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Abstract

The properties of dynamic conditional correlation (DCC) models are still

not entirely understood. This paper fills one of the gaps by deriving weak

diffusion limits of a modified version of the classical DCC model. The limit-

ing system of stochastic differential equations is characterized by a diffusion

matrix of reduced rank. The degeneracy is due to perfect collinearity between

the innovations of the volatility and correlation dynamics. For the special

case of constant conditional correlations, a non-degenerate diffusion limit can

be obtained. Alternative sets of conditions are considered for the rate of

convergence of the parameters, obtaining time-varying but deterministic vari-

ances and/or correlations. A Monte Carlo experiment confirms that the quasi

approximate maximum likelihood (QAML) method to estimate the diffusion

parameters is inconsistent for any fixed frequency, but that it may provide

reasonable approximations for sufficiently large frequencies and sample sizes.
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1 Introduction

Continuous and discrete time volatility models are often considered as two compet-

itive views to modeling financial time series. Thanks to the analytical tractability

ensured by Itô calculus, continuous time models have played a central role in theo-

retical finance. The continuous time setting allows to have a deeper understanding

of the properties of the corresponding discrete time model and to assess probabilistic

and statistic properties of discrete time sequences such as stationarity, existence of

moments or distributional results which are otherwise intractable in discrete time,

see e.g. Nelson (1990), Nelson and Foster (1994) and Nelson (1994).

From an applied viewpoint, inference on continuous time parameters of stochas-

tic volatility models represents an important issue. The intractable likelihood func-

tions and the unobservable volatility process require sophisticated estimation pro-

cedures. Several estimation methods have been proposed, such as the simulation

based method of moments, Duffie and Singleton (1993), the quasi-indirect inference

of Broze, Scaillet, and Zakoian (1998) or Bayesian Markov chain Monte Carlo meth-

ods, Jones (2003). Bollerslev, Engle, and Nelson (1994) and Ghysels, Harvey, and

Renault (1996) provide exhaustive surveys on stochastic volatility models. There-

fore, discrete time volatility models have been most often preferred by the applied

econometrician. Rather than estimating and forecasting with a diffusion model ob-

served at discrete points in time, it is in fact often easier to use a discrete model

directly.

The theory of convergence of discrete time Markov sequences towards continuous

time diffusion processes, see e.g. Stroock and Varadhan (1979), Kushner (1984) and

Ethier and Kurtz (1986), provides the theoretical foundation to establish mutual

complementarities, possible inter-changeability and connections between the two

approaches. Nelson (1990) provides conditions ensuring the weak convergence of a

discrete time Markov chain, defined by a system of stochastic difference equations,

towards a diffusion, defined by a system of stochastic differential equations. The

proposed approach requires the convergence, as the interval between observations

shrinks to zero, of a number of conditional moments to well defined limits at an

appropriate rate. In the context of GARCH-type models, Nelson (1990), illustrates

the convergence through various GARCH specifications. This approach has been

used by Duan (1997) to derive the diffusion limit of the Augmented GARCH model,

by Fornari and Mele (1997) to study the continuous time behavior of the class of non
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linear ARCH models proposed by Ding, Granger, and Engle (1993), by Alexander

and Lazar (2005) to derive the diffusion limit of a weak GARCH process and in

a related setting by Trifi (2006) to illustrate the convergence results for the CEV-

ARCH model of Fornari and Mele (2006) and the CMSV model of Jeantheau (2004)

and Hobson and Rogers (1998). In the multivariate case, apart from Nelson (1994)

in the context of asymptotic filtering theory, to our knowledge, the relationship

between discrete and continuous time volatility and correlation models has not been

addressed yet.

The potential advantage of the Nelson approximation approach lies essentially

in estimation and forecasting. Considering the discrete time model as a diffusion

approximation suggests to infer the parameters of the diffusion model by the param-

eter estimates of a discrete time GARCH-type model. Hence, a natural alternative

to the direct estimation of the diffusion parameters consists in inferring the diffusion

parameters by means of a tractable likelihood function of an approximating discrete

time multivariate GARCH process. Following Fornari and Mele (2006), this ap-

proach is called estimation by quasi-approximated maximum likelihood (QAML).

Requiring a feasible computational effort, this approach has been advocated e.g. by

Engle and Lee (1996), Lewis (2000), Barone-Adesi, Rasmussen, and Ravanelli (2005)

and Stentoft (2011) among others. Its computational advantage becomes important

in the multivariate case, where volatility models within the conditional correlation

class can be estimated in a straightforward two-step procedure, estimating first the

conditional variances, then conditional correlations. However, the main drawback of

estimation by QAML is the difficulty of proving its consistency even if the discrete

time approximation is closed under temporal aggregation, see Drost and Nijman

(1993) and Drost and Werker (1996). In the univariate GARCH case, Wang (2002)

has shown that the statistical experiments resulting from the estimation of the dif-

fusion model and its approximating discrete time model are not equivalent, which

would imply inconsistency of the QAML estimator also in the multivariate case.

In this paper we focus on conditional correlation models with GARCH dynamics

for the variances of the marginal processes. We recover the diffusion limit of a modi-

fied version of the classical Dynamic Conditional Correlation (DCC) model of Engle

(2002), called consistent DCC (cDCC), proposed by Aielli (2006). Unlike DCC, the

cDCC model has a martingale difference property of the correlation dynamics and

is therefore easier to treat from a theoretical viewpoint. For this specification, we
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derive the existence of a degenerate weak diffusion limit. The degeneracy is due to

the particular structure of the discrete time model in which the noise propagation

system of the variances and the one of the correlation driving process are perfectly

correlated. This structure is preserved in the diffusion limit which is characterized

by a diffusion matrix of reduced rank. More precisely, the diffusion of the variances

and of the diagonal elements of the correlation driving process are pairwise governed

by the same Brownian motion.

As a special case, we consider the Constant Conditional Correlation model (CCC)

of Bollerslev (1990), which can be obtained from the cDCC under suitable parameter

restrictions. The CCC-GARCH model is particularly interesting because, unlike the

cDCC-GARCH process, it admits a non-degenerate diffusion and, in the bivariate

specification, a closed form solution for the diffusion limit.

We then propose and discuss alternative sets of conditions regarding the speed of

convergence of parameters of the cDCC-GARCH model. In this way, other types of

degenerated diffusions can be obtained which are characterized by a stochastic price

process while variances and/or correlations remain time varying but deterministic.

In the same spirit of Corradi (2000), we then discuss what kind of processes can be

obtained as Euler approximation of the alternative diffusions processes.

The paper is completed by a simulation study to investigate the performance of

the QAML estimator of the diffusion parameters in our model framework. For the

parameters characterizing the innovation in variances and in correlations, we find

a negative bias in all cases, irrespective of the sample size, which only decreases

as the time intervals shrinks to zero. This confirms the results of Wang (2002)

that care needs to be taken in inferring diffusion parameters from a discrete type

approximation when there is no statistical equivalence of the likelihood estimators.

For the remaining model parameters, however, no substantial biases are found and

the mean square error converges to zero as the sample size increases for a given time

interval.

The paper is organized as follows. In Section 2 we present the theorem of weak

convergence of discrete time Markov chains. In Section 3 we study the continuous

time behavior of the cDCC and CCC models. We also present the degenerate

diffusions induced by a reparameterization of the convergence conditions. In Section

4, we illustrate through a Monte Carlo simulation our convergence results. In Section

5 we conclude and discuss directions for further research. All proofs are provided in
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the Appendix.

2 Weak convergence of stochastic systems

In this section we introduce a set of conditions for the convergence of a system of

discrete time stochastic difference equations towards system of stochastic differential

equations based on the work of Stroock and Varadhan (1979), Kushner (1984),

Ethier and Kurtz (1986) and Nelson (1990).

Let us define by D
(
[0,∞), IRN

)
the space of cadlag mappings from [0,∞)

into IRN and B
(
IRN

)
the Borel sets on IRN . Prh is the probability measure on

D
(
[0,∞), IRN

)
for each h > 0. Let Fkh be the σ-field generated by (kh, X

(h)
0 , X

(h)
h ,

X
(h)
2h , ..., X

(h)
kh ), where X

(h)
kh is an N -dimensional discrete time Markov chain in-

dexed by h > 0, k ∈ IN, with νh a probability measure on
(
IRN ,B(IRN)

)
, such

that Prh[X
(h)
0 ∈ Γ] = νh(Γ) for any Γ ∈ B

(
IRN

)
defines the distribution of

the starting point X
(h)
0 , and with transition probabilities Prh[X

(h)
(k+1)h ∈ Γ|Fkh] =

Πh,kh(X
(h)
kh ,Γ), ∀k ∈ IN, Γ ∈ B

(
IRN

)
. Let us now define X

(h)
t a continuous time

process, formed from the discrete time process X
(h)
kh as a cadlag step function with

jumps at h, 2h, 3h, ..., such that Prh[X
(h)
t = X

(h)
kh , kh < t < (k + 1)h] = 1. Finally,

let Xt be a continuous time process obtained from X
(h)
t by shrinking h towards

zero. Xt represents the limiting diffusion process to which, under Assumptions 1

to 4 given below, the discrete time process X
(h)
t weakly converges as h → 0. Let

Ω denote the space of N × N matrices, and Ω′ ⊂ Ω the set of symmetric positive

semi-definite N ×N matrices.

For the convergence results we need the following assumptions.

Assumption 1. There exist a continuous function a(x, t) : IRN× [0,∞)→ Ω′ and a

continuous measurable function b(x, t) : IRN × [0,∞)→ IRN such that for all r > 0
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and (k − 1)h < t < kh

a) lim
h→0

sup
‖x‖6r

∥∥∥h−1E
[
X

(h)
(k+1)h −X

(h)
kh

∣∣∣X(h)
kh = x

]
− b(x, t)

∥∥∥ = 0, (1)

b) lim
h→0

sup
‖x‖6r

∥∥∥h−1E
[

(X
(h)
(k+1)h −X

(h)
kh )(X

(h)
(k+1)h −Xkh)

(h)′
∣∣∣X(h)

kh = x
]
− a(x, t)

∥∥∥ = 0,

(2)

c) ∃δ > 0 : lim
h→0

sup
‖x‖6r

∥∥∥∥h−1E

[∣∣∣(X(h)
(k+1)h − X

(h)
kh )i

∣∣∣2+δ
∣∣∣∣X(h)

kh = x

]∥∥∥∥ = 0, where (.)i is

the ith element of the vector (X
(h)
(k+1)h −X

(h)
kh ).

Assumption 2. There exists a continuous function σ(x, t) : IRN × [0,∞)→ Ω such

that for all x ∈ IRN and t ≥ 0, a(x, t) = σ(x, t)σ(x, t)′.

Assumption 3. X
(h)
0 converges in distribution, as h→ 0, to a random variable X0

with probability measure ν0 on (IRN ,B(IRN)).

Assumption 4. ν0, b(x, t), a(x, t) uniquely specify the distribution of a diffusion

process Xt with initial distribution ν0, drift vector b(x, t) and diffusion matrix a(x, t).

We can now state the following theorem for the weak convergence of discrete

time stochastic sequences.

Theorem of weak convergence (Nelson, 1990). Under Assumptions 1 to 4,

the sequence of discrete time process X
(h)
kh indexed by h > 0 k ∈ IN, converges in

distribution, as h→ 0, to the diffusion process Xt, i.e. the solution of the system of

stochastic differential equations

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (3)

where Wt is an N-dimensional vector of mutually independent standard Brownian

motions, independent from X0, and with initial distribution ν0. The process Xt

exists, it is finite in finite time intervals almost surely, it is distributionally unique

and its distribution does not depend on the choice of σ(x, t).

For the proof we refer to Nelson (1990). Conditions under which ν0, b(x, t) and

a(x, t) ensure finiteness of the process in finite time intervals and uniqueness of the

limiting diffusion are extensively discussed in Stroock and Varadhan (1979), Ethier

and Kurtz (1986), and Nelson (1990). To ensure weak existence, uniqueness and

non-explosion of the diffusion process Xt on compact sets we rely on ‘Condition A’

of Nelson (1990), i.e.,
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Condition 1 (weak existence and uniqueness). Let a(x, t) and b(x, t) be continuous

in both x and t with two partial derivatives with respect to x.

Following Theorem 10.2.2 of Stroock and Varadhan (1979), we impose the fol-

lowing conditions of non-explosiveness of Xt.

Condition 2 (non-explosiveness). For each T > 0, there is a CT <∞ such that

sup
0≤t≤T

‖a(x, t)‖ ≤ CT (1 + |x|2), x ∈ RN

and

sup
0≤t≤T

〈x, b(x, t)〉 ≤ CT (1 + |x|2), x ∈ RN .

These are not the weakest possible conditions, but they are easy to check and

will suffice in our model framework.

3 Main theoretical results

Let Y
(h)
kh be an N -dimensional vector of logarithmic prices indexed by kh, k ∈

N, h > 0. The superscript (h) represents the time interval between two consecutive

observations, i.e. for given h, prices are observed at times h, 2h, 3h, .... We let the

parameters depend on the sampling frequency. Furthermore, the variance of the

innovations is made proportional to h. In this paper we focus on the covariance

stationary case, hence usual suitable positivity and stationarity constraints on the

parameters of the variances and correlation driving process apply, see Bollerslev

(1986), Engle (2002), Aielli (2006) and Aielli (2013).

In the remainder of the paper we use the following operators: vec() stacks the

columns of a matrix into a vector, vech() stacks the lower triangular portion of a

square matrix into a vector, vechl() stacks the strictly lower triangular portion of

a square matrix into a vector (i.e., excluding the diagonal elements), diag() stacks

the diagonal of a square matrix into a vector. Furthermore, 1N is a (N × 1) vector

of ones and IN is the (N × N) identity matrix. We also make use of the fol-

lowing elementary matrices: DN denotes the (N2 × N(N + 1)/2) duplication ma-

trix, which for any symmetric matrix A transforms vech(A) into vec(A), D+
N its

generalized inverse, see e.g. Lütkepohl (1996) for details, I∗ is defined such that
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diag(A) = I∗vech(A) with I∗ = I+′DN and I+ = (1N ⊗ IN)� [1′N ⊗ vec(IN)] trans-

forms vec(A) into diag(A). Finally, I− is defined such that vechl(A)vechl(A)′ =

I−(vech(A)vech(A)′)I−′ = I−D+
N(A⊗ A)D+′

N I
−′.1

3.1 The cDCC-GARCH process

The discrete time cDCC-GARCH process of Aielli (2006) for the log price vector of

an N -dimensional portfolio of assets Yt is specified as follows:

Yt = Yt−1 + St ηt, ηt|Ft−1 ∼ N(0, Rt), t ∈ N (4)

Vt+1 = c+ AS2
t (ηt � ηt) +B Vt, (5)

Qt+1 = Q̄+ ϑPtηtηt
′Pt + γQt, (6)

Pt = (Qt � IN)1/2, (7)

Rt = P−1
t Qt P

−1
t , (8)

where Ft = σ(Yτ , τ ≤ t), St is a diagonal matrix with positive diagonal elements,

Vt = diag(S2
t ). The parameters of the model are: Q̄ (N ×N) positive definite; A,B

(N ×N) diagonal with positive diagonal elements, c (N × 1) elementwise positive,

and ϑ, γ: positive scalars.

The standard DCC model of Engle (2002) is very similar but instead of (6) speci-

fies Qt+1 = Q̄+ϑηtη
′
t+γQt. The advantage of the cDCC model is that the recursion

for Qt preserves the martingale difference property, i.e., E[Ptηtη
′
tPt − Qt|Ft] = 0.

Hence, the process {Ptηt, vech(Qt)} is a multivariate semi-strong GARCH process

in the sense of Drost and Nijman (1993) and Hafner (2008).

Consider now the properties of the system of stochastic difference equations (4)-

(8) as the time is partitioned more and more finely as in Section 2, letting the

parameters and the covariance matrix of innovations depend on the length h of time

intervals. We begin by partitioning time in (4)-(8), for h > 0 and k ∈ N, according

1Examples: I+N=3 =

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1


′

and I−N=3 =

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 .
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to the following scheme

Y
(h)
kh = Y

(h)
(k−1)h + S

(h)
kh η

(h)
kh , (9)

V
(h)

(k+1)h = ch + Ahh
−1 S

(h)2
kh (η

(h)
kh � η

(h)
kh ) +Bh V

(h)
kh , (10)

Q
(h)
(k+1)h = Q̄h + ϑhh

−1P
(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh + γh Q

(h)
kh , (11)

P
(h)
kh = (Q

(h)
kh � IN)1/2, (12)

R
(h)
kh = P

(h)−1
kh Q

(h)∗
kh P

(h)−1
kh , (13)

and

Prh[(Y0, V0, Q0) ∈ Γ] = νh(Γ) for any Γ ∈ B
(

IRN(N+5)/2
)

(14)

where η
(h)
kh is an (N × 1) vector of standardized but conditionally correlated innova-

tions such that R
(h)−1/2
kh η

(h)
kh ∼ i.i.d. N(0, hIN). Further, S

(h)
kh is an (N ×N) diagonal

matrix of conditional standard deviations with the (N × 1) vector of conditional

variances denoted by V
(h)
kh = diag(S

(h)2
kh ). For the correlation driving process Q

(h)
kh we

have, under the restrictions Q̄h ∈ Ω′, ϑh, γh ≥ 0, that Q
(h)
kh ∈ Ω′. We will denote the

non-redundant elements of Q
(h)
kh by q

(h)
kh = vech(Q

(h)
kh ). Finally, (14) defines the distri-

bution of the initial value of the random vector (Y0, V0, Q0). Note that, for a given h,

the vector (Y
(h)
kh , V

(h)
(k+1)h, q

(h)
(k+1)h)

′ is a discrete time Markov process, so that the theory

of Section 2 applies. Again, note also that h−1E[(P
(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )−Q(h)

kh |Fkh] = 0,

so that, for a given h, the process {h−1/2P
(h)
kh η

(h)
kh , q

(h)
kh } is a multivariate semi-strong

GARCH process.

Without loss of generality, we reparameterize the drift in the recursion Q
(h)
kh as a

combination of a frequency invariant component and frequency dependent parame-

ters. The drift Q̄h can be expressed as Q̄h = (1− ϑh − γh)Q̄.2 This transformation

will be particularly useful when deriving the diffusion limit of the Constant Condi-

tional Correlation (CCC) model of Bollerslev (1990). In fact, under the parameter

restriction ϑh = γh = 0, Q
(h)
kh = Q̄h = Q̄, and therefore R

(h)
kh = Q̄ for all h.3 We

denote q̄ = vech(Q̄) the non redundant elements of Q̄.

2The same transformation can be carried out for the intercept of the V
(h)
(k+1)h process, i.e.,

ch = (IN−Ah−Bh)c̄. The vector c̄ is frequency invariant and contains the (rescaled) unconditional

variances of the return process (Y
(h)
(k+1)h− Y

(h)
kh ), i.e., c̄ = E[(Y

(h)
(k+1)h− Y

(h)
kh )�(Y

(h)
(k+1)h− Y

(h)
kh )]/h =

E[V
(h)
(k+1)h], ∀h.
3Note that even though in general Q̄ does not need to be a correlation matrix, i.e. diag(Q̄) = 1N ,

under the CCC parameter restrictions the diagonal elements of Q̄ are not identifiable together
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Before deriving the diffusion limit of cDCC-GARCH process we determine the

convergence rates of the discrete time parameters for the moment conditions to

converge as the sampling frequency increases, as required by Assumption 1.

Proposition 1. Assumption 1 holds under the following convergence rates for the

parameters of the discrete time cDCC-GARCH process (9)-(11),

ch = h c+ o(h) (15)

(Ah +Bh − IN) = −hΛ + o(h) (16)

Ah =
√
hA+ o(

√
h) (17)

(1− ϑh − γh) = hφ+ o(h) (18)

ϑh =
√
hϑ+ o(

√
h), (19)

for some (N × 1) vector c, A and Λ are diagonal N × N matrices with positive

diagonal elements, and scalars φ, ϑ > 0.

The convergence rates in Proposition 1 ensure that the first and the second

conditional moments per unit of time converge, as h → 0, to well-behaved limits

and that the first difference of the process [Y
(h)′
kh , V

(h)′
kh , q

(h)′
kh ]′ satisfies Assumption 1.

Note that c > 0 (elementwise) ensures positivity of the variance process, A > 0

and ϑ > 0 ensure that the rescaled second conditional moment does not vanish as

h→ 0,4 while Λ > 0 and φ > 0 ensure covariance stationarity of the return process.5

Under our assumptions, we have the following result of the diffusion limit of the

cDCC-GARCH process.

Theorem 1 (Diffusion limit of the cDCC-GARCH model). Under (15) to

(19), the discrete time cDCC-GARCH process (9)-(11) weakly converges to the dif-

fusion process Xt = [Y ′t , V
′
t , q
′
t]
′ which is the solution to the system of stochastic

with the intercept of the V
(h)
(k+1)h process. Fixing diag(Q̄) = 1N ensures that: (i) E[V

(h)
(k+1)h] =

(IN − Ah − Bh)−1ch is the rescaled unconditional variance of the return process (E[(Y
(h)
(k+1)h −

Y
(h)
kh )� (Y

(h)
(k+1)h − Y

(h)
kh )]/h), (ii) Q̄ can be directly interpreted as the (un)conditional correlation

of (Y
(h)
(k+1)h − Y

(h)
kh ).

4These conditions imply that the diffusion limit of the cDCC-GARCH process converges to a

continuous time stochastic volatility process.
5In the univariate setting, two special cases, Λ = 0 (integrated variance) and Λ < 0 (strictly

stationary but not covariance stationary GARCH process) are also discussed in Nelson (1990). In

this paper we restrict the analysis to the covariance stationary case.
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differential equations

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (20)

where the drift, b(Xt, t), is given by

b(Xt, t) =

 0

c− ΛVt

φ(q̄ − qt)

 , (21)

while the scale, σ(Xt, t), is a continuous mapping such that, for all Xt ∈ IRN(N+5)/2

and t ≥ 0, a(Xt, t) = σ(Xt, t)σ(Xt, t)
′ where a(Xt, t) is given by

a(Xt, t) =

aY Y 0 0

0 aV V aV q

0 a′V q aqq

 , (22)

with

aY Y = StRtSt

aV V = 2AS2
t (Rt �Rt)S

2
tA

aV q = ϑ
[
I∗KtD

+
N(Pt ⊗ Pt)D+′

N − 1Nq
′
t

]′
S2
tA

aqq = ϑ2[D+
N(Pt ⊗ Pt)D+′

NKtD
+
N(Pt ⊗ Pt)D+′

N − qtq
′
t]

where Kt = 2D+
N(Rt ⊗ Rt)D

+′
N + vech(Rt)vech(Rt)

′. The matrix a(Xt, t) is singular

and its rank is equal to N(N +3)/2 < dim(a(Xt, t)) = N(N +5)/2. The conditional

correlation, Rt, is given at each point in time by (13).

Note first that the drift term b(Xt, t) is linear in Xt, which is due to the fact

that the cDCC-GARCH process satisfies a semi-strong GARCH structure, meaning

that increments to the state variables have a conditional mean that is linear in the

state. In particular, as shown in the proof, we can use that in the cDCC model

E[∆q
(h)
(k+1)h|Fkh] = (1−ϑh− γh)(q̄− q(h)

kh ). This is, however, not the case in the DCC

model, where this expectation would be a function of the conditional correlation

matrix R
(h)
kh , which is a nonlinear function of the state variable q

(h)
kh . Therefore, it

appears very difficult if not impossible to obtain analytical results for the diffusion

limit of the DCC model.

The singularity of a(Xt, t) is due to the particular structure of the model in

which the noise propagation of the variance processes and the one of the diagonal
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elements of the correlation driving processes are pairwise perfectly correlated. This

is because, although (possibly) different in terms of level and dynamics, (10) and

(11) are driven by the same innovations. For example, in the special case where

(IN − Ah − Bh)
−1ch = diag(Q̄), Ah = ϑhIN , Bh = γhIN , the model reduces to a

scalar VEC model with N redundant equations.

To investigate the implications of singularity of the diffusion matrix a(Xt, t), let

us rearrange the order of the elements of the diffusion processXt as [Y ′t , V
′
t , q

(d)′
t , q

(l)′
t ]′,

where q
(d)
t = diag(Qt) and q

(l)
t = vechl(Qt). The two partial diffusion processes

[Y ′t , V
′
t , q

(l)′
t ]′ and [Y ′t , q

(d)′
t , q

(l)′
t ]′ share the same correlation structure, while Corr(dVt,i,

dQt,ii) = 1 ∀i implies that the two partial diffusions are driven by the same vec-

tor of Brownian innovations. Thus, the relevant part in terms of noise propagation

system of the diffusion limit of the cDCC-GARCH process consists of a system of

N(N + 3)/2 stochastic differential equations, either [Y ′t , V
′
t , q

(l)′
t ] or [Y ′t , q

(d)′
t , q

(l)′
t ],

while the remaining N diffusion processes, q
(d)
t or Vt respectively, are characterized

by a specific deterministic part (drift) but a common, though appropriately rescaled,

stochastic component. To illustrate this point, let us consider the following partition

of the diffusion matrix in (22), whose elements have been appropriately reordered,

a(Xt, t) =


aY Y 0 0 0

0 aV V aV q(d) aV q(l)

0 a′
V q(d)

aq(d)q(d) aq(d)q(l)

0 a′
V q(l)

a′
q(d)q(l)

aq(l)q(l)

 (23)

where

aV q(d) = 2ϑAS2
t (Rt �Rr)P

2
t = ϑaV V (S2

tA)−1P 2
t

aq(d)q(d) = 2ϑ2P 2
t (Rt �Rr)P

2
t = ϑ2P 2

t (AS2
t )
−1aV V (S2

tA)−1P 2
t

aV q(l) = ϑAS2
[
I∗(D+

NKtD
+′
N )
(
D+
N(Pt ⊗ Pt)D+′

N

)
I−′ − 1Nq

′
tI
−′]

aq(d)q(l) = ϑ2P 2
t [I∗(D+

NKtD
+′
N )(D+

N(Pt ⊗ Pt)D+′
N )I−′ − 1Nq

′
tI
−′] = ϑP 2

t (AS2
t )
−1aV q(l)

aq(l)q(l) = ϑ2I−[(D+
N(Pt ⊗ Pt)D+′

N )Kt(D
+
N(Pt ⊗ Pt)D+′

N )− qtq′t]I−′.

Let us also define Ct = ϑP 2
t (AS2

t )
−1. We can rewrite (23) as

aY Y 0 0 0

0 aV V aV VC
′
t aV q(l)

0 CtaV V CtaV VC
′
t CtaV q(l)

0 a′
V q(l)

a′
V q(l)

C ′t aq(l)q(l)

 . (24)
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Therefore,

a([Y ′t , V
′
t , q

(l)′
t ]′, t) =

aY Y 0 0

0 aV V aV q(l)

0 a′
V q(l)

aq(l)q(l)

 (25)

a([Y ′t , q
(d)′
t , q

(l)′
t ]′, t) =

aY Y 0 0

0 CtaV VC
′
t CtaV q(l)

0 a′
V q(l)

C ′t aq(l)q(l)

 . (26)

The decomposition in (25) and (26) shows that the two partial processes [V ′t , q
(l)′
t ]′

and [q
(d)′
t , q

(l)′
t ]′, both uncorrelated with Yt, share the same correlation structure.

Furthermore, from Theorem 1, it immediately follows that [V ′t , q
(l)′
t ]′ and [q

(d)′
t , q

(l)′
t ]′

are elementwise perfectly correlated6, which implies that the two diffusion processes

are driven by the same vector of Brownian motions. However, although either

partial diffusion process [Y ′t , V
′
t , q

(l)′
t ]′ or [Y ′t , q

(d)′
t , q

(l)′
t ]′ is sufficient alone to fully

characterize the noise propagation system of the cDCC diffusion limit, they are

both necessary to characterize the distributions of Yt and Vt which depend on both

Vt and qt = [q
(d)′
t , q

(l)′
t ]′ through the correlation process Rt.

7

3.2 A special case: the CCC-GARCH process

As a special case, consider the Constant Conditional Correlation (CCC) model of

Bollerslev (1990). The cDCC process nests the CCC process under the following

parameter restrictions

ϑh = γh = 0 ∀h.

Thus, the CCC-GARCH process can be written as

Y
(h)
kh = Y

(h)
(k−1)h + S

(h)
kh η

(h)
kh , (27)

V
(h)

(k+1)h = ch + Ahh
−1S

(h)2
kh (η

(h)
kh � η

(h)
kh ) +BhV

(h)
kh , (28)

where ch, Ah, Bh are defined as before and η
(h)
kh is an (N × 1) vector of standard-

ized but correlated innovations, such that η
(h)
kh ∼ N(0, hR), where R represents

6More generally, Corr(dVt,i,dVt,j) = Corr(dq
(d)
t,i ,dq

(d)
t,j ) = Corr(dVt,i,dq

(d)
t,j ) = (Rt�Rt)ij ∀i, j =

1, ..., N .
7Note that the partial system [Y ′t , q

(d)′
t , q

(l)′
t ]′ is however sufficient to characterize the distribution

of the correlation driving process Qt and hence of the correlation Rt.
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the (frequency invariant) constant conditional correlation matrix. This model, al-

though rather restrictive in practice, is particularly interesting because, unlike the

cDCC-GARCH process, it allows for a non-degenerate diffusion and, in the bivariate

specification, a closed form solution for the diffusion limit. The rates of convergence

for the parameters and the CCC-GARCH process are stated in Proposition 2 and

Theorem 2.

Proposition 2. Under the following convergence rates for the parameters of the

discrete time CCC-GARCH process (27)-(28)

ch = h c+ o(h) (29)

(Ah +Bh − IN) = −hΛ + o(h) (30)

Ah =
√
hA+ o(

√
h), (31)

for some (N × 1) vector c, (N × N) diagonal matrices A and Λ with positive and

finite elements, Assumption 1 holds.

The same considerations on the parameters as in Proposition 1 hold by symmetry

with the cDCC-GARCH process.

Theorem 2 (Diffusion limit of the CCC-GARCH model). Under the con-

vergence conditions in Proposition 2, the CCC-GARCH process (27)-(28) weakly

converges to the non-degenerate diffusion process Xt = [Y ′t V
′
t ]
′ solution to a system

of stochastic differential equations of the form (20), with drift

b(Xt, t) =

[
0

c− ΛVt

]
(32)

and diffusion matrix

a(Xt, t) =

[
StRSt 0

0 2AS2
t (R�R)S2

tA

]
(33)

and driven by a vector Wt of 2N mutually independent Brownian motions, indepen-

dent of the initial value X0 = [Y0 V0]′.

The diffusion limit of the CCC model is clearly non-degenerate because it is

driven by as many Brownian motions as the number of variables in the system and

whose covariance matrix is non-singular.
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It is clear that the diffusion limit of the cDCC-GARCH process (as well as of the

CCC-GARCH process) is a continuous time stochastic volatility model (i.e., stochas-

tic variances and correlations). We discuss next the case when rates of convergence

other than the ones introduced in Proposition 1, but still satisfying Assumption 1,

are used.

3.3 Alternative convergence conditions

In this section we reconsider the continuous time approximation of the cDCC-

GARCH process (9)-(11). The convergence rate h1/2, suggested in Proposition 1,

represents the slowest rate of convergence for the parameters Ah and ϑh satisfying

Assumption 1. More generally, the rate h1/2 represents the only rate ensuring that

the second conditional moments Var(V
(h)

(k+1)h−V
(h)
kh |Fkh), Var(q

(h)
(k+1)h− q

(h)
kh |Fkh) and

Cov[(V
(h)

(k+1)h − V
(h)
kh ), (q

(h)
(k+1)h − q

(h)
kh )|Fkh] scaled by h−1, do not vanish as h → 0.

As shown in Theorem 1, the resulting diffusion limit is characterized by stochastic

variances of the marginal processes and stochastic correlation driving process.

However, there are other admissible convergence rates for Ah and ϑh which also

satisfy Assumption 1. Thus, depending on the continuous time approximation we

consider, we can recover different types of diffusion for the process (9)-(11).8 This

alternative set of results is shown in Proposition 3 and Theorem 3.

Proposition 3. Assumption 1 holds under the following convergence rates for the

parameters Ah and ϑh

lim
h→0

h−( 1
2

+δ1)Ah = Ã <∞ (34)

and

lim
h→0

h−( 1
2

+δ2)ϑh = ϑ̃ <∞, (35)

for some (N ×N) diagonal matrix Ã > 0 (elementwise), ϑ̃ > 0, δ1 ≥ 0 and δ2 ≥ 0.

Note that under (34) and (35), Ah and ϑh are of order h1/2+δ1 and h1/2+δ2 ,

respectively. Clearly, the special case δ1 = δ2 = 0 is covered by Proposition 1.

Proposition 3 suggests alternative sets of conditions regarding the speed of con-

vergence of the discrete time parameters under which Assumption 1 holds. The

8The following arguments can be easily extended to the CCC-GARCH process, although this

case is not explicitly treated here.
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implications of Proposition 3 are straightforward. If either δ1 > 0 or δ2 > 0, then

the terms depending on η
(h)
kh on the right hand side of (10) and/or (11) are of order

o(h1/2). Consequently, the conditional second moments scaled by h−1 converge to

zero as h → 0. The resulting diffusion limits are degenerate and are character-

ized by time varying but deterministic variances of the marginal processes and/or a

deterministic correlation driving process. We have the following results.

Theorem 3 (Alternative convergence conditions). Under (15), (16), (18) and

(34)-(35), the discrete time cDCC-GARCH process (9)-(11) admits a degenerate

diffusion limit. The diffusion process Xt = [Y ′t V
′
t q
′
t]
′ is the solution to a system

of stochastic differential equations of the form (20), with drift given by (21) and

diffusion matrix given respectively by

i) (deterministic variances but stochastic correlation) under (15), (16), (18),

(19) and (34)

a(Xt, t) =


StRtSt 0 0

0 0 0

0 0 ϑ2[D+
N(Pt ⊗ Pt)D+′

NKt

D+
N(Pt ⊗ Pt)D+′

N − qtq′t]

 . (36)

The diffusion process defined by (20), (21) and (36) is driven by N(N + 3)/2

independent standard Brownian motions;

ii) (stochastic variance but deterministic correlation) under (15), (16), (17), (18)

and (35)

a(Xt, t) =

StRtSt 0 0

0 2AS2
t (Rt �Rr)S

2
tA 0

0 0 0

 . (37)

The diffusion process defined by (20), (21) and (37) is driven by 2N indepen-

dent standard Brownian motions;

iii) (deterministic variances and correlation) under (15), (16), (18) and both (34)

and (35)

a(Xt, t) =

StRtSt 0 0

0 0 0

0 0 0

 . (38)
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The diffusion process defined by (20), (21) and (38) is driven by N independent

standard Brownian motions.

It is possible to characterize the types of processes that can be obtained as Euler

approximation of the different diffusions in Theorem 3. These approximations are

not unique. For example, in the unvariate GARCH case, Corradi (2000) has shown

that an Euler approximation of a degenerate diffusion process is GARCH, while that

of a non-degenerate diffusion is stochastic volatility. In the same spirit, and using

stochastic calculus results of Steele (2001) p.123, we can show that the following type

of processes are Euler approximations of the three diffusions defined in Theorem 3:

i) a process with stochastic correlation and GARCH variances, ii) a process with

stochastic volatility and cDCC correlation, and iii) a cDCC-GARCH process as in

(9)-(11), respectively.

4 Monte Carlo evidence on estimation by approx-

imation

In this section we investigate the performance of the quasi approximate maximum

likelihood (QAML) procedure of Fornari and Mele (2006), discussed in the intro-

duction, in our model framework using a Monte Carlo simulation study. Estimation

by QAML essentially involves two types of biases: First, the approximation bias

arising from the approximation of an exact, but unknown, discrete time represen-

tation of the underlying diffusion process. And second, the finite sample bias due

to the availability of a sample of only a finite number of observations. For the drift

parameter of a Cox-Ingersoll-Ross type process, Phillips and Yu (2009) have shown

that the approximation bias for alternative approximation schemes is typically neg-

ligible compared to the finite sample bias. This motivates the use of QAML for

GARCH-type processes, where the exact discrete time model is unknown. Rather

than comparing with alternative estimation strategies, e.g. simulated MLE as in

Kleppe, Yu, and Skaug (2010), we focus on the properties of the simple QAML pro-

cedure and, in particular, the relative importance of approximation and estimation

bias.

For univariate GARCH models, Wang (2002) has shown the non-equivalence

of the statistical experiments resulting from the estimation of the discrete time
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model and its weak diffusion limit. Nevertheless, many studies have used QAML,

see e.g. Engle and Lee (1996), Broze, Scaillet, and Zakoian (1998), Lewis (2000),

Barone-Adesi, Rasmussen, and Ravanelli (2005) and Stentoft (2011), arguing that

the approximation bias tends to disappear as the frequency increases. For the related

case of estimating temporally aggregated multivariate GARCH models, the bias of

QAML has been shown to be negligible, see Hafner and Rombouts (2007). Therefore,

it is of interest to see whether this finding extends to the estimation of some or all

parameters of the cDCC-GARCH diffusion limit.

We estimate the parameters of a sequence, indexed by h, of discrete time cDCC-

GARCH models with i.i.d. innovations. Then, for each h, we use the relationships

given in Proposition 1 to obtain the diffusion parameters and we investigate the

behavior of the latter as h→ 0. To keep the computational burden feasible, we focus

on the bivariate case, N = 2, but our results should generalize in an obvious way

to higher dimensions. Using the representations of Section 3.1, the cDCC-GARCH

diffusion limit can be written as[
dY1t

dY2t

]
=

[√
V1t 0

0
√
V2t

]
Υ(1)(ρt)

1
2 dW

(1)
t (39)

 dV1t

dV2t

dQ12t

 =

 c1 − Λ11V1t

c2 − Λ22V2t

φ(Q̄12 −Q12t)

 dt+
√

2


A11V1t 0 0

0 A22V2t 0

0 0 ϑQ12t

√
1+ρ2t
2ρ2t

Υ(2)(ρt)
1
2 dW

(2)
t

(40)dQ11t

dQ22t

dQ12t

 =

φ(Q̄11 −Q11t)

φ(Q̄22 −Q22t)

φ(Q̄12 −Q12t)

 dt+
√

2ϑ


Q11t 0 0

0 Q22t 0

0 0 Q12t

√
1+ρ2t
2ρ2t

Υ(2)(ρt)
1
2 dW

(2)
t ,

(41)

where

Υ(1)(ρt) =

[
1 ρt

ρt 1

]
, Υ(2)(ρt) =


1 ρ2

t

√
2ρ2t

1+ρ2t

ρ2
t 1

√
2ρ2t

1+ρ2t√
2ρ2t

1+ρ2t

√
2ρ2t

1+ρ2t
1


and

ρt =
Q12t√
Q11tQ22t

.
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Note that the drift in [dV1t, dV2t] can be expressed in terms of a steady state

drift parameter c̄ with components c̄i = ci/Λii, i.e., ci−ΛiiVit = Λii(c̄i− Vit). Given

the convergence rates of Proposition 1, the estimator of c̄ should be less affected by

the choice of the frequency, so that we will report estimation results also for this

additional parameter.

The two partial systems [dV1t, dV2t, dQ12t] and [dQ11t, dQ22t, dQ12t] share the

same correlation structure, Υ(ρt), and stochastic component, dW
(2)
t .

We use an Euler discretization scheme of (39)-(41) and simulate 500 sample

paths using a discretization interval ∆t = 1/640 and length k = 2000 periods. The

data is generated using the following parameterization: c = [0.1, 0.15]′, A11 = 0.07,

A22 = 0.10, Λ11 = 0.13, Λ22 = 0.10, ϑ = 0.08 and φ = 0.04. This parameterization

implies an unconditional variance of the marginal processes c̄ = [1, 1.5]′. As noted

in Section 3.1, the drift of the correlation driving process has been parameterized as

the product of a frequency invariant parameter Q̄, representing the unconditional

expectation of the process normalized by h, and a linear combination of frequency

dependent parameters. Thus, Q̄h = Q̄φ = Q̄(1−ϑh−γh). Furthermore, the diagonal

elements of Q̄ are fixed to one and not included in the estimation. The unconditional

correlation, Q̄12, is set to 0.5. The square root of the correlation matrices of the

diffusion, Υ(1)(ρt) and Υ(2)(ρt), are computed by spectral decomposition.

For each sample path we estimate the following model

η
(h)
kh = S

(h)−1
kh (Y

(h)
kh − Y

(h)
(k−1)h) | Fkh ∼ N(0, hR

(h)
kh ), (42)

V
(h)

(k+1)h = c h+ Ah−1/2S
(h)2
kh (η

(h)
kh � η

(h)
kh ) + (IN − A

√
h− Λh)V

(h)
kh , (43)

Q
(h)
(k+1)h = Q̄φ h+ ϑh−1/2(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh ) + (1− ϑ

√
h− φh)Q

(h)
kh , (44)

that is (9)-(11) expressed as a function of frequency rescaled parameters. This is

obtained by substituting (up to o(1))

ch = c h, (45)

Ah = A
√
h, (46)

Bh = (IN − A
√
h− Λh), (47)

ϑh = ϑ
√
h, (48)

γh = (1− ϑ
√
h− φh), (49)

from Proposition 1, into (9)-(11). The model is estimated using data sampled at

nine frequencies spanning from h = 1 to h = 1/320. The sequences of discrete time

19



models are estimated by Gaussian QAML. The bias and root mean square error

(RMSE) of parameter estimates are reported in Tables 1 and 2, respectively.

As the sampling frequency increases, the bias and RMSE tend to disappear

at an appropriate rate for all parameters. For a given frequency, however, there

are remarkable differences. For the parameters in the drift terms, bias and RMSE

decrease as the sample size k increases, suggesting that the finite sample bias dom-

inates the approximation bias, which confirms the results of Phillips and Yu (2009)

for the Cox-Ingersoll-Ross diffusion process. However, this is not the case for the

parameters A and ϑ linked to the innovation terms in Vt and Qt, respectively. For

these parameters, the approximation bias dominates the finite sample bias. Clearly,

QAML is inconsistent when only the sample size is increased but not the frequency,

which confirms the results of Wang (2002) for the univariate case. With sufficiently

high frequency and sample size, however, the bias may be considered negligible in

most practical situations.

Table 1: Bias of the diffusion parameters of the cDCC process

c̄1=1.00

h \ k 500 2000

1 0.0013 -0.0012

1/4 0.0003 -0.0017

1/16 -0.0005 -0.0008

1/64 0.0000 -0.0005

1/320 -0.0001 -0.0005

c1=0.13

500 2000

0.1536 0.1156

0.1065 0.0367

0.0298 0.0076

0.0170 0.0067

0.0107 0.0026

A11=0.07

500 2000

-0.0425 -0.0488

-0.0355 -0.0390

-0.0259 -0.0260

-0.0148 -0.0146

-0.0072 -0.0071

Λ11=0.13

500 2000

0.1537 0.1159

0.1071 0.0373

0.0300 0.0078

0.0173 0.0068

0.0111 0.0027

c̄2=1.50

h \ k 500 2000

1 -0.0048 0.0007

1/4 -0.0052 -0.0039

1/16 -0.0051 -0.0027

1/64 -0.0044 -0.0017

1/320 -0.0032 0.0001

c2=0.15

500 2000

0.1489 0.0634

0.0662 0.0135

0.0245 0.0074

0.0198 0.0066

0.0146 0.0033

A22=0.10

500 2000

-0.0551 -0.0596

-0.0399 -0.0410

-0.0246 -0.0240

-0.0122 -0.0125

-0.0054 -0.0058

Λ22=0.10

500 2000

0.1002 0.0424

0.0451 0.0095

0.0173 0.0053

0.0142 0.0047

0.0106 0.0024

Q̄12=0.50

h \ k 500 2000

1 -0.0063 -0.0013

1/4 -0.0010 0.0012

1/16 0.0001 0.0017

1/64 0.0036 0.0020

1/320 0.0046 0.0033

ϑ=0.08

500 2000

-0.0300 -0.0356

-0.0211 -0.0214

-0.0118 -0.0114

-0.0054 -0.0055

-0.0022 -0.0022

ψ=0.04

500 2000

0.0622 0.0087

0.0185 0.0043

0.0104 0.0033

0.0075 0.0031

0.0050 0.0023
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Table 2: RMSE of the diffusion parameters of the cDCC process

c̄1=1.00

h \ k 500 2000

1 0.0941 0.0385

1/4 0.0445 0.0226

1/16 0.0363 0.0186

1/64 0.0338 0.0169

1/320 0.0342 0.0165

c1=0.13

500 2000

0.3256 0.2765

0.2555 0.1246

0.0922 0.0309

0.0456 0.0202

0.0326 0.0131

A11=0.07

500 2000

0.0535 0.0517

0.0416 0.0403

0.0284 0.0265

0.0162 0.0149

0.0084 0.0074

Λ11=0.13

500 2000

0.3248 0.2768

0.2579 0.1264

0.0923 0.0311

0.0464 0.0204

0.0336 0.0134

c̄2=1.50

h \ k 500 2000

1 0.1818 0.0712

1/4 0.1136 0.0573

1/16 0.1034 0.0515

1/64 0.1008 0.0498

1/320 0.1000 0.0496

c2=0.15

500 2000

0.3150 0.1846

0.1736 0.0490

0.0639 0.0271

0.0496 0.0204

0.0408 0.0158

A22=0.10

500 2000

0.0660 0.0620

0.0456 0.0422

0.0275 0.0248

0.0147 0.0131

0.0074 0.0063

Λ22=0.10

500 2000

0.2131 0.1240

0.1158 0.0335

0.0440 0.0188

0.0346 0.0146

0.0291 0.0118

Q̄12=0.50

h \ k 500 2000

1 0.0785 0.0350

1/4 0.0578 0.0294

1/16 0.0548 0.0276

1/64 0.0537 0.0271

1/320 0.0510 0.0251

ϑ=0.08

500 2000

0.0420 0.0376

0.0261 0.0225

0.0148 0.0123

0.0083 0.0063

0.0045 0.0029

ψ=0.04

500 2000

0.1619 0.0280

0.0419 0.0132

0.0247 0.0092

0.0204 0.0084

0.0180 0.0074

5 Conclusions

This paper considered weak diffusion limits of two conditional correlation GARCH

specifications, namely the cDCC model of Aielli (2006) and the CCC model of

Bollerslev (1990). For the cDCC-GARCH model, the diffusion limit is degenerate

in the sense that the diffusion of the variances and that of the diagonal elements of

the correlation driving process are pairwise governed by the same Brownian motion.

We show that this result is due to the particular structure of the noise propagation

system of the variances and of the correlation driving process. The CCC model,

which can be obtained from cDCC under suitable parameter restrictions, admits

a non-degenerate diffusion. Under an alternative set of conditions regarding the

convergence rates of the parameters, we obtain diffusion limits characterized by a

stochastic price process where either the variances, the correlations, or both, are

time-varying but deterministic. Our Monte Carlo study confirms that estimation of

the diffusion parameters by QAML is inconsistent for any fixed frequency, but may

provide good approximations if the frequency and sample size are sufficiently large.

There are several possible extensions of this work. First of all, the assumption
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of Gaussian innovations may be relaxed. One may also extend the results to allow

for volatility spillover. Furthermore, similar to Nelson (1990) it may be possible to

derive the stationary distribution of the continuous time limit of returns, variances

and correlations. Finally, it would be useful to extend the results of this paper to

jump-diffusion processes, based on the results of Ethier and Kurtz (1986).
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Appendix: Proofs

Proof of Proposition 1. The first step is to compute the increments of the

process (9)-(11), that is

Y
(h)
kh − Y

(h)
(k−1)h = S

(h)
kh η

(h)
kh

V
(h)

(k+1)h − V
(h)
kh = ch + AhS

(h)2
kh h−1(η

(h)
kh � η

(h)
kh ) + (Bh − IN)V

(h)
kh

q
(h)
(k+1)h − q

(h)
kh = (1− ϑh − γh)q̄ + ϑhh

−1vech(P
(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh ) + (γh − 1)q

(h)
kh ,

where we have used that q̄h = q̄(1− ϑh − γh).
Second, we compute the moments (conditioned on Fkh = {kh, Y (h)

0 , ...,Y
(h)

(k−1)h,

V
(h)

0 , ...,V
(h)
kh , q

(h)
0 , ..., q

(h)
kh }) to define suitable convergence conditions as required by

Assumption 1. To simplify the notation, let us define the difference operator over

an interval of size h as ∆ : ∆X
(h)
kh = X

(h)
kh −X

(h)
(k−1)h. The first conditional moment

per unit of time of the increments of (9)-(11) is given by

h−1E[∆Y
(h)
kh |Fkh] = S

(h)
kh E[ η

(h)
kh ] = 0 (50)

h−1E[∆V
(h)

(k+1)h|Fkh] = h−1ch + Ahh
−2S

(h)2
kh E[η

(h)
kh � η

(h)
kh |Fkh] + h−1(Bh − IN)V

(h)
kh

= h−1ch + h−1(Ah +Bh − IN)V
(h)
kh (51)

h−1E[∆q
(h)
(k+1)h|Fkh] = h−1(1− ϑh − γh)q̄ + h−2ϑhvech(E[P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh |Fkh])

+ h−1(γh − 1)q
(h)
kh

= h−1(1− ϑh − γh)q̄ + h−1(ϑh + γh − 1)q
(h)
kh , (52)

where E[η
(h)
kh �η

(h)
kh |Fkh] = h 1N and vech(P

(h)
kh E[η

(h)
kh η

(h)′
kh |Fkh]P

(h)
kh ) = hvech(P

(h)
kh R

(h)
kh P

(h)
kh ) =

hq
(h)
kh .

To compute the second moments per unit of time, consider the following partition

vech
(

Var([∆Y
(h)′
kh ,∆V

(h)′
(k+1)h,∆q

(h)′
(k+1)h]

′|Fkh)
)

=



Var(∆Y
(h)
kh |Fkh)

Cov(∆Y
(h)
kh ,∆V

(h)
(k+1)h|Fkh)′

Cov(∆Y
(h)
kh ,∆q

(h)
(k+1)h|Fkh)′

Var(∆V
(h)

(k+1)h|Fkh)
Cov(∆V

(h)
(k+1)h,∆q

(h)
(k+1)h|Fkh)′

Var(∆q
(h)
(k+1)h|Fkh)


.

The conditional variance of ∆Y
(h)
kh standardized by h is given by

h−1Var[∆Y
(h)
kh |Fkh] = h−1S

(h)
kh E(η

(h)
kh η

(h)′
kh |Fkh)S

(h)
kh = S

(h)
kh R

(h)
kh S

(h)
kh . (53)
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Similarly the conditional variance of ∆V
(h)

(k+1)h is given by

h−1Var[∆V
(h)

(k+1)h|Fkh] = AhS
(h)2
kh h−3

[
E[(η

(h)
kh � η

(h)
kh )(η

(h)
kh � η

(h)
kh )′|Fkh]

−E[(η
(h)
kh � η

(h)
kh )|Fkh]E[(η

(h)
kh � η

(h)
kh )|Fkh]′

]
S

(h)2
kh A′h. (54)

= 2h−1AhS
(h)2
kh (R

(h)
kh �R

(h)
kh )S

(h)2
kh A′h (55)

where the second equality uses that, under the conditional normality assumption,

E[η
(h)
kh,iη

(h)
kh,j|Fkh] = h2(1 + 2R

(h)2
kh,ij), i, j ∈ {1, ..., N}. Moreover, E[(η

(h)
kh � η

(h)
kh )|Fkh] =

h1N .

The variance of ∆q
(h)
(k+1)h is given by

h−1Var[∆q
(h)
(k+1)h|Fkh] = ϑ2

hh
−3E[vech(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )vech(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )′|Fkh]

− ϑ2
hh
−3E[vech(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )|Fkh]E[vech(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )|Fkh]′

(56)

= h−1ϑ2
h[D

+
N(P

(h)
kh ⊗ P

(h)
kh )D+′

NK
(h)
kh D

+
N(P

(h)
kh ⊗ P

(h)
kh )D+′

N − q
(h)
kh q

(h)′
kh ]. (57)

where the second equality uses that E[vech(P
(h)
kh η

(h)
kh η

(h)′

kh P
(h)
kh )|Fkh] = hq

(h)
kh , and

where K
(h)
kh = h−2E[η

(h)
kh η

(h)′
kh ⊗ η

(h)
kh η

(h)′
kh |Fkh] is the (N(N + 1)/2 × N(N + 1)/2)

matrix of conditional fourth moments of η
(h)
kh which, given the normality assumption

of the innovations, is given by

K
(h)
kh = 2D+

N(R
(h)
kh ⊗R

(h)
kh )D+′

N + vech(R
(h)
kh )vech(R

(h)
kh )′,

which is a consequence of Theorem 10.2 of Magnus (1988), see the proof of Theorem

1 of Hafner (2003).

Finally, the conditional covariances are

h−1Cov[∆Y
(h)
kh ,∆V

(h)
(k+1)h)|Fkh] = h−1E[(S

(h)
kh η

(h)
kh )(AhS

(h)2
kh h−1(η

(h)
kh � η

(h)
kh ))′|Fkh]

= h−2S
(h)
kh E[η

(h)
kh (η

(h)
kh � η

(h)
kh )′|Fkh]S(h)2

kh Ah = 0, (58)

because all conditional third moments of η
(h)
kh are equal to zero given the normality

assumption. Furthermore, we have

h−1Cov[∆Y
(h)
kh ,∆q

(h)
(k+1)h|Fkh] = h−2E[(S

(h)
kh η

(h)
kh )(ϑhvech(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh ))′|Fkh]

= h−2ϑhS
(h)
kh E[η

(h)
kh vech(η

(h)
kh η

(h)′
kh )′|Fkh](D+

N(P
(h)
kh ⊗ P

(h)
kh )D+′

N ) = 0

(59)
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and

h−1Cov[∆V
(h)

(k+1)h,∆q
(h)
(k+1)h|Fkh] =

= h−3E

[(
AhS

(h)2
kh (η

(h)
kh � η

(h)
kh )
)(

ϑhvech(P
(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )
)′
|Fkh

]
− h−3E

[
AhS

(h)2
kh (η

(h)
kh � η

(h)
kh )|Fkh

]
E
[
ϑhvech(P

(h)
kh η

(h)
kh η

(h)′
kh P

(h)
kh )|Fkh

]′
= h−1ϑhAhS

(h)2
kh

[
I∗K

(h)
kh D

+
N(P

(h)
kh ⊗ P

(h)
kh )D+′

N − 1Nq
(h)′
kh

]
. (60)

where the second equality uses η
(h)
kh � η

(h)
kh = diag(η

(h)
kh η

(h)′
kh ) = I∗vech(η

(h)
kh η

(h)′
kh ).

For the conditional moments (50)-(52) (drift) and (53), (55), and (57)-(60) (sec-

ond moments) to converge to well behaved functions as h → 0, as required by

Assumption 1 a) and b), the following limits must exist and be finite

lim
h→0

h−1ch = c (61)

lim
h→0

h−1(Ah +Bh − IN) = −Λ (62)

lim
h→0

h−1/2Ah = A (63)

lim
h→0

h−1(1− ϑh − γh) = φ (64)

lim
h→0

h−1/2ϑh = ϑ, (65)

where c is a (N×1) vector, A and Λ are (N×N) diagonal matrices and φ and ϑ are

scalars with all elements positive and finite, such that c > 0 (elementwise) ensures

positivity of the variance process, A > 0 and ϑ > 0 ensure that the rescaled second

conditional moment of V
(h)
kh and q

(h)
kh does not vanish as h→ 0, while Λ > 0 and φ > 0

ensure covariance stationarity of the return process. Finally, by straightforward

computation as in Nelson (1990), under (61)-(65), Assumption 1 c) holds for δ = 2,

i.e.,

h−1 lim
h→0

E

[∣∣∣(∆Y (h)
kh )i

∣∣∣4 |Fkh] = 0,∀i, i = 1, ..., N

h−1 lim
h→0

E

[∣∣∣(∆V (h)
(k+1)h)i

∣∣∣4 |Fkh] = 0,∀i, i = 1, ..., N

h−1 lim
h→0

E

[∣∣∣(∆q(h)
(k+1)h)i

∣∣∣4 |Fkh] = 0,∀i, i = 1, ..., N(N + 1)/2

which completes the proof.
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Proof of Theorem 1.

The process (9)-(14) is Markovian with drift and second moment per unit of

time given by (50)-(52) (drift) and (53), (55), and (57)-(60) (second moments),

respectively. The theorem of weak convergence applies if Assumptions 1 to 4 hold.

Proposition 1 provides suitable convergence conditions for Assumption 1 to hold,

and the drift and diffusion matrix for the system of stochastic differential equations

are defined.

Substituting (61)-(65) into (50)-(52) (first moments) and (53), (55), and (57)-

(60) (second moments), we obtain

h−1E[∆Y
(h)
kh |Fkh] = 0

h−1E[∆V
(h)

(k+1)h|Fkh] = c− ΛV
(h)
kh + o(1)

h−1E[∆q
(h)
(k+1)h|Fkh] = φ(q̄ + q

(h)
kh ) + o(1)

for the drift, while for the second moment

h−1Var[∆Y
(h)
kh |Fkh] = S

(h)
kh R

(h)
kh S

(h)
kh

h−1Var[∆V
(h)

(k+1)h|Fkh] = 2AhS
(h)2
kh (R

(h)
kh �R

(h)
kh )S

(h)2
kh Ah + o(1)

h−1Var[∆q
(h)
(k+1)h|Fkh] = ϑ2[(D+

N(P
(h)
kh ⊗ P

(h)
kh )D+′

N )K
(h)
kh

(D+
N(P

(h)
kh ⊗ P

(h)
kh )D+′

N )− q(h)
kh q

(h)′
kh ] + o(1)

h−1Cov[∆Y
(h)
kh ,∆V

(h)
(k+1)h]|Fkh) = 0

h−1Cov[∆Y
(h)
kh ,∆q

(h)
(k+1)h]|Fkh) = 0

h−1Cov[∆V
(h)

(k+1)h,∆q
(h)
(k+1)h]|Fkh) = ϑAS

(h)2
kh [I∗K

(h)
kh ×

D+
N(P

(h)
kh ⊗ P

(h)
kh )D+′

N − 1Nq
(h)′
kh ] + o(1).

Hence, as h→ 0, the functions (21) and (22) are solutions of (1) and (2) and repre-

sent the drift and the diffusion matrix of the diffusion process Xt = [Y ′t , V
′
t , q
′
t]
′. From

the representation (24), we have that the columns N+1, . . . , 2N and 2N+1, . . . , 3N

are collinear. Thus, the diffusion matrix is singular with rank(a([Y ′t , V
′
t , q
′
t]
′)) =

N(N + 3)/2 < dim([a(Y ′t , V
′
t , q
′
t]
′)) = N(N + 5)/2.

The scale matrix σ(Xt, t) can be obtained by Cholesky or spectral decomposition

of (22) so that Assumption 2 holds. We assume that the probability law of initial

values in (14) satisfies Assumption 3 and that for each h ≥ 0, νh ([Y ′0 , V
′

0 , q
′
0]′ : V0 > 0

(elementwise) and ε′Q0ε > 0,∀ε ∈ IRN\{0}
)

= 1. Condition 1 is satisfied given

Assumption 1 c) which ensures continuity of the sample paths of the limit process
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Xt with probability one. Condition 2 holds since the diffusion matrix and the inner

product of the drift and the state variable X are at most of order two in X. Thus

Assumption 4 holds, which completes the proof.

Proof of Proposition 2. The proof follows directly from the proof of Proposition

1 under the parameter restriction ϑh = γh = 0 ∀h, i.e., R
(h)
kh = (Q̄� IN)−1/2 Q̄ (Q̄�

IN)−1/2 = R ∀kh, k ∈ IN, h > 0.

Proof of Theorem 2. The theorem of weak convergence applies by symmetry

with the unrestricted model (see Theorem 1). In particular Assumption 1 holds

analogously under the given parameter constraint. Hence substituting (61)-(63)

into the two sets of equations (50)-(51) and (53), (55), and (58), as h → 0, we

obtain the following mappings

b(Xt, t) =

[
0

c− ΛVt

]
(66)

and

a(Xt, t) =

[
StRSt 0

0 2AS2
t (R�R)S2

tA

]
(67)

which are solution of (1) and (2) and represent the drift and the diffusion matrix

of the diffusion process Xt = [Y ′t , V
′
t ]
′. Under the assumption that the initial values

satisfy, for each h ≥ 0, νh([Y
′

0 , V
′

0 ]′ : V0 > 0 (elementwise)) = 1 and ε′Rε > 0,∀ε ∈
IRN\{0}, the diffusion matrix in (67) is non-degenerate with rank(a(Xt, t)) = N2.

Proof of Proposition 3. Assumption 1a) holds trivially. To show Assump-

tion 1b), consider the limit, as h → 0, of the moments of interests (55), (57)

and (60). The case δ1 = δ2 = 0 is covered by Proposition 1. If δ1 > 0, then

lim
h→0

h−1Var[∆V
(h)

(k+1)h|Fkh] = 0 provided that

lim
h→0

h−1/2Ah = 0 (68)

that is Ah is of order h1/2+δ1 , δ1 > 0.

Similarly, if δ2 > 0, then lim
h→0

h−1Var[∆q
(h)
(k+1)h|Fkh] = 0 provided that

lim
h→0

h−1/2ϑh = 0 (69)
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that is, ϑh is of order h1/2+δ2 , δ2 > 0.

Either δ1 > 0 or δ2 > 0, or both, also ensure that

lim
h→0

h−1Cov[∆V
(h)

(k+1)h,∆q
(h)
(k+1)h|Fkh] = 0.

Hence, under (68) and (69) Assumption 1b) holds. Finally, Assumption 1c) can be

shown similar to the case δ1 = δ2 = 0 (Proposition 1).

Proof of Theorem 3. Under Proposition 3, the theorem of weak convergence

applies by analogy to Theorem 1. Furthermore, depending on the combination of

convergence conditions for Ah and ϑh, we either obtain a diffusion with deterministic

variances and stochastic correlations (i.e. δ1 > 0 and δ2 = 0), or stochastic variances

and deterministic correlations (i.e. δ1 = 0 and δ2 > 0), or deterministic variances

and correlations (i.e. δ1 > 0 and δ2 > 0). The drift and diffusion matrices can be

derived from those of Proposition 1.
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