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Abstract

We construct daily house price indices for ten major U.S. metropolitan areas. Our
calculations are based on a comprehensive database of several million residential prop-
erty transactions and a standard repeat-sales method that closely mimics the method-
ology of the popular monthly Case-Shiller house price indices. Our new daily house
price indices exhibit dynamic features similar to those of other daily asset prices, with
mild autocorrelation and strong conditional heteroskedasticity of the corresponding
daily returns. A relatively simple multivariate time series model for the daily house
price index returns, explicitly allowing for commonalities across cities and GARCH
effects, produces forecasts of monthly house price changes that are superior to various
alternative forecast procedures based on lower frequency data.
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"There are many ways to measure changes in house prices, but the Standard & Poor’s/Case-

Shiller index has become many economists’ favored benchmark in recent years.”

Wall Street Journal, September 25, 2012

1 Introduction

For many U.S. households their primary residence represents their single largest financial
asset holding: the Federal Reserve estimated the total value of the U.S. residential real
estate market at $16 trillion at the end of 2011, compared with $18 trillion for the U.S.
stock market (as estimated by the Center for Research in Security Prices). Consequently,
changes in housing valuations importantly affect households’ saving and spending deci-
sions, and in turn the overall growth of the economy (see also the discussion in Holly, Pe-
saran and Yamagata, 2010). A number of studies (e.g., Case, Quigley and Shiller, 2011)
have also argued that the wealth effect of the housing market for aggregate consumption
is significantly larger than that of the stock market. The recent economic crisis, which ar-
guably originated with the precipitous drop in housing prices beginning in 2006, directly
underscores this point.

Set against this background, we: i) construct new daily house price indices for ten ma-
jor U.S. metropolitan areas based on a comprehensive database of publicly recorded res-
idential property transactions;! ii) show that the dynamic dependencies in the new daily
housing price series closely mimic those of other asset prices, and that these dynamic de-
pendencies along with the cross-city correlations are well described by a standard multi-
variate GARCH type model; and iii) demonstrate that this relatively simple daily model
allows for the construction of improved longer-run monthly and quarterly housing price
forecasts compared with forecasts based on existing monthly and/or quarterly indices.

Our new daily house price indices are based on the same “repeat-sales” methodology

underlying the popular S&P /Case-Shiller monthly indices (Shiller, 1991), and the Federal

ITo the best of our knowledge, this represents the first set of house price indices at the daily frequency
analyzed in the academic literature. Daily residential house price indices constructed on the basis of a
patent-pending proprietary algorithm are available commercially from Radar Logic Inc.



Housing Finance Agency’s quarterly indices. Measuring the prices at a daily frequency

help alleviate potential “aggregation biases” that may plague the traditional coarser monthly
and quarterly indices if the true prices change at a higher frequency. More timely house
prices are also of obvious interest to policy makers, central bankers, developers and lenders
alike, by affording more accurate and timely information about the housing market and

the diffusion of housing prices across space and time (see, e.g., the analysis in Brady, 2011).?
Even though actual housing decisions are made relatively infrequently, potential buyers

and sellers may also still benefit from more timely price indicators.

The need for higher frequency daily indexing is perhaps most acute in periods when
prices change rapidly, with high volatility, as observed during the recent financial crisis
and its aftermath. To illustrate, Figure 1 shows our new daily house price index along
with the oft-cited monthly S&P /Case-Shiller index for Los Angeles from September 2008
through September 2010. The precipitous drop in the daily index over the first six months
clearly leads the monthly index. Importantly, the daily index also shows the uptick in
housing valuations that occurred around April 2009 some time in advance of the monthly
index. Similarly, the more modest rebound that occurred in early 2010 is also first clearly
manifest in the daily index.

Systematically analyzing the features of the dynamics of the new daily house price
indices for all of the ten metropolitan areas in our sample, we find that, in parallel to the
daily returns on most other broadly defined asset classes, they exhibit only mild predictabil-
ity in the mean, but strong evidence of volatility clustering. We show that the volatility
clustering within and across the different house price indices can be satisfactorily described
by a multivariate GARCH model. The correlation between the daily returns on the city
indices is much lower than the correlation observed for the existing monthly return indices.

However, as we temporally aggregate the daily returns to monthly and quarterly frequen-

2Along these lines, the analysis in Anundsen (2014) also suggests that real time econometric modeling
could have helped in earlier detection of the fundamental imbalances underlying the recent housing market
collapse.



cies, we find that the correlations increase to levels consistent with the ones observed for
existing lower frequency indices. Furthermore, we document that the new daily indices do
indeed result in improved house price index forecasts, not solely in that they more quickly
identify turning points as suggested by Figure 1 for Los Angeles, but also more generally
for longer forecast horizons and other sample periods. This holds true for the city-specific
housing returns and a composite index, thus directly underscoring the informational ad-
vantages of the new daily index developed here vis-a-vis the existing monthly published
indices.

The rest of the paper is organized as follows. The next section provides a review of
house price index construction and formally describes the S&P /Case-Shiller methodology.
Section 3 describes the data and the construction of our new daily prices series. Section 4
briefly summarizes the dynamic and cross-sectional dependencies in the daily series, and
presents our simple multivariate GARCH model designed to account for these dependen-
cies. Section 5 demonstrates how the new daily series and our modeling thereof may be
used in more accurately forecasting the corresponding longer-run returns. Section 6 con-
cludes. Additional analysis and empirical results are provided in the online Supplementary

Appendix.

2 House price index methodologies

The construction of house price indices is plagued by two major difficulties. Firstly, houses
are heterogeneous assets; each house is a unique asset, in terms of its location, characteris-
tics, maintenance status, etc., all of which affect its price. House price indices aim to mea-
sure the price movements of a hypothetical house of average quality, with the assumption

that average quality remains the same across time. In reality, average quality has been in-
creasing over time, because newly-built houses tend to be of higher quality and more in

line with current households’ requirements than older houses. Detailed house qualities are



not always available or not directly observable, so when measuring house prices at an ag-
gregate level, it is difficult to take the changing average qualities of houses into consider-
ation. The second major difficulty is sale infrequency. For example, the average time in-
terval between two successive transactions of the same property is about six years in Los
Angeles, based on our data set described in Section 3 below. Related to that, the houses
sold at each point in time may not be a representative sample of the overall housing stock.

Three main methodologies have been used to overcome the above-mentioned difficul-
ties in the construction of reliable house price indices (see, e.g., the surveys by Cho, 1996;
Rappaport, 2007; Ghysels, Plazzi, Torous and Valkanov, 2013). The simplest approach
relies on the median value of all transaction prices in a given period. The National Asso-
ciation of Realtors employ this methodology and publishes median prices of existing home
sales monthly for both the national and four Census regions. The median price index has
the obvious advantage of calculation simplicity, but it does not control for heterogeneity of
the houses actually sold.

A second, more complicated, approach uses a hedonic technique, to price the “average
quality” house by explicitly pricing its specific attributes. The U.S. Census Bureau con-
structs its Constant Quality (Laspeyres) Price Index of New One-Family Houses Sold us-
ing a hedonic method. Although this method does control for the heterogeneity of houses
sold, it also requires more advanced estimation procedures and much richer data than are
typically available (see, e.g., the recent study by Baltagi, Bresson and Etienne, 2014, who
rely on a sophisticated unbalanced spatial panel model).

A third approach relies on repeat sales. This is the method used by both Standard &
Poor’s and the Office of Federal Housing Finance Agency (FHFA). The repeat sales model
was originally introduced by Bailey, Muth and Nourse (1963), and subsequently modified
by Case and Shiller (1989). The specific model currently used to construct the S&P/Case-

Shiller indices was proposed by Shiller (1991) (see Clapp and Giaccotto, 1992; Meese and



Wallace, 1997, for a comparison of the repeat-sales method with other approaches).?

As the name suggests, the repeat sales method estimates price changes by looking at
repeated transactions of the same house. This provides some control for the heterogeneity
in the characteristics of houses, while only requiring data on transaction prices and dates.
The basic models, however, are subject to some strong assumptions (see, e.g., the discus-
sion in Cho, 1996; Rappaport, 2007). Firstly, it is assumed that the quality of a given
house remains unchanged over time. In practice, of course, the quality of most houses
changes through aging, maintenance or reconstruction. This in turn causes a so-called
“renovation bias.” Secondly, repeat sales indices exploit information only from houses that
have been sold at least twice during the sampling period. This subset of all houses may
not be representative of the entire housing stock, possibly resulting in a “sample-selection
bias.” Finally, as noted above, all of the index construction methods are susceptible to “ag-
gregation bias” if the true average house price fluctuates within the estimation window.*

Our new daily home price indices are designed to mimic the popular S&P /Case-Shiller
house price indices for the “typical” prices of single-family residential real estate. They are
based on a repeat sales method and the transaction dates and prices for all houses that
sold at least twice during the sample period. If a given house sold more than twice, then
only the non-overlapping sale pairs are used. For example, a house that sold three times
generates sale pairs from the first and second transaction, and the second and third trans-
action; the pair formed by the first and third transaction is not included.

More precisely, for a house j that sold at times s and ¢ at prices H, ; and H;, the

3Meese and Wallace (1997), in particular, point out that repeat-sales models can be viewed as special
cases of hedonic models, assuming that the attributes, and the shadow prices of these attributes, do not
change between sales. Thus, if the additional house characteristic data were widely available, it would
clearly be preferable to use a hedonic pricing model.

4Calhoun, Chinloy and Megbolugbe (1995) compare repeat sales indices over annual, semiannual, quar-
terly as well as monthly intervals, and conclude that aggregation bias arises for all intervals greater than
one month. By analogy, if the true housing values fluctuate within months, the standard monthly indices
are likely to be biased. We formally test this conjecture below.



standard repeat sales model postulates that,

BiHj = BsHj s + \/anwj,t +/(t — 5)oyvj4, 0<s<t<T, (1)

where the house price index at any given time 7, computed across all houses j that sold
between time 0 and 7T, is defined by the inverse of 3.. The last two terms on the right-
hand side account for “errors” relative to the prices predicted by the aggregate index, in
the sale pairs, with ﬁawwjﬂf representing the “mispricing error,” and /(¢ — s)o,v;; rep-
resenting the “interval error.” Mispricing errors are included to allow for imperfect infor-
mation between buyers and sellers, potentially causing the actual sale price of a house to
differ from its “true” value. The interval error represents a possible drift over time in the
value of a given house away from the overall market trend, and is therefore scaled by the
(square root of the) length of the time interval between the two transactions. The error
terms w;; and v;, are assumed independent and identically standard normal distributed.
The model in (1) lends itself to estimation by a multi-stage generalized least square
type procedure (for additional details, see Case and Shiller, 1987), and each pair of sales
of a given house (H;,, H;,) represents a data point to be used in estimation. We adopt a
modified version of this method to construct our daily indices, described in detail in Sec-
tion 3.1 below. In the standard estimation procedure, a “base” period must be chosen, to
initialize the index, and the S&P/ Case-Shiller indices use January 2000. All index values
prior to the base period are estimated simultaneously. After the base period, the index
values are estimated using a chain-weighting procedure that conditions on previous val-
ues. This chain-weighting procedure is used to prevent revisions of previously published
index values. Finally, the S&P /Case-Shiller indices are smoothed by repeating a given
transaction in three successive months, so that the index for a given month is based on

sale pairs for that month and the preceding two months (see the Index Construction Sec-

tion of S&P /Case-Shiller Home Price Index Methodology for additional details).



3 Daily house price indices

The transaction data used in our daily index estimation is obtained from DataQuick, a
property information company. The database contains information about more than one
hundred million property transactions in the United States from the late 1990s to 2012.
We focus our analysis on the ten largest Metropolitan Statistical Areas (MSAs), as mea-
sured in the year 2000. Further details pertaining to the data and the data cleaning proce-

dures are provided in the Supplementary Appendix.

3.1 Estimation

The repeat-sales index estimation based on equation (1) is not computationally feasible at
the daily frequency, as it involves the simultaneous estimation of several thousand parame-
ters: the daily time spans for the ten MSAs range from 2837 for Washington D.C. to 4470
days for New York. To overcome this difficulty, we use an expanding-window estimation
procedure: we begin by estimating daily index values for the final month in an initial start-
up period, imposing the constraint that all of the earlier months in the period have only a
single monthly index value. Restricting the daily values to be the same within each month
for all but the last month drastically reduces the dimensionality of the estimation problem.
We then expand the estimation period by one month, and obtain daily index values for the
new “last” month. We continue this expanding estimation procedure through to the end
of our sample period. This results in an index that is “revision proof,” in that earlier val-
ues of the index do not change when later data becomes available. Finally, similar to the
S&P /Case-Shiller methodology, we normalize all of the individual indices to 100 based on
their average values in the year 2000.

One benefit of the estimation procedure we adopt is that it is possible to formally test
whether the “raw” daily price series actually exhibit significant intra-monthly variation. In

particular, following the approach used by Calhoun, Chinloy and Megbolugbe (1995) to



test for “aggregation biases,” we test the null hypothesis that the estimates of f; ; for MSA
1 are the same for all days 7 within a given calendar month against the alternative that
these estimates differ within the month. These tests strongly reject the null for all months
and all ten metropolitan areas; further details concerning the actual F-tests are available
upon request. We show below that this statistically significant intra-monthly variation also
translates into economically meaningful variation and corresponding gains in forecast accu-

racy compared to the forecasts based on coarser monthly index values only.

3.2 Noise filtering

Due to the relatively few transactions that are available on a given day, the raw daily house
price indices are naturally subject to measurement errors, an issue that does not arise so
prominently for monthly indices.® To help alleviate this problem, it is useful to further
clean the data and extract more accurate estimates of the true latent daily price series.
Motivated by the use of similar techniques for extracting the “true” latent price process
from high-frequency data contaminated by market microstructure noise (e.g., Owens and
Steigerwald, 2006; Corsi et al., 2014), we rely on a standard Kalman filter-based approach
to do so.

Specifically, let P;; denote the true latent index for MSA 7 at time ¢. We assume that
the “raw” price indices constructed in the previous section, P, = 1/3;;, are related to the
true latent price indices by,

log Py = log Pyt + it (2)

where the 7;; measurement errors are assumed to be serially uncorrelated. For simplicity

of the filter, we further assume that the true index follows a random walk with drift,

rie = Alog Py = 1 + Uiy, (3)

5The average number of transactions per day ranges from a low of 49 for Las Vegas to a high of 180
for Los Angeles. Measurement errors are much less of an issue for monthly indices, as they are based on
approximately 20 times as many observations; i.e., around 1000 to 3500 observations per month.



where 7;; and w;; are mutually uncorrelated. It follows readily by substitution that,

T;,t = Alog Pz*t =Tt + Mg — Nit—1- (4)

Combining (3) and (4), this in turn implies an MA(1) error structure for the “raw” re-
turns, with the value of the MA coefficient determined by the variances of 7;; and w;, ag
and o2. This simple MA(1) structure is consistent with the sample autocorrelations for the
raw return series reported in Figure A.1 in the Supplementary Appendix.

Interpreting equations (3) and (4) as a simple state-space system, y, o, and o, may
easily be estimated by standard (quasi-)maximum likelihood methods. This also allows for
the easy filtration of of the “true” daily returns, r;;, by a standard Kalman filter; see, e.g.,
Hamilton (1994). The Kalman filter implicitly assumes that 7;, and w;; are itd normal. If
the assumption of normality is violated, the filtered estimates are interpretable as best lin-
ear approximations. The Kalman filter parameter estimates reported in the Supplementary
Appendix imply that the noise-to-signal (o, /) ratios for the daily index returns range
from a low of 6.48 (Los Angeles) to a high of 15.18 (Boston), underscoring the importance
of filtering out the noise.

The filtered estimates of the latent “true” daily price series for Los Angeles are de-
picted in Figure 2 (similar plots for all ten cities are available in Figure A.2 in the Supple-
mentary Appendix). For comparison, we also include the raw daily prices and the monthly
S&P /Case-Shiller index. Looking first at the top panel for the year 2000, the figure clearly
illustrates how the filtered daily index mitigates the noise in the raw price series. At the
same time, the filtered prices also point to discernable within month variation compared to
the step-wise constant monthly S&P/Case-Shiller index.

The bottom panel of Figure 2 reveals a similar story for the full 1995-2012 sample pe-
riod. The visual differences between the daily series and the monthly S&P /Case-Shiller in-

dex are obviously less glaring on this scale. Nonetheless, the considerable (excessive) vari-
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ation in the raw daily prices coming from the noise is still evident. We will consequently
refer to and treat the filtered series as the daily house price indices in the analysis below.°
The online Supplementary Appendix provides further frequency-based comparisons of
the daily indices with the traditional monthly S&P /Case-Shiller indices, and the potential
loss of information in going from a daily to a monthly observation frequency. In sum, we
find that the monthly S&P /Case-Shiller indices essentially “kill” all of the within quarter
variation inherent in the new daily indices, while delaying all of the longer-run information
by more than a month. We turn next to a more detailed analysis of the time series proper-

ties of the new daily indices.

4  Time series modeling of daily housing returns

To facilitate the formulation of a multivariate model for all of the ten city indices, we re-
strict our attention to the common sample period from June 2001 to September 2012. Ex-

cluding weekends and federal holidays, this yields 2,843 daily observations.

4.1 Summary statistics

Summary statistics for each of the ten daily series are reported in Table 1. Panel A gives
the sample means and standard deviations for each of the index levels. Standard unit root
tests clearly suggest that the price series are non-stationary, and as such the sample mo-
ments in Panel A need to be interpreted with care; further details concerning the unit
root tests are available upon request. In the following, we therefore focus on the easier-
to-interpret daily return series.

The daily sample mean returns reported in Panel B are generally positive, ranging

from a low of -0.006 (Las Vegas) to a high of 0.015 (Los Angeles and Washington D.C.).

6The “smoothed” daily prices constructed from the full sample look almost indistinguishable from
the filtered series shown in the figures. We purposely rely on filtered rather than smoothed estimates to
facilitate the construction of meaningful forecasts.
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The standard deviation of the most volatile daily returns 0.599 (Chicago) is double that
of the least volatile returns 0.291 (New York). The first-order autocorrelations are fairly
close to zero for all of the cities, but the Ljung-Box 3, tests for up to tenth order serial
correlation indicate significant longer-run dynamic dependencies in many of the series.
The corresponding results for the squared daily returns reported in Panel C indicate
very strong dynamic dependencies. This is also evident from the plot of the ten daily re-
turn series in Figure 3, which show a clear tendency for large (small) returns in an abso-
lute sense to be followed by other large (small) returns. This directly mirrors the ubiqui-
tous volatility clustering widely documented in the literature for other daily speculative
returns. Further, consistent with the evidence for other financial asset classes, there is also
a commonality in the volatility patterns across most of the series. In particular, the mag-
nitude of the daily price changes for each of the ten cities were generally fairly low from
2004 to 2007 compared to their long-run average values. Correspondingly, and directly in
line with the dynamic dependencies observed for other asset prices, there was a sizeable
increase in the magnitude of the typical daily house price change for the majority of the
cities concurrent with the onset of the 2008-2010 financial crisis, most noticeably so for Mi-

ami, Las Vegas and San Francisco.

4.2 Modeling conditional mean dependencies

The summary statistics discussed above point to the existence of some, albeit relatively
mild, dynamic dependencies in the daily conditional means for most of the cities. Some of
these dependencies may naturally arise from a common underlying dynamic factor that in-
fluences housing valuations nationally. In order to accommodate both city specific and na-
tional effects within a relatively simple linear structure, we postulate the following model

for the conditional means of the daily returns,

Ei 1(rit) = ¢i+ parit—1 + pisTit—s + PimTﬁ_l + bz’crén,t_p (5)

12



where 77} refers to the (overlapping) “monthly” returns defined by the summation of the

corresponding daily returns,
19
m __
T =D Tigi, (6)
=0

and the composite (national) return r.; is defined as a weighted average of the individual

city returns,

10
Tet = Z WiT4t, (7)
i=1

with the weights identical to the ones used in the construction of the composite ten city
monthly S&P/Case Shiller index, which are 0.212, 0.074, 0.089, 0.037, 0.050, 0.015, 0.055,
0.118, 0.272, and 0.078. The own fifth lag of the returns is included to account for any
weekly calendar effects. The inclusion of the own monthly returns and the composite monthly
returns provides a parsimonious way of accounting for longer-run city-specific and com-
mon national dynamic dependencies. This particular formulation is partly motivated by
the Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009) for modeling so-
called realized volatilities, and we will refer to it as an HAR-X model for short. This is not
the absolutely best time series model for each of the ten individual daily MSA indices. The
model does, however, provide a relatively simple and easy-to-implement common paramet-
ric specification that fits all of the ten cities reasonably well.”

We estimate this model for the conditional mean simultaneously with the model for
the conditional variance described in the next section via quasi-maximum likelihood. The
estimation results in Table 2 reveal that the p; and ps coefficients associated with the own
lagged returns are mostly, though not uniformly, insignificant when judged by the robust
standard errors reported in parentheses. Meanwhile, the b, coefficients associated with the

composite monthly return are significant for nine out of the ten cities. Still, the one-day re-

"Importantly, for the proper modeling of longer-run dynamic dependencies and forecast horizons be-
yond the ones analyzed here, the model does not incorporate any cointegrating relationships among the
MSA indices. More sophisticated structural panel data models involving longer time spans of data ex-
plicitly allowing for cointegration between housing prices and real income have been estimated by Holly,
Pesaran and Yamagata (2010) among others.
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turn predictability implied by the model is fairly modest, with the average daily R? across
the ten cities equal to 0.024, ranging from a low of 0.007 (Denver) to a high of 0.049 (San
Francisco). This mirrors the low R%s generally obtained from time series modeling of other
daily financial returns (e.g., Tsay, 2010).

The adequacy of the common specification for the conditional mean in equation (5)
is broadly supported by the tests for up to tenth-order serial correlation in the residuals
it = it — Fi_1(r;4) from the model reported in Panel C of Table 2. Only two of the tests
are significant at the 5% level (San Francisco and Washington, D.C.) when judged by the
standard 3, distribution. At the same time, the tests for serial correlation in the squared
residuals €7, from the model, given in the bottom two rows of Panel C, clearly indicate

strong non-linear dependencies in the form of volatility clustering.

4.3 Modeling conditional variance and covariance dependencies

Numerous parametric specifications have been proposed in the literature to describe volatil-
ity clustering in asset returns. Again, in an effort to keep our modeling procedures simple
and easy to implement, we rely on the popular GARCH(1,1) model (Bollerslev, 1986) for

describing the dynamic dependencies in the conditional variances for all of the ten cities,
VCL?"t_l(’f’i7t) = hi7t = W + K’igz?,t—l + )\ihi,t—l- (8)

The results from estimating this model jointly with the the conditional mean model de-
scribed in the previous section are reported in Panel B of Table 2 together with robust
standard errors following Bollerslev and Wooldridge (1992) in parentheses.

The estimated GARCH parameters are all highly statistically significant and fairly
similar across cities. Consistent with the results obtained for other daily financial return
series, the estimates for the sum x4\ are all very close to unity (and just above for Chicago,

at 1.002) indicative of a highly persistent, but eventually mean-reverting, time-varying

14



volatility process. The high persistence might also in part reflect breaks in the overall lev-
els of the volatilities, most notably around 2007 for several of the cities. As such, it is pos-
sible that even better fitting in-sample models could be obtained by explicitly allowing

for structural breaks. At the same time, with the time of of the breaks unknown a priori,
these models will not necessarily result in better out-of-sample forecasts (see, e.g., the dis-
cussion in Pesaran and Timmermann, 2007; Anderson and Tian, 2014).

Wald tests for up to tenth-order serial correlation in the resulting standardized residu-
als, €4/ h%z, reported in Panel C, suggest that little predictability remains, with only two
of the cities (Las Vegas and San Francisco) rejecting the null of no autocorrelation at the
5% level, and none at the 1% level. The tests for serial correlation in the squared standard-
ized residuals, 5?,t /hiy, reject the null for four cities, perhaps indicative of some remain-
ing predictability in volatility not captured by this relatively simple model. However for
the majority of cities the specification in equation (8) appears to provide a satisfactory fit.
The dramatic reduction in the values of the test statistics for the squared residuals com-
pared to the values reported in the second row of Panel C is particularly noteworthy.

The univariate HAR-X-GARCH models defined by equations (5) and (8) indirectly in-
corporate commonalities in the cross-city returns through the composite monthly returns
re¢ included in the conditional means. The univariate models do not, however, explain the
aforementioned commonalities in the volatilities observed across cities and the correspond-
ing dynamic dependencies in the conditional covariances of the returns.

The Constant Conditional Correlation (CCC) model proposed by Bollerslev (1990)
provides a particularly convenient framework for jointly modeling the ten daily return
series by postulating that the temporal variation in the conditional covariances are pro-
portional to the products of the conditional standard deviations. Specifically, let ry =
[P14, - 7104) and D; = diag {hi,{Q, s h}ézt} denote the 10 x 1 vector of daily returns and
10 x 10 diagonal matrix with the GARCH conditional standard deviations along the diag-

onal, respectively. The GARCH-CCC model for the conditional covariance matrix of the

15



returns may then be succinctly expressed as,

Vart_l(rt) = DtRDt7 (9)

where R is a 10 x 10 matrix with ones along the diagonal and the conditional correlations
in the off-diagonal elements. Importantly, the R matrix may be efficiently estimated by
the sample correlations for the 10 x 1 vector of standardized HAR-X-GARCH residuals;
i.e., the estimates of D; ! [r; — E;_;(r¢)]. The resulting estimates are reported in Table A.5
in the Supplementary Appendix.

We also experimented with the estimation of the Dynamic Conditional Correlation
(DCC) model of Engle (2002), resulting in only a very slight increase in the maximized
value of the (quasi-) log-likelihood function. Hence, we conclude that the relatively simple
multivariate HAR-X-GARCH-CCC model defined by equations (5), (8), and (9) provides a
satisfactory fit to the joint dynamic dependencies in the conditional first and second order

moments of the ten daily housing return series.

4.4 Temporal aggregation and housing return correlations

The estimated conditional correlations from the HAR-X-GARCH-CCC model for the daily
index returns reported in the Supplementary Appendix average only 0.022. By contrast
the unconditional correlations for the monthly S&P/Case Shiller index returns calculated
over the same time period average 0.708, and range from 0.382 (Denver-Las Vegas) to
0.926 (Los Angeles—San Diego). The discrepancy between the two sets of numbers may ap-
pear to call into question the integrity of our new daily indices and/or the time-series mod-
els for describing the dynamic dependencies therein, however conditional daily correlations
and the unconditional monthly correlations are not directly comparable. In an effort to
more directly compare the longer-run dependencies inherent in our new daily indices with

the traditional monthly S&P/Case Shiller indices, we aggregate our daily return indices

16



to a monthly level by summing the daily returns within a month (20 days). The uncondi-
tional sample correlations for these new monthly returns are reported in the lower triangle
of Panel B in Table 3. These numbers are obviously much closer, but generally still below
the 0.708 average unconditional correlation for the published monthly S&P/Case Shiller
indices.

However, as previously noted, the monthly S&P /Case Shiller indices are artificially
“smoothed,” by repeating each sale pair in the two months following the actual sale. As
such, a more meaningful comparison of the longer-run correlations inherent in our new
daily indices with the correlations in the S&P/Case Shiller indices is afforded by the un-
conditional quarterly (60 days) correlations reported in the upper triangle of Panel B in
Table 3. There, we find an average correlation of 0.668, and a range of 0.317 (Denver—Las
Vegas) to 0.906 (Los Angeles—San Diego), which are quite close to the corresponding num-
bers for the published S&P/Case Shiller index returns.

These comparisons, of course, say nothing about the validity of the HAR-X-GARCH-
CCC model for the daily returns, and the low daily conditional correlations estimated by
that model. As a further model specification check, we therefore also consider the model-
implied longer-run correlations, and study how these compare with the sample correlations
for the actual longer-run aggregate returns.

The top number in each element of Panels A and B of Table 3 gives the median model-
implied unconditional correlations for the daily, weekly, monthly, and quarterly return hori-
zons, based on 500 simulated sample paths. The bottom number in each element is the
corresponding sample correlations for the actual longer-run aggregated returns. Although
the daily unconditional correlations in Panel A are all close to zero, the unconditional cor-
relations implied by the model gradually increase with the return horizon, and almost all
of the quarterly correlations are in excess of one-half. Importantly, the longer-run model-
implied correlations are all in line with their unconditional sample analogues.

To further illuminate this feature, Figure 4 presents the median model-implied and
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sample correlations for return horizons ranging from one-day to a quarter, along with the
corresponding simulated 95% confidence intervals implied by the model for the Los Angeles—
New York city pair. The model provides a very good fit across all horizons, with the ac-
tual correlations well within the confidence bands. The corresponding plots for all of the
45 city pairs, presented in Figure A.3 in the Supplementary Appendix, tell a similar story.
Taken as whole these results clearly support the idea that the longer-run cross-city de-
pendencies inherent in our new finer sample daily house price series are consistent with
those in the published coarser monthly S&P /Case Shiller indices. The results also con-
firm that the joint dynamic dependencies in the daily returns are well described by the
relatively simple HAR-X-GARCH-CCC model, in turn suggesting that this model could
possibly be used in the construction of improved house price index forecasts over longer

horizons.

5 Forecasting housing index returns

One of the major potential benefits from higher frequency data is the possibility of con-
structing more accurate forecasts by using models that more quickly incorporate new in-
formation. The plot for Los Angeles discussed in the introduction alludes to this idea. In
order to more rigorously ascertain the potential improvements afforded by the daily house
price series and our modeling thereof, we consider a comparison of the forecasts from the
daily HAR-X-GARCH-CCC model with different benchmark alternatives.

Specifically, consider the problem of forecasting the 20-day (“monthly”) return on the

house price index for MSA 1,

19
’]“Z(Zl) = Z T’i,t—j (10)
7=0

for forecast horizons ranging from h = 20 days ahead to h = 1 day ahead.® When h = 20

this corresponds to a simple one-step ahead forecast for one-month returns, but for h < 20

8In the forecast literature, this is commonly referred to as a “fixed event” forecast design; see Nordhaus
(1987) for an early analysis of such problems.
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an optimal forecast will contain a mixture of observed data and a forecast for the return
over the remaining part of the month. We will use the period June 2001 to June 2009 as
our in-sample period, and the period July 2009 to September 2012 as our out-of-sample
period, with all of the model parameters estimated once over the fixed in-sample period. °

Our simplest benchmark forecast is based purely on end-of-month data, and is there-
fore not updated as the horizon shrinks. We will consider a simple AR(1) for these monthly
returns,

TZ(?) — ¢0 —+ ¢17ﬂ§?_)20 + ei,t. (11)

As the forecast is not updated through the month, the forecast made at time t—h is simply

the AR(1) forecast made at time ¢ — 20,
f%ih/iy = o + lerz(?—)zo- (12)

Our second benchmark forecast is again purely based on monthly data, but now we
allow the forecaster to update the forecast at time ¢ — h, which may be in the middle of a
month. We model the incorporation of observed data by allowing the forecaster to take a
linear combination of the monthly return observed on day ¢ — h and the one-month-ahead
forecast made on that day,
~Inter h h n I
Tz'l,tihp =\1-55 Tz(jtn—)h + o5 (Cbo + Cblrz(j?—)h) : (13)

20

Our third forecast fully exploits the daily return information, by using the actual re-

turns from time ¢t — 19 to ¢t — h as the first component of the forecast, as these are part of

the information set at time ¢ — h, and then using a “direct projection” method to obtain

a forecast for the remaining h-day return based on the one-month return available at time

9In a preliminary version of the paper we used an earlier vintage of the DataQuick database that ended
in June 2009, which is how we chose this particular sample-split point. That preliminary version of the pa-
per did not consider any out-of-sample comparisons, and so the results presented here are close to “true,”
rather than “pseudo,” out-of-sample.
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t — h. Specifically,

AthWZCt Z"’ztj"‘ﬁo +51 'Lt h7 (14)

where Béh) and /Bﬁh) are estimated from the projection:

-1
Z Tit—j = + 51 71? pt Wit (15)

Finally, we consider a forecast based on the HAR-X-GARCH-CCC model presented
in the previous section. Like the third forecast, this forecast uses the actual returns from
time t — 19 to ¢t — h as the first component, and then iterates the expression for the condi-

tional daily mean in equation (5) forward to get forecasts for the remaining h days,

Fiih Zm J+2Et n[rie—g]- (16)

Given the construction of the target variable, we expect the latter three forecasts (“In-
terp”, “Direct”, “HAR”) to all beat the “Mthly” forecast for all horizons less than 20 days.
If intra-monthly returns have dynamics that differ from those of monthly returns, then
we expect the latter two forecasts to beat the “Interp” forecast. Finally, if the HAR-X-
GARCH-CCC model presented in the previous section provides a better description of the
true dynamics than a simple direct projection, then we would expect the fourth forecast to
beat the third.

Figure 5 shows the resulting Root Mean Squared Errors (RMSEs) for the four fore-
casts as a function of the forecast horizon, when evaluated over the July 2009 to Septem-
ber 2012 out-of-sample period. The first striking, though not surprising, feature is that ex-
ploiting higher frequency (intra-monthly) data leads to smaller forecast errors than a fore-
cast based purely on monthly data. All three of the forecasts that use intra-monthly infor-
mation out-perform the model based solely on end-of-month data. The only exception to

this is for Las Vegas at the A = 20 horizon, where the HAR model slightly under-performs
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the monthly model.

Another striking feature of Figure 5 is that the more accurate modeling of the daily
dynamic dependencies afforded by the HAR-X-GARCH-CCC model results in lower RM-
SEs across all forecast horizons for eight of the ten cities. For San Francisco and Las Ve-
gas the direct projection forecasts perform essentially as well as the HAR forecasts, and for
Denver and Los Angeles the improvement of the HAR forecast is small (but positive for all
horizons). For some of the cities (Boston, Miami and Washington D.C., in particular) the
improvements are especially dramatic over longer horizons.

The visual impression from Figure 5 is formally underscored by Diebold-Mariano tests,
reported in Table 4. Not surprisingly, the HAR forecasts significantly outperform the monthly
forecasts for horizons of 1, 5 and 10 days, for all ten cities and the composite index. At
the one-month horizon, a tougher comparison for the model, the HAR forecasts are signif-
icantly better than the monthly model forecasts for four out of ten cities, as well as the
composite index, and are never significantly beaten by the monthly model forecasts. Al-
most identical conclusions are drawn when comparing the HAR forecasts to the “interpo-
lation” forecasts, supporting the conclusion that the availability of daily data clearly holds
the promise of more accurate forecasts, particularly over shorter horizons, but also even at
the monthly level.

The bottom row of each panel in Table 4 compares the HAR forecasts with those from
a simple direct projection model. Such forecasts have often been found to perform well in
comparison with “iterated” forecasts from more complicated dynamic models. By contrast,
the Diebold-Mariano tests reported here suggest that the more complicated HAR forecasts
generally perform better than the direct projection forecasts. For no city-horizon pair does
the direct projection forecast lead to significantly lower out-of-sample forecast RMSE than
the HAR forecasts, while for many city-horizon pairs the reverse is true. In particular, for
Boston, Miami and Washington D.C., the HAR forecasts significantly beat the direct pro-

jection forecasts across all four horizons, and for the composite index this is true for all
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but the shortest horizon.

6 Conclusion

We present a set of new daily house price indices for ten major U.S. Metropolitan Statisti-
cal Areas spanning the period from June 2001 to September 2012. The indices are based
on the repeat sales method of Shiller (1991), and use a comprehensive database of several
million publicly recorded residential property transactions. We demonstrate that the dy-
namic dependencies in the new daily housing price series closely mimic those of other fi-
nancial asset prices, and that the dynamics, along with the cross-city correlations, are well
described by a standard multivariate GARCH-type model. We find that this simple daily
model allows for the construction of improved daily, weekly, and monthly housing price
index forecasts compared to the forecasts based solely on monthly price indices.

The new “high frequency” house price indices developed here open the possibility for
many other applications. Most directly, by providing more timely estimates of movements
in the housing market, the daily series should be of immediate interest to policy makers
and central banks. In a related context, the series may also prove useful in further study-
ing the microstructure of the housing market. At a broader level, combining the daily
house price series with other daily estimates of economic activity should afford better and
more up-to-date insights into changes in the macro economy. Along these lines, the series
also hold the promise for the construction of more accurate forecasts for other macro eco-

nomic and financial time series. We leave all of these issues for future research.
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Figure 1: Daily and monthly house price indices for Los Angeles
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Figure 2: Raw and filtered daily house price indices for Los Angeles
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Figure 3: Daily housing returns
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A.1 Data and data cleaning

The historical transaction records in DataQuick extends from the late 1990s to 2012 (exact
dates are given in Talbe A.2 below) with some large metropolitan areas, such as Boston
and New York, having transactions recorded as far back as 1987. Properties are uniquely
identified by property IDs, which enable us to identify sale pairs. We rely U.S. Standard
Use Codes contained in the DataQuick database to identify transactions of single-family
residential homes. The specific counties included in each of the ten MSAs are listed in
Table A.1.

Our data cleaning rules are based on the same filters used by S&P /Case-Shiller in the
construction of their monthly indices. In brief, we remove all transactions that are not
“arms length,” using a flag for such transactions available in the database. We also remove
transactions with “unreasonably” low or high sale prices (below $5000 or above $100
million, and those generating an average annual return of below -50% or above 100%), as
well as any sales pair with an interval of less than six months. Sale pairs are also excluded
if there are indications that major improvements have been made between the two
transactions, although such indications are not always present in the database.

Once these filters are imposed, we use all remaining sale pairs to estimate the
repeat-sales model presented in equation (1) using the estimation procedure described in
Section 3.1. For the Los Angeles MSA, for example, we have a total of 877,885 “clean”
sale pairs, representing an average of 180 daily sale pairs over the estimation period.

Details for all ten MSAs are provided in Table A.2 below.
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A.2 Supplementary tables and figures

Tables A.3-A.5 and Figures A.1-A.3 contain additional empirical results for each of the ten
MSAs pertaining to: the noise filter estimates; the daily HAR-X-GARCH-CCC correlation
estimates; the unconditional correlations of the monthly Case-Shiller index returns; the
sample autocorrelations for the raw daily index returns; time series plots of the raw and
filtered daily house price indices; and the unconditional return correlations as a function of

the return horizon.
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Figure A.1: Sample autocorrelations for raw daily index returns, with 95% confidence intervals
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A.3 Frequency-based comparisons with monthly S&P /Case-Shiller index

In parallel to the monthly S&P/Case-Shiller indices, our daily house price indices are
based on all publicly available property transactions. However, the complicated non-linear
transformations of the data used in the construction of the indices prevent us from
expressing the monthly indices as explicit functions of the corresponding daily indices.
Instead, as a simple way to help gauge the relationship between the indices, and the
potential loss of information in going from the daily to the monthly frequency, we consider
the linear projection of the monthly S&P/Case-Shiller returns for MSA 4, denoted Tffdp ,

on 60 lagged values of the corresponding daily index returns,

rffLP =0(L)riy+eir = §9: §; L7 4 + €iy, (6.1)
j=0
where Lir;, refers to the daily return on the j day before the last day of month ¢. Since
all of the price series appear to be non-stationary, we formulate the projection in terms of
returns as opposed to the price levels. The inclusion of 60 daily lags match the
three-month smoothing window used in the construction of the monthly S&P /Case-Shiller
indices, discussed in Section 2. The true population coefficients in the linear 6(L) filter are,
of course, unknown, however they are readily estimated by ordinary least squares (OLS).
The OLS estimates for d;—¢,_. 59 obtained from the single regression that pools the

returns for all ten MSAs are reported in the top panel of Figure A.4. Each of the
individual coefficients are obviously subject to a fair amount of estimation error. At the
same time, there is a clear pattern in the estimates for d; across lags, naturally suggesting
the use of a polynomial approximation in j to help smooth out the estimation error. The
solid line in the figure shows the resulting nonlinear least squares (NLS) estimates
obtained from a simple quadratic approximation. The corresponding R?s for the
unrestricted OLS and the NLS fit (3] = 0.1807 4 0.01015 — 0.000252) are 0.860 and 0.851,

indicating only a slight deterioration in the accuracy of the fit by imposing a quadratic

12



approximation to the lag coefficients. Moreover, even though the monthly
S&P /Case-Shiller returns are not an exact linear function of the daily returns, the simple
relationship dictated by 6(L) accounts for the majority of the monthly variation.

To further illuminate the features of the approximate linear filter linking the monthly

returns to the daily returns, consider the gain,

59 59

1/2
G(w) = [Z > 6;0kc0s(|j — k|w)] , we(0,m), (6.2)

j=0 k=0

and the phase
Z?io d;sin(jw)
Z?io d;cos(jw)

O(w) = tan™" ( ) , we (0,m), (6.3)

of §(L). Looking first at the gains in Figures A.4b and A.4c, the unrestricted OLS
estimates and the polynomial NLS estimates give rise to similar conclusions. The filter
effectively down-weights all of the high-frequency variation (corresponding to periods less
than around 70 days), while keeping all of the low-frequency information (corresponding to
periods in excess of 100 days). As such, potentially valuable information for forecasting
changes in house prices is obviously lost in the monthly aggregate. Further along these
lines, Figures A.4d and A.4e show the estimates of @, or the number of days that the
filter shifts the daily returns back in time across frequencies. Although the OLS and NLS
estimates differ somewhat for the very highest frequencies, for the lower frequencies
(periods in excess of 60 days) the filter systematically shifts the daily returns back in time
by about 30 days. This corresponds roughly to one-half of the three month (60 business

days) smoothing window used in the construction of the monthly S&P /Case-Shiller index.
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