
t � Et

h
X
(1;2)
t+1

���nt+1i

t (nt+1) � V art [Xt+1jnt+1] 
(1;2)t (nt+1) � V art

h
X
(1;2)
t+1

���nt+1i (12)
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Then we can write the marginal likelihood for returns and bipower variation when nt+1 =

0 as

ft (Rt+1; RBVt+1) = (2�)�1
���
(1;2)t (0)

����1=2
� exp

�
�1
2

�
X
(1;2)
t+1 � �

(1;2)
t (0)

�0


(1;2)
t (0)�1

�
X
(1;2)
t+1 � �

(1;2)
t (0)

��
and when nt+1 > 0 we have

ft (j) = (2�)
�3=2 j
t (j)j�1=2 exp

�
�1
2
(Xt+1 � �t (j))

0
t (j)
�1 (Xt+1 � �t (j))

�
:

The log-likelihood is now de�ned by

lnLP =
T�1X
t=1

ln(ft(Rt+1; RBVt+1; RJVt+1)): (13)

4.2 Conditional Moments

The likelihood function above requires that we derive the �rst two moments conditional on

time and on the number of jumps, nt+1. For the conditional �rst moments we have

Et [Rt+1jnt+1] = r +

�
�z �

1

2

�
hz;t + (�y � �)hy;t + �nt+1

Et [RBVt+1jnt+1] = hz;t

Et [RJVt+1jnt+1] =
�
�2 + �2

�
nt+1

For the conditional second moments we have

V art [Rt+1jnt+1] = hz;t + �
2nt+1

V art [RBVt+1jnt+1] = 2�2
�
1 + 2
2hz;t

�
V art [RJVt+1jnt+1] = 2�2

�
�2 + 2�2

�
nt+1

Covt [Rt+1; RBVt+1jnt+1] = �2�
�hz;t
Covt [Rt+1; RJVt+1jnt+1] = 2��2nt+1

Covt [RBVt+1; RJVt+1jnt+1] = 0

From these moments we can easily construct the �t vectors and 
t matrices in equation (12)

needed for the likelihood function in equation (13).

Before turning to estimation of the new model we de�ne three special cases of interest
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which we also estimate below.

4.3 The Heston-Nandi GARCH Model as a Special Case

First, by setting hy;t = 0, and � = 1, we obtain one of the standard GARCH(1,1) models in

the literature.

Speci�cally, note that � = 1 implies that "1;t+1 = "2;t+1 and the realized variance therefore

becomes irrelevant. We then get

hz;t+1 = !z � az� +
�
bz + az � az�
2

�
hz;t + az�

�
"2;t+1 � 


p
hz;t

�2
� ! + �hz;t + �

�
"1;t+1 � 


p
hz;t

�2
;

which is exactly the Heston and Nandi (2000) a¢ ne GARCH(1,1) model.

4.4 The RVM Model as a Special Case

Second, we can shut down the separate jump variation by setting hy;t = 0 in the new model.

We then get

Rt+1 � log

�
St+1
St

�
= r +

�
�z �

1

2

�
hz;t + zt+1; with zt+1 =

p
hz;t"1;t+1

RVt+1 = RBVt+1 +RJVt+1 = hz;t + �

��
"2;t+1 � 


p
hz;t

�2
�
�
1 + 
2hz;t

��
:

This is exactly the autoregressive RV model in Christo¤ersen, Feunou, Jacobs, and Med-

dahi (2014). We will refer to this as the RVM model below.

4.5 The RJM Model as a Special Case

Third, we can shut down the bipower variation channel by setting hz;t = 0. We then get

Rt+1 = r � � � �2

2
+ (�y � �)hy;t + yt+1

yt+1 =

nt+1X
j=1

xjt+1; where x
j
t+1

iid

~N(�; �2)

P [nt+1 = jjIt] =
e�hy;thj�1y;t

!(j � 1)
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and furthermore we set

RVt+1 =

nt+1X
j=1

�
xjt+1

�2 � �2
hy;t+1 = !y + byhy;t + ayRVt+1:

Note that in this case the entire quadratic variation is assumed to be driven by jumps so

that each day has at least one jump. We will refer to this as the RJM model below.

4.6 Parameter Estimates and Model Properties

Table 1 contains the maximum likelihood estimation results for the physical return processes

developed above. One year prior to our estimation sample we set the conditional variance

equal to the unconditional variance and then burn-in the model on the pre-sample year to

get an appropriate conditional variance on the �rst day of the sample. Note that the !

parameters do not have standard errors as they are computed by variance targeting thus

exactly matching the observed sample variance of returns. The parameter estimates are

generally signi�cant except for �s which are always di¢ cult to pin down in relatively short

return-based samples.

Note that volatility persistence is very high in the RVM and BPJVM models and con-

siderably lower in the GARCH and RJM model. Unconditional volatility and volatility

persistence is de�ned in the GARCH model as

E[ht] =
! + �

1� (� + �
2) �
! + �

1� Persist;

in the RVM model as

E[hz;t] =
!z

1� (bz + az)
� !z
1� Persist;

in the JVM model as

E[hy;t] =
!y

1� (by + (�2 + �2)ay)
� !y
1� Persist;

and in the BPJVM model as

E[ht] =
!z

1� (bz + az)
+

(�2 + �2)!y

1� (by + (�2 + �2)ay)
:

Persistence for the two variance components in the BPJVM model are thus equal to the

RVM and JVM cases.
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When comparing model �t, we are faced with the challenge that the GARCH model is

only �t to returns, the RVM and RJM models are �t to returns and RV, and the general

BPJVM model is �t to returns, BPV and RJV. Table 1 shows that the likelihood value for

the general model is 129; 226 but this is not readily comparable to the other models which are

�t to di¤erent quantities. We therefore re-estimate the BPJVM model maximizing only the

joint likelihood of returns and RV.4 The second row of log likelihoods contains the results.

From this perspective, the BPJVM model by far performs the best with a likelihood of

69; 656 compared with 68; 783 for the JVM model and 68; 212 for the RVM model.

When maximizing only the return likelihood the BPJVM model again performs the best

with a likelihood of 19; 522. The improvement over the RVM and JVMmodel is not dramatic

here but returns are unlikely to be informative about all the parameters of the model and

so this set of results is only provided to enable comparison with GARCH. Note that the

RVM, JVM and BPJVM models all perform very well compared with the benchmark a¢ ne

GARCH model.

In Figure 3 we plot the daily conditional volatility computed as the square root of ht+1 for

each model. Note that the volatility spikes are much more dramatically in the RVM, JVM

and BPJVM models than in the GARCH model. It is interesting and perhaps surprising

that the JVM model is able to produce a spot volatility time path which is quite similar to

that from the RVM and BPJVM models. This is partly because the RJM model is �t to

returns and RV and not returns and RJV.

In Figure 4 we plot the daily conditional volatility of variance computed as the square

root of

V art(ht+1) = 2a
2
z�
2(1 + 2
2hz;t) + a

2
y(�

2 + �2)2((2�2(�2 + 2�2) + (�2 + �2)2)hy;t (14)

for the BPJVMmodel. The variance of variance expressions for the other models are similar.

Note from Figure 4 that the conditional volatility of variance is relatively low and almost

constant in the GARCH model whereas in the other models it tends to be large when

volatility is high thus matching the empirical evidence. Note that the volatility of volatility

is slightly lower in the RJM than in the RVM and BPJVM models.

In Figure 5 we plot the conditional correlation of returns and variance, which are com-

puted for the BPJVM model using

Corrt(Rt+1; ht+1) =
�2��
azhz;t + ay�(�2 + �2)(�2 + 3�2)hy;tp

V art [Rt+1]V art(ht+1)
(15)

4See Appendix A for the details.

14



where the terms in the denominator can be obtained from equations (11) and (14). The

conditional correlation expressions for the other models are similar. Figure 5 shows that the

di¤erences across models are quite large from this perspective. The GARCH model implies

a correlation of almost negative one. The other models imply correlations around �0:2: The
RJM and the BPJVM models imply some time series variation in the correlation whereas

the RJM model does not.

Figure 6 presents evidence on the di¤erent models�ability to forecast one-day ahead real-

ized variance. The ex-post realized variance is on the vertical axis and the model-predicted

variance is on the horizontal axis. The corresponding regression �t is 49% for the GARCH

model, 85% for the JVM model and 87% for the RVM and BPJVM models.5 The slope

coe¢ cient on the volatility forecast, which ideally should be 1, is 2:5 in the GARCH model,

1:3 in the JVM model and 1:1 in the RVM and BPJVM models. The RVM and BPJVM

models are thus able to predict realized variance quite well.

The properties we have investigated above are likely to have important implications for

the models�ability to �t large panels of options. This is the task to which we now turn.

5 Option Valuation

In this section we show how the physical model developed above can be used for option

valuation. We �rst derive the moment generating function of the physical process and show

that it is a¢ ne. We then de�ne a pricing kernel which implies that the risk-neutral moment

generating function is of the same form as its physical counterpart. This in turn implies that

we can compute option prices using Fourier inversion. Empirical results from estimating the

model jointly on returns, realized measures and options follow.

5.1 The Physical Moment Generating Function

Using the vector notation ht � (hz;t; hy;t)0 de�ned above, and further de�ning the coe¢ cients
v � (vz; vy)0, Appendix B shows that we can write the physical moment generating function

5The detailed regression results are not reported in the tables but are available from the authors upon
request.
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as

Et [exp (uRt+1 + v
0ht+1)] = exp

0BB@
u
�
r +

�
�z � 1

2

�
hz;t + (�y � �)hy;t

�
+ v0 (! + bht)

+v1 (hz;t � � (1 + 
2hz;t))� 1
2
ln (1� 2�v1)

+
�
v1�


2 + 1
2
(1� �2)u2 + (u��2�v1
)2

2(1�2�v1)

�
hz;t + (e

v3 � 1)hy;t

1CCA
� exp

�
A (u; v)0 ht +B (u; v)

�
(16)

where we have further de�ned

v0a = (vz; vy)

 
az az;y

ay;z ay

!
= (vzaz + vyay;z; vzaz;y + vyay) � (v1; v2) ;

and

v3 = �
1

2
ln
�
1� 2v2�2

�
+ u� + v2�

2 +
(u+ 2�v2)

2 �2

2
�
1� 2v2�2

� :
Note that the physical MGF is of an exponentially a¢ ne form which will greatly facilitate

option valuation below.

5.2 Risk Neutralization

We follow Christo¤ersen, Elkamhi, Feunou, and Jacobs (2010) and assume an exponential

pricing kernel of the form

�t+1 =
Mt+1

Et [Mt+1]
�

exp
�
�1;t"1;t+1 + �2;t"2;t+1 + �3;t

Pnt+1
j=0 x

j
t+1

�
Et

h
exp

�
�1;t"1;t+1 + �2;t"2;t+1 + �3;t

Pnt+1
j=0 x

j
t+1

�i (17)

= exp

 
�1;t"1;t+1 + �2;t"2;t+1 + �3;t

Pnt+1
j=0 x

j
t+1

�1
2
�21;t � 1

2
�22;t � ��1;t�2;t �

�
e��3;t+

1
2
�2�23;t � 1

�
hy;t

!

In order to ensure that the model is a¢ ne under Q, it is necessary and su¢ cient to impose

the following conditions

�2;t = (
 � 
�)
p
hz;t � ��1;t

�3;t = �3:

Appendix C shows that the risk-neutral probability measure for the BPJVM model is
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then

Rt+1 � log

�
St+1
St

�
= r � 1

2
hz;t � ��h�y;t +

p
hz;t"

�
1;t+1 + yt+1

yt+1 =

nt+1X
j=0

xjt+1; x
j
t+1

iid�
Q

N(��; �2); nt+1jIt �Q Poisson
�
h�y;t
�

RBVt+1 = hz;t +
�
(
�)2 � 
2

�
hz;t + �

��
"�2;t+1 � 
�

p
hz;t

�2
�
�
1 + (
�)2 hz;t

��
RJVt+1 =

nt+1X
j=0

�
xjt+1

�2
where "�1;t+1 and "

�
2;t+1 are bivariate Gaussian under Q, and where

h�y;t = e��3+
1
2
�2�23hy;t

�� = � + �2�3; �
� = e�

�+ 1
2
�2 � 1

Hence we have the risk premiums

EQt [RBVt+1]� Et [RBVt+1] =
�
(
�)2 � 
2

�
hz;t

EQt [RJVt+1]� Et [RJVt+1] =
�
(��)2 + �2

�
h�y;t �

�
�2 + �2

�
hy;t:

where 
� and �3 are additional parameters to be estimated. Below we will use the notation

� = 
 � 
� and report estimates of � instead of 
�.
By the nature of the model, risk-neutralization of the JVM model is slightly di¤erent

from the other models. Appendix D provides the details.

5.3 Computing Option Values

Above we have shown that the risk-neutral distribution is of the same form as physical

distribution. The risk-neutral MGF will therefore be of the form shown in Appendix B but

with risk-neutral parameters used instead of their physical counterparts. We can therefore
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write the one-period risk-neutral conditional MGF as

	Qt;t+1 � EQt [exp (uRt+1 + v
0ht+1)] (18)

= exp

0BBB@
u
�
r � 1

2
hz;t � ��h�y;t

�
+ v0 (! + bht)

+v1
�
hz;t +

�
(
�)2 � 
2

�
hz;t � �

�
1 + (
�)2 hz;t

��
� 1

2
ln (1� 2�v1)

+

�
v1� (


�)2 + 1
2
(1� �2)u2 + (u��2�v

�
1


�)
2

2(1�2�v1)

�
hz;t + (e

v3 � 1) e��3+ 1
2
�2�23hy;t

1CCCA
� exp

�
A� (u; v)0 ht +B

� (u; v)
�

Call option values can now be computed via standard Fourier inversion techniques

Call = StP1(t;M)� exp(�rM)XP2(t;M), where (19)

P1(t;M) =
1

2
+

Z +1

0

Re

 
	Qt;t+M(1 + iu) exp(�rM � iu ln(X

St
))

�iu

!
du

P2(t;M) =
1

2
+

Z +1

0

Re

 
	Qt;t+M(iu) exp(�iu ln(XSt ))

�iu

!
du

where 	Qt;t+M denotes the risk-neutral M -period MGF (see Appendix B) corresponding to

the one-day MGF in equation (18). Put option values can be computed from put-call parity.

Armed with the quasi-closed form option-pricing formula in equation (19) we are now

ready to embark on a large-scale empirical investigation of the four models.

5.4 Fitting Options and Returns

From OptionMetrics we obtain Wednesday closing mid-quotes on SPX options data starting

on January 2, 1996 and ending on August 28, 2013 which was the last date available at the

time of writing.

We apply some commonly-used option data �lters to the raw data. We restrict attention

to out-of-the-money options with maturity between 15 and 180 calendar days. We omit

contracts that do not satisfy well-known no-arbitrage conditions. We use only the six strikes

with highest trading volume for each maturity quoted on Wednesdays. Finally, we convert

puts to calls using put-call parity so as to ease the computation and interpretation below.

Table 2 provides descriptive statistics of the resulting data set consisting of 21,283 options.

The top panel shows the contracts sorted by moneyness de�ned using the Black-Scholes delta.

The persistent �smile�pattern in implied volatility is readily apparent from the top panel.

The middle panel sorts the contracts by maturity and shows that there is not a persistent

maturity pattern in implied volatilities: The term-structure of implied volatility is roughly
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�at on average. The bottom panel sorts by the VIX level. Table 2 shows that roughly half

the contracts have a Delta above 0:6, a time-to-maturity between 30 and 90 days and are

recorded on days when the VIX is between 15 and 25.

Joint estimation is performed by following Trolle and Schwartz (2009) who assume that

the vega-weighted option errors, ej, are i.i.d. Gaussian. We can then de�ne the option

likelihood, lnLO, and the joint likelihood, lnL; as follows

VWRMSE =

vuut 1

N

NX
j=1

e2j =

vuut 1

N

NX
j=1

((CMkt
j � CMod

j )=BSV Mkt
j )2 (20)

lnLO = �1
2

NX
j=1

[ln(VWRMSE2) + e2j=VWRMSE
2]

lnL = lnLP + lnLO;

where lnLP denotes the log of likelihood function of the physical process de�ned in equation

(13). We now estimate all physical parameters and risk premia by maximizing the joint

likelihood function, lnL.

Table 3 contains the parameter estimates and log likelihoods for our four models. We

again calibrate the ! parameters by targeting the unconditional model variance to the sample

variance of returns. As in Table 1, the physical parameters tend to be estimated precisely

whereas some of the risk premium parameters continue to be di¢ cult to pin down. A

sequential estimation procedure in which only risk premia are estimated from options may

lead to more precise estimates. We leave this for future work.

The log-likelihoods reported in Table 3 are from joint estimation on returns and options

for the GARCH model; from returns, RV and options for the RVM and JVM models; and

from returns, BPV, RVJ and options for the BPJVM model. They are therefore not directly

comparable.

The option errors at the bottom of the table, however, are comparable. They show that in

terms of implied volatility root mean squared error (IV RMSE) the RVM and JVM models

o¤er a 12% improvement over the standard GARCH model. The BPJVM model o¤ers a

17% improvement which is quite impressive. The VWRMSE metric is broadly consistent

with the IV RMSE metric again showing a 17% improvement of BPJVM over GARCH.

5.5 Exploring the Results

In Table 4 we decompose the overall IV RMSE �t in Table 3 by moneyness, maturity and

VIX level following the layout of Table 2. The top panel of Table 4 shows that the BPJVM
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model performs the best in all but one moneyness category, namely deep out-of-the-money

calls where RVM is best. The BPJVM model performs particularly well for deep in-the-

money calls (corresponding to deep out-of-the-money puts) which have proven notoriously

di¢ cult to �t in the literature. The middle panel of Table 4 shows that the BPJVM model

performs the best in all maturity categories including one virtual tie with the JVM model,

namely for maturities between 30 and 60 days. The bottom panel shows that the BPJVM

model is best in �ve of six VIX categories and virtually tied in the sixth when VIX is between

15 and 20%.

All together, Table 4 shows that the overall improvement in option �t by the BPJVM

model evident in Table 3 is not due to any particular subset of the data set. The superior

�t is obtained virtually everywhere.

Figure 7 reports the weekly time series of IV RMSE for at-the-money options only. The

�gure is thus designed to reveal the models�ability to match the pattern of market volatility

through time. Figure 7 shows that the RVM, JVM and BPJVM models are all much better

than the GARCH model at capturing the dramatic dynamics in volatility unfolding during

the 2008 �nancial crisis. It is indeed quite remarkable that the recent �nancial crisis does

not appear as an outlier for the RVM, JVM and BPJVM models in Figure 7.

Figure 8 plots the model-implied risk neutral higher moments over time for the six-month

horizon. Note that the BPJVM model is able to generate higher skewness (middle panel)

and excess kurtosis (lower panel) values than are the three other models. This feature of the

model is likely a key driver in its success in �tting observed option prices as evident from

Tables 3 and 4.

The top panel of Figure 8 shows that the RVM, JVM and BPJVM models generate

much higher six-month risk-neutral volatility values than GARCH during the �nancial crisis

in 2008. This is likely driving the at-the-money IV RMSE performance of these models

evident from Figure 7.

6 Summary and Conclusions

Under very general conditions, the total quadratic variation of a stochastic volatility process

can be decomposed into di¤usive variation and squared jump variation. We have used this

result to develop a new class of option valuation models in which the underlying asset price

exhibits volatility and jump intensity dynamics. The �rst key feature of our model is that

the volatility and jump intensity dynamics in the model are directly driven by model-free

empirical measures of di¤usive volatility and jump variation. Second, because the empirical

measures are observed in discrete intervals, our option valuation model is cast in discrete
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time, allowing for straightforward estimation of the model. Third, our model belongs to

the a¢ ne class enabling us to derive the conditional characteristic function so that option

values can be computed rapidly without relying on simulation methods. When estimated on

S&P500 index options, realized measures, and returns the new model performs well compared

with standard benchmarks.

Our analysis points to some interesting avenues for future research. First, a sequential

estimation of physical parameters and then risk premia would be interesting. Second, sev-

eral alternatives exist to the nonparametric measures of jumps explored in this paper. For

example, Li (2013) employs hedging errors implied by delta-hedged positions in European-

style options to identify jumps. Applying these alternative jump measures in our modeling

framework could be useful. Third, so far we have only used model-free physical measures

of jumps and di¤usive volatility. However, Du and Kapadia (2012) have recently proposed

model-free risk-neutral counterparts to the realized bipower variation and realized jump vari-

ation measures we employ. Using the risk-neutral measures in our modeling framework may

well lead to an even better �t of our model to observed option prices. We leave these tasks

for future work.
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Appendix A: A Special Case of the Likelihood Function

In this section, we compute a special case of the likelihood function used to �t BPJVMmodel

to the observed returns and RV only. Denote

ft (Rt+1; RVt+1) = ft (Rt+1; RBVt+1 +RJVt+1)

Using the methodology from the general case, we have

ft (Rt+1; RBVt+1 +RJVt+1) =

1X
j=0

ft (Rt+1; RBVt+1 +RJVt+1; nt+1 = j)

=
1X
j=0

ft (Rt+1; RBVt+1 +RJVt+1jnt+1 = j)Pt [nt+1 = j]

with

Pt [nt+1 = j] =
e�hy;thjy;t
!j

ft (Rt+1; RBVt+1 +RJVt+1jnt+1 = j) =
(
ft (Rt+1; RBVt+1) if j = 0
�ft (j) if j > 0

where
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Appendix B: Physical MGF for the BPJVM Model

In this section, we derive the closed-form MGF for the BPJVM model under the physical

measure. Using the vector notation ht � (hz;t; hy;t)
0 and further de�ning the coe¢ cients
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v � (vz; vy)0, we can write the physical moment generating function as

Et [exp (uRt+1 + v
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We further de�ne
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Then, we can write
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Where the expectations can be computed explicitly as
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hence
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Therefore, we have the following expression
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Substituting the above back to the original MGF, we get
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which shows that the physical one-step-ahead moment generating function is exponentially

a¢ ne.

We conjecture that the multi-step moment generating function is also of the a¢ ne form.

First, de�ne

	t;t+M(u) = Et[exp(u
MX
j=1

Rt+j)]

= exp(C(u;M)0ht +D(u;M))

From this we can compute

	t;t+M+1(u) = Et[exp(u
MX
j=1

Rt+j)] = Et[Et+1[exp(u
MX
j=1

Rt+j)]]

= Et[exp(uRt+1)Et+1[exp(u

MX
j=2

Rt+j)]]

= Et[exp(uRt+1 + C(u;M)
0ht+1 +D(u;M))]

= exp(A(u;C(u;M))0ht +B(u;C(u;M)) +D(u;M))

27



which yields the following recursive relationship

C(u;M + 1) = A(u;C(u;M))

D(u;M + 1) = B(u;C(u;M)) +D(u;M)

using the following initial conditions

C(u; 1) = A(u;0)

D(u; 1) = B(u;0)

where A and C are 2-by-1 vector-valued functions.

Appendix C: Risk Neutralization of the BPJVM Model

In this appendix, we derive the risk-neutralization of the BPJVM model. We assume an

exponential pricing kernel of the following form
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We need to impose the no-arbitrage condition

EQt [exp (Rt+1)] � Et
�
�t+1 exp (Rt+1)

�
= exp (r)
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Setting this expression equal to the risk-free rate, and taking logs, yields the condition
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p
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In order to determine the form of the risk-neutral distribution of the shocks we consider the

moment generating function

EQt [exp (u1"1;t+1 + u2"2;t+1 + u3yt+1)] = exp
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In order to obtain an a¢ ne model under the Q measure, we set �3;t to a constant, i.e.

�3;t = �3:Under the Q measure we have
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We thus see that under the Q measure, "�1;t+1 and "

�
2;t+1 follow a bivariate standard normal

distribution with correlation �:
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The realized bipower variation equation can be written as follows
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Now we can re-write the returns equation under the risk-neutral measure as follows
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Hence under the risk-neutral measure, we have
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with the following parameter mappings
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Appendix D: Risk Neutralization of the RJM Model

In this appendix, we derive the risk-neutralization of the RJM model. We use the following

particular form of the pricing kernel to ensure the a¢ ne structure is preserved under the

risk-neutral measure.

�t+1 =
Mt+1

Et [Mt+1]
�

exp

 
�1
Pnt+1

j=1 x
j
t+1 + �2

nt+1P
j=1

�
xjt+1

�2
+ �3nt+1

!

Et

"
exp

 
�1
Pnt+1

j=1 x
j
t+1 + �2

nt+1P
j=1

�
xjt+1

�2
+ �3nt+1

!#

31



which can be written as
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To determine the risk-neutral distribution of the shocks, we consider
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35



Figure 1: Daily Returns and Realized Variation Measures.
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Notes: The top-left panel shows the daily log returns on the S&P500 index. The top-

right panel shows the daily realized volatility computed from averages of sum of squared

overlapping 5-minute returns. The bottom left panel shows the realized bipower variation

computed using the method in Barndor¤-Nielsen and Shephard (2004). The bottom right

panel shows the realized jump variation constructed as the residual between realized volatility

and realized bipower variation. The sample goes from January 2, 1990 through December

31, 2013.
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Figure 2: Autocorrelations of Daily Returns and Realized Variation Measures.
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Notes: We report the sample autocorrelation functions for lag 1 through 60 trading days

for returns (top-left panel), realized volatility (top-right panel), realized bipower variation

(bottom-left panel), and realized jump variation (bottom-right panel). The sample goes from

January 2, 1990 through December 31, 2013.
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Figure 3: Daily Conditional Volatility.
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Notes: We plot the daily model-based conditional volatility for the four models we consider:

The benchmark Heston-Nandi GARCH model (top-left), the RVM model based on realized

volatility (top-right), the JVM model based on realized jump variation only (bottom-left),

and the full BPJVMmodel that separately uses realized bipower variation and realized jump-

variation. We use the parameter estimates from Table 1. The sample goes from January 2,

1990 through December 31, 2013.
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Figure 4: Conditional Volatility of Variance.
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Notes: We plot the daily model-based conditional volatility of variance for the four models we

consider: The benchmark Heston-Nandi GARCH model (top-left), the RVM model based

on realized volatility (top-right), the JVM model based on realized jump variation only

(bottom-left), and the full BPJVM model that separately uses realized bipower variation

and realized jump-variation. We use the parameter estimates from Table 1. The sample

goes from January 2, 1990 through December 31, 2013.
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Figure 5: Daily Correlation of Return and Variance.

1990 1995 2000 2005 2010
­1

­0.8

­0.6

­0.4

­0.2

0
GARCH Model

1990 1995 2000 2005 2010
­1

­0.8

­0.6

­0.4

­0.2

0
RVM Model

1990 1995 2000 2005 2010
­1

­0.8

­0.6

­0.4

­0.2

0
JVM Model

1990 1995 2000 2005 2010
­1

­0.8

­0.6

­0.4

­0.2

0
BPJVM Model

Notes: We plot the daily model-based conditional correlation of return and variance for

the four models we consider: The benchmark Heston-Nandi GARCH model (top-left), the

RVM model based on realized volatility (top-right), the JVM model based on realized jump

variation only (bottom-left), and the full BPJVMmodel that separately uses realized bipower

variation and realized jump-variation. We use the parameter estimates from Table 1. The

sample goes from January 2, 1990 through December 31, 2013.
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Figure 6: Realized Volatility and Predicted Volatility from Models.
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Notes: We scatter plot the ex-post realized variance (vertical axis) against the model-

predicted total variance (horizontal axis) for each of our models: The benchmark Heston-

Nandi GARCH model (top-left), the RVM model based on realized volatility (top-right),

the JVM model based on realized jump variation only (bottom-left), and the full BPJVM

model that separately uses realized bipower variation and realized jump-variation. We use

the parameter estimates from Table 1. The sample goes from January 2, 1990 through

December 31, 2013.
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Figure 7: Weekly Implied Root Mean Squared Error from At-the-Money Options.
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Notes: We plot the weekly implied volatility root mean squared error for at the money

options for each of our models: The benchmark Heston-Nandi GARCH model (top-left),

the RVM model based on realized volatility (top-right), the JVM model based on realized

jump variation only (bottom-left), and the full BPJVM model that separately uses realized

bipower variation and realized jump-variation. We use the parameter estimates from Table

2. The option sample goes from January 2, 1996 through August 28, 2013.
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Figure 8: Model-Based, Risk-Neutral Higher Moments. Six-Month Horizon.
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Notes: We plot the six-month risk-neutral volatility, skewness and kurtosis implied by each of

our models: The benchmark Heston-Nandi GARCH model (top-left), the RVM model based

on realized volatility (top-right), the JVM model based on realized jump variation only

(bottom-left), and the full BPJVM model that separately uses realized bipower variation

and realized jump-variation. We use the parameter estimates from Table 2. The option

sample goes from January 2, 1996 through August 28, 2013.
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Table 1: Maximum Likelihood Estimation on Daily S&P500 Returns and Realized Measures. 1990-2013

GARCH RVM JVM BPJVM
Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

λz 4.30E-01 (6.87E-01) 4.40E-01 (1.12E+00) 4.19E-01 (1.86E+00)

λy 2.06E-06 (2.31E-05) 9.13E-05 (4.67E-05)

α 4.87E-06 (1.57E-07)

β 8.50E-01 (1.13E-02)

γ 1.53E+02 (7.66E+00) 7.40E+03 (1.81E+01) 1.45E+04 (6.23E+01)

ωz 4.73E-14 2.35E-08 7.06E-08

ωy 3.38E-02 8.27E-02

σ 5.28E-07 (2.12E-07) 2.51E-07 (1.71E-08)

θ -7.98E-04 (3.08E-05) 1.42E-05 (1.98E-05)

δ 4.40E-03 (4.13E-06) 1.62E-03 (3.20E-06)

ρ 2.14E-01 (7.38E-02) 2.67E-01 (9.52E-02)

bz 5.05E-01 (3.64E-02) 4.87E-01 (4.21E-02)

by 5.46E-01 (3.60E-02) 9.16E-01 (2.14E-02)

az 4.95E-01 (3.54E-02) 5.12E-01 (4.36E-02)

ay 1.94E+04 (1.21E+02) 2.41E+04 (6.31E+02)

E[hz,t] 1.16E-04 1.35E-04 1.24E-04

E[hy,t] 5.70E+00 4.04E+00

Model Properties
Average Volatility 18.34 18.34 18.34 18.34
Volatility Persistence

From Returns 0.9635
From RV 0.9998 0.9340
From RBV 0.9998
From RJV 0.9795

Log Likelihoods
Returns, RBV, and RJV 129,226
Maximized on Returns and RV 68,212 68,783 69,656
Maximized on Returns 19,312 19,515 19,515 19,522

Notes: Using daily returns and daily realized variation measures we estimate our four models using maximum likelihood criteria. For
comparison the last row reports likelihood values when all models are estimated on returns only. The second-to-last row reports likelihood
values when the RVM, JVM, and BPJVM models are estimated on returns and realized variance. The third-to-last row reports the likelihood
value when the BPJVM model is estimated on returns, bipower variation and jump variation. The parameter values reported correspond
to the second-last row for RVM and JVM and to the third-last row for the BPJVM model. The sample is from January 2, 1990 through
December 31, 2013. Standard errors are reported in parentheses. Variance targeting is used to fix the ω parameters.



Table 2: S&P500 Index Option Data by Moneyness, Maturity and VIX Level. 1996-2013

By Moneyness Delta<0.3 0.3<Delta<0.4 0.4<Delta<0.5 0.5<Delta<0.6 0.6<Delta<0.7 Delta>0.7 All
Number of Contracts 3,788 1,391 1,781 2,846 2,746 8,731 21,283
Average Price 7.85 20.94 32.28 45.30 65.93 132.41 74.35
Average Implied Volatility 16.72 18.40 19.31 20.40 21.71 25.09 21.62
Average Bid-Ask Spread 1.046 1.674 1.955 2.018 1.834 1.228 1.470

By Maturity DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150 All
Number of Contracts 2,725 6,480 5,053 2,869 1,974 2,182 21,283
Average Price 41.26 61.01 76.44 92.30 97.88 105.59 74.35
Average Implied Volatility 20.21 21.28 21.73 22.94 22.08 21.95 21.62
Average Bid-Ask Spread 0.820 1.231 1.579 1.872 1.800 1.910 1.470

By VIX Level VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35 All
Number of Contracts 3,962 6,133 5,996 2,456 1,240 1,496 21,283
Average Price 57.95 66.90 80.75 85.77 85.33 94.86 74.35
Average Implied Volatility 13.61 18.04 22.45 26.24 30.22 39.42 21.62
Average Bid-Ask Spread 1.055 1.301 1.446 1.704 1.811 2.683 1.470

Notes: We use 21,283 S&P500 index option contracts from OptionMetrics. The contracts have been subjected to standard filters as
described in the text. The top panel reports the contracts sorted by moneyness defined using the Black-Scholes delta. The second
panel reports the contracts sorted by days to maturity (DTM). The third panel reports the contract sorted by the VIX level on the
day corresponding to the option quote.



Table 3: Maximum Likelihood Estimation on Daily S&P500 Returns, Realized Measures, and Options. 1996-2013

GARCH RVM JVM BPJVM
Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

λz 1.40E+01 (1.03E+01) 9.17E-01 (7.91E-01) 1.36E+00 (9.69E-01)

λy 1.45E-10 (4.20E-05) 2.18E-05 (1.70E-05)

α 9.01E-07 (1.86E-08)

β 9.88E-01 (6.09E-04)

γ 6.22E+01 (5.51E+00) 3.04E+01 (2.03E-01) 3.72E+01 (2.68E-01)

ωz 1.64E-08 7.68E-07 6.12E-07

ωy 1.64E-06 7.49E-03

σ 1.41E-04 (2.69E-07) 1.34E-04 (2.56E-07)

θ -2.00E-03 (3.39E-05) -1.25E-03 (1.35E-05)

δ 5.61E-03 (7.49E-06) 1.38E-03 (5.63E-06)

ρ 9.14E-01 (2.41E-03) 8.79E-01 (2.48E-03)

bz 9.73E-01 (2.05E-04) 9.76E-01 (1.92E-04)

by 9.61E-01 (3.02E-04) 6.63E-01 (2.96E-03)

az 1.48E-02 (9.86E-05) 1.32E-02 (9.05E-05)

ay 7.07E+02 (8.59E+00) 9.55E+04 (8.87E+02)

E[hz,t] 1.03E-04 (1.21E-07) 6.28E-05 (8.07E-07) 5.58E-05 (2.00E-09)

E[hy,t] 1.63E+00 (4.91E-02) 1.80E+00 (1.06E+00)

χ -6.06E-03 (1.51E-04) -5.67E-03 (1.69E-04)

ν2 1.33E-05 (2.54E+02)

ν3 9.81E-05 (2.74E+00)

Model Properties
Average Physical Volatility 18.34 18.34 18.34 18.34
Average Model IV 20.77 20.79 21.09 21.00
Volatility Persistence

From Returns 0.9911
From RV 0.9878 0.9864
From RBV 0.9890
From RJV 0.9958

Log Likelihoods
Returns, RBV, RJV, and Options 156,970
Returns 19,019 19,191 18,955 18,695
Returns and Options 52,770 56,214 55,550 56,529

Option Errors
IVRMSE 5.74 5.04 5.05 4.77

Ratio to GARCH 1.000 0.878 0.879 0.831
VWRMSE 4.96 4.25 4.37 4.09

Ratio to GARCH 1.000 0.858 0.881 0.825

Notes: Using daily returns, daily realized variation measures and options we estimate our four models using a joint maximum likelihood
criterion. The table reports the joint likelihood value as well as its decomposition into the various components. Option errors are reported
using implied volatility root mean squared errors (IVRMSE) and vega-weighted root mean squared errors (VWRMSE) as defined in the text.
The sample is from January 2, 1996 through August 28, 2013. Standard errors are reported in parentheses. Physical variance targeting is
used to fix the ω parameters.



Table 4: Implied Volatility Root Mean Squared Error (IVRMSE) by Moneyness, Maturity, and
VIX Level. 1996-2013

Panel A: IVRMSE by Moneyness
Model Delta<0.3 0.3<Delta<0.4 0.4<Delta<0.5 0.5<Delta<0.6 0.6<Delta<0.7 Delta>0.7

GARCH 5.338 4.001 3.823 3.896 4.228 8.112
RVM 4.671 3.226 2.970 3.139 3.572 7.364
JVM 5.059 3.568 3.214 3.070 3.389 7.123

BPJVM 4.775 3.150 2.825 2.956 3.319 6.821

Panel B: IVRMSE by Maturity
Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150

GARCH 5.259 5.700 5.640 5.852 6.497 5.834
RVM 4.531 4.985 5.003 4.894 5.856 5.300
JVM 4.437 4.731 4.956 5.078 6.115 5.755

BPJVM 4.404 4.731 4.739 4.555 5.535 4.948

Panel C: IVRMSE by VIX Level
Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35

GARCH 4.310 3.419 5.499 6.785 6.961 11.639
RVM 3.565 3.201 5.455 6.434 6.443 7.497
JVM 3.956 3.220 5.466 6.356 6.357 7.463

BPJVM 3.335 3.202 5.358 5.868 5.888 7.231

Notes: We use the parameter values in Table 2 to fit our four models to the 21,283 S&P500 index option
contracts from OptionMetrics. The top panel reports IVRMSE for contracts sorted by moneyness defined
using the Black-Scholes delta. The second panel reports IVRMSE for contracts sorted by days to maturity
(DTM). The third panel reports the IVRMSE for contract sorted by the VIX level on the day corresponding
to the option quote.
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