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We study the short-term price behavior of Phase 2 EU emission allowances. We model
returns and volatility dynamics, and we demonstrate that a standard ARMAX-GARCH
framework is inadequate for this modeling and that the gaussianity assumption is re-
jected due to a number of outliers. To improve the fitness of the model, we combine
the underlying price process with an additive stochastic jump process. We improve the
model’s performance by introducing a time-varying jump probability that is explained
by two variables: the daily relative change in the volume of transactions and the Euro-
pean Commission’s announcements regarding the supply of permits. We show that (i)
sharp increases in volume have led to increased volatility during the April 2005–December
2007period but not for the period beginning in January 2008, and (ii) announcements
induce jumps in the process that tend to increase volatility across both periods. Thus,
authorities face a trade off between disseminating information effectively and promoting
market stability.
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1. INTRODUCTION

In 2005, the European Union established a region-wide cap on emissions and
created a market for pollution allowances, called the EU Emissions Trading Scheme
(EU ETS). The objective of this scheme is to efficiently reduce European emissions
at the EU level. In this market, installations can exchange their surpluses or deficit
of allowances (called EUAs). The EU ETS has been implemented in phases: the
preliminary phase (Phase 1) ran from 2005 to 2007, Phase 2 began in 2008 and
finished in December 2012 and Phase 3 begun in January 2013 and will end in De-
cember 2020. Because Phase 2 was the period of the actual implementation of the
Kyoto Protocol objectives, banking of allowances was not allowed between Phase
1 and Phase 2 but was allowed between Phase 2 and Phase 3. This point is par-
ticularly important; although Phase 1 and Phase 2 prices have followed completely
different patterns since April 2006, Phase 2 and Phase 3 prices depend on identical
fundamentals: the supply and demand factors that have an impact on the right to
emit one ton of CO2 in the EU after December 2007 (Mansanet-Bataller and Sanin,
2014).4 For this reason, we focus on Phase 2 and Phase 3 prices in this paper. It
is notable that it has been possible since 2005 to trade futures contracts that un-
derlie Phase 2 allowances (the right to emit one ton of CO2 in the EU beginning
in 2008). Thus, the period from April 2005 to December 2007 featured interphase
trading, whereas intraphase trading was featured from January 2008 until May 31,
2013 (the end of the sample period). In this paper, we analyze the short-term price
behavior of Phase 2 prices by dividing the timeline into two subsamples to distin-
guish between interphase and intraphase trading. To this end, we study Phase 2
prices during the EU ETS trial phase, on one hand, and we study Phase 3 prices
beginning, in fact, during the actual beginning of Phase 2 in January 2008, on the
other hand.

Installation-level trading began in January 2005; by the beginning of 2006,
the volume of transactions had already increased by a factor of 10 (Ellerman and
Joskow, 2008). The development of the EU ETS market has also been affected by
the increasing market participation of intermediaries, i.e., risk managers, brokers
and traders, who may be trading on behalf of their clients or holding their own
stock of EUAs. The market has gained both in complexity and in flexibility as
intermediaries have introduced an increasing range of new instruments, such as
futures, forward contracts and other derivatives. In this regard, many observers
believe that the creation of the EU ETS has been a success, whereas others remain
skeptical. In particular, the rules behind the price formation mechanism and the
price dynamics are still unclear. While some authors support the argument that
the EUA price responds to market fundamentals – such as energy prices, extreme
weather conditions and economic growth (see Bunn and Fezzi, 2009, Mansanet-
Bataller et al., 2007, Alberola et al., 2008, Hintermann, 2010 and Creti et al.
2012) – that affect the production of CO2 and thus demand and supply of the
EUAs, others find no such evidence and favor a pure time-series approach (see
Milunovich and Joyeux, 2010, Paolella and Taschini, 2008, Benz and Trück, 2008,
Chesney and Taschini, 2012, Seifert et al., 2008 and Chevallier et al., 2011). An
adequate assessment of short-term price and volatility dynamics in the EU ETS

4In April 2006, the EC published the real emissions of the permitted installations under the EU
ETS for 2005, which were much lower than the allowances distributed. The banking restriction
provoked the decline on Phase 1 prices that finished at levels near zero while Phase 2 prices
remained near pre-announcement levels.
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is crucial because accurately measuring and forecasting market risk is a key factor
for portfolio management and hedging to realize efficient trading strategies and to
make informed investment decisions.

In order to shed light on this issue, we analyze the short term price and volatility
dynamics of Phase 2 and Phase 3 allowances from April 22, 2005 to May 31, 2013 as
a sole price series. We model the conditional mean and variance of returns within
an ARMAX-GARCH framework. The standard approach based on the Gaussianity
assumption is rejected due to the presence of a number of level and volatility out-
liers. Furthermore, the presence of additive outliers in the process, if not directly
accounted for, typically induces bias in the parameters governing the level and
variance dynamics and may result in the detection of spurious non-strationarity.
Consequently, we rely on a Bernoulli mixture of Gaussian distributions (BMN) to
allow for endogenously determined additive jumps in the price process. Individual
distributions in the mixture can be interpreted as different regimes while the mix-
ing law gives the probability of each regime (Alexander, 2004 and Alexander and
Lazar, 2006). We find that a two-regime model based on a BMN proves adequate
to fit the data.

Paolella and Taschini (2006) have adopted a similar modelling strategy for Phase
1 prices. They propose a three-component mixture which identifies two different
GARCH-type volatility dynamics plus a constant variance component. Although
their model does not account for an additive jump component, they provide solid
arguments to support the use of a mixture of distributions, including the extreme
flexibility of the model, the fact that it induces time-varying skewness and kur-
tosis (see also Hansen, 1994, Harvey and Siddique, 1999, Rockinger and Jondeau,
2002 and Brännäs and Nordman, 2003) and the accuracy of the out-of-sample VaR
forecasts.5

An alternative approach, based on a two-regime Markov Switching model, has
been proposed by Benz and Trück (2009). They argue that the occurrence of spikes
in EUA prices and volatility during Phase 1 might be caused by changes in pol-
icy and the regulatory framework, such as announcements regarding the National
Allocation Plans (NAPs, the document elaborated by the Member States and ap-
proved by the EC in which the country cap was fixed for Phase 1 and Phase 2) or
fluctuations in production levels resulting from unexpected changes in market fun-
damentals (such as fuel prices and weather conditions). However, their hypothesis
cannot be directly tested because they assume that the probability that governs
the switch between the regimes is constant, which yields few economic insights.

The procedure based on the use of a GARCH-type model with mixed innova-
tions to fit an underlying price process combined with an additive jump component
has been proposed in other contexts by Vlaar and Palm (1993), Vlaar (1994) and
Beine and Laurent (2003). Their approach is appealing because it provides useful
insights regarding the occurrence of jumps and their economic interpretation. In
this paper, the determinants and the occurrence of jumps are further investigated
by allowing the probability associated with the jump component to vary over time
and to depend on exogenous variables. In particular, we explicitly account for two
drivers of the shifts between regimes: the daily relative change in the volume of
transactions and the change in the regulatory environment that is induced by the
European Commission’s disclosure of information.

5For an extensive overview of the properties of the mixture of distributions, see Alexander and
Lazar (2006) and Haas et al. (2004), among others.
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Our results suggest that large incoming volumes have a destabilizing effect,
which translates into large negative returns and sudden volatility movements only
in the preliminary phase, i.e., prior to January 2008. This result is consistent
with Gabaix et al. (2006) and Milunovich and Joyeux, 2010. The latter states
that during the trial phase, trading in the EU ETS was concentrated among a few
leading players and characterized by a low number of transactions. Our results
show that from January 2008 on this characterization is no longer accurate: the
market has developed and, as a consequence, large incoming volumes no longer have
a destabilizing effect. Most notably, the GARCH estimates of EUA prices from
January 2008 on show a degree of market maturity that is worthy of a financial
series belonging to the SP500.

The impact of EC announcements on EUA prices is comparable to the effect
of Central Bank interventions on the exchange rate market assessed by Beine and
Laurent (2003) in the sense that they induce jumps and tend to increase volatility.
The instability following the EC announcements regarding the cap for Phase 2 that
were released before the beginning of Phase 2, i.e., until December 2007, can be
explained by the unexpected relative scarcity of EUAs for the second phase: the
adopted NAPs were revealed to be substantially more restrictive than the target
proposed by each member state. In fact, the emission cap approved by the European
Commission for Phase 2 (i.e., the sum of the national allocations) was less then
90% of the total emission target proposed by the member states6. The instability
following the announcements released beginning in January 2008 can be explained
by the efforts undertaken by the regulator to further decrease the number of permits
available and the new rules for releasing the supply of permits.

The reminder of the paper is organized as follows. Section 2 briefly discusses the
main features of the EU ETS market and describes the data used in the empirical
analysis. Section 3 presents the standard ARMAX-GARCH model and a set of
test statistics used for its validation. Section 4 presents the Bernoulli mixture of
normals and its extension that allows for a time-varying jump probability. Section
5 concludes.

2. STYLIZED FACTS AND DATA DESCRIPTION

The EU ETS covers up to 46% of European CO2 emissions coming from more
than 11,000 high-volume energy-using installations in power generation and manu-
facturing across the 28 European Union countries, the EEA-EFTA states (Iceland,
Liechtenstein, Norway) and the flights to and from the EU and the three EEA-
EFTA states.7 During Phase 1 and Phase 2, installations received periodically a
free amount of pollution allowances that could be traded on any of the applicable
exchanges (e.g.. Powernext, European Climate Exchange and Nordpool) or over
the counter (OTC). Unused allowances with vintage belonging to the period 2005-
2007, i.e., corresponding to Phase 1, expired at the end of the phase and could not
be banked and used during Phase 2. After the announcement of real emissions for
the year 2005, the market appeared to be about 4% long, provoking the EUA Phase
1 prices to fall from 29.5 euros to less than 12 euros over just a few days. In 2006

6The yearly cap during Phase 1 was 2.298 billion tons of CO2, whereas in Phase 2, the cap
was set to 2.081 billion tons.

7EU ETS factsheet: http://ec.europa.eu/clima/publications/docs/factsheet ets en.pdf, last
visited 19/05/14.
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and 2007, this tendency was confirmed. As a consequence, the EUA Phase 1 prices
converged rapidly to zero and market agents focused rapidly on Phase 2 prices.

Therefore, in this paper, we analyze the short-term price and volatility dynam-
ics of Phase 2 and Phase 3 as a sole price series. More specifically, we consider
the returns on daily December 2008 futures prices traded at the Intercontinental
Exchange (ICE) since the beginning of trading (April 22, 2005) to the expiry of the
contract and we roll it over with the nearest December futures contract up through
the end of the sample period on May 31, 2013. The reason for this choice is that we
are always considering the more liquid contract representing Phase 2 and Phase 3
allowance prices. We compute returns (rEUA) as the first difference of the natural
logarithm of the price series. Figure 1 shows the evolution of Phase 2 and Phase 3
EUA prices, in addition to the returns on prices.

FIGURE 1 ABOUT HERE

Following the previous literature (Mansanet-Bataller et al., 2007, Alberola et
al., 2008, Mansanet-Bataller and Keppler, 2010, and Creti et al., 2012), we consider,
as possible market fundamentals, several month-ahead fuel prices and weather in-
dexes. The choice regarding the energy variables is explained by the fact that the
main EU ETS sector is the power sector, as emphasized by Mansanet-Bataller et
al., 2007, and demand for these allowances depends on energy consumption (that is
generally explained by weather variables and industrial activity), on the one hand,
and on fuel prices, on the other. We thus use the more representative prices for
energy in Europe to model the returns and volatility dynamics of carbon prices.
In other words, (i) the daily Month-Ahead Future Natural Gas price (in pounds
per therm) traded on the ICE; (ii) the daily coal Month-Ahead Future price CIF
ARA (in dollars per ton); (iii) the daily Future Calendar Peak price for electricity
(in euros per MWh) traded on Powernext; and (iv) the daily Month-Ahead Brent
Crude Future price negotiated on the Intercontinental Futures Exchange (in dollars
per barrel). All energy variables considered in this study were converted into euros
using the European Central Bank exchange rate.8 Returns are denoted rgas, rcoal,
relec, roil respectively. Additionally, Alberola et al. (2008) justify the use of month-
ahead prices by arguing that installations do not need to hold allowances matching
their emissions levels daily and that energy needs are generally met by forward con-
tracting. Thus, changes in month-ahead prices best reflect changes in EUA prices
due to changes in industrial expectations. Further, we consider a weather index
based on a weighted average of deviations from historical temperatures, following
Alberola et al. (2008). The economic rationale behind using this index is that
extremely high and extremely low temperatures both increase energy demand (for
air conditioning or heating, respectively) and therefore carbon prices. Based on
this index, we create two dummies: Dtmp lo and Dtmp hi that account for temper-
atures in the lowest and highest fifth percentiles, respectively. As discussed in the
introduction, we consider two subsamples, that is, we distinguish trading that takes
place before and after January 2008. The main reason for such a choice is that we
wish to distinguish intraphase trading from interphase trading because the change
in the institutional framework may impact the results. Additionally, from January
2008 on, even if agents expected the need for new generation capacity, power prices
dropped drastically due to the decrease in demand that was driven by the European

8http://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html, last visited
19/05/14.
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recession and the financial crisis. The recession also had an impact on other sectors
covered by the EU ETS, particularly in the cement sector. As a result, the price in
the EU ETS also decreased drastically. The changes discussed herein might induce
changes in market fundamentals, which is another good reason for considering two
subsamples. Summary statistics are reported in Tables 1, 2 and 3.

TABLE 1 ABOUT HERE

TABLE 2 ABOUT HERE

TABLE 3 ABOUT HERE

The previous tables show that EUA returns (rEUA) exhibit negative skewness
and a large excess kurtosis both in the full sample and in each of the subsamples
considered. All the other variables are characterized by excess kurtosis and positive
skewness. The only exception is the return on oil, for which both skewness and
kurtosis coefficients are very close to those implied by the Gaussian distribution.

The presence of excess kurtosis in rEUA means that extreme values for the
returns (either positive or negative) occur with a frequency that is higher than that
implied by the Gaussian distribution. Indeed, the occurrence of outliers is primarily
responsible for the rejection of the Gaussianity assumption for EUA futures returns.

We explicitly consider the relative change in the daily volume of future con-
tracts traded on the ICE (rvol) and a binary variable (DNAP ) that accounts for the
European Commission’s announcement (details are reported in Table 4) as a deter-
minant for the occurrence of jumps. The presence of outliers can also be motivated
by other specific events, such as changes in abatement decisions. Although it may
be difficult to identify specific dates for such changes, these are accounted for in our
analysis because their impact is included in the constant of the jump probability.

TABLE 4 ABOUT HERE

TABLE 5 ABOUT HERE

3. BENCHMARK APPROACH

The starting point for the investigation of the EUA price determinants of returns
and volatility dynamics is the ARMAX-GARCH framework. This model, widely
used in the literature, allows for the presence of exogenous regressors and specifically
accounts for conditional heteroskedasticity and serial dependence in the returns. To
assess the relevance of the ARMAX-GARCH setting and to discriminate between
competing specifications, we suggest the set of four diagnostic tests detailed in the
remainder of this Section.

3.1. ARMAX-GARCH model

Consider the stochastic process rt = pt−pt−1, where pt is the natural logarithm
of the EUA price. The conditional mean of the process is expressed as

Φ(L)rt = βXt−1 + Ψ(L)εt (1)

εt | Ωt−1 ∼ N(0, σ2
t ) (2)
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where Φ(L) = 1 −
∑m

i=1 ϕiL
i and Ψ(L) = 1 +

∑n
i=1 ψiL

i are the usual AR and
MA polynomials of order, m and n, respectively. Ωt is the information set at time
t, and L is the lag operator such that Lkxt = xt−k (k > 0) and Xt−1 is a matrix
of lagged regressors (up to a constant). The normality assumption is justified by
the fact that the Gaussian Quasi-Maximum Likelihood (QML) estimation deliv-
ers consistent estimates even when the normality assumption is rejected, provided
that mean and variance are correctly specified (see Weiss, 1986 and Bollerslev and
Wooldridge, 1992 among others).

For the conditional variance, we consider theGARCH(p, q) specification (Boller-
slev, 1986), that is

B(L)σ2
t = c+A(L)ε2t (3)

with characteristic polynomials B(L) = 1−
∑q

i=1 biL
i and A(L) = 1 +

∑p
i=1 aiL

i.
The model is estimated by QML. The sample log likelihood is given by

LLF = −T
2

log(2π)− 1

2

∑
T

log(σ2
t )− 1

2

∑
T

ε2t
σ2
t

(4)

where T is the sample size, which is maximized numerically for (β, ϕk, ψl, c, ai, bj),
k = 1, ...m; l = 1, ..., n; i = 1, ..., p; j = 1, ..., q.

3.2. Diagnostic tests

To correctly estimate the risk borne by an agent trading on the EUA market,
the choice of an adequate distribution is crucial. Therefore, to discriminate between
model specifications and to verify distributional assumptions, we devote particular
attention to diagnostic tests.

Following Vlaar (1994) and Beine and Laurent (2003), we focus on the following
set of statistics. First, we consider two tests for the estimated skewness (b3) and
kurtosis (b4) coefficients of standardized residuals. Second, we check the hypothe-
sis of independent and identically distributed (iid) residuals by using the statistic
proposed by Brock et al. (1996) (BDS test). The statistic is asymptotically stan-
dard normal and depends on two bandwidth parameters: a number of embedding
dimensions (m) and the dimensional distance (ε), see Brock et al. for technical
details. We set m equal to 6, as suggested by Kanzler (1999), and ε such that the
first correlation integral is equal to 0.7. Following Kanzler (1999), we performed
the test by also setting the first correlation integral equal to 0.8 and different values
of m. The results are robust across all combinations. Testing the iid hypothesis
is crucial to interpret the results of the last test, the Pearson goodness-of-fit test.
Indeed, the rejection of the iid hypothesis would make the interpretation of the
results unclear. The Pearson goodness-of-fit test compares the empirical distribu-
tion of standardized residuals to the theoretical distribution. It requires choosing
a number of cells g and, for iid observation and under the null of a correct distri-
bution, the statistic is distributed as a chi-square with g − 1 degrees of freedom.
The number of cells, which is to be chosen proportionally to the sample size, is
set to 30; see Palm and Vlaar (1997) for further details. The results of the tests
for each specification appear together with the estimation results. Preliminary re-
sults (Model 1 in Table 6) that are based on the standard setting introduced so far
suggest the rejection of the Gaussian distribution at standard significance levels,
according to the Pearson goodness-of-fit test. In fact, the standardized residuals
show excess skewness (b3) and kurtosis (b4) with respect to the normal distribution.
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The presence of excess kurtosis in the returns means that extreme values (either
positive or negative) occur with a higher frequency than is implied by the Gaus-
sian distribution. This evidence is confirmed when using the procedure developed
by Doornik and Ooms (2005) for detecting outliers. Indeed, we find a number of
additive level and variance outliers occurring over the period considered.9. Finally,
the coefficient estimates for the variance dynamics suggest a (possibly) spurious
violation of the covariance stationarity assumption.

4. BERNOULLI MIXTURE OF NORMALS

The high number of extreme returns relative to the sample size requires the in-
troduction of an alternative approach that allows the modeling of level and variance
shifts. Further, the series of EUA future returns are not symmetric and therefore
a Gaussian distribution alone is unable to fit the data. We combine a Gaussian
distribution and an additive stochastic jump process. The resulting mixture of dis-
tributions has the advantage of accounting for excess skewness and kurtosis (Vlaar,
1994, Alexander and Lazar, 2006). Several parametrizations have been suggested
for the mixing law (see, for instance, Vlaar, 1994). We focus on the Bernoulli mix-
ture of Gaussians. Its basic assumption implies that the mixing law for the return
densities is Bernoulli. The advantage of this parametrization is its intuitive inter-
pretation: the individual distributions in the mixture represent different regimes,
whereas the mixing law gives the probabilities of each regime (Alexander, 2004 and
Alexander and Lazar, 2006).

Given the stochastic process rt = pt − pt−1, with conditional mean µt = E(rt |
Ωt−1) and time varying conditional variance σ2

t = E(r2t | Ωt−1), the mixture process
can be defined as

rt = µt + σtzt with probability 1− λ
rt = µt + σtzt︸ ︷︷ ︸

continuous comp.

+ τ + δz∗t︸ ︷︷ ︸
additive jump comp.

with probability λ (5)

where zt and z∗t are iid N(0, 1) and λ is the probability of having a level and
variance shift and represents the parameter of the mixing law. Finally, τ and δ2 are
the mean and variance of the jump distribution, respectively, and 1/λ represents
the average interval between two consecutive jumps.

The model can be rewritten as:

rt = µt + λτ + εt; (6)

εt | Ωt−1 ∼ (1− λ)N(−λτ, σ2
t ) + λN(τ − λτ, σ2

t + δ2).

To ensure condition 0 < λ < 1 ∀t, we use the following logistic transformation

λ = 1− (1 + exp(γ0))−1. (7)

Because a linear combination of normally distributed random variables is also
normal, the combination in (6) results in a discrete mixture of normals.

Given the ARMAX-GARCH setting detailed in Section 3, we express the mean

9These results are not reported here for purposes of brevity but are available upon request.
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and variance in equation (6) as

µt = βXt−1 +

m∑
i=1

ϕirt−i +

n∑
i=1

ψiεt−i; (8)

σ2
t = c+

p∑
i=1

aiε
2
t−i +

q∑
j=1

bjσ
2
t−j .

We consider lagged values of the exogenous variables (Xt−1) such that the pair
(rt, σ

2
t ) are measurable with respect to the information available at time t − 1,,

which ensures that the model is completely forecastable.
The log likelihood of this distribution is given by

LLF = −T
2

ln(2π) +

T∑
t=1

log

[
1− λ√
σ2
t

exp

(
− (rt − µt)

2

2σ2
t

)
(9)

+
λ√

σ2
t + δ2

exp

(
− (rt − µt − τ)2

2(σ2
t + δ2)

)]
.

As noted by Vlaar (1994), the Pearson goodness-of fit test cannot be applied on
standardized residuals in such a framework because the iid assumption is no longer
satisfied. Palm and Vlaar (1997) redefine the sorting mechanism of the residuals
for the Pearson tests and suggest the use of normalized residuals defined as

zt = F−1

[
(1− λ)F (

rt − µt

σt
) + λF (

rt − µt − τ
σt + δ

)

]
, (10)

where F−1() and F () are the quintile function and the cumulative distribution
function of the standard normal density, respectively.

Table 6 reports the estimation results for different specifications of (8). Fol-
lowing Beine and Laurent (2003), the ARMA and GARCH orders are selected by
relying on the Schwarz Bayesian Information Criterion, which is known for leading
to a parsimonious specification. Following this criterion, the specification selected
is ARMAX(1,0)-GARCH(1,1). The results are not reported to save space but are
nonetheless available upon request.

TABLE 6 ABOUT HERE

In Table 6, Model 1 represents a standard GARCH model with conditional
Gaussian innovations which is obtained by imposing the parameter restriction λ = 0
to (8) on all the data available, i.e., from April 22, 2005 to May 31, 2013. The
fundamentals for Phase 2 EUA prices that are found significant are consistent with
the previous literature (see Creti et al. 2012).

In Model 2, we consider the same specification used in Model 1 but in the BMN
framework. The likelihood ratio test (LR) favors this model over Model 1, i.e., the
BMN is not rejected. Furthermore, in Model 1, the sum of the variance coefficients
a and b is greater than one such that the variance exhibits explosive sample paths,
which is no longer the case, however, when we explicitly account for the jump
component in Models 2 to 4 using the BMN density. Thus, this process shows
that the non-stationarity is spurious and is induced by the presence of additive
level/variance jumps.10

10This is also the case if we compare Models 1 and 2 in the two subsamples. We do not report
the results for purposes of brevity but they are available upon request.
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The nature of the market has evolved since December 2007, which was the end
of the trial phase. Even if agents expected the need for new generation capacity,
power prices dropped drastically due to the decrease in demand that was driven
by the European recession and the global financial crisis. The recession also had
an impact on other sectors covered by the EU ETS, particularly in the cement
sector. As a result, the price in the EU ETS decreased dramatically, and these
types of changes can induce changes in market fundamentals. For this reason, we
divide the sample into two subsamples before proceeding with our analysis. The
first subsample studies the dynamics of EUA’s Phase 2 prices traded from April
22, 2005 to December 31, 2007 (during Phase 1). The second subsample studies
the dynamics of EUA’s Phase 2 and Phase 3 prices traded in that same phase, i.e.,
from January 2, 2008 to May 31, 2013. The results of our estimation show that
there are actually important differences between those subsamples. As in Creti
et al. 2012, we find that only oil is weakly significant as a fundamental for EUA
Phase 2 prices in the first subsample, i.e., between April 2005 and December 2007.
This is explained by Kanen (2006), who posited that the price of oil was the major
driver for the change in the price of natural gas and, in turn, that the price of oil
has an impact on carbon trading prices. Finally, Benz and Trück (2008) suggest
that, though the EUA prices during that period may show phases of specific price
behavior due to fluctuations in production levels induced by shocks in fuel prices
and extreme weather conditions, these sources of uncertainty have a mostly short-
term impact and could induce price and volatility jumps rather than exhibit a
strong relation with the underlying return process.

In the first subsample, the sign of the statistically significant coefficients associ-
ated with fundamentals are consistent with results in the literature (see for example
Alberlola et al., 2008 and Mansanet-Bataller et al., 2007). Regarding the second
subsample, to our knowledge, there is no study that analyzes the impact of fuel
prices on the CO2 price individually.11 It is notable that, first, the sign of the
coefficient associated with the gas relative price change is possibly determined to a
large extent by the massive spike in natural gas prices (and its associated variability)
that was experienced at the beginning of the sample. Second, contrary to the first
subsample, during the second subsample, natural gas was cheaper than coal most
of the time, which indicates that natural gas is no longer used as a substitute for
coal but has become the preferred source for energy generation. This phenomenon
explains the negative marginal impact: natural gas is less polluting than coal so
when used as a substitute (as in the first subsample), its sign is positive. Nonethe-
less, natuaral gas is still a polluting input. Thus, when used (almost) exclusively
as source for energy generation its sign becomes negative. That is, ceteris paribus,
as the price of gas increases, its use decreases, which leads to decreased demand for
permits that then induces a reduction in the CO2 price.

Regarding the use of BMN, the advantage is striking. All parameters of the
BMN are significant with the exception of the jump size (τ). As we have seen from
Table 6, level outliers, though characterized by a large absolute value, show opposite
signs. Since τ represents the average size of level outliers, the result suggests that
a single parameter might not be sufficient to capture the sign of the level outliers
because they tend to compensate, on average. The skewness parameter (b3) that
is associated with this specification is close to zero and insignificant, though the

11Differently from the individual analysis of fuel inputs we use herein, Creti et al. (2012) include
explicitly fuel switching as an explanatory variable.
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normalized residuals still exhibit some excess kurtosis (b4). It is notable that even if
the null of no excess kurtosis is rejected, the use of the BMN induces an important
decrease in the excess kurtosis of the residuals compared with the results of the
standard GARCH model with normally distributed errors: the coefficient b4 reduces
from 5.05 (Model 1) to 0.47 (Model 2). The Pearson goodness-of-fit test does not
reject the BMN in Model 2 at the 5% nominal level. Finally, it is notable that,
comparing Model 2 for the first subsample with Model 2 or the subsample beginning
in January 2008, we see that jumps in this last case are less frequent, which may
be explained by the development of the market moving closer to functioning as a
financial market.

Although the BMN in (8) outperforms the standard GARCH-normal approach,
assuming a constant jump probability specification yields few economic insights.
In fact, according to recent literature, we might argue that these jumps may be
due to changes in production resulting from shocks in fuel prices or by changes
in the regulatory environment, but we cannot explicitly test these events’ impact
on the jump probability. Furthermore, despite the use of the BMN, normalized
residuals still exhibit excess kurtosis (b4). In fact, in all specifications, the statistics
for excess kurtosis are found to be significant at the 5% level. In this regard, Beine
and Laurent (2003) show that a BMN may fail in specifically accounting for excess
kurtosis and they call for either a better specification of the conditional mean and
variance, or for further flexibility in the distribution. We will pursue the latter
option through the introduction of a time-varying jump probability as a function of
a constant and a set of exogenous variables (xit−1) related to the jump occurrence,
which allows us to specifically test which are the determinants of outliers. The
specification for λt in (7) is now substituted by:

λt = 1− (1 + exp(γ0 + Σiγixit−1))−1 (11)

which ensures 0 < λt < 1 ∀t.

TABLE 7 ABOUT HERE

We identify two potential candidates as drivers of the shifts between regimes: (i)
the daily relative change in the volume of transactions and (ii) changes in the regu-
latory environment caused by the European Commission’s disclosure information on
the EU ETS supply for Phase 2 and 3. Table 7 reports results for the specification
(8)-(11). In Model 3, we let the jump probability depend on past realizations of the
log-differential of the daily trading volume. As before we split the sample into two
subsamples at January 1, 2008. The daily relative change in the volume is found to
significantly affect the jump probability before January 2008 but not from January
2008 on. Such a result can be explained with the help of Tables 2 and 3: the mean of
the relative change in the volume is larger in the first subsample and, most impor-
tantly, the standard deviation is much larger, which indicates that relative changes
in volume were more important in the first subsample, when the market was less
developed. Contributions on the relationship between volume of trade and jumps
have been made by Gabaix et al. (2006) and Milunovich and Joyeux (2010), among
others. These authors emphasize that the concentration of the market among a
few leading players, the relatively low number of market transactions, the lack of
transparency and therefore the discontinuous flow of information available during
the initial phase of the EU ETS, played a dominant role. Furthermore, during
that period, long-term futures contracts were traded in a relatively illiquid market

10



(Milunovich and Joyeux, 2010). Gabaix et al. (2006) shows that significant spikes
in returns can be motivated by trades placed by large investors in relatively illiquid
markets, even in the absence of important news about market fundamentals. Thus,
it is natural to argue that, before January 2008, large incoming volumes reflecting
sudden shifts in supply and/or demand, which in turn provoked a daily relative
change in volume, dramatically affected the price of permits (either positively or
negatively) and increased the variability in such prices. We find that an increase
in the volume does not significantly affect the level of daily returns – although it
induces a substantial increase in the return’s variance during this period – which
indicates that the price is likely to move widely the day following a large and posi-
tive fluctuation in the volume. The former effect is captured by the large estimate
of δ2. As from January 2008, the market shows signs of developement. Indeed,
large fluctuations in the volume do no longer destabilize the market, i.e., the daily
relative change in volume does not affect the likelihood of being in a high volatility
regime.

Model 3 shows that, during the trial period (i.e., before January 2008), the
probability of being in the high volatility regime varies between 0.45 and 0, with
an average probability of 0.044. This value is consistent with the constant jump
probability associated with Model 2 during the same subsample (λ = 0.038) in
Table 6. Figure 2(a) depicts the evolution of the probability associated with the
high volatility regime as a function of time for Model 3 before January 2008, while
Figure 2(b) shows the dynamics for rvol during the same period. The introduction of
a time-varying probability as a function of the volume of contracts traded improves
the fit of the model for this subsample.

FIGURE 2 ABOUT HERE

In Model 4 we consider the impact on the jump probability of the announcements
made by the European Commission related to supply in the EU ETS. We find that
announcements have substantial consequences on short-term price dynamics and
the volatility level of EUAs because they significantly affect the jump probability
in both subsamples. With respect to the announcements released before January
2008, because the adopted NAPs are substantially more restrictive than the national
emission targets originally proposed by the member states (see Table 4 for details),
the unexpected relative scarcity of EUAs for Phase 2 explains the large increase in
the jump probability that was induced by the announcements.

Figure 3(a) reports the probability associated with the high volatility regime
as a function of time, whereas Figure 3(b) shows the marginal contribution to the
jump probability (λt) of the NAPs announcements for Model 4 before January 2008
(i.e. λt(γ0 +γNAPDNAP,t +γvolrvol,t−1)−λt(γ0 +γvolrvol,t−1)). The probability of
being in the high volatility regime in this subsample varies between 0.57 and 0.005,
with an average jump probability of 0.06. The average marginal contribution to
the jump probability of the announcement in this subsample is 24% which is well
above the average probability observed when there is no announcement (7.8%).
Instead, in the second subsample (after January 2008), the contribution to the jump
probability is 14% at most. Again, this shows market evolution compared with the
previous subsample. The crucial role of changes in the regulatory framework or
other policy issues appears clear when comparing Figure 2(a) with Figure 3(a).
Changes in policy directives or in the regulatory environment may affect the short-
run dynamics of EUA price and volatility, and in particular, our result suggests
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that announcements concerning the NAPs induce jumps and increase volatility in
this subsample.

We have tested the independence between rvol,t−1 and DNAP,t using the point
biserial correlation coefficient. The null of no correlation cannot be rejected at
standard significance levels.

FIGURE 3 ABOUT HERE

From January 2008 on, announcements of the EC still have a destabilizing effect.
Figure 4(a) reports the probability associated with the high volatility regime as a
function of time, whereas Figure 4(b) shows the marginal contribution to the jump
probability (λt) of the NAPs announcements for Model 4 after January 2008. Model
4 in this subsample shows that the average jump probability is 0.015, which is much
lower than in the subsample before January 2008. However, the probability of being
in the high volatility regime in this subsample only varies between 0.19 and 0.

FIGURE 4 ABOUT HERE

5. CONCLUSION

In this paper, we examine the EUA Phase 2 and Phase 3 futures prices and
volatility dynamics, and distinguish the EU ETS trial period running from April
2005 to December 2007, on the one hand, and the period corresponding to the
Kyoto Protocol commitment period (which coincides with Phase 2) and Phase
3, on the other hand. This distinction allows us (i) to investigate if there have
been any significant changes in the price and volatility dynamics after the EU
ETS trial phase and (ii) to consider Phase 2 and Phase 3 prices, which are the
most representative European carbon prices. An adequate assessment of short-
term price and volatility dynamics represents a crucial issue in the EU ETS because
accurately measuring and evaluating market risk is crucial for portfolio management
and hedging in a market that is becoming more complex. We first model returns
within a standard ARMAX-GARCH framework with normally distributed errors
and show that the standard approach is not adequate because the distributional
assumption is unable to properly account for excess skewness and kurtosis in the
return series. In addition, we observe that the presence of outliers is the primary
cause of the rejection of the Gaussianity assumption. To account for the presence
of outliers, we combine the underlying price process with an additive stochastic
jump component. The resulting distribution, a mixture of Gaussians, allows for
endogenously determined jumps in the return process. The mixing law that we
select for the mixture of densities is that of Bernoulli. Each individual distribution
in the mixture can then be interpreted as a different regime, e.g., a ”continuous
component” and/or a ”jump”, whereas the mixing law gives the probabilities of each
regime. We find that a two-regime model based on a Bernoulli Mixture of Normals
proves adequate to fit the data and clearly outperforms the standard approach.

The determinants and the occurrence of the jumps are further investigated by
introducing a time-varying jump probability explained by the daily relative change
in the volume of transactions and the change in the regulatory environment induced
by the announcements of the European Commission. This approach is appealing
because it provides useful insights regarding the occurrence of jumps and their
economic interpretation.

12



We find that large incoming volumes have a destabilizing effect and translate
into sudden and large volatility movements before January 2008 but not after. This
result is consistent with the findings in the recent literature showing that the EU
ETS during the trial period represented a relatively illiquid market concentrated
among few leading players, in which the lack of transparency and the discontinuous
flow of information available played a dominant role. From January 2008 on, the
market has greatly developed both in terms of number of transactions and in terms
of the number of participants. In fact, volatility estimates are beginning to approach
estimates found in financial markets.

Additionally, the European Commission announcements have substantial con-
sequences on the short-run dynamics of Phase 2 and Phase 3 EUA prices and
volatilities both during the period running from April 2005 to December 2007 and
from January 2008 on. In particular, our results suggest that they induce jumps
in the process and increase volatility. The instability following the announcements
for Phase 2 NAPs before January 2008 can be explained by the unexpected relative
scarcity of EUAs for the second phase. The adopted NAPs were, in fact, substan-
tially more restrictive than the initial targets proposed by each member state. The
announcements regarding permit auctions and the cap for Phase 3 are also signif-
icant because they have an impact on the global supply for Phase 2 and Phase
3.

The previous result suggests that the regulatory environment, and thus the
mechanism of release of new information, plays an important role for market stabil-
ity. Such stability is needed to give the right incentives for environmental innovation
and pollution reduction.

In general, it is desirable to provide agents with all the information available
either with respect to market conditions, regulatory changes or modifications in
the market design. On one hand, in the quest for transparency, stability and
market efficiency, the authority generally releases all the information the moment
it becomes available. On the other hand, it may be the case that the release
of information by the authority generates instability by itself, which offsets the
”stabilizing” intent of such information release. The previous result suggests that,
even if the impact of the announcements related to the supply of the EU ETS has
diminished considerably since January 2008, the authority still faces a trade-off
between providing information effectively and promoting market stability.
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FIG. 1 EU ETS prices of future contracts and returns on futures price
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Variable min mean max std dev sk ku
Estimation sample: 22/04/05-31/05/13 (2072 observations)
rEUA -0.4321 -0.0007 0.2452 0.0328 -1.1061 25.2565
rvol -4.0587 0.0026 3.3207 0.5421 -0.1088 10.4415
rgas -0.2603 0.0003 0.4769 0.0409 2.8372 27.2020
rcoal -0.3164 0.0001 0.1630 0.0201 -2.2352 42.0526
relec -0.4636 0.0000 0.4390 0.0187 -0.6205 333.600
roil -0.1165 0.0003 0.1399 0.0211 -0.0751 6.8252

TABLE 1
Summary statistics in full sample

Variable min mean max std dev sk ku
Estimation sample: 22/04/05-31/12/07 (686 observations)
rEUA -0.2882 0.0004 0.1865 0.0302 -1.4618 19.3538
rvol -3.6835 0.0032 3.3207 0.6611 -0.0009 9.1452
rgas -0.2606 0.0007 0.4769 0.0558 2.4521 17.8157
rcoal -0.1565 0.0008 0.1630 0.0163 0.5902 33.2990
relec -0.0822 0.0008 0.0566 0.0108 -0.8240 12.2683
roil -0.0580 0.0006 0.0682 0.0176 0.0589 3.0608

TABLE 2
Summary statistics in the first subsample

Variable min mean max std dev sk ku
Estimation sample: 01/01/08-31/05/13 (1387 observations)
rEUA -0.4321 -0.0012 0.2452 0.0340 -0.9681 26.7042
rvol -4.0587 0.0023 2.2463 0.4725 -0.2461 9.7350
rgas -0.1220 0.0000 0.3600 0.0310 2.6279 30.5287
rcoal -0.3167 -0.0002 0.1216 0.0218 -2.7450 40.6008
relec -0.4630 -0.0003 0.4391 0.0216 -0.5162 281.6058
roil -0.1165 0.0001 0.1399 0.0227 -0.0961 7.1354

TABLE 3
Summary statistics in the second subsample
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Date State NAP 2005 NAP Phase II
(Dnews = 1) Phase I emissions (% of proposed)

09/01/06 Publication of guidelines for NAP approval
29/11/06 Germany 499 474 453.1 (94.0%)

Greece 74.4 71.3 69.1 (91.5%)
Malta 2.9 1.98 2.1 (71.0%)
UK 245.3 242.4 246.2 (100%)

16/01/07 Belgium 62.1 55.58 58.5 (92.4%)
Netherlands 95.3 80.35 85.8 (94.9%)

05/02/07 Slovenia 8.8 8.7 8.3 (100%)
26/02/07 Spain 174.4 182.9 152.3 (99.7%)
26/03/07 Czech Rep. 97.6 82.5 86.8 (85.2%)

France 156.5 131.3 132.8 (100%)
Poland 239.1 203.1 208.5 (73.3%)

02/04/07 Austria 33 33.4 30.7 (93.6%)
16/04/07 Hungary 31.3 26 26.9 (87.6%)
04/05/07 Estonia 19 12.62 12.72 (52.2%)
15/05/07 Italy 223.1 225.5 195.8 (93.7%)
04/06/07 Finland 45.5 33.1 37.6 (94.8%)
13/07/07 Ireland 22.3 22.4 22.3 (98.6%)

Latvia 4.6 2.9 3.43 (44.5%)
Lithuania 12.3 6.6 8.8 (53.0%)
Luxembourg 3.4 2.6 2.5 (63.0%)
Sweden 22.9 19.3 22.8 (90.5%)

18/07/07 Cyprus 5.7 5.1 5.48 (77.0%)
31/08/07 Denmark 33.5 26.5 24.5 (100%)
22/10/07 Portugal 38.9 36.4 34.8 (96.9%)
26/10/07 Bulgaria 42.3 40.6 42.3 (62.6%)

Romania 74.8 70.8 75.9 (79.3%)
07/12/07 Slovakia 30.5 25.2 32.6 (78.9%)

Total 2298.5 2122.2 2082.7 (89.6%)

Source: European Climate Change Program press releases.

TABLE 4
EC’s announcements from April 2005 to December 2007
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Date Description
(Dnews = 1)

08/07/08 Parlament votes on aviation inclusion
10/10/08 Directive of the Council on aviation inclusion
24/10/08 Inclusion of Aviation in ETS
15/05/09 Verified emissions 2008
04/06/09 Public consultation auctioning launched
01/04/10 80% Verified emissions
14/07/10 Member states back auctioning rules
21/09/10 Debate on aviation activities
22/10/10 Cap Phase 3 adopted by the Comission
12/11/10 Auctionin Regulation Phase 3
21/02/11 Common platform for auctioning defined
07/03/11 Historical emissions on aviation published
01/04/11 Verified emissions 2010
06/04/11 Aviation emission’s legislation implementation
20/04/11 Comission publishes EEA list of aviation operators
13/07/11 120 millon allowances will be auctioned in 2012
26/09/11 Airlines free allocation rules aproved
06/10/11 Aviation rules compatible with international law
30/01/12 Registry activated for airline operators
22/03/12 Germany notifies opt-out auction plataform
25/04/12 Aproval of Germany’s first Phase 3 auction plataform
15/05/12 Declined verified emissions 2011
11/07/12 Aproval of UK’s first Phase 3 auction plataform
25/07/12 Retirement of permits to auction from 2013-2020

Schedulle change for auctions Phase 3
10/09/12 EEX appointed as first common auction plataform
28/09/12 Preliminary auction calendar for 2012
30/10/12 2012 aucton calendar fixed for transitional comon platform
28/02/13 Pending procedures for aviation issuance of allowances
25/03/13 EEX contacted to delay aviation’s auction
16/04/13 Parliament votes againts Comission’s back-loading proposal
16/05/13 Allowance surplus doubled in 2012

Source: European Climate Change Program press releases.

TABLE 5
EC’s announcements from January 2008 to May 2013
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Param. Model 1 Model 2 Model 2 B.01/08 Model 2 A.01/08
γ0 − −3.310∗ −3.232∗ −3.958∗

(0.238) (0.431) (0.374)
τ − −2.257 −2.988 −2.079

(1.217) (2.566) (2.553)
δ2 − 56.653∗ 60.726∗ 106.839∗

(7.709) (18.538) (25.124)
β0 0.077∗ 0.146∗ 0.285∗ 0.078

(0.057) (0.074) (0.155) (0.085)
β1 0.058∗ 0.073∗ 0.124∗ 0.046

(0.024) (0.023) (0.044) (0.024)
βgas −0.023∗ −0.027∗ 0.005 −0.069∗

(0.010) (0.009) (0.011) (0.018)
βcoal −0.007∗ −0.050∗ −0.034 −0.059∗

(0.022) (0.021) (0.042) (0.026)
βelec 0.001 0.003 0.009 −0.002

(0.008) (0.008) (0.010) (0.014)
βoil 0.039∗ 0.023 0.108∗ −0.011

(0.020) (0.021) (0.045) (0.027)
βtmp lo −0.146 −0.092 0.261 −0.144

(0.253) (0.210) (0.349) (0.220)
βtmp hi 0.072 0.123 −0.296 −0.147

(0.227) (0.206) (0.378) (0.237)
c 0.270∗ 0.131∗ 0.444∗ 0.054∗

(0.040) (0.032) (0.135) (0.020)
a 0.217∗ 0.127∗ 0.132∗ 0.090∗

(0.015) (0.014) (0.030) (0.013)
b 0.784∗ 0.835∗ 0.757∗ 0.894∗

(0.016) (0.016) (0.047) (0.014)
mean λ − 0.035 0.038 0.019
Freq. − 29 26.34 53.37

# Jumps − 73 26 26
# Obs 2072 2072 686 1386
LLF −4960.55 −4876.5 −1591.4 −3264.7

Stat p-val Stat p-val Stat p-val Stat p-val
b3 −0.544 0.00 −0.069 0.20 −0.075 0.42 −0.075 0.26
b4 5.051 0.00 0.472 0.00 0.470 0.01 0.297 0.02

BDS(6) −1.434 0.15 0.078 0.93 0.469 0.64 0.978 0.33
P (30) 99.004 0.00 51.340 0.00 40.21 0.00 31.07 0.01

Notes: Parameter standard errors in parentheses. * indicates significant at 10%.
B.01/08 stands for ¨Before January 2008¨ and A.01/08 for ¨After January 2008¨.

TABLE 6
Benchmark model and BMN with constant jump probability
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Param. Model 3 B.01/08 Model 3 A.01/08 Model 4 B.01/08 Model 4 A.01/08
γ0 −3.091∗ −3.958∗ −2.739∗ −4.194∗

(0.419) (0.378) (0.370) (0.426)
γvol 0.729∗ −0.173 2.041∗ −0.387

(0.400) (1.148) (0.894) (1.132)
γnews − − 0.806∗ 2.292∗

(0.392) (0.999)
τ −1.682 −1.980 −0.682 −1.116

(1.958) (2.877) (0.973) (2.525)
δ2 52.003∗ 106.827∗ 38.876∗ 107.935∗

(12.798) (28.780) (6.657) (27.076)
β0 0.246∗ 0.072 0.213∗ 0.059

(0.151) (0.087) (0.132) (0.444)
β1 0.121∗ 0.044∗ 0.117∗ 0.046∗

(0.044) (0.024) (0.043) (0.024)
βgas 0.001 −0.069∗ 0.007 −0.069∗

(0.012) (0.0018) (0.012) (0.018)
βcoal −0.037 −0.061∗ −0.034 −0.061∗

(0.040) (0.026) (0.042) (0.026)
βelec 0.008 −0.001 0.006 −0.001

(0.009) (0.013) (0.009) (0.013)
βoil 0.094∗ −0.011 0.081∗ −0.011

(0.045) (0.027) (0.044) (0.027)
βtmp lo 0.256 −0.070 0.112 −0.080

(0.346) (0.231) (0.362) (0.231)
βtmp hi −0.300 −0.188 −0.299 −0.214

(0.367) (0.262) (0.341) (0.263)
c 0.397∗ 0.052∗ 0.310∗ 0.051∗

(0.127) (0.020) (0.107) (0.020)
a 0.128∗ 0.089∗ 0.122∗ 0.088∗

(0.030) (0.013) (0.029) (0.012)
b 0.762∗ 0.896∗ 0.771∗ 0.897∗

(0.047) (0.014) (0.045) (0.013)
mean λ 0.044 0.019 0.061 0.015
Freq. 23 53 17 67

# Jumps 30 26 42 21
# Obs 686 1386 686 1386
LLF −1589.4 −3264.7 −1587.9 −3261.9

Stat p-val Stat p-val Stat p-val Stat p-val
b3 −0.123 0.19 −0.083 0.21 −0.214 0.02 −0.078 0.24
b4 0.440 0.02 0.292 0.03 0.557 0.00 0.258 0.04

BDS(6) 0.445 0.66 0.980 0.33 0.438 0.66 1.034 0.34
P (30) 34.700 0.00 24.653 0.04 32.34 0.00 25.13 0.02

Notes: Parameter standard errors in parentheses. * indicates significant at 10%
B.01/08 stands for ¨Before January 2008¨ and A.01/08 stands for ¨After January 2008¨

TABLE 7
Time varying jump probability
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