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Abstract

We establish oracle inequalities for a version of the Lasso in high-dimensional fixed effects
dynamic panel data models. The inequalities are valid for the coefficients of the dynamic
and exogenous regressors. Separate oracle inequalities are derived for the fixed effects. Next,
we show how one can conduct simultaneous inference on the parameters of the model and
construct a uniformly valid estimator of the asymptotic covariance matrix which is robust to
conditional heteroskedasticity in the error terms. Allowing for conditional heteroskedasticity
is important in dynamic models as the conditional error variance may be non-constant over
time and depend on the covariates. Furthermore, our procedure allows for inference on
high-dimensional subsets of the parameter vector of an increasing cardinality. We show that
the confidence bands resulting from our procedure are asymptotically honest and contract
at the optimal rate. This rate is different for the fixed effects than for the remaining parts
of the parameter vector.

Keywords: Panel data Dynamic models, Lasso, Desparsification, High-dimensional data,
Uniform inference, Honest inference, Oracle inequality, Confidence intervals, Tests.
JEL: C13, C23, C55.

1 Introduction

Dynamic panel data models are widely used in economics and the social sciences in particular.
They are extremely popular as workers, firms, and countries often differ due to unobserved
factors. Furthermore, these units are often sampled repeatedly over time in many modern
applications thus allowing to model the dynamic development of these. However, so far no work
has been done on how to conduct inference in the high-dimensional dynamic fixed effects model

yi,t =

LN∑
l=1

αlyi,t−l + x′i,tβ + ηi + εi,t, i = 1, ..., N, and t = 1, ..., T (1.1)

where the presence of LN lags of yi,t allows for autoregressive dependence of yi,t on its own
past. xi,t is a px,N × 1 vector of exogenous variables and ηi, i = 1, ...., N are the N individual
specific fixed effects while εi,t are idiosyncratic error terms. The fixed effects let us model
the heterogeneity of the individuals in a flexible way not possible in the cross sectional model
yi = x′iβ + ηi + εi where the ηi are unidentifiable and all individual specific variation must
be pushed to the error term. It is common to think of the subscript t as time such that
one observes N individuals in T time periods. Applications of panel data are widespread:
ranging from wage regressions where one seeks to explain worker’s salary, to models of economic
growth where one seeks to determine the factors that impact growth over time of a panel of
countries. In wage regressions the fixed effects are often interpreted as accounting for unobserved
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characteristics such as ability, intelligence or perseverance of a worker while in growth models
they are often understood as accounting for culture of a country or other unobserved factors
remaining (approximately) constant over time. As an example of the latter, Islam (1995) used
exactly a dynamic panel data model to study growth convergence of a panel of countries and
reached conclusions vastly different from the ones obtained by a plain linear regression model
which ignores the repeated sampling and individual specific heterogeneity.

Recent years have witnessed a great deal of research on high-dimensional models with partic-
ular emphasis on the linear regression model. Among the most popular procedures is the Lasso
of Tibshirani (1996) which sparked a lot of research on estimators possessing the oracle property
of Fan and Li (2001), such as e.g. the adaptive Lasso of Zou (2006) or the Bridge estimator of
Huang et al. (2008) among others. Subsequently to the oracle property, which is an asymptotic
one, a lot of focus has been devoted to establishing finite sample oracle inequalities. That is,
upper bounds on the estimation and prediction error that are valid with a guaranteed probabil-
ity for a fixed sample size, see Candes and Tao (2007); Bickel et al. (2009); Bunea et al. (2007);
Zhang and Huang (2008); Meinshausen and Yu (2009); van de Geer (2008); Negahban et al.
(2012) among many others. However, until recently, not much work had been done on inference
in high-dimensional models for Lasso-type estimators as these possess a rather complicated dis-
tribution even in the low dimensional case, see Knight and Fu (2000). This problem has been
cleverly approached by unpenalized estimation after double selection by Belloni et al. (2012,
2014) or by desparsification in Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard
and Montanari (2013); Caner and Kock (2014). See also Lockhart et al. (2014); Meinshausen
(2013) and Nickl and van de Geer (2013).

The focus in the above mentioned work has been almost exclusively on independent data
and often on the plain linear regression model while high-dimensional panel data has not been
treated. Exceptions are Kock (2013) and Belloni et al. (2014) who have established oracle in-
equalities and asymptotically valid inference for a low-dimensional parameter in static panel
data models, respectively. Caner and Zhang (2014) have studied the properties of penalized
GMM, which can be used to estimate dynamic panel data models, in the case of fewer pa-
rameters than observations. To the best of our knowledge, no research has been conducted
on inference in high-dimensional dynamic panel data models. Note that high-dimensionality
may arise from three sources in the dynamic panel data model (1.1). These sources are the
coefficients pertaining to the lagged left hand side variables (αl), the exogenous variables (β),
as well as the fixed effects (ηi). In particular, we shall see that (joint) inference involving an
ηi behaves markedly different from inference only involving αl’s and β. Furthermore, panel
data differs from the classical linear regression model in that one does not have independence
across t = 1, ..., T for any i as consecutive observations in time can be highly correlated for
any given individual. Ignoring this dependence may lead to gravely misleading inference even
in low-dimensional panel data models. For that reason we shall make no assumptions on this
dependence structure across t = 1, ..., T for the xi,t. Static panel data models are a special case
of (1.1) corresponding to αl = 0, l = 1, ..., LN .

Traditional approaches to inference in low-dimensional static panel data models have con-
sidered the N fixed effects ηi as nuisance parameters which have been removed by taking either
first differences or demeaning the data over time for each individual i, see e.g. Wooldridge
(2010); Arellano (2003); Baltagi (2008). However, this approach does not work as straightfor-
wardly in dynamic panel data models as first differences or demeaning results in a model where
the error terms and covariates are correlated. Furthermore, in this paper we take the stand
that the fixed effects may be of intrinsic interest, and thus one may also be interested in testing
hypothesis on these instead of removing them.

By now it has become common practice to assume `0-sparsity in high-dimensional models.
That is, only a subset of the many potential explanatory variables are truly relevant such
that many coefficients are zero. However, classical `0-sparsity may be a severe restriction to
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impose in particular on the vector of fixed effects (η1, ...., ηN ). For that reason, we only impose
an assumption of `1-sparsity on the fixed effects which nests `0-sparsity as a special case. In
the low-dimensional case Bonhomme and Manresa (2012) have assumed a different type of
structure, namely grouping, on the fixed effects. However, in the high-dimensional setting we
are considering `1-sparsity works well.

Our inferential procedure is closest in spirit to the one in van de Geer et al. (2014) who
cleverly used nodewise regressions to desparsify the Lasso and to construct an approximate
inverse of the non-invertible sample Gram matrix in the context of the linear regression model.
In particular, we show how nodewise regressions can be used to construct one of the blocks of
the approximate inverse of the empirical Gram matrix in dynamic panel data models. More
precisely, we contribute by first establishing an oracle inequality for a version of the Lasso
in dynamic panel data models for all groups of parameters. As can be expected, the fixed
effects turn out to behave differently from the remaining parameters. Next, we show how
joint asymptotically gaussian inference may be conducted on the three types of parameters in
(1.1). In particular, we show that hypotheses involving an increasing number of parameters
can be tested and provide a uniformly consistent estimator of the asymptotic covariance matrix
which is robust to conditional heteroskedasticity. Thus, we introduce a feasible procedure
for inference in high-dimensional heteroskedastic dynamic panel data models. Allowing for
conditional heteroskedasticity is important in dynamic models like the one considered here as
the conditional variance is known to often depend on the current state of the process, see
e.g. Engle (1982). Thus, assuming the error terms to be independent of the covariates with
a constant variance is not reasonable. Next, we show that confidence bands constructed by
our procedure are asymptotically honest (uniform) in the sense of Li (1989) over a certain
subset of the parameter space. Finally, we show that the confidence bands have uniformly the
optimal rate of contraction for all types of parameters. Thus, the honesty is not bought at
the price of wide confidence bands as is the case for sparse estimators, c.f. Pötscher (2009).
Simulations reveal that our procedure performs well in terms of size, power, and coverage rate
of the constructed intervals.

The rest of the paper is organized as follows. Section 2 introduces the estimator and provides
an oracle inequality for all types of parameters. Next, Section 3 shows how limiting gaussian
inference may be be conducted and provides a feasible estimator of the covariance matrix which
is robust to heteroskedasticity even in the case where the number of parameter estimates we
seek the limiting distribution for diverges with the sample size. Section 4 shows that confidence
intervals constructed by our procedure are honest and contract at the optimal rate for all types
of parameters. Section 5 studies our estimator in Monte Carlo experiments while Section 6
concludes. All the proofs of our results are deferred to Appendix A; Appendix B contains
further auxiliary lemmas needed in Appendix A.

2 The Model

2.1 Notation

For x ∈ Rn, let ‖x‖0 =
∑n

i=1 1(xi 6= 0), ‖x‖ =
√∑n

i=1 x
2
i , ‖x‖1 =

∑n
i=1 |xi| and ‖x‖∞ =

max1≤i≤n |xi| denote the `0, `2, `1 and `∞ norms, respectively. Let em denote the unit column
vector with mth entry being 1 in some Euclidean space depending on the context. If the
argument of ‖ · ‖∞ is a matrix, then ‖ · ‖∞ denotes the absolute elementwise maximum of the
matrix. For some generic set R ⊆ {1, . . . , n}, let xR ∈ R|R| denote the vector obtained by
extracting the elements of x ∈ Rn whose indices are in R, where |R| denotes the cardinality
of R; Rc = {1, . . . , n} \ R. For an n × n matrix A, AR denotes the submatrix consisting of
the rows and columns indexed by R. ⊗ is the Kronecker product. Let a ∨ b and a ∧ b denote
max(a, b) and min(a, b), respectively. For two real sequences (an) and (bn), an . bn means
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that an ≤ Cbn for some fixed, finite and positive constant C for all n ≥ 1. sgn(·) is the sign
function. maxeval(·) and mineval(·) are the maximal and minimal eigenvalues of the argument,
respectively. For some vector x ∈ Rn, diag(x) gives a n × n diagonal matrix with x supplying
the diagonal entries.

The model in (1.1) can be rewritten as

yi,t = z′i,tα+ ηi + εi,t, i = 1, ..., N, t = 1, ..., T (2.1)

where zi,t := (yi,t−1, . . . , yi,t−LN , x
′
i,t)
′ and α := (α1, . . . , αLN , β

′)′ are pN × 1 vectors (pN =
px,N + LN ). The subscript N indicates that dimensions of TN , LN , px,N and pN vary with
the cross-sectional dimension N but we suppress the subscript N whenever no confusion arises.
Note however, that in asymptotic arguments where N as well as T tend to infinity, we shall
often think of T being a function of N . We assume that initial observations yi,0, yi,−1, . . . , yi,1−L
are available for i = 1, ...N . Next, (2.1) may be written more compactly as

yi = Z ′iα+ ηiι+ εi,

where Zi := (zi,1, . . . , zi,T ) is a p× T matrix, yi := (yi,1, . . . , yi,T )′, εi := (εi,1, . . . , εi,T )′, and ι is
a T × 1 vector of ones. Then, one can write

y = (Z D)

(
α
η

)
+ ε =: Πγ + ε,

where Z := (Z1, . . . , ZN )′, y := (y′1, . . . , y
′
N )′ and ε := (ε′1, . . . , ε

′
N )′. η := (η1, . . . , ηN )′ contains

the fixed effects, D := IN ⊗ ι, and Π := (Z,D). Finally, γ := (α′, η′)′ contains all p + N
parameters of the model. Thus the dynamic panel model (1.1) can be written more compactly
as something resembling a linear regression model. There are several differences, however. First,
blocks of rows in the data matrix Π may be heavily dependent. Second, we shall see that α and
η have markedly different properties as a result of the fact that the probabilistic properties of
the blocks of a properly scaled version of the Gram matrix pertaining to Π are very different.
Third, imposing `1-sparsity only on η implies that the oracle inequalities which we use as a
stepping stone towards inference do not follow directly from the technique in, e.g., Bickel et al.
(2009). In fact, we do not get explicit expressions for the upper bounds but instead characterize
them as solutions to certain quadratic equations in two variables.

2.2 `1-sparsity and the Panel Lasso

Let J1 = {j : αj 6= 0, j = 1, . . . , p} denote the active set of lagged left hand side variables and
xi,t with s1 = |J1|. In this sense α is said to be `0-sparse with the sparsity index s1. `0-sparsity
is by now a standard assumption in the high-dimensional statistics. On the other hand, and as
already mentioned in the introduction, the fixed effects η might not be `0-sparse as unobserved
heterogeneity might have an effect for all individuals/countries. For example, the effect of the
often unmeasured intelligence of a worker may not have a zero impact for any worker in a wage
model. However, we believe it is much more reasonable to assume that there exists a group
of individuals either well below or well above average intelligence for which ηi is either very
negative or very positive while a big group of the populations may be considered ”average”
in the sense that their intelligence only marginally impacts their salary after controlling for a
high-dimensinal vector of xi,t and lagged yi,t. This is certainly the case when modeling yi,t in
deviations from its population mean. Similarly, there are many other examples where a large
group may be conjectured to have very small individual specific fixed effects. This motivates
`1-sparsity.

Let J2 be the indices of the s2 largest elements in
{
|ηi|, i = 1, ..., N

}
, i.e. the s2 largest fixed

effects in absolute value. Assume that ‖ηJc2‖1 ≤ cN for some cN ≥ 0. In words, the s2 largest
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fixed effects are unrestricted while the `1-norm of the remaining fixed effects can not be larger
than cN . Note that cN = 0 is equivalent to `0-sparsity. `1-sparsity seems to have been used
first in the high-dimensional statistics literature by Zhang and Huang (2008) and is useful in
dynamic panel data models where the matrix D has a natural scale such that J2 is uniquely
identified (J2 does not depend on any specific normalization). Finally, we remark that ignoring
the absence of a natural scale of the random and temporally dependent yi,t and xi,t one could
also impose `1-sparsity on α. However, we refrain from this generalization here.

Our starting point for inference is the minimiser γ̂ = (α̂′, η̂′)′ of the following panel Lasso
objective function

L(γ) = ‖y −Πγ‖2 + 2λN‖α‖1 + 2
λN√
N
‖η‖1. (2.2)

As usual λN is a positive regularization sequence. Note that we penalize α and η differently
to reflect the fact that we have NT observations to estimate αj for j = 1, ..., p while only T
observations are available to estimate each ηi. The minimization problem can be solved easily
as it simply corresponds to a weighted Lasso with known weights. However, the probabilistic
analysis of the properly scaled Gram matrix is different from the one for the standard Lasso as
it must be broken into several steps. We now turn to the assumptions needed for our inferential
procedure.

Assumption 1.

{(x′i,1, . . . , x′i,T , ε′i)}Ni=1 is an independent sequence and

E[εi,t|yi,t−1, ..., yi,1−L, xi,t, ..., xi,1] = 0 for i = 1, ..., N, t = 1, ..., T.

Assumption 1 imposes independence across i = 1, ..., N which is standard in the panel data
literature, see e.g. Wooldridge (2010) or Arellano (2003). Note however, that we do not assume
the data to be identically distributed across i = 1, ..., N . Assumption 1 also implies, by iterated
expectations, that the error terms form a martingale difference sequence with respect to the
filtration generated by the variables in the above conditioning and thus restricts the degree of
dependence in the error terms across t.1 However, it still allows for considerable dependence
over time, as higher moments than the first are not restricted. Furthermore, the error terms
need not be identically distributed over time for any individual. We also note that Assumption
1 does not rule out that the error terms are conditionally heteroskedastic. In particular, they
may be autoregressively conditionally heteroskedastic (ARCH). In panel terminology, both lags
of yi,t and xi,t are called predetermined or weakly exogenous.

In order to introduce the next assumption define the scaled empirical Gram matrix

ΨN = S−1Π′ΠS−1 =

(
1
NT Z

′Z 1
T
√
N
Z ′D

1
T
√
N
D′Z IN

)
where S =

( √
NT Ip 0

0
√
T IN

)

When p + N > NT , ΨN is singular. However, it suffices that a compatibility type condition
tailored to the panel data structure is satisfied. To be precise we define

κ2(A, r1, r2) := min
R1⊆{1,...,p},|R1|≤r1
R2⊆{1,...,N},|R2|≤r2

R:=R1∪R2

min
δ 6=0,

‖δRc‖1≤4‖δR‖1

δ′Aδ
1

r1+r2
‖δR‖21

1It can also be verified that {εi,t}Tt=1 forms a martingale difference sequence with respect to the natural
filtration for all i = 1, . . . , N . This is because the εi,t are (linear) functions of the variables in the conditioning
set in Assumption 1.
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2and we shall later see that κ2(ΨN , r1, r2) is bounded away from zero provided κ2(Ψ, r1, r2) is
bounded away from zero, where

Ψ =

(
ΨZ 0
0 IN

)
:=

(
1
NT

∑N
i=1

∑T
t=1 E[zi,tz

′
i,t] 0

0 IN

)
.

3 It is of interest that the compatibility constant κ2(ΨN , r1, r2) does not depend on the level cN
of `1-sparsity. The reasons become clear from the proof of Theorem 1 below.

Assumption 2. κ2 = κ2(Ψ, s1, s2) is uniformly bounded away from zero.

Assumption 2 is rather innocent as it is trivially satisfied when the Ψ is positive definite
as is often imposed. Compatibility type conditions are standard in the literature and various
versions and their interrelationship have been investigated in van de Geer et al. (2009).

Assumption 3. There exist positive constants C and K such that

(a) εi,t are uniformly subgaussian; that is, P(|εi,t| ≥ ε) ≤ 1
2Ke

−Cε2 for every ε ≥ 0, i = 1, . . . , N
and t = 1, . . . , T .

(b) zi,t,l are uniformly subgaussian; that is, P(|zi,t,l| ≥ ε) ≤ 1
2Ke

−Cε2 for every ε ≥ 0, i =
1, . . . , N , t = 1, . . . , T and l = 1, . . . , p.

In the context of the plain static regression model it is common practice to assume the
error terms as well as the covariates to be subgaussian. However, this assumption is not quite
innocent in the context of the dynamic panel data model (1.1) as yi,t is generated by the model
and its properties are thus completely determined by those of xi,t, εi,t as well as the parameters
of the model. Lemma 2 in Appendix A shows that yi,t is subgaussian if xi,t and εi,t satisfy this
property and the parameters are well-behaved. In particular, a wide class of (causal) stationary
processes are included.

2.3 The Oracle Inequalities

With the above assumptions in place we are ready to state our first result. Defining F(s1, s2, cN ) :={
α ∈ Rp : ‖α‖0 ≤ s1

}
×
{
η ∈ RN : ∃ I ⊆ {1, ..., N} with |I| ≤ s2 and ‖ηIc‖1 ≤ cN

}
, one has

Theorem 1 (Oracle inequalities). Let Assumptions 1 - 3 hold. Then, choosing λN =√
4MNT (log(p ∨N))3 for some M > 0, the following inequalities are valid with probability

at least

1−Ap1−BM1/3 −AN1−BM1/3 −A(p2 + pN)e
−B
(

N
(s1+s2)2

)1/3

for positive constants A and B and s1 + s2 ≤
√
N .

1

NT

∥∥Π(γ̂ − γ)
∥∥2 ≤

120λ2
N (s1 + s2)

κ2(NT )2
+

20λN
NT

cN√
N

‖α̂− α‖1 ≤
120λN (s1 + s2)

κ2NT
+ 20

cN√
N

‖η̂ − η‖1 ≤
120λN (s1 + s2)

κ2
√
NT

+ 20cN .

Moreover, the above bounds are valid uniformly over F(s1, s2, cN ).

2Here R1 ∪R2 is understood as R1 ∪ (R2 + p) where the addition is elementwise.
3Ψ actually also depends on N and T but for brevity we are silent about this.
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Theorem 1 provides oracle inequalities for the prediction error as well as the estimation error
of the parameter vectors. While these bounds are of independent interest we shall primarily use
them as means towards our ultimate end of conducting (joint) inference on α and η. We stress
that the bounds in Theorem 1 are finite sample bounds; they hold for any fixed values of N
and T . The special case of `0-sparsity corresponds to cN = 0 and simplifies the above bounds.
However, in the case where one is only interested in ‖α̂ − α‖1, it suffices that cN = o(

√
N)

in order to make the contribution from cN vanish asymptotically. cN of this order is not
unreasonable, as the number of lags of yi,t and covariates in xi,t can increase fast in N , thus
leaving less unexplained heterogeneity for the fixed effects as more variation in yi,t is explained
by the other covariates, resulting in cN → 0.

We also note that the oracle inequalities are not obtained in an entirely standard manner
as the mixture of `0- and `1-sparsity in dynamic panel data models calls for a different proof
technique which yields the upper bounds as solutions to certain quadratic equations. Finally,
we remark that in analogy to oracle inequalities in the plain linear regression model the number
of covariates in xi,t (px) may increase at an exponential rate in NT without hindering the right
hand sides of the oracle inequalities in being small. Furthermore, we do not assume independence
across t = 1, ..., T for any individual thus altering the standard probabilistic analysis as well.
Instead we use concentration inequalities for martingales to obtain bounds almost as sharp as
in the completely independent case.

3 Inference

Following the idea of van de Geer et al. (2014) we next desparsify the Lasso estimator in order
to conduct inference. To this end, we construct an approximate inverse of ΨN . One sub-block of
the approximate inverse will be constructed by nodewise regressions, while we use the structure
of the lower right N ×N block of ΨN to directly construct an inverse for that part.

3.1 The Desparsified Lasso Estimator γ̃

First, observe that L(γ) in (2.2) is convex in γ and that γ̂ satisfies the Karush-Kuhn-Tucker
(KKT) conditions

0 ∈ ∂L(γ̂) =

(
−2Z ′(y −Πγ̂) + 2λN κ̂1

−2D′(y −Πγ̂) + 2 λN√
N
κ̂2

)
where κ̂1 and κ̂2 are p × 1 and N × 1 vectors, respectively, such that κ̂1j ∈ [−1, 1] with κ̂1j =
sgn(α̂j) if α̂j 6= 0 for j = 1, . . . , p. Similarly, κ̂2i ∈ [−1, 1] with κ̂2i = sgn(η̂i) if η̂i 6= 0 for
i = 1, . . . , N . Hence,

−Π′ (y −Πγ̂) +

(
λN κ̂1
λN√
N
κ̂2

)
= 0. (3.1)

Using that y = Πγ + ε and multiplying by S−1 yields

ΨNS (γ̂ − γ) + S−1

(
λN κ̂1
λN√
N
κ̂2

)
= S−1Π′ε.

Usually one would proceed by isolating S(γ̂ − γ) which implies inverting ΨN . However, when
p + N > NT , ΨN is not invertible. The idea of van de Geer et al. (2014) and Javanmard
and Montanari (2013) is to instead use an approximate inverse of ΨN . Suppose that Θ̂ is a
reasonable approximation to such an inverse and rewrite the above display as

S (γ̃ − γ) = Θ̂S−1Π′ε−∆, (3.2)
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where

γ̃ := γ̂ + S−1Θ̂S−1

(
λN κ̂1
λN√
N
κ̂2

)
, ∆ :=

(
Θ̂ΨN − I

)
S (γ̂ − γ) .

Thus, γ̃ is the desparsified Lasso estimator in the dynamic panel context. Clearly, it is non-
sparse as it adds a bias correction term to the sparse γ̂. ∆ is the error resulting from using an
approximate inverse Θ̂ as opposed to an exact inverse. Note also that by (3.1) γ̃ can be easily
calculated in practice. Thus, for any (p + N) × 1 vector ρ with ‖ρ‖ = 1 we shall study the
asymptotic behavior of

ρ′S (γ̃ − γ) = ρ′Θ̂S−1Π′ε− ρ′∆. (3.3)

In order to conduct asymptotically gaussian inference for γ̃ it thus suffices to establish a central
limit theorem for ρ′Θ̂S−1Π′ε as well as to show that ρ′∆ is asymptotically negligible. Further-
more, we shall provide a feasible estimator of the asymptotic variance of ρ′Θ̂S−1Π′ε even in
the presence of conditional heteroskedasicity. A leading special case of (3.3) is when one is only
interested in the asymptotic distribution of γ̃j corresponding to ρ = ej being the j’th basis
vector of Rp+N . In general, we will be interested in the asymptotic distribution of a subset
H ⊆ {1, ..., p+N} of the indices of γ with cardinality h and shall show that asymptotically
honest gaussian inference is possible even for h → ∞, H simultaneously involving elements of
α and η, in the presence of heteroskedasticity with feasible covariance matrix estimation.

3.2 Construction of Θ̂

As is clear from the discussion above we need a good choice for Θ̂. In particular we shall show
that

Θ̂ =

(
Θ̂Z 0
0 IN

)
works well. Here Θ̂Z will be constructed using nodewise regressions as in van de Geer et al.
(2014) and we show that this is possible even when the rows of Z are not independent and
identically distributed. The construction of Θ̂Z parallels the one in van de Geer et al. (2014) to
a high extend but we shall sketch it here in our context as some of the definitions are needed
again later. First, define

φ̂j = argmin
δ∈Rp−1

{
1

NT
‖zj − Z−jδ‖2 + 2λnode‖δ‖1

}
, j = 1, ..., p, (3.4)

where zj is the jth column of Z, Z−j is the NT × (p− 1) submatrix of Z with Z’s jth column

removed, and the (p− 1)× 1 vector φ̂j = {φ̂j,k : k = 1, . . . , p, k 6= j}. Next, define

Ĉ =


1 −φ̂1,2 · · · −φ̂1,p

−φ̂2,1 1 · · · −φ̂2,p
...

...
. . .

...

−φ̂p,1 −φ̂p,2 · · · 1


and τ̂2

j = 1
NT ‖zj − Z−jφ̂j‖2 + λnode‖φ̂j‖1 as well as T̂ 2 = diag(τ̂2

1 , . . . , τ̂
2
p ). Finally, we set

Θ̂Z = T̂−2Ĉ. Let Ĉj denote the jth row of Ĉ and let Θ̂Z,j denote the jth row of Θ̂Z but both

written as a p× 1 vectors. Then, Θ̂Z,j = Ĉj/τ̂
2
j . For any j = 1, ..., p, the KKT condition for a

minimum in (3.4) are

− 1

NT
Z ′−j(zj − Z−jφ̂j) + λnodewj = 0, (3.5)
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where wj is the subdifferential of the function f(x) = ‖x‖ evaluated at φ̂j . Using this, the

definition of τ̂j , and φ̂′jwj = ‖φ̂j‖1 yields

τ̂2
j =

1

NT
(zj − Z−jφ̂j)′(zj − Z−jφ̂j) + λnode ‖φ̂j‖1 =

1

NT
(zj − Z−jφ̂j)′zj . (3.6)

Thus, by the definition of Θ̂Z,j , and as τ̂2
j is bounded away from zero (we shall later argue

rigorously for this)
1

NT
z′jZΘ̂Z,j = 1. (3.7)

Furthermore, the KKT conditions (3.5) can also be written as

1

NT
Z ′−j(zj − Z−jφ̂j) = λnodewj , (3.8)

which implies 1
NT Z

′
−jZΘ̂Z,j = λnodewj/τ̂

2
j . Combining with (3.7) yields∥∥∥∥ 1

NT
Z ′ZΘ̂Z,j − ej

∥∥∥∥
∞
≤ λnode

τ̂2
j

, (3.9)

thus giving an estimate on how close Θ̂Z is to being an inverse of the upper left p× p block of
ΨN . This result will be used as an important tool in Appendix A when we show that Θ̂ is a good
approximate inverse for ΨN as a stepping stone towards showing the asymptotic negligibility of
ρ′∆.

3.3 Asymptotic Properties of the Approximate Inverse

In order to show that ρ′Θ̂S−1Π′ε is asymptotically gaussian one needs to understand the limiting
behaviour of Θ̂. We shall show that Θ̂ is close to

Θ =

(
ΘZ 0
0 IN

)
:=

(
Ψ−1
Z 0
0 IN

)
in an appropriate sense (ΨZ is invertible under Assumption 4 below). To that end, note that
by Yuan (2010)

ΘZ,j,j =
[
ΨZ,j,j −ΨZ,j,−jΨ

−1
Z,−j,−jΨZ,−j,j

]−1
and ΘZ,j,−j = −ΘZ,j,jΨZ,j,−jΨ

−1
Z,−j,−j , (3.10)

where ΘZ,j,j is the jth diagonal entry of ΘZ , ΘZ,j,−j is the 1 × (p − 1) vector obtained by
removing the jth entry of the jth row of ΘZ , ΨZ,−j,−j is the submatrix of ΨZ with the jth row
and column removed, and ΨZ,j,−j is the jth row of ΨZ with its jth entry removed. Next, let
zi,t,j be the jth element of zi,t and zi,t,−j be all elements except the jth. Define the (p− 1)× 1
vector

φj := argmin
δ

1

NT

N∑
i=1

T∑
t=1

E[zi,t,j − z′i,t,−jδ]2

such that

φj =

 1

NT

N∑
i=1

T∑
t=1

E[zi,t,−jz
′
i,t,−j ]

−1 1

NT

N∑
i=1

T∑
t=1

E[zi,t,−jzi,t,j ]

 = Ψ−1
Z,−j,−jΨZ,−j,j , (3.11)

where ΨZ,−j,j is the jth column of ΨZ with its jth entry removed. Therefore, ΘZ,j,−j =
−ΘZ,j,jφ

′
j and the jth row of ΘZ is sparse if and only if φj is sparse. Furthermore, defining

ζj,i,t := zi,t,j − z′i,t,−jφj we may write

zi,t,j = z′i,t,−jφj + ζj,i,t, for i = 1, ..., N, t = 1, ..., T.
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where by the definition of φj

1

NT

N∑
i=1

T∑
t=1

E[zi,t,−jζj,i,t] = 0. (3.12)

Thus, in light of Theorem 1 it is sensible that φ̂j defined in (3.4) is close to φj (we shall make
this more formal in Appendix A). Next, defining

τ2
j := E

[ 1

NT

N∑
i=1

T∑
t=1

(zi,t,j − z′i,t,−jφj)2
]

= ΨZ,j,j −ΨZ,j,−jΨ
−1
Z,−j,−jΨZ,−j,j =

1

ΘZ,j,j

observe ΘZ,j,−j = −φ′j/τ2
j . Thus, we can write ΘZ = T−1C where T = diag(τ2

1 , ..., τ
2
p ) and C

is defined similarly to Ĉ but with φj replacing φ̂j for j = 1, ..., p. Finally, let ΘZ,j denote the

jth row of ΘZ written as a column vector. In Lemma 1 we will see that φ̂j and τ̂2
j are close to

φj and τ2
j , respectively such that Θ̂Z,j is close to ΘZ,j . Write ρ = (ρ′1, ρ

′
2)′ with ‖ρ‖ = 1, where

ρ1 ∈ Rp and ρ2 ∈ RN . Hence define

H = H1 ∪
(
H2 + p

)
:= {j : ρ1j 6= 0} ∪

(
{i : ρ2i 6= 0}+ p

)
,

where |H1| = h1,N = h1, |H2| = h2,N = h2, |H| = h = h1 + h2, j = 1, . . . , p and i = 1, . . . , N .
Next, let

snode,j = |Snode,j | := |{ΘZ,j,k 6= 0 : k = 1, . . . , p, k 6= j}|,
and define s̄ := maxj∈H1 snode,j .

Assumption 4. (a) mineval(ΨZ) is uniformly bounded away from zero and maxeval(ΨZ) is
uniformly bounded from above.

(b) (log p)3s̄2

N = o(1)

(c) There exist positive constants C and K such that ζj,i,t are uniformly subgaussian; that is,

P(|ζj,i,t| ≥ ε) ≤ 1
2Ke

−Cε2 for every ε > 0, i = 1, . . . , N , t = 1, . . . , T and j = 1, . . . , p.

Assumption 4(a) is standard and strengthens Assumption 2 slightly. Note that it implies that
τ2
j is uniformly bounded away from zero as τ2

j = 1/ΘZ,j,j ≥ 1/maxeval(ΘZ) = mineval(ΨZ).

Part (b) restricts the rate of growth of s̄ and implies in particular that s̄ = o(
√
N). It is

used in verifying the compatibility condition for the nodewise regressions. Part (c) imposes
subgaussianity on the error terms from the nodewise regressions.

Lemma 1. Let Assumptions 1, 3 and 4 hold. Define λnode =
√

4M(log p)3/N for some M > 0.
Then, for M sufficiently large,

max
j∈H1

|τ̂2
j − τ2

j | = Op

(√
s̄(log p)3

N

)
(3.13)

max
j∈H1

1

τ̂2
j

= Op(1) (3.14)

max
j∈H1

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣ = Op

(√
s̄(log p)3

N

)
(3.15)

max
j∈H1

∥∥∥Θ̂Z,j −ΘZ,j

∥∥∥
1

= Op

(
s̄

√
(log p)3

N

)
(3.16)

max
j∈H1

∥∥Θ̂Z,j −ΘZ,j

∥∥ = Op

(√
s̄(log p)3

N

)
(3.17)

max
j∈H1

∥∥Θ̂Z,j

∥∥
1

= Op(
√
s̄) (3.18)
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Lemma 1 is used as a stepping stone towards the asymptotically gaussian inference as it
indicates at what rate Θ̂Z approaches ΘZ uniformly over H1. Note that for H1 = {1, ..., p},
(3.16) provides an upper bound on the induced `∞-distance between Θ̂Z and ΘZ . However, we
only need to control this distance for those indices corresponding to the parameters we seek the
joint limiting distribution of. On the other hand, it should be stressed that the uniformity over
H1 of the above results is crucial in establishing the limiting gaussian inference and providing
a feasible estimator of the covariance matrix of the parameter estimates.

3.4 The Asymptotic Distribution of γ̃

In this section we formalise the discussion in Section 3.1 as Theorem 2. To this end, define

ΣΠε = E(S−1Π′εε′ΠS−1) =

(
E
[
Z ′εε′Z/ (NT )

]
E
[
Z ′εε′D/ (

√
NT )

]
E
[
D′εε′Z/ (

√
NT )

]
E
[
D′εε′D/T

] )
=

(
Σ1,N Σ2,N

Σ′2,N Σ3,N

)
.

and note that

Σ1,N = E

 1

NT

N∑
i=1

N∑
j=1

Ziεiε
′
jZ
′
j

 =
1

NT

N∑
i=1

E
[
Ziεiε

′
iZ
′
i

]
=

1

NT

N∑
i=1

T∑
t=1

E
[
ε2
i,tzi,tz

′
i,t

]
,

where the second and third equality both follow from Assumption 1. Likewise, Σ3,N = 1
T

∑N
i=1 E

[
diεiε

′
id
′
i

]
=

1
T

∑N
i=1

∑T
t=1 E

[
ε2
i,tdi,td

′
i,t

]
= diag( 1

T

∑T
t=1 E[ε2

1,t], ...,
1
T

∑T
t=1 E[ε2

N,t]), where d′i is the ith T ×N
block of D, and di,t is a N × 1 zero vector with the ith entry replaced by 1. In the same

manner, Σ2,N = 1√
NT

∑N
i=1 E

[
ziεiε

′
id
′
i

]
= 1√

NT

∑N
i=1

∑T
t=1 E

[
ε2
i,tzi,td

′
i,t

]
. In words, Σ2,N is a

p×N matrix with its ith column being 1√
NT

∑T
t=1 E[zi,tε

2
i,t]. Finally, define the feasible sample

counterpart of ΣΠε as

Σ̂Πε =

(
Σ̂1,N Σ̂2,N

Σ̂′2,N Σ̂3,N

)
:=

 1
NT

∑N
i=1

∑T
t=1 ε̂

2
i,tzi,tz

′
i,t

1√
NT

∑N
i=1

∑T
t=1 ε̂

2
i,tzi,td

′
i,t

1√
NT

∑N
i=1

∑T
t=1 ε̂

2
i,tdi,tz

′
i,t

1
T

∑N
i=1

∑T
t=1 ε̂

2
i,tdi,td

′
i,t

 ,

where ε̂i,t := yi,t − z′i,tα̂− η̂i. The following assumptions are needed to establish the validity of
asymptotically gaussian inference of our procedure.

Assumption 5. Let p̃ := p ∨N ∨ T and assume

(a)
(h1 ∨ h21{h1 6= 0})2s̄2(log p̃)7

N
= o(1),

(log(N ∨ T ))31{h2 6= 0}
T

= o(1).

(b)

(h2
1s̄

2 ∨Nh2
2)

[
(s1 + s2) ∨

√
TcN√

(log(p∨N))3

]
(log p̃)5

NT
= o(1).

(c)

(h1 ∨ h2)
[(
s̄ ∨ (log p̃)2

)
1{h1 6= 0} ∨ 1{h2 6= 0}

] [
(s1 + s2)2 ∨ Tc2N

(log p̃)3

]
(log p̃)4

N
= o(1).

(d) mineval(ΣΠε) is uniformly bounded away from zero and maxeval(Σ1,N ) is uniformly bounded
from above.
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Assumption 5 is slightly stronger than what we actually need in order to prove Theorem 2
but it is less cluttered in terms of notation. Assumption 5 restricts the rate at which p, T , s1,
s2, s̄, h1 and h2 are allowed to increase as none of these are assumed to be bounded. First, note
that p = L+px only enters through its logarithm. Thus, we can allow for very high-dimensional
models. Furthermore, h1 as well as h2 are allowed to increase with the sample size such that
hypotheses of an increasing dimension involving α and η simultaneously can be tested. In the
classical setting where one is only interested in testing hypotheses on α one has that h2 = 0
such that assumption 5 simplifies. The case of hypotheses only involving the fixed effects η
corresponds to h1 = 0 and again the assumptions simplify. We also note that Assumption 5
requires that s̄, h1 and s1 + s2 to be o(N1/2) while h2 must be o(T 1/2).

Theorem 2. Let Assumptions 1, 3, 4, and 5 be satisfied. If, furthermore, {εi,t}Tt=1 is an
independent sequence for all i = 1, ..., N , then

ρ′S (γ̃ − γ)√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

d−→ N(0, 1), (3.19)

where ρ = (ρ′1, ρ
′
2)′ is a (p+N)× 1 vector, with ‖ρ‖ = 1, ρ1 ∈ Rp and ρ2 ∈ RN . Moreover,

sup
γ∈F(s1,s2,cN )

|ρ′Θ̂Σ̂ΠεΘ̂
′ρ− ρ′ΘΣΠεΘ

′ρ| = op(1). (3.20)

Finally, for every fixed set H ⊆ {1, ..., N + p} with cardinality h, we have

[SH(γ̃H − γH)]′
(
Θ̂Σ̂ΠεΘ̂

′)−1

H
[SH(γ̃H − γH)]

d−→ χ2
h. (3.21)

Theorem 2 provides sufficient conditions under which our procedure allows for asymptot-
ically gaussian inference. We stress again that hypotheses involving an increasing number of
parameters can be tested and that the total number of parameters in the model may be much
larger than the sample size. Furthermore, the error terms are allowed to be conditionally het-
eroskedastic and we provide a consistent estimator of the asymptotic covariance matrix even
for the case of hypotheses involving an increasing number of parameters. Indeed, this estimator
converges uniformly over F(s1, s2, cN ) which we use in establishing the the honesty of confidence
intervals based on (3.19) over this set in Theorem 3. van de Geer et al. (2014) have derived
similar results in the setting of the homoskedastic linear cross sectional model for the case of
inference on a low-dimensional parameter. Thus, our results can be seen as an extension to
dynamic panel data models. Relaxing the homoskedasticity assumption is important as volatil-
ity is known to vary over time in dynamic models, see e.g. Engle (1982), and the conditional
volatility often depends on the state of the process. Theorem 2 is also related to Belloni et al.
(2014) who consider inference in static panel data models for a low-dimensional parameter of
interest.

The classical setup where one is only interested in inference on α corresponds to ρ2 =
0 such that

√
NTρ′1 (α̃− α) is asymptotically gaussian with variance equal to the limit of

ρ′1ΘZΣ1,NΘ′Zρ1 (assumed to exist for illustration). If furthermore, εi,t is homoskedastic with
variance σ2 and independent of zi,t for all i = 1, ..., N and t = 1, ..., T , it follows from the
definition of Σ1,N that this variance equals the limit of σ2ρ′1ΘZρ1 = σ2ρ′1Ψ−1

Z ρ1. The leading
special case where one is interested in testing a hypothesis on the j’th entry of α corresponds
to ρ1 = ej . Similar reasoning shows that in the case where one is testing hypotheses involving
fixed effects only, corresponding to ρ1 = 0, one has that ρ′2

√
T (η̃ − η) is asymptotically gaussian

with variance σ2. This simple form of the variance follows from the asymptotic independence of
the components of η̃. Note that the different rates of convergence for α̃ and η̃ are in accordance
with Theorem 1.

(3.21) is a straightforward consequence of (3.19) and reveals that classical χ2 inference can
be carried out in the usual manner. Thus, asymptotically valid χ2-inference can be performed in
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order to test a hypothesis on h parameters simultaneously. Wald tests of general restrictions of
the type H0 : g(γ) = 0 (where g : Rp+N → Rh is differentiable in an open neighborhood around
γ and has derivative matrix of rank h) can now also be constructed in the usual manner, see
e.g. Davidson (2000) Chapter 12, even when p+N > NT which has hitherto been impossible.

Finally, the independence assumption on εi,t across t is needed only if one tests hypotheses
involving {ηi}Ni=1 (h2 6= 0). Weaker assumptions the error terms such as mixing are possible at
the expense of more involved expression but will not be pursued here.

4 Honest Confidence Intervals

In this section we show that the confidence bands based on (3.19) are honest (uniformly valid)
and contract at the optimal rate. The precise result is contained in the following theorem.

Theorem 3. Let Assumptions 1, 3, 4, and 5 be satisfied. Then, for all ρ ∈ Rp+N with ‖ρ‖ = 1,

sup
t∈R

sup
γ∈F(s1,s2,cN )

∣∣∣∣∣P
(

ρ′S (γ̃ − γ)√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t

)
− Φ(t)

∣∣∣∣∣ = o(1), (4.1)

where Φ(·) is the CDF of the standard normal distribution. Furthermore, define σ̃α,j :=√
[Θ̂ZΣ̂1,N Θ̂Z ]jj and σ̃η,i :=

√
[Σ̂3,N ]ii for j = 1, ..., p and i = 1, ..., N , respectively. Then,

lim inf
N→∞

inf
γ∈F(s1,s2,cN )

P
(
αj ∈

[
α̃j − z1−δ/2

σ̃α,j√
NT

, α̃j + z1−δ/2
σ̃α,j√
NT

])
≥ 1− δ, (4.2)

lim inf
N→∞

inf
γ∈F(s1,s2,cN )

P
(
ηi ∈

[
η̃i − z1−δ/2

σ̃η,i√
T
, η̃i + z1−δ/2

σ̃η,i√
T

])
≥ 1− δ, (4.3)

for j = 1, ..., p and i = 1, ..., N , respectively, where z1−δ/2 is the 1−δ/2 percentile of the standard
normal distribution. Finally, letting diam([a, b]) = b− a be the length (which coincides with the
Lebesgue measure of [a, b]) of an interval [a, b] in the real line, we have

sup
γ∈F(s1,s2,cN )

diam
([
α̃j − z1−δ/2

σ̃α,j√
NT

, α̃j + z1−δ/2
σ̃α,j√
NT

])
= Op

( 1√
NT

)
, (4.4)

sup
γ∈F(s1,s2,cN )

diam
([
η̃i − z1−δ/2

σ̃η,i√
T
, η̃i + z1−δ/2

σ̃η,i√
T

])
= Op

( 1√
T

)
, (4.5)

for j = 1, ..., p and i = 1, ..., N , respectively.

(4.1) reveals that the convergence to the normal distribution in Theorem 2 is actually uni-
form over F(s1, s2, cN ). Since the desparsified Lasso is not a sparse estimator this uniform
convergence does not contradict the work of Leeb and Pötscher (2005). Next, (4.2) is a direct
consequence of (4.1) and reveals that the desparsified Lasso produces confidence bands which
are honest (uniform) over F(s1, s2, cN ). Honest confidence bands are important in practical
applications of dynamic panel data models as they guarantee the existence of a known N0, not
depending on γ ∈ F(s1, s2, cN ), such that

[
α̃j − z1−δ/2

σ̃α,j√
NT

, α̃j + z1−δ/2
σ̃α,j√
NT

]
covers αj with

probability not much smaller than 1 − δ. Here the important point is that one and the same
N0 guarantees this coverage, irrespective of the true value of γ ∈ F(s1, s2, cN ). On the other
hand, pointwise consistent confidence bands only guarantee that

inf
γ∈F(s1,s2,cN )

lim inf
N→∞

P
(
αj ∈

[
α̃j − z1−δ/2

σ̃α,j√
NT

, α̃j + z1−δ/2
σ̃α,j√
NT

])
≥ 1− δ,

implying that the value of N needed in order to guarantee a coverage of close to 1 − δ may
depend on the unknown true parameter. Thus, for some parameter values one may have to
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sample more data points to achieve the desired coverage than for others which is unfortunate
as one does not know for which parameters this is the case. An honest confidence set SN for
αj can of course trivially be obtained by setting SN = R. However, this is clearly not very
informative and therefore (4.4) is reassuring as it guarantees that the length of the honest
confidence interval contracts at the optimal rate. Therefore, our confidence bands are not only
honest, they are also very informative as they contract as fast as possible. Furthermore, this
contraction is uniform over F(s1, s2, cN ). Since the desparsified Lasso is not a sparse estimator,
this fast contraction does not contradict inequality 6 in Theorem 2 of Pötscher (2009) who
shows that honest confidence bands based on sparse estimators must be large.

Similarly to the confidence bands pertaining to α, the ones for the fixed effects are also
honest and contract at the optimal rate. Note that this rate is again slower than the one for α.
It is also worth remarking that the above inference results are valid without any sort of lower
bound on the non-zero coefficients as inference is not conducted after model selection.

5 Monte Carlo

In this section we investigate the finite sample properties of our estimator by means of simu-
lations. All calculations are carried out in R using the glmnet package and λN and λnode are
chosen via BIC by the formula given in (9.4.9) in Davidson (2000). We compare the results
for our estimator to the least squares oracle which only includes the relevant variables. When
sample size allows it, that is when p+N ≤ NT , we also implement naive least squares including
all variables. The number of Monte Carlo replications is 1,000 for all setups and we consider
the performance of our estimator along the following dimensions.

1. Estimation error: We compute the root mean square errors (RMSE) of all procedures
averaged over the Monte Carlo replications.

2. Coverage rate: We calculate the coverage rate of a gaussian confidence interval constructed
as in Theorem 3. This is done for a coefficient belonging to the lags of the left hand side
variable, the coefficient of a regressor in xi,t as well as a fixed effect.

3. Length of confidence interval: We calculate the length of the three confidence intervals
considered in point 2 above.

4. Size: We evaluate the size of the χ2-test in Theorem 2 for a hypothesis involving the same
three parameters we construct confidence intervals for in point 2 above.

5. Power: We evaluate the power of the χ2-test in point 4 above.

All tests are carried out at the 5% level of significance and all confidence intervals have a nominal
coverage of 95%. Furthermore, as our results regarding estimation error are for the plain Lasso,
the root mean square errors are reported for this instead of the desparsified Lasso. As our
models are dynamic, we allow for a burn-in period of 1,000 observations when generating the
data.

The data generating process is (1.1) and in all experiments (α1, α2, α3, α4) = (0.9, 0, 0,−0.3)
such that the roots of the corresponding lag polynomial lie outside the unit disk. The covariance
matrix of xi,t is chosen to have a Toeplitz structure with the (i, j)th entry equal to ρ|i−j| with
ρ = 0.75. We also experimented with other choices of ρ which did not change the results
dramatically. Furthermore, we also tried to let the covariance matrix of xi,t be block-diagonal.
Again, this did not alter our results. Finally, we implemented the desparsified conservative
Lasso of Caner and Kock (2014). However, this only improved the results slightly and so we do
not report these results here.
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As our theory allows for heteroskedasticity, we also investigate the effect of this. To be
precise, we consider error terms of the form εi,t = ui,t

(
xi,t,1/

√
2 + bxxi,t,2

)
where ui,t is inde-

pendent of yi,t−1, ..., yi,1−L and xi,t, ..., xi,1. bx is chosen such that the unconditional variance of
εi,t is the same as the one of ui,t which in turns equals the one from the homoskedastic case.
A simple calculation reveals that bx =

(
−
√

2ρ12 +
√

2ρ2
12 + 2

)
/2, where ρ12 is the covariance

between xi,t,1 and xi,t,2. Note that εi,t constructed this way satisfies Assumption 1. The reason
we ensure that the unconditional variance is the same as in the homoskedastic case is that we
do not want any findings in the heteroskedastic case to be driven by a plain change in the
unconditional variance. The following experiments were carried out

• Experiment 1: (moderate-dimensional setting): N = 20 and T = 10. β is 50× 1 with five
equidistant non-zero entries equaling one. Thus, p = 54 and s1 = 7. η is 20× 1 with four
equidistant non-zero entries equaling 1. Thus, s2 = 4 and cN = 0. In total, γ = (α′, η′)′ is
74×1. Covariates xi,t and error terms are standard gaussian. We test the true hypothesis

H0 : (γ1, γ25, γ55) = (0.9, 1, 1)

by the χ2
3 test described in Theorem 2 in order to gauge the size of the test. The power

is investigated by the hypothesis

H0 : (γ1, γ25, γ55) = (0.8, 1, 1).

The following variations of this setting are considered

(a) The baseline case described so far.

(b) Same as (a), but assuming `1-sparsity by replacing the zero components of η with
0.1 implying cN = 1.6.

(c) Same as (b) but with heteroskedastic errors.

• Experiment 2: (high-dimensional setting). N = 20 and T = 10. β is 400 × 1 with
ten equidistant non-zero entries equaling one. Thus, p = 404 and s1 = 12. η is as in
Experiment 1(a). In total, γ = (α′, η′)′ is 424 × 1. Covariates xi,t and error terms are
standard gaussian. We test the true hypothesis

H0 : (γ1, γ85, γ405) = (0.9, 1, 1)

by the χ2
3 test described in Theorem 2 in order to gauge the size of the test. The power

is investigated by the hypothesis

H0 : (γ1, γ85, γ405) = (0.8, 1, 1).

The following variations of this setting are considered

(a) The baseline case described so far.

(b) Same as (a), but assuming `1-sparsity by replacing the zero components of η with
0.1 implying cN = 1.6.

(c) Same as (b) but with heteroskedastic errors.

• Experiment 3: (increase T ): As Experiment 2 but with T = 25.

• Experiment 4: (increase N): As Experiment 2 but with N = 40. η has eight non-zero
entries and when `1-sparsity is assumed all non-zero entries are replaced by 0.1 implying
cN = 3.2.
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RMSE Coverage Length

α η γ1 γ25 γ55 γ1 γ25 γ55 Size Power

1(a)

LS 8.567 8.044 0.829 0.853 0.864 0.102 0.520 1.183 0.255 0.786
DL 2.286 3.948 0.914 0.904 0.938 0.102 0.448 1.426 0.120 0.934
Ora 0.395 1.326 0.946 0.922 0.917 0.057 0.275 1.166 0.101 1.000

1(b)

LS 8.567 8.045 0.829 0.853 0.864 0.102 0.520 1.183 0.255 0.786
DL 2.435 4.898 0.917 0.906 0.942 0.107 0.470 1.503 0.108 0.931
Ora 0.424 6.969 0.841 0.908 0.898 0.060 0.274 1.173 0.172 0.995

1(c)

LS 8.522 7.932 0.838 0.866 0.859 0.102 0.515 1.153 0.235 0.805
DL 2.438 4.968 0.909 0.917 0.954 0.106 0.464 1.474 0.099 0.920
Ora 0.471 6.907 0.823 0.927 0.894 0.060 0.269 1.120 0.149 0.990

Table 1: Experiment 1. LS, DL and Ora: least squares including all variables, desparsified Lasso and
least squares oracle. RMSE: root mean square error. Coverage: the coverage rate of the asymptotic
95% confidence intervals. Length: the average length of the asymptotic 95% confidence intervals. Size:
size of the correct hypothesis H0 : (γ1, γ25, γ55) = (0.9, 1, 1). Power: the probability to reject the false
H0 : (γ1, γ25, γ55) = (0.8, 1, 1).

• Experiment 5: (Heavy tails): As experiment 2 but the covariates xi,t and error terms are
t-distributed with 3 degrees of freedom.

Table 1 contains the results of experiment 1. Setting 1(a) reveals that the RMSE of the
Lasso are lower than those for least squares including all variables but higher than those of
least squares only including the relevant variables. This is the case for α as well as the fixed
effects. Next, it is very encouraging that the coverage probabilities for the desparsified Lasso
are almost as good as those based on the oracle for γ1 and γ25 and actually superior for γ55.
By inspecting the length of the confidence intervals it is seen that this superior coverage is due
to wider confidence intervals reflecting a more accurate assessment of uncertainty. Finally, the
size and power of the χ2-test based on the desparsifed Lasso are almost as good as the ones for
the oracle and clearly superior to least squares including all variables.

Experiment 1(b) relaxes the sparsity assumption on the fixed effects such that no fixed effect
is assumed to be zero. In this setting, our procedure actually produces confidence bands with
coverage probabilities superior to those of the oracle. In fact, the coverage rates of our procedure
are unaffected by relaxing the sparsity assumption – they even increase slightly. Interestingly,
the size and power are not affected either, resulting in a less size distorted test than the one
based on the least squares oracle. Panel 1(c) adds heteroskedasticity and as expected from our
theory the results seem robust towards this.

Next, we turn to experiment 2(a) which is high-dimensional. The results can be found in
Table 2. As expected, the estimation error is much higher for the Lasso than for the oracle.
However, it is encouraging that the confidence intervals produced by the desparsified Lasso
have a coverage which is as good as the one for the the oracle and close to the nominal rate
of 95%. The price paid is that the confidence bands are wider than the ones based on the
oracle. However, we believe it is preferable to have confidence bands with accurate coverage
rates which are wide due to an accurate reflection of uncertainty than to have narrow bands
which undercover4. Experiment 2(b) relaxes the `0-sparsity assumption and this results in our
confidence bands having more accurate coverage than the oracle based ones. Similarly, the
χ2-test has better size properties, but lower power. These findings confirm the ones from the
moderate dimensional setting. Adding heteroskedasticty does not alter the findings.

4Note that narrow bands can always be obtained by a confidence bands consisting only of the point estimate.
However, in general these have a coverage rate of zero.
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RMSE Coverage Length

α η γ1 γ85 γ405 γ1 γ85 γ405 Size Power

2(a)

LS
DL 6.450 3.986 0.921 0.941 0.924 0.122 0.665 2.226 0.100 0.888
Ora 0.760 1.364 0.939 0.941 0.905 0.043 0.274 1.169 0.108 1.000

2(b)

LS
DL 6.519 5.565 0.924 0.937 0.923 0.123 0.672 2.244 0.096 0.885
Ora 0.800 6.978 0.866 0.934 0.883 0.046 0.274 1.172 0.165 1.000

2(c)

LS
DL 6.489 5.567 0.920 0.940 0.942 0.122 0.674 2.266 0.079 0.874
Ora 0.840 6.795 0.865 0.921 0.884 0.046 0.269 1.128 0.153 0.999

Table 2: LS, DL and Ora: least squares including all variables, desparsified Lasso and least squares
oracle. RMSE: root mean square error. Coverage: the coverage rate of the asymptotic 95% confidence
intervals. Length: the average length of the asymptotic 95% confidence intervals. Size: size of the correct
hypothesis H0 : (γ1, γ85, γ405) = (0.9, 1, 1). Power: the probability to reject the false H0 : (γ1, γ85, γ405) =
(0.8, 1, 1).

RMSE Coverage Length

α η γ1 γ85 γ405 γ1 γ85 γ405 Size Power

3(a)

LS 87.277 10.102 0.557 0.546 0.538 0.050 0.328 0.770 0.763 0.992
DL 3.319 2.604 0.912 0.932 0.950 0.051 0.286 0.893 0.090 1.000
Ora 0.466 0.815 0.941 0.947 0.920 0.027 0.175 0.768 0.082 1.000

3(b)

LS 87.277 10.103 0.557 0.546 0.538 0.050 0.328 0.770 0.763 0.992
DL 3.393 4.157 0.908 0.925 0.953 0.052 0.295 0.927 0.085 1.000
Ora 0.475 4.121 0.910 0.942 0.921 0.027 0.175 0.768 0.098 1.000

3(c)

LS 87.357 10.123 0.533 0.548 0.535 0.049 0.327 0.769 0.761 0.993
DL 3.420 4.160 0.912 0.930 0.959 0.052 0.294 0.920 0.083 1.000
Ora 0.505 4.096 0.937 0.945 0.940 0.027 0.174 0.749 0.063 1.000

Table 3: Experiment 3. LS, DL and Ora: least squares including all variables, desparsified Lasso and
least squares oracle. RMSE: root mean square error. Coverage: the coverage rate of the asymptotic
95% confidence intervals. Length: the average length of the asymptotic 95% confidence intervals. Size:
size of the correct hypothesis H0 : (γ1, γ85, γ405) = (0.9, 1, 1). Power: the probability to reject the false
H0 : (γ1, γ85, γ405) = (0.8, 1, 1).

In Table 3, T has been increased to 25 compared to Table 2. This results in lower estimation
errors for the Lasso as well as oracle assisted least squares. The coverage rates of the confidence
bands are unaltered and still close to the nominal rates. However, the bands are now much
narrower, thus making them more informative. The power of the χ2-test has increased to 1 for
the desparsified Lasso and the size is comparable to the one of the oracle procedure. Experiment
3(b) relaxes the `0-sparsity assumption and shows that our method is robust towards this. The
same may be concluded from 3(c) which adds heteroskedasticity.

Table 4 increases N to 40 compared to Table 2. This results in more fixed effects to be
estimated. Thus, it is not surprising that the estimation error for α goes down while the one for
η increases. Furthermore, the confidence bands based on the desparsified Lasso actually have
better coverage rates than the oracle assisted ones for the fixed effects. Compared to Table 2
the confidence bands for the coefficients belonging to the lagged left hand side variables and xi,t
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RMSE Coverage Length

α η γ1 γ85 γ405 γ1 γ85 γ405 Size Power

4(a)

LS
DL 4.498 7.999 0.922 0.966 0.937 0.087 0.493 2.224 0.065 0.995
Ora 0.535 2.613 0.935 0.930 0.898 0.031 0.195 1.165 0.103 1.000

4(b)

LS
DL 4.517 11.199 0.919 0.965 0.937 0.087 0.495 2.227 0.064 0.996
Ora 0.563 13.434 0.835 0.920 0.886 0.033 0.195 1.166 0.192 1.000

4(c)

LS
DL 4.495 11.198 0.928 0.967 0.941 0.087 0.494 2.187 0.066 0.996
Ora 0.593 13.293 0.833 0.925 0.914 0.032 0.193 1.105 0.145 1.000

Table 4: Experiment 4. LS, DL and Ora: least squares including all variables, desparsified Lasso and
least squares oracle. RMSE: root mean square error. Coverage: the coverage rate of the asymptotic
95% confidence intervals. Length: the average length of the asymptotic 95% confidence intervals. Size:
size of the correct hypothesis H0 : (γ1, γ85, γ405) = (0.9, 1, 1). Power: the probability to reject the false
H0 : (γ1, γ85, γ405) = (0.8, 1, 1).

have become more narrow while the width of the bands of the fixed effects are unchanged as is
to be expected from our theory. Finally, tests based on our method have better size properties
than the ones based on the oracle while having similar power. As the `0-sparsity assumption
on the fixed effects is relaxed in experiment 4(b) we note that coverage of our procedure is
markedly better than the one of the oracle without the confidence bands becoming wider. Size
and power remain unchanged and experiment 4(c) reveals robustness to heteroskedasticity.

RMSE Coverage Length

α η γ1 γ85 γ405 γ1 γ85 γ405 Size Power

5(a)

LS
DL 7.272 4.028 0.924 0.943 0.955 0.118 0.725 3.471 0.066 0.856
Ora 0.788 2.316 0.933 0.934 0.919 0.042 0.272 1.837 0.088 1.000

5(b)

LS
DL 7.297 5.603 0.922 0.942 0.956 0.118 0.728 3.480 0.063 0.856
Ora 0.830 12.004 0.868 0.926 0.909 0.046 0.271 1.844 0.137 0.992

5(c)

LS
DL 10.053 5.619 0.933 0.928 0.956 0.137 0.906 4.239 0.078 0.728
Ora 1.609 21.326 0.845 0.930 0.928 0.069 0.405 2.689 0.113 0.942

Table 5: Experiment 5. LS, DL and Ora: least squares including all variables, desparsified Lasso and
least squares oracle. RMSE: root mean square error. Coverage: the coverage rate of the asymptotic
95% confidence intervals. Length: the average length of the asymptotic 95% confidence intervals. Size:
size of the correct hypothesis H0 : (γ1, γ85, γ405) = (0.9, 1, 1). Power: the probability to reject the false
H0 : (γ1, γ85, γ405) = (0.8, 1, 1).

Our final experiment adds heavy-tailed error terms and covariates xi,t to the high-dimensional
setting presented in Table 2. The results are contained in Table 5. The estimation error of α and
η increases for the Lasso as well as the least squares oracle. On the other hand, the coverage rates
remain high but the price paid is that the length of the confidence bands pertaining to the fixed
effects increases for both procedures. Experiment 5(b) relaxes the `0-sparsity assumption on the
fixed effects. Compared to Table 2, the oracle estimates the fixed effects markedly less precisely
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while the Lasso is unaffected. The coverage rates are roughly unchanged in the sense that our
procedure still performs uniformly better than the oracle. The addition of heteroskedasticity in
experiment 5(c) does not alter our conclusions.

6 Conclusion

This paper has considered inference in high-dimensional dynamic panel data models with fixed
effects. In particular we have shown how hypotheses involving an increasing number of variables
can be tested. These hypotheses can involve parameters from all groups of variables in the
model simultaneously. As a stepping stone towards this inference we constructed a uniformly
valid estimator of the covariance matrix of the parameter estimates which is robust towards
conditional heteroskedasticity.

Next, we showed that confidence bands based on our procedure are asymptotically honest
and contract at the optimal rate. This rate of contraction depends on which type of parameter
is under consideration. Simulations revealed that our procedure works well in finite samples.
Future work may include relaxing the sparsity assumption on the inverse covariance matrix ΘZ

as well as extending our results to non-linear panel data models.

7 Appendix A

7.1 Sufficient Conditions for yi,t to be Subgaussian

The following Lemma provides sufficient conditions for yi,t to inherit the subgaussianity from
the covariates and the error terms. It allows for a wide range of models but rules out dynamic
panel data models which are explosive or contain unit roots.

Lemma 2. Let xi,t,k and εi,t be uniformly subgaussian for i = 1, ..., N , t = 1, ..., T and k =
1, ..., px and assume that ‖β‖1 ≤ C for some C > 0 for all N and T . Furthermore, max1≤i≤N |ηi|
is bounded uniformly in N and T . Then, if all roots of 1 −

∑L
j=1 αjz

j (α1, . . . , αL fixed) are
outside the unit disc, yi,t is uniformly subgaussian for i = 1, ..., N and t = 1, ..., T .

Proof of Lemma 2. Let yt =
∑L

j=1 αjyt−j + ut be an AR(L) process with roots outside the
unit disc. Write the companion form as ξt = Fξt−1 + vt. Then, by the monotone convergence
theorem for Orlicz norms, see van der Vaart and Wellner (1996) exercise 6, page 105,

∥∥‖ξt‖∥∥ψ2
≤∥∥∑∞

j=1 ‖F j‖`2 ‖vt−j‖
∥∥
ψ2

=
∑∞

j=1 ‖F j‖`2
∥∥‖vt−j‖∥∥ψ2

=
∑∞

j=1 ‖F j‖`2 ‖ut−j‖ψ2
, where ‖ · ‖`2 is the

`2 induced norm, and the last equality used that vt is L×1 with only one non-zero entry equaling
ut. By Corollary 5.6.14 in Horn and Johnson (1990) there exists a δ > 0 such that ‖F j‖`2 ≤
(1 − δ)j for j sufficiently large. Thus, if ‖ut‖ψ2

is uniformly bounded we conclude ‖yt‖ψ2
≤∥∥‖ξt‖∥∥ψ2

≤ K for some K > 0. Thus, in our context it suffices to show that ‖x′i,tβ + ηi + εi,t‖ψ2

is uniformly bounded as yi,t =
∑L

j=1 αjyi,t−j + x′i,tβ + ηi + εi,t =
∑L

j=1 αjyi,t−j + ui,t with
ui,t = x′i,tβ + ηi + εi,t. But ‖x′i,tβ + ηi + εi,t‖ψ2

≤
∑p

j=1 |βj | ‖xi,t,k‖ψ2
+ ‖ηi‖ψ2

+ ‖εi,t‖ψ2
which

is bounded by the assumptions made.

7.2 Proof of Theorem 1

In this section we prove Theorem 1. In order to do so we introduce the events

AN =

{
‖Z ′ε‖∞ ≤

λN
2
, ‖D′ε‖∞ ≤

λN

2
√
N

}
, BN =

{
κ2(ΨN , s1, s2) ≥ κ2

2

}
.
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Lemma 3. On the event AN , the following inequalities are valid

‖Π(γ̂−γ)‖2+λN‖α̂−α‖1+
λN√
N
‖η̂−η‖1 ≤ 4λN‖α̂J1−αJ1‖1+4

λN√
N
‖η̂J2−ηJ2‖1+4

λN√
N
cN ; (7.1)

‖α̂Jc1 − αJc1‖1 +
1√
N
‖η̂Jc2 − ηJc2‖1 ≤ 3‖α̂J1 − αJ1‖1 + 3

1√
N
‖η̂J2 − ηJ2‖1 + 4

1√
N
cN . (7.2)

Proof. By the minimizing property of the Lasso,

‖y −Πγ̂‖2 + 2λN‖α̂‖1 + 2
λN√
N
‖η̂‖1 ≤ ‖y −Πγ‖2 + 2λN‖α‖1 + 2

λN√
N
‖η‖1

such that inserting y = Πγ + ε yields

‖Π(γ̂ − γ)‖2 ≤ 2ε′Π(γ̂ − γ) + 2λN (‖α‖1 − ‖α̂‖1) + 2
λN√
N

(‖η‖1 − ‖η̂‖1). (7.3)

Note that on AN

2ε′Π(γ̂ − γ) ≤ 2‖ε′Z‖∞‖α̂− α‖1 + 2‖ε′D‖∞‖η̂ − η‖1 ≤ λN‖α̂− α‖1 +
λN√
N
‖η̂ − η‖1.

Using this and adding λN‖α̂− α‖1 + λN√
N
‖η̂ − η‖1 to both sides of (7.3) gives

‖Π(γ̂ − γ)‖2 + λN‖α̂− α‖1 +
λN√
N
‖η̂ − η‖1

≤ 2λN (‖α‖1 − ‖α̂‖1 + ‖α̂− α‖1) + 2
λN√
N

(‖η‖1 − ‖η̂‖1 + ‖η̂ − η‖1)

≤ 2λN (‖αJ1‖1 − ‖α̂J1‖1 + ‖α̂J1 − αJ1‖1) + 2
λN√
N

(‖ηJ2‖1 − ‖η̂J2‖1 + ‖η̂J2 − ηJ2‖1 + 2cN )

≤ 4λN‖α̂J1 − αJ1‖1 + 4
λN√
N
‖η̂J2 − ηJ2‖1 + 4

λN√
N
cN ,

where the second inequality used ‖ηJc2‖1−‖η̂Jc2‖1+‖η̂Jc2−ηJc2‖1 ≤ 2‖ηJc2‖1 ≤ 2cN . This coincides
with (7.1). (7.2) follows trivially from this.

Lemma 4 (Deterministic oracle inequalities). Let Assumption 2 hold. On the event AN ∩
BN one has for any positive constant λN ,

∥∥Π(γ̂ − γ)
∥∥2 ≤

120λ2
N (s1 + s2)

κ2NT
+

20λN√
N

cN

‖α̂− α‖1 ≤
120λN (s1 + s2)

κ2NT
+

20√
N
cN

‖η̂ − η‖1 ≤
120λN (s1 + s2)

κ2
√
NT

+ 20cN .

Moreover, the above bounds are valid uniformly over F(s1, s2, cN ) =
{
α ∈ Rp : ‖α‖0 ≤ s1

}
×{

η ∈ RN : ∃ I ⊆ {1, ..., N} with |I| ≤ s2 and ‖ηIc‖1 ≤ cN
}

.

Proof. By (7.1) of Lemma 3, which is valid on AN ,

‖Π(γ̂ − γ)‖2 ≤ 4λN‖α̂J1 − αJ1‖1 + 4
λN√
N
‖η̂J2 − ηJ2‖1 + 4

λN√
N
cN . (7.4)
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Consider the auxiliary event

CN :=
{ 1√

N
cN ≤

1

4
‖α̂J1 − αJ1‖1 +

1

4
√
N
‖η̂J2 − ηJ2‖1

}
.

On the event AN ∩ CN , from (7.2) of Lemma 3, we have

‖α̂Jc1 − αJc1‖1 +
1√
N
‖η̂Jc2 − ηJc2‖1 ≤ 4‖α̂J1 − αJ1‖1 + 4

1√
N
‖η̂J2 − ηJ2‖1. (7.5)

In order to apply the compatibility condition, re-parametrise the vector δ in the definition of
the compatibility condition as follows. Let b1 and b2 be p× 1 and N × 1 vectors, respectively,
with b = (b1

′
, b2
′
)′ defined as (

b1

b2

)
:=

(
Ip 0

0
√
N IN

)(
δ1

δ2

)
.

Hence, that κ2(ΨN , r1, r2) is bounded away from zero for integers r1 ∈ {1, . . . , p} and r2 ∈
{1, . . . , N} is equivalent to

κ2(ΨN , r1, r2) := min
R1⊆{1,...,p},|R1|≤r1
R2⊆{1,...,N},|R2|≤r2

R:=R1∪R2

min
b6=0,

‖b1
Rc1
‖1+ 1√

N
‖b2
Rc2
‖1

≤4‖b1R1
‖1+ 4√

N
‖b2R2

‖1

‖Πb‖2

NT
r1+r2

∥∥∥∥( b1R1

b2R2
/
√
N

)∥∥∥∥2

1

> 0. (7.6)

By (7.5), our estimator satisfies the constraint of the just introduced version of the compatibility
condition and so

‖Π(γ̂ − γ)‖2 ≥ κ2(ΨN , s1, s2)NT

s1 + s2

∥∥∥∥( α̂J1 − αJ1

(η̂J2 − ηJ2)/
√
N

)∥∥∥∥2

1

≥ κ2(ΨN , s1, s2)NT

s1 + s2

(
‖α̂J1 − αJ1‖21 +

1

N
‖η̂J2 − ηJ2‖21

)
≥ κ2NT

2(s1 + s2)

(
‖α̂J1 − αJ1‖21 +

1

N
‖η̂J2 − ηJ2‖21

)
,

where the last inequality is valid on BN . Hence, on AN ∩ BN ∩ CN upon combining with (7.4)
one has,

κ2NT

2(s1 + s2)

(
‖α̂J1 − αJ1‖21 +

1

N
‖η̂J2 − ηJ2‖21

)
≤ 4λN‖α̂J1 − αJ1‖1 +

4λN√
N
‖η̂J2 − ηJ2‖1 +

4λN√
N
cN

≤ 5λN‖α̂J1 − αJ1‖1 +
5λN√
N
‖η̂J2 − ηJ2‖1,

which, since κ2 > 0 by Assumption 2, is equivalent to

‖α̂J1 − αJ1‖21 −
10λN (s1 + s2)

κ2NT
‖α̂J1 − αJ1‖1 +

1

N
‖η̂J2 − ηJ2‖21 −

10λN (s1 + s2)

κ2N3/2T
‖η̂J2‖1 ≤ 0.

Let x = ‖α̂J1 − αJ1‖1, y = ‖η̂J2 − ηJ2‖1, a = 10λN (s1+s2)
κ2NT

, b = 1
N and c = 10λN (s1+s2)

κ2N3/2T
. Thus one

has
x2 − ax+ by2 − cy ≤ 0. (7.7)

First bound x = ‖α̂J1 − αJ1‖1. For every y the values of x that satisfy the above quadratic
inequality form an interval in R+. The right end point of this interval is the desired upper
bound on x. Clearly, by the solution formula for the roots of a second degree polynomial, this
right end point is a decreasing function in by2 − cy. Hence, we first minimize the polynomial
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by2−cy to find the largest possible value of x which satisfies (7.7). This yields y = c/2b and the
corresponding value of by2− cy is −c2/(4b). Hence, our desired upper bound on x is the largest

solution of x2 − ax − c2

4b ≤ 0. By the standard solution formula for the roots of a quadratic
polynomial this yields

‖α̂J1 − αJ1‖1 = x ≤
a+

√
a2 + c2/b

2
≤ a+

c

2
√
b
. (7.8)

Switching the roles of x and y, one gets a similar bound on y = ‖η̂J2 − ηJ2‖1, namely

‖η̂J2 − ηJ2‖1 = y ≤ c+
√
c2 + ba2

2b
≤ c

b
+

a

2
√
b
. (7.9)

Inserting the definitions of a, b and c into (7.8) and (7.9), we get

‖α̂J1 − αJ1‖1 ≤
15λN (s1 + s2)

κ2NT
(7.10)

‖η̂J2 − ηJ2‖1 ≤
15λN (s1 + s2)

κ2N1/2T
. (7.11)

Therefore, on AN ∩ BN ∩ CN , it follows from (7.1) that

∥∥Π(γ̂ − γ)
∥∥2 ≤ 4λN‖α̂J1 − αJ1‖1 +

4λN√
N
‖η̂J2 − ηJ2‖1 +

4λN√
N
cN ≤

120λ2
N (s1 + s2)

κ2NT
+

4λN√
N
cN

‖α̂− α‖1 ≤ 4‖α̂J1 − αJ1‖1 +
4√
N
‖η̂J2 − ηJ2‖1 +

4√
N
cN ≤

120λN (s1 + s2)

κ2NT
+

4√
N
cN

‖η̂ − η‖1 ≤ 4
√
N‖α̂J1 − αJ1‖1 + 4‖η̂J2 − ηJ2‖1 + 4cN ≤

120λN (s1 + s2)

κ2
√
NT

+ 4cN .

On AN ∩ CcN one has trivial oracle inequalities via (7.1) of Lemma 3. To be precise,

‖Π(γ̂ − γ)‖2 < 20λN
cN√
N
, ‖α̂− α‖1 < 20

cN√
N
, ‖η̂ − η‖1 < 20cN .

These inequalities are valid on event AN ∩ BN ∩ CcN too. Thus the results of the lemma follow
upon synchronising constants and using that (AN ∩ BN ∩ CcN ) ∪ (AN ∩ BN ∩ CN ) = AN ∩ BN .

To see the uniformity F(s1, s2, cN ), note that only properties s1, s2 and cN characterizing
α and η enter the deterministic oracle inequalities. Hence, the deterministic oracle inequalities
are uniform over the set F(s1, s2, cN ).

For the proof of Lemma 5 below, we shall use Orlicz norms as defined in van der Vaart and
Wellner (1996): Let ψ be a non-decreasing, convex function with ψ(0) = 0. Then, the Orlicz
norm of a random variable X is given by

‖X‖ψ = inf
{
C > 0 : Eψ

(
|X|/C

)
≤ 1
}
,

where, as usual, inf ∅ = ∞. We will use Orlicz norms for ψ(x) = ψb(x) = ex
b − 1 for various

values of b. The following Lemma provides a lower bound on the probability of AN .

Lemma 5. Let λN =
√

4MNT (log(p ∨N))3 for some M > 0. By Assumptions 1 and 3, we
have

P(AN ) ≥ 1−Ap1−BM1/3 −AN1−BM1/3
,

for positive constants A and B.
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Proof. Consider the event {‖Z ′ε‖∞ > λN/2} first. To this end, let zj,l denote the jth entry
of the lth column of Z, i.e. the jth entry of (z1,1,l, z1,2,l, . . . , z1,T,l, z2,1,l, . . . , zN,T,l)

′. Similarly,
we write εj for the jth entry of ε. Now note that j 7→ (d jT e, j − b

j
T cT ) is a bijection from

{1, ..., NT} to {1, ..., N} × {1, ..., T} where bxc denotes the greatest integer strictly less than
x and dxe the smallest integer greater than or equal to x ∈ R. In case the lth column of Z
corresponds one of the lags of the left hand side variable, assume for concreteness the kth lag,
define Fn = σ

(
yd j

T
e,j−b j

T
cT , ..., yd j

T
e,j−b j

T
cT−L, εd j

T
e,j−b j

T
cT , 1 ≤ j ≤ n

)
and Sn,l =

∑n
j=1 zj,lεj =∑n

j=1 yd j
T
e,j−b j

T
cT−kεd j

T
e,j−b j

T
cT . Thus,

E[Sn,l|Fn−1] =
n−1∑
j=1

yd j
T
e,j−b j

T
cT−kεd j

T
e,j−b j

T
cT + E

[
yd n

T
e,j−b n

T
cT−kεd n

T
e,n−b n

T
cT |Fn−1

]
= Sn−1,l + yd n

T
e,j−b n

T
cT−kE

[
εd n

T
e,n−b n

T
cT |Fn−1

]
.

Using that
(
d nT e, n− b

n
T cT

)
is a unique pair (i, t) ∈ {1, . . . , N} × {1, . . . , T} we have that

E
[
εd n

T
e,n−b n

T
cT |Fn−1

]
= E[εi,t|Fn−1] = E[εi,t|σ(yi,s, . . . , yi,1−L, εi,s, . . . , εi,1, 1 ≤ s ≤ t− 1)]

5where the last equality follows from the assumption of independence across 1 ≤ i ≤ N (As-
sumption 1). By Assumption 1, this conditional expectation equals zero as the εi,s are linear
functions of yi,s, . . . , yi,s−L and xi,s. Thus, Sn,l is a martingale with mean zero (the increments
are martingale differences by the above argument). A similar argument applies when the lth
column of Z equals {x1,1,k, x1,T,k, x2,1,k, ..., xN,T,k}′ for some 1 ≤ k ≤ px such that every row of
Z ′ε is a zero mean martingale.

Next, note that by Assumption 3, for all 1 ≤ j ≤ NT , 1 ≤ l ≤ p and ε > 0, one has

P(|zj,lεj | ≥ ε) ≤ P(|zj,l| ≥
√
ε) + P(|εj | ≥

√
ε) ≤ Ke−Cε.

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖zj,lεj‖ψ1 ≤ (1 +K)/C.
Then, by the definition of the Orlicz norm, E

[
eC/(1+K)|zj,lεj |

]
≤ 2. Now use Proposition 2 in

Appendix B with D = C/(1 +K), α = 1/3 and C1 = 2 to conclude

P
(
‖Z ′ε‖∞ >

λN
2

)
≤

p∑
l=1

P
(∣∣∣∣NT∑
j=1

zj,lεj

∣∣∣∣ > λN
2NT

NT

)
= pAe−B log(p∨N)M1/3 ≤ Ap1−BM1/3

.

Note also that the upper bound of the preceding probability becomes arbitrarily small for
sufficiently large N and M such that we also conclude

‖Z ′ε‖∞ = Op(λN ).6 (7.12)

Next, consider the event {‖D′ε‖∞ > λN/(2
√
N)}. Using Assumption 1 a small calculation

shows that all entries of D′ε are zero mean martingales with respect to the natural filtration.
As above, Assumption 3 and Lemma 2.2.1 in van der Vaart and Wellner (1996) yield ‖εi,t‖ψ2 ≤(1+K/2

C

)1/2
such that by the second to last inequality on page 95 in van der Vaart and Wellner

(1996) one has ‖εi,t‖ψ1 ≤ ‖εi,t‖ψ2(log 2)−1/2 ≤
(1+K/2

C

)1/2
(log 2)−1/2 for all i and t. Then using

the definition of the Orlicz norm, E
[
exp

((
C

1+K/2

)1/2
(log 2)1/2|εi,t|

)]
≤ 2 and Proposition 2 in

Appendix B with D =
(

C
1+K/2

)1/2
(log 2)1/2, α = 1/3 and C1 = 2 implies

P
(
‖D′ε‖∞ >

λN

2
√
N

)
≤

N∑
i=1

P
(∣∣∣ T∑
t=1

εi,t

∣∣∣ > λN

2
√
NT

T
)
≤ ANe−B(log(p∨N)M1/3 ≤ AN1−BM1/3

.

5For t = 1, the last expression in the above display is to be read as absence of conditioning on the error terms.
6When we use Landau notation, we mean N tending to infinity.
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Note also that the upper bound of the preceding probability becomes arbitrarily small for
sufficiently large N and M , such that we may also conclude

‖D′ε‖∞ = Op

(
λN√
N

)
. (7.13)

The following lemma shows that κ2(ΨN , s1, s2) and κ2(Ψ, s1, s2) are close if ΨN and Ψ are
in some sense close.

Lemma 6. Let A and B be two positive semidefinite (p + N) × (p + N) matrices and δ :=
max1≤i,j≤p+N |Aij −Bij |. For integers s1 ∈ {1, . . . , p} and s2 ∈ {1, . . . , N}, one has

κ2(B, s1, s2) ≥ κ2(A, s1, s2)− δ25(s1 + s2).

Proof. Let x be a (p+N)× 1 non-zero vector, satisfying ‖xJc‖1 ≤ 4‖xJ‖1 for J = J1 ∪ (J2 + p)
where J1 ⊆ {1, ..., p} with |J1| ≤ s1, and J2 ⊆ {1, ..., N} with |J2| ≤ s2. Now,

|x′Ax− x′Bx| = |x′(A−B)x| ≤ ‖x‖1‖(A−B)x‖∞ ≤ ‖x‖21δ = δ
(
‖xJ‖1 + ‖xJc‖1

)2
≤ δ

(
‖xJ‖1 + 4‖xJ‖1

)2 ≤ δ25‖xJ‖21.

Hence,
x′Bx

1
s1+s2

‖xJ‖21
≥ x′Ax

1
s1+s2

‖xJ‖21
− δ25(s1 + s2) ≥ κ2(A, s1, s2)− δ25(s1 + s2),

where the last inequality is true because of the definition of κ2(A, s1, s2). Minimising the left-
hand side over non-zero x satisfying ‖xJc‖1 ≤ 4‖xJ‖1 yields the claim.

Define

B̃N =

{
max

1≤i,j≤p+N

∣∣ΨN,ij −Ψij

∣∣ ≤ κ2(Ψ, s1, s2)

50(s1 + s2)

}
.

Setting A = Ψ, B = ΨN it follows from Lemma 6 that B̃N ⊆ BN . Thus, we just need to find a
lower bound on P(B̃N ) in order to prove Theorem 1.

Lemma 7. Let Assumptions 1, 2 and 3 hold. Assume that s1 + s2 ≤
√
N . Then there exist

positive constants A,B such that

P(BcN ) ≤ P(B̃cN ) ≤ A(p2 + pN)e
−B
(

N
(s1+s2)2

)1/3

.

Proof. Since the lower right N ×N blocks of ΨN and Ψ are identical, it suffices to bound the
entries of 1

NT Z
′Z − 1

NT E[Z ′Z] and 1
T
√
N
Z ′D. A typical element of 1

NT Z
′Z − 1

NT E[Z ′Z] is of

the form 1
NT

∑N
i=1

∑T
t=1(zi,t,lzi,t,k − E[zi,t,lzi,t,k]) for some l, k ∈ {1, . . . , p}. By Assumption 3

we have for every ε > 0

P(|zi,t,lzi,t,k| ≥ ε) ≤ P(|zi,t,l| ≥
√
ε) + P(|zi,t,k| ≥

√
ε) ≤ Ke−Cε.

It follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖zi,t,lzi,t,k‖ψ1 ≤ (1+K)/C.
Hence, by subadditivity of the Orlicz norm and Jensen’s inequality∥∥∥∥∥ 1

T

T∑
t=1

(
zi,t,lzi,t,k − E[zi,t,lzi,t,k]

)∥∥∥∥∥
ψ1

≤ 2 max
1≤t≤T

‖zi,t,lzi,t,k‖ψ1 ≤
2(1 +K)

C
.
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Thus, by the definition of the Orlicz norm, E exp
(

C
2(1+K)

∣∣ 1
T

∑T
t=1(zi,t,lzi,t,k − E[zi,t,lzi,t,k])

∣∣) ≤
2. Using independence across i (Assumption 1) to invoke Proposition 2 in Appendix B with
D = C

2(1+K) , α = 1/3 and C1 = 2 such that for every x & 1√
N

P
(∣∣∣ N∑
i=1

1

T

T∑
t=1

(zi,t,lzi,t,k − E[zi,t,lzi,t,k])
∣∣∣ ≥ Nx) ≤ Ae−B(x2N)1/3

, (7.14)

for positive constants A and B.
Next, consider 1

T
√
N
Z ′D. A typical element can be written as 1√

NT

∑T
t=1 zi,t,l for some

i ∈ {1, . . . , N} and l ∈ {1, . . . , p}. By Assumption 3, we have P(|zi,t,l| ≥ ε) ≤ 1
2Ke

−Cε2 for all
ε > 0 and it follows from Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖zi,t,l‖ψ2 ≤(1+K/2

C

)1/2
. Hence,∥∥∥∥∥ 1√

NT

T∑
t=1

zi,t,l

∥∥∥∥∥
ψ2

≤ 1√
N

max
1≤t≤T

‖zi,t,l‖ψ2 ≤
1√
N

(1 +K/2

C

)1/2

=:
C ′√
N
.

Thus, it follows by Markov’s inequality, positivity and increasingness of ψ2(x), as well as 1 ∧
ψ2(x)−1 = 1 ∧ (ex

2 − 1)−1 ≤ 2e−x
2

that for any x > 0

P
(∣∣∣ 1√

NT

T∑
t=1

zi,t,l

∣∣∣ > x
)
≤ 1 ∧ 1

e(x
√
N/C′)2 − 1

≤ 2e−
Nx2

C′2 ≤ Ae−Bx2N , (7.15)

where the last estimate follows by choosing A and B sufficiently large/small for (7.14) and

(7.15) both to be valid. Setting x = κ2

50(s1+s2) = κ2

50
1

s1+s2
, using that 1

s1+s2
≥ 1/

√
N and κ2

being bounded away from 0 (Assumption 2), we have

P(BcN ) ≤ P(B̃cN ) = P
(

max
1≤i,j≤p+N

|ΨN,ij −Ψij | > x
)

≤ A(p2 + pN)

(
e
−B
[(

κ2

50(s1+s2)

)2
N
]1/3
∨ e−B

(
κ2

50(s1+s2)

)2
N
)
≤ A(p2 + pN)e

−B
(

N
(s1+s2)2

)1/3

where the last estimate has merged (κ2/50)2/3 into B and used N
(s1+s2)2 ≥ 1.

Proof of Theorem 1. Theorem 1 follows by combining Lemmas 4, 5, and 7.

Corollary 1. Let conditions of Theorem 1 hold. For large enough M > 0 and assuming
(log(p∨N))3(s1+s2)2

N = o(1), we have the following stochastic orders valid uniformly over F(s1, s2, cN ).

1

NT

∥∥Π(γ̂ − γ)
∥∥2

= Op

(
(s1 + s2)

(
λN
NT

)2
)

+Op

(
λN
NT

cN√
N

)
,

‖α̂− α‖1 = Op

(
(s1 + s2)

λN
NT

)
+Op

(
cN√
N

)
,

‖η̂ − η‖1 = Op

(
(s1 + s2)

λN√
NT

)
+Op (cN ) .

Proof of Corollary 1. Given positive constants A and B, Ap1−BM1/3
and AN1−BM1/3

become

arbitrarily small for large enoughM > 0. By (log(p∨N))3(s1+s2)2

N = o(1), A(p2+pN)e
−B
(

N
(s1+s2)2

)1/3

→
0 as N → ∞. Thus the lower bound on the probability in Theorem 1 goes to one as N → ∞
for large enough M > 0 and the conclusion follows from Theorem 1.
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7.3 Proof of Lemma 1

The following lemma gives the rates of the uniform prediction and estimation errors for nodewise
regression.

Lemma 8. Let Assumptions 1, 3 and 4 hold. Let λnode =
√

4M(log p)3/N for some M > 0.
For M sufficiently large, we have

max
j∈H1

1

NT
‖Z−j(φ̂j − φj)‖2 = Op

(
s̄λ2

node

)
(7.16)

max
j∈H1

‖φ̂j − φj‖1 = Op (s̄λnode) (7.17)

max
j∈H1

1

NT
‖Z ′−jζj‖∞ = Op(λnode). (7.18)

Proof. We say that a (p− 1)× (p− 1) matrix A satisfies the compatibility condition CC(r) for
some integer r ∈ {1, . . . , p− 1} if

κ2 (A, r) := min
R⊆{1,...,p−1}
|R|≤r

min
δ∈Rp−1\{0}
‖δRc‖1≤3‖δR‖1

δ′Aδ
1
r‖δR‖

2
1

> 0

and consider the events

DN =
{

max
j∈H1

1

NT
‖Z ′−jζj‖∞ ≤

λnode
2

}
and

EN,j =

{
κ2
( 1

NT
Z ′−jZ−j , snode,j

)
≥
κ2
(
ΨZ,−j,−j , snode,j

)
2

}
.

By standard arguments or using the same technique as in Lemma 3 it can be shown that for
each j ∈ H1

1

NT
‖Z−j(φ̂j − φj)‖2 ≤

32snode,jλ
2
node

κ2
(
ΨZ,−j,−j , snode,j

) , ‖φ̂j − φj‖1 ≤
32snode,jλnode

κ2
(
ΨZ,−j,−j , snode,j

) ,
on DN ∩ EN,j . Thus, the inequalities in the above display are valid simultaneously on DN ∩
(∩j∈H1EN,j). Noting that κ2

(
ΨZ,−j,−j , r

)
≥ κ2 (ΨZ , r) for all j = 1, ..., p and r = 1, ..., p− 1 we

conclude that

max
j∈H1

1

NT
‖Z−j(φ̂j − φj)‖2 ≤

32s̄λ2
node

κ2 (ΨZ , s̄)
and max

j∈H1

‖φ̂j − φj‖1 ≤
32s̄λnode
κ2 (ΨZ , s̄)

.

on DN ∩ (∩j∈H1EN,j). Thus, we proceed by establishing a lower bound on this set. Consider

DN first. A typical element of Z ′−jζj is of the form
∑N

i=1

∑T
t=1 zi,t,lζj,i,t for some l 6= j. By

(3.12), one has 1
NT

∑N
i=1

∑T
t=1 zi,t,lζj,i,t = 1

NT

∑N
i=1

∑T
t=1(zi,t,lζj,i,t − E[zi,t,lζj,i,t]) for l 6= j. By

Assumptions 3 and 4(c), it holds for any ε > 0 that

P(|zi,t,lζj,i,t| > ε) ≤ P(|zi,t,l| >
√
ε) + P(|ζj,i,t| >

√
ε) ≤ Ke−Cε.

such that Lemma 2.2.1 in van der Vaart and Wellner (1996) yields that ‖zi,t,lζj,i,t‖ψ1 ≤ (1 +
K)/C. Therefore, by Jensen’s inequality and subadditivity of the Orlicz norm∥∥∥∥∥∥ 1

T

T∑
t=1

(
zi,t,lζj,i,t − E[zi,t,lζj,i,t]

)∥∥∥∥∥∥
ψ1

≤ 2 max
1≤t≤T

‖zi,t,lζj,i,t‖ψ1 ≤
2(1 +K)

C
.
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Using the definition of the Orlicz norm E exp
(

C
2(1+K)

∣∣ 1
T

∑T
t=1 (zi,t,lζj,i,t − E[zi,t,lζj,i,t])

∣∣) ≤ 2.

Using independence across i (Assumption 1) to invoke Proposition 2 in Appendix B with D =
C/(1 +K), α = 1/3, C1 = 2 and ε = λnode/2 & 1√

N
, we conclude (using h1 ≤ p)

P
(

max
j∈H1

1

NT
‖Z ′−jζj‖∞ > ε

)
≤ h1pP

(∣∣∣ N∑
i=1

1

T

T∑
t=1

(zi,t,lζj,i,t − E[zi,t,lζj,i,t])
∣∣∣ > εN

)
≤ Ah1pe

−B(ε2N)1/3 ≤ Ap2e−BM
1/3 log p = Ap2−BM1/3

for positive constants A and B. The upper bound of the preceding probability becomes arbi-
trarily small for M sufficiently large such that

max
j∈H1

1

NT
‖Z ′−jζj‖∞ = Op(λnode),

which is (7.18).
In order to provide a lower bound on the probability of

(
∩j∈H1EN,j

)
define the event

ẼN,j :=

{
max

1≤l,k≤p−1

∣∣∣∣[ 1

NT
Z ′−jZ−j

]
lk

− [ΨZ,−j,−j ]lk

∣∣∣∣ ≤ κ2(ΨZ,−j,−j , snode,j)

32snode,j

}
⊆ EN,j

by Proposition 1 in Appendix B with A = ΨZ,−j,−j , B = 1
NT Z

′
−jZ−j , r = snode,j and δ =

κ2(ΨZ,−j,−j ,snode,j)
32snode,j

. Observe that the relation

max
1≤l,k≤p−1

∣∣∣∣[ 1

NT
Z ′−jZ−j

]
lk

−
[
ΨZ,−j,−j

]
lk

∣∣∣∣ ≤ max
1≤l,k≤p

∣∣∣∣[ 1

NT
Z ′Z

]
lk

− [ΨZ ]lk

∣∣∣∣
≤ κ2(ΨZ , s̄)

32s̄
≤
κ2(ΨZ,−j,−j , snode,j)

32snode,j
,

implies EN :=
{

max1≤l,k≤p
∣∣[ 1
NT Z

′Z]lk − [ΨZ ]lk
∣∣ ≤ κ2(ΨZ ,s̄)

32s̄

}
⊆ ẼN,j ⊆ EN,j for all j ∈ H1 and

hence EN ⊆ ∩j∈H1EN,j . It remains to provide a lower bound on P(EN ). A typical element of
1
NT Z

′Z − ΨZ is of the form 1
NT

∑N
i=1

∑T
t=1(zi,t,lzi,t,k − E[zi,t,lzi,t,k]) for some l, k ∈ {1, . . . , p}.

Invoking (7.14) with x = κ2(ΨZ ,s̄)
32s̄ & 1√

N
(using (log p)3s̄2

N = o(1) Assumption 4(b))

P
(∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(zi,t,lzi,t,k − E[zi,t,lzi,t,k])
∣∣∣ ≥ x) ≤ Ae−B(x2N)1/3

,

for positive constants A and B. Therefore,

P(EcN ) = P

(
max

1≤l,k≤p

∣∣∣∣[ 1

NT
Z ′Z

]
lk

− [ΨZ ]lk

∣∣∣∣ ≥ x
)
≤ p2Ae−B(x2N)1/3 → 0

as N →∞ using (log p)3s̄2

N = o(1) (Assumption 4(b)).

Proof of Lemma 1. Recall (3.6) and use zj = Z−jφj + ζj :

τ̂2
j =

1

NT
ζ ′jζj +

1

NT
ζ ′jZ−jφj −

1

NT
(φ̂j − φj)′Z ′−jζj −

1

NT
(φ̂j − φj)′Z ′−jZ−jφj .
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Thus,

max
j∈H1

|τ̂2
j − τ2

j | ≤ max
j∈H1

∣∣∣ 1

NT
ζ ′jζj − τ2

j

∣∣∣+ max
j∈H1

∣∣∣ 1

NT
ζ ′jZ−jφj

∣∣∣
+ max
j∈H1

∣∣∣ 1

NT
(φ̂j − φj)′Z ′−jζj

∣∣∣+ max
j∈H1

∣∣∣ 1

NT
(φ̂j − φj)′Z ′−jZ−jφj

∣∣∣ . (7.19)

Consider the first term on the right of the inequality in (7.19). By Assumption 4(c), we have
for all ε > 0, P(|ζ2

j,i,t| ≥ ε) = P(|ζj,i,t| ≥
√
ε) ≤ 1

2Ke
−Cε. It follows from Lemma 2.2.1 in van der

Vaart and Wellner (1996) that ‖ζ2
j,i,t‖ψ1 ≤ (1 +K/2)/C. Therefore, by Jensen’s inequality and

subadditivity of the Orlicz norm∥∥∥∥∥∥ 1

T

T∑
t=1

(
ζ2
j,i,t − E[ζ2

j,i,t]
)∥∥∥∥∥∥

ψ1

≤ 2 max
1≤t≤T

‖ζ2
j,i,t‖ψ1 ≤

2 +K

C
.

Using the definition of the Orlicz norm, E exp
(

C
2+K

∣∣ 1
T

∑T
t=1 (ζ2

j,i,t − E[ζ2
j,i,t])

∣∣) ≤ 2. Using in-
dependence across i = 1, . . . , N (Assumption 1) to invoke Proposition 2 in Appendix B with
D = C/(2 +K), α = 1/3 and C1 = 2 for x & 1√

N
,

P
(∣∣∣ 1

N

N∑
i=1

1

T

T∑
t=1

(ζ2
j,i,t − E[ζ2

j,i,t])
∣∣∣ ≥ x) ≤ Ae−B(x2N)1/3

,

for positive constants A and B. Setting x =

√
M(log h1)3

N for some M > 0, we have

P
(

max
j∈H1

∣∣∣ 1

N

N∑
i=1

1

T

T∑
t=1

(ζ2
j,i,t − E[ζ2

j,i,t])
∣∣∣ ≥√M(log h1)3

N

)

≤
∑
j∈H1

P
(∣∣∣ 1

N

N∑
i=1

1

T

T∑
t=1

(ζ2
j,i,t − E[ζ2

j,i,t])
∣∣∣ ≥√M(log h1)3

N

)
≤ Ah1−BM1/3

1 .

Recognising that the upper bound of the preceding probability becomes arbitrarily small for
sufficiently large N and M , we have

max
j∈H1

∣∣∣ 1

NT
ζ ′jζj − τ2

j

∣∣∣ = Op

(√(log h1)3

N

)
= Op(λnode).

Now consider the second term on the right of the inequality in (7.19). Recall that

C =


1 −φ1,2 · · · −φ1,p

−φ2,1 1 · · · −φ2,p
...

...
. . .

...
−φp,1 −φp,2 · · · 1


such that Cj is the jth row of C but written as a p× 1 vector. Then

max
j∈H1

‖φj‖1 ≤ max
j∈H1

√
snode,j‖Cj‖ ≤ max

j∈H1

√
snode,j

√
C ′jΨZCj

mineval(ΨZ)

= max
j∈H1

√
snode,j√

mineval(ΨZ)

√
ΨZ,j,j −ΨZ,j,−jΨ

−1
Z,−j,−jΨZ,−j,j

≤ max
j∈H1

√
snode,j

maxj∈H1

√
ΨZ,j,j√

mineval(ΨZ)
≤ max

j∈H1

√
snode,j

√
maxeval(ΨZ)√
mineval(ΨZ)

= O(
√
s̄), (7.20)
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where the first equality is due to (3.11), and the third inequality is due to that Assumption 4(a)
implies that Ψ−1

Z,−j,−j is positive definite for all j ∈ H1. Now,

max
j∈H1

∣∣∣∣ 1

NT
ζ ′jZ−jφj

∣∣∣∣ ≤ max
j∈H1

(∥∥∥∥ 1

NT
ζ ′jZ−j

∥∥∥∥
∞

∥∥φj∥∥1

)
= Op(λnode)O(

√
s̄) = Op(

√
s̄λnode),

where the first equality is due to (7.18).
The third term in (7.19) is bounded as

max
j∈H1

∣∣∣ 1

NT
(φ̂j − φj)′Z ′−jζj

∣∣∣ ≤ max
j∈H1

(∥∥∥φ̂j − φj∥∥∥
1

∥∥∥∥ 1

NT
Z ′−jζj

∥∥∥∥
∞

)
= Op(s̄λ

2
node),

where the equality is due to (7.17) and (7.18).
To bound the fourth term on the right of the inequality in (7.19), recall (3.8) and manipulate

to get 1
NT Z

′
−jZ−j(φ̂j − φj) = 1

NT Z
′
−jζj − λnodewj . Thus,∥∥∥∥ 1

NT
(φ̂j − φj)′Z ′−jZ−j

∥∥∥∥
∞
≤
∥∥∥∥ 1

NT
Z ′−jζj

∥∥∥∥
∞

+ λnode‖wj‖∞ = Op(λnode),

where the equality is due to (7.18). Thus,

max
j∈H1

∣∣∣∣ 1

NT
(φ̂j − φj)′Z ′−jZ−jφj

∣∣∣∣ ≤ max
j∈H1

∥∥∥∥ 1

NT
(φ̂j − φj)′Z ′−jZ−j

∥∥∥∥
∞

max
j∈H1

‖φj‖1 = Op(
√
s̄λnode),

where the last equality is due to (7.20). Summing up all four terms on the right of the inequality
in (7.19), we get

max
j∈H1

|τ̂2
j − τ2

j | ≤ Op (λnode) +Op(
√
s̄λnode) +Op(s̄λ

2
node) = Op(

√
s̄λnode) = op(1),

where the first equality is due to that Op(
√
s̄λnode) dominates Op(s̄λ

2
node) by Assumption 4(b)

(s̄λnode = o(1)) implies s̄λ2
node = o(1). The second equality is also due to Assumption 4(b).

This establishes (3.13).
We now prove (3.14). We first recall

τ2
j = E

[ 1

NT

N∑
i=1

T∑
t=1

(zi,t,j − z′i,t,−jφj)2
]

= ΨZ,j,j −ΨZ,j,−jΨ
−1
Z,−j,−jΨZ,−j,j (7.21)

=
1

ΘZ,j,j
,

Furthermore,

ΘZ,j,j ≡
e′jΘZej

‖ej‖2
≤ max

δ∈Rp\{0}

δ′ΘZδ

‖δ‖2
= maxeval(ΘZ) =

1

mineval(ΨZ)
.

The preceding inequality is uniform in j. Thus, minj∈H1 τ
2
j ≥ mineval(ΨZ), which is uniformly

bounded away from zero by Assumption 4(a). Therefore,

min
j∈H1

τ̂2
j = min

j∈H1

(τ̂2
j − τ2

j + τ2
j ) ≥ min

j∈H1

τ2
j −max

j∈H1

|τ̂2
j − τ2

j | ≥ mineval(ΨZ)− op(1).

Hence, we conclude that minj∈H1 τ̂
2
j is bounded away from zero for N large enough and

maxj∈H1
1
τ̂2
j

= Op(1) which establishes (3.14).
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Hence,

max
j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣ ≤ maxj∈H1 |τ2
j − τ̂2

j |
minj∈H1 τ

2
j

·max
j∈H1

1

τ̂2
j

= max
j∈H1

|τ2
j − τ̂2

j |O(1)Op(1) = Op(
√
s̄λnode),

which establishes (3.15).
We can now bound maxj∈H1 ‖Θ̂Z,j−ΘZ,j‖1. Use the definition of Cj and (3.10) to recognise

that ΘZ,j = CjΘZ,j,j = Cj/τ
2
j .

max
j∈H1

∥∥∥Θ̂Z,j −ΘZ,j

∥∥∥
1

= max
j∈H1

∥∥∥∥∥ Ĉjτ̂2
j

− Cj
τ2
j

∥∥∥∥∥
1

= max
j∈H1

∣∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣∣+ max
j∈H1

∥∥∥∥∥ φ̂jτ̂2
j

− φj
τ2
j

∥∥∥∥∥
1

≤ max
j∈H1

∣∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣∣+ max
j∈H1

∥∥∥∥∥ φ̂jτ̂2
j

− φj
τ̂2
j

∥∥∥∥∥
1

+ max
j∈H1

∥∥∥∥∥φjτ̂2
j

− φj
τ2
j

∥∥∥∥∥
1

= max
j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣+ max
j∈H1

1

τ̂2
j

∥∥∥φ̂j − φj∥∥∥
1

+ max
j∈H1

‖φj‖1
∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣ = Op(s̄λnode),

which establishes (3.16). Next, we bound maxj∈H1 ‖Θ̂Z,j −ΘZ,j‖. Since∣∣∣∣(Ĉj − Cj)′Z ′ZNT (Ĉj − Cj)− (Ĉj − Cj)′ΨZ(Ĉj − Cj)
∣∣∣∣ ≤ ∥∥∥∥Z ′ZNT −ΨZ

∥∥∥∥
∞

∥∥∥Ĉj − Cj∥∥∥2

1
,

max
j∈H1

∣∣∣(Ĉj − Cj)′ΨZ(Ĉj − Cj)
∣∣∣ ≤ max

j∈H1

∣∣∣∣(Ĉj − Cj)′Z ′ZNT (Ĉj − Cj)
∣∣∣∣+∥∥∥∥Z ′ZNT −ΨZ

∥∥∥∥
∞

max
j∈H1

∥∥∥Ĉj − Cj∥∥∥2

1
.

(7.22)
Consider the first term on the right hand side of (7.22).

max
j∈H1

∣∣∣(Ĉj − Cj)′Z ′Z
NT

(Ĉj − Cj)
∣∣∣ = max

j∈H1

1

NT

∥∥∥Z(Ĉj − Cj)
∥∥∥2

= max
j∈H1

1

NT

∥∥∥Z−j(φ̂j − φj)∥∥∥2
= Op(s̄λ

2
node),

where the last equality is due to (7.16). Next, consider the second term on the right of the

inequality (7.22). Invoke (7.14) with x =

√
M(log p)3

N & 1√
N

(M > 0),

P
(

max
1≤l,k≤p

∣∣∣[ 1

NT
Z ′Z

]
lk

− [ΨZ ]lk

∣∣∣ ≥ x) ≤ Ap2e−B(x2N)1/3
= Ap2−BM1/3

,

for positive constants A and B. The upper bound of the preceding probability becomes arbi-

trarily small for sufficiently large N and M . Therefore,
∥∥∥Z′ZNT −ΨZ

∥∥∥
∞

= Op

(√
(log p)3

N

)
. We

have∥∥∥∥Z ′ZNT −ΨZ

∥∥∥∥
∞

max
j∈H1

∥∥∥Ĉj − Cj∥∥∥2

1
=

∥∥∥∥Z ′ZNT −ΨZ

∥∥∥∥
∞

max
j∈H1

∥∥∥φ̂j − φj∥∥∥2

1
= Op

(√(log p)3

N
s̄2λ2

node

)
,

where the first equality is due to the definitions of Ĉj and Cj , and the second equality is due
to (7.17). Adding up the two terms, we have

max
j∈H1

∣∣∣(Ĉj − Cj)′ΨZ(Ĉj − Cj)
∣∣∣ ≤ Op(s̄λ2

node) +Op

(√(log p)3

N
s̄2λ2

node

)
= Op(s̄λ

2
node),

where the last equality is due to (log p)3s̄2

N = o(1) by Assumption 4(b). Since maxj∈H1 |(Ĉj − Cj)′ΨZ(Ĉj − Cj)| ≥
mineval(ΨZ) maxj∈H1 ‖Ĉj−Cj‖2 and mineval(ΨZ) is uniformly bounded away from zero we have
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maxj∈H1 ‖φ̂j − φj‖ = maxj∈H1 ‖Ĉj − Cj‖ = Op(
√
s̄λnode). Then,

max
j∈H1

∥∥∥Θ̂Z,j −ΘZ,j

∥∥∥ = max
j∈H1

∥∥∥ Ĉj
τ̂2
j

− Cj
τ2
j

∥∥∥ ≤ max
j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣+ max
j∈H1

∥∥∥ φ̂j
τ̂2
j

− φj
τ2
j

∥∥∥
≤ max

j∈H1

∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣+ max
j∈H1

1

τ̂2
j

∥∥∥φ̂j − φj∥∥∥+ max
j∈H1

‖φj‖
∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣ = Op(
√
s̄λnode),

where in the last equality we have used that maxj∈H1 ‖φj‖ = O(1), which follows from (7.20).
We have hence established (3.17). Finally, recall that ΘZ,j = CjΘZ,j,j = Cj/τ

2
j . Thus,

max
j∈H1

‖ΘZ,j‖1 = max
j∈H1

|1/τ2
j |+ max

j∈H1

‖φj‖1 max
j∈H1

1/τ2
j = O(

√
s̄). (7.23)

Therefore,

max
j∈H1

∥∥∥Θ̂Z,j

∥∥∥
1
≤ max

j∈H1

∥∥∥Θ̂Z,j −ΘZ,j

∥∥∥
1

+ max
j∈H1

‖ΘZ,j‖1 = Op(s̄λnode) +O(
√
s̄) = Op(

√
s̄),

where the last equality is due to (log p)3s̄2

N = o(1) by Assumption 4(b).

7.4 Proof of Theorem 2

Proof of Theorem 2. The following assumption is implied by Assumption 5. However, as As-
sumption 5 is much simpler we have chosen to use the latter in the main text even though it is
slightly less general than the following assumption. Note again how the assumptions simplifies
when wither h1 or h2 equals 0.

Assumption 6.

(a) (i)
h2

1s̄
2(log(p∨T ))5

N = o(1); (ii) h1h2s̄(log(p∨N∨T ))3

N = o(1); (iii) h1s̄2(log p)3(log(p∨N))3

N = o(1);

(iv) h1s̄(log(N∨T ))2(log p)2

NT = o(1); (v) (log(N∨T ))21{h2 6=0}
T = o(1).

(b) Let

a :=

[
(s1 + s2) ∨

√
TcN√

(log(p∨N))3

]
(log(p ∨N))3

NT
.

(i) h2
1s̄

2

(
1 ∨

√
(log(p∨T ))7

N

)
a = o(1); (ii) h1s̄ log(p ∨N ∨ T )a = o(1);

(iii) h1h2s̄(log(p ∨N ∨ T ))2a = o(1); (iv)
√
h1h2s̄N log(p ∨N ∨ T )a = o(1);

(v) Nh2
2

(
1 ∨

√
(logN)3

T

)
a = o(1).

(c)

(h1 ∨ h2)
[
(s1 + s2)2(log(p ∨N))3 ∨ Tc2

N

]
b

N
= o(1),

where b :=
[(
s̄ log(p ∨N) ∨ (log p)3

)
1{h1 6= 0}

]
∨
[
log(p ∨N)1{h2 6= 0}

]
.

(d) mineval(ΣΠε) is uniformly bounded away from zero and maxeval(Σ1,N ) is uniformly bounded
from above.

We show that

t =
ρ′S (γ̃ − γ)√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

d−→ N(0, 1).
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To this end, note that by (3.3) one may write t = t1 + t2, where

t1 =
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

and t2 =
−ρ′∆√

ρ′Θ̂Σ̂ΠεΘ̂′ρ

.

Defining

t′1 =
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

it suffices to show that t′1
d−→ N(0, 1), t′1− t1 = op(1), and t2 = op(1). In the sequel we first show

that t1 − t′1 = op(1), then t′1
d−→ N(0, 1) and finally t2 = op(1). To show that t1 − t′1 = op(1), it

suffices to show that the denominators as well as the numerators of t1 and t′1 are asymptotically
equivalent, since

ρ′ΘΣΠεΘ
′ρ ≥ mineval(ΣΠε)

(
mineval(Θ)

)2
=

mineval(ΣΠε)(
maxeval(Ψ)

)2 (7.24)

which is uniformly bounded away from zero by Assumptions 4(a) and 6(d).

7.4.1 Denominators of t1 and t′1

We first show that the denominators of t1 and t′1 are asymptotically equivalent, i.e.,

|ρ′Θ̂Σ̂ΠεΘ̂
′ρ− ρ′ΘΣΠεΘ

′ρ| = op(1). (7.25)

Write∣∣∣∣∣∣(ρ′1, ρ′2)

(
Θ̂ZΣ̂1,N Θ̂′Z Θ̂ZΣ̂2,N

Σ̂′2,N Θ̂′Z Σ̂3,N

)(
ρ1

ρ2

)
− (ρ′1, ρ

′
2)

(
ΘZΣ1,NΘ′Z ΘZΣ2,N

Σ′2,NΘ′Z Σ3,N

)(
ρ1

ρ2

)∣∣∣∣∣∣
≤ |ρ′1Θ̂ZΣ̂1,N Θ̂′Zρ1 − ρ′1ΘZΣ1,NΘ′Zρ1| (7.26)

+ 2|ρ′1Θ̂ZΣ̂2,Nρ2 − ρ′1ΘZΣ2,Nρ2| (7.27)

+ |ρ′2Σ̂3,Nρ2 − ρ′2Σ3,Nρ2|. (7.28)

To establish (7.25), we show that (7.26), (7.27) and (7.28) are op(1), respectively.

(7.26) is op(1):

Define Σ̃1,N := 1
NT

∑N
i=1

∑T
t=1 ε

2
i,tzi,tz

′
i,t. To show that (7.26) is op(1), it suffices to show that

|ρ′1Θ̂ZΣ̂1,N Θ̂′Zρ1 − ρ′1Θ̂ZΣ̃1,N Θ̂′Zρ1| = op(1) (7.29)

|ρ′1Θ̂ZΣ̃1,N Θ̂′Zρ1 − ρ′1Θ̂ZΣ1,N Θ̂′Zρ1| = op(1) (7.30)

|ρ′1Θ̂ZΣ1,N Θ̂′Zρ1 − ρ′1ΘZΣ1,NΘ′Zρ1| = op(1). (7.31)

We prove (7.29) first. Note that

|ρ′1Θ̂ZΣ̂1,N Θ̂′Zρ1 − ρ′1Θ̂ZΣ̃1,N Θ̂′Zρ1| ≤ ‖Σ̂1,N − Σ̃1,N‖∞ ‖Θ̂
′
Zρ1‖

2

1 .

First,

‖Θ̂′Zρ1‖1 =

∥∥∥∥∥∑
j∈H1

Θ̂Z,jρ1j

∥∥∥∥∥
1

≤
∑
j∈H1

|ρ1j |
∥∥∥Θ̂Z,j

∥∥∥
1

= Op(
√
h1s̄), (7.32)
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where the last equality is due to (3.18). We now bound
∥∥∥Σ̂1,N − Σ̃1,N

∥∥∥
∞

. Since ε̂i,t = yi,t −
z′i,tα̂− η̂i = εi,t − z′i,t(α̂− α)− (η̂i − ηi) =: εi,t − πi,t(γ̂ − γ), substituting for ε̂i,t, we have

∥∥∥Σ̂1,N − Σ̃1,N

∥∥∥
∞

=

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

ε̂2
i,tzi,tz

′
i,t −

1

NT

N∑
i=1

T∑
t=1

ε2
i,tzi,tz

′
i,t

∥∥∥∥∥
∞

≤ 2

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zi,tz
′
i,tεi,tπ

′
i,t(γ̂ − γ)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zi,tz
′
i,t[π

′
i,t(γ̂ − γ)]2

∥∥∥∥∥
∞

. (7.33)

Consider the first term of (7.33). A typical element of 1
NT

∑N
i=1

∑T
t=1 zi,tz

′
i,tεi,tπ

′
i,t(γ̂ − γ) is

1

NT

NT∑
j=1

zj,lzj,kεjπ
′
j(γ̂ − γ) ≤ 1

NT

(NT∑
j=1

z2
j,lz

2
j,kε

2
j

)1/2(NT∑
j=1

[π′j(γ̂ − γ)]2
)1/2

=

(
1

NT

N∑
i=1

T∑
t=1

z2
i,t,lz

2
i,t,kε

2
i,t

)1/2 ( 1

NT

∥∥Π(γ̂ − γ)
∥∥2
)1/2

(7.34)

for some l, k ∈ {1, . . . , p}, where the inequality is due to Cauchy-Schwarz inequality. Use
independence across i (Assumption 1) and subgaussianity (Assumption 3) to invoke Proposition
3 in Appendix B, such that

max
1≤l≤p

max
1≤k≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(z2
i,t,lz

2
i,t,kε

2
i,t − E[z2

i,t,lz
2
i,t,kε

2
i,t])
∣∣∣ = Op

(√(log(p2T ))7

N

)
and

max
1≤l≤p

max
1≤k≤p

max
1≤i≤N

max
1≤t≤T

E[z2
i,t,lz

2
i,t,kε

2
i,t] ≤ A = O(1)

for some positive constant A. Then, by the triangle inequality,

max
1≤l≤p

max
1≤k≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

z2
i,t,lz

2
i,t,kε

2
i,t

∣∣∣ = Op

(√
(log(p ∨ T ))7

N

)
+O(1). (7.35)

Combining (7.34) and (7.35), we have∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zi,tz
′
i,tεi,tπ

′
i,t(γ̂ − γ)

∥∥∥∥∥
∞

= Op

(
(log(p ∨ T ))7/4

N1/4
∨ 1

)( 1

NT

∥∥Π(γ̂ − γ)
∥∥2
)1/2

.

(7.36)

We now consider the second term of (7.33). A typical element of 1
NT

∑N
i=1

∑T
t=1 zi,tz

′
i,t[π

′
i,t(γ̂−

γ)]2 is 1
NT

∑N
i=1

∑T
t=1 zi,t,lzi,t,k[π

′
i,t(γ̂−γ)]2 ≤ max1≤i≤N max1≤t≤T |zi,t,lzi,t,k| 1

NT ‖Π(γ̂−γ)‖2 for
some l, k ∈ {1, . . . , p}. Recall that we have proved in the proof of Lemma 7 that ‖zi,t,lzi,t,k‖ψ1 ≤
(1+K)/C. Using the definition of the Orlicz norm, we have Ee

C
1+K

|zi,t,lzi,t,k| ≤ 2. Using Markov’s
inequality, we have for any ε > 0

P
(

max
1≤l≤p

max
1≤k≤p

max
1≤i≤N

max
1≤t≤T

|zi,t,lzi,t,k| ≥ ε
)
≤

p∑
l=1

p∑
k=1

N∑
i=1

T∑
t=1

Ee
C

1+K
|zi,t,lzi,t,k|

e
C

1+K
ε

≤ 2NTp2e−
C

1+K
ε.

Set ε = M log(p2NT ) for some M > 0 and note that the upper bound of the preceding proba-
bility becomes arbitrarily small for N and M sufficiently large. Thus,

max
1≤l≤p

max
1≤k≤p

max
1≤i≤N

max
1≤t≤T

|zi,t,lzi,t,k| = Op(log(p2NT ))

33



and we get∥∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

zi,tz
′
i,t[π

′
i,t(γ̂ − γ)]2

∥∥∥∥∥∥
∞

= Op(log(p ∨N ∨ T ))
1

NT
‖Π(γ̂ − γ)‖2. (7.37)

Combining (7.36) and (7.37), conclude∥∥∥Σ̂1,N − Σ̃1,N

∥∥∥
∞

= Op

(
(log(p ∨ T ))7/4

N1/4
∨ 1

)( 1

NT

∥∥Π(γ̂ − γ)
∥∥2
)1/2

+Op(log(p ∨N ∨ T ))
1

NT
‖Π(γ̂ − γ)‖2.

Therefore, combining the preceding rates with (7.32) one gets

|ρ′1Θ̂ZΣ̂1,N Θ̂′Zρ1 − ρ′1Θ̂ZΣ̃1,N Θ̂′Zρ1|

= Op(h1s̄)Op

(
(log(p ∨ T ))7/4

N1/4
∨ 1

)[
1

NT

∥∥Π(γ̂ − γ)
∥∥2
]1/2

+Op(h1s̄)Op(log(p ∨N ∨ T ))
1

NT
‖Π(γ̂ − γ)‖2

= op(1),

where the last equality is also due to Assumption 6(b)(i)-(ii), which establishes (7.29).
Next, turn to (7.30). Note that

|ρ′1Θ̂ZΣ̃1,N Θ̂′Zρ1 − ρ′1Θ̂ZΣ1,N Θ̂′Zρ1| ≤
∥∥Σ̃1,N − Σ1,N

∥∥
∞
∥∥Θ̂′Zρ1

∥∥2

1
.

Given (7.32), we only need to consider ‖Σ̃1,N − Σ1,N‖∞. Using independence across i (As-
sumption 1) and subgaussianity (Assumption 3) to invoke Proposition 3 in Appendix B such
that

∥∥Σ̃1,N − Σ1,N

∥∥
∞ = max

1≤l≤p
max

1≤k≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(zi,t,lzi,t,kε
2
it − E[zi,t,lzi,t,kε

2
i,t])
∣∣∣ = Op

(√
(log(p2T ))5

N

)
.

(7.38)

Thus,

|ρ′1Θ̂ZΣ̃1,N Θ̂′Zρ1 − ρ′1Θ̂ZΣ1,N Θ̂′Zρ1| = Op

(√
(log(p ∨ T ))5

N
h1s̄

)
= op(1),

where the last equality is due to Assumption 6(a)(i), establishing (7.30).
To prove (7.31) invoke Lemma 9 in Appendix B:

|ρ′1Θ̂ZΣ1,N Θ̂′Zρ1 − ρ′1ΘZΣ1,NΘ′Zρ1| ≤ ‖Σ1,N‖∞‖(Θ̂′Z −Θ′Z)ρ1‖21 + 2‖Σ1,NΘ′Zρ1‖‖(Θ̂′Z −Θ′Z)ρ1‖
≤ ‖Σ1,N‖∞‖(Θ̂′Z −Θ′Z)ρ1‖21 + 2maxeval(Σ1,N )‖Θ′Zρ1‖‖(Θ̂′Z −Θ′Z)ρ1‖.

First, note that ‖Σ1,N‖∞ is uniformly bounded as every entry is an average of uniformly bounded
population moments (see Proposition 3 in appendix B).

‖(Θ̂′Z −Θ′Z)ρ1‖1 ≤
∑
j∈H1

∥∥Θ̂Z,j −ΘZ,j

∥∥
1
|ρ1j | ≤ max

j∈H1

∥∥Θ̂Z,j −ΘZ,j

∥∥
1

√
h1

= Op(s̄λnode
√
h1) = op(1), (7.39)
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where the first equality is due to (3.16), and the last equality is due to Assumption 6(a)(i). Next,
‖Θ′Zρ1‖ ≤ maxeval(ΘZ)‖ρ1‖ ≤ maxeval(ΘZ) = 1/mineval(ΨZ), which is uniformly bounded
from above by Assumption 4(a). Furthermore,

‖(Θ̂′Z −Θ′Z)ρ1‖ =
∥∥∥∑
j∈H1

(Θ̂Z,j −ΘZ,j)ρ1j

∥∥∥ ≤ ∑
j∈H1

∥∥∥Θ̂Z,j −ΘZ,j

∥∥∥ |ρ1j |

≤ max
j∈H1

∥∥Θ̂Z,j −ΘZ,j

∥∥√h1 = Op(
√
s̄λnode

√
h1) = op(1),

where the second last to equality is due to (3.17), and the last equality is due to (7.39). Thus,
we have established (7.31) concluding the proof of (7.26) is op(1).

(7.27) is op(1):

Define Σ̃2,N := 1√
NT

∑N
i=1

∑T
t=1 ε

2
i,tzi,td

′
i,t. It suffices to show

|ρ′1Θ̂ZΣ̂2,Nρ2 − ρ′1Θ̂ZΣ̃2,Nρ2| = op(1) (7.40)

|ρ′1Θ̂ZΣ̃2,Nρ2 − ρ′1Θ̂ZΣ2,Nρ2| = op(1) (7.41)

|ρ′1Θ̂ZΣ2,Nρ2 − ρ′1ΘZΣ2,Nρ2| = op(1). (7.42)

Consider (7.40) first. Note that

|ρ′1Θ̂ZΣ̂2,Nρ2 − ρ′1Θ̂ZΣ̃2,Nρ2| ≤
∥∥∥ρ′1Θ̂Z

(
Σ̂2,N − Σ̃2,N

)∥∥∥
∞
‖ρ2‖1

≤
∥∥ρ′1Θ̂Z

∥∥
1

∥∥Σ̂2,N − Σ̃2,N

∥∥
∞

√
h2 = Op

(√
h1h2s̄

)∥∥Σ̂2,N − Σ̃2,N

∥∥
∞ ,

where the last equality is due to (7.32). In addition,

∥∥∥Σ̂2,N − Σ̃2,N

∥∥∥
∞

=

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

ε̂2
i,tzi,td

′
i,t −

1√
NT

N∑
i=1

T∑
t=1

ε2
i,tzi,td

′
i,t

∥∥∥∥∥
∞

≤ 2

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

zi,td
′
i,tεi,tπ

′
i,t(γ̂ − γ)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

zi,td
′
i,t[π

′
i,t(γ̂ − γ)]2

∥∥∥∥∥
∞

(7.43)

Consider the first term of (7.43). A typical element of 1√
NT

∑N
i=1

∑T
t=1 zi,td

′
i,tεi,tπ

′
i,t(γ̂ − γ)

is

1√
NT

NT∑
j=1

zj,ldj,kεjπ
′
j(γ̂ − γ) ≤ 1√

NT

(
NT∑
j=1

z2
j,ld

2
j,kε

2
j

)1/2(NT∑
j=1

[π′j(γ̂ − γ)]2

)1/2

=

(
1

T

N∑
i=1

T∑
t=1

z2
i,t,ld

2
i,t,kε

2
i,t

)1/2
1√
NT

∥∥Π(γ̂ − γ)
∥∥ =

(
1

T

T∑
t=1

z2
k,t,lε

2
k,t

)1/2
1√
NT

∥∥Π(γ̂ − γ)
∥∥

for some l ∈ {1, . . . , p} and k ∈ {1, . . . , N} where the inequality is due to Cauchy-Schwarz
inequality. By subgaussianity, Assumption 3, we can use the same technique as in (8.3) in

Proposition 3 in Appendix B to prove EeD
∣∣∣ 1
T

∑T
t=1 z

2
i,t,lε

2
i,t

∣∣∣1/2 ≤ BT for positive constants D,B.
Using Markov’s inequality, we have for ε > 0

P
(

max
1≤l≤p

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

z2
k,t,lε

2
k,t

∣∣∣ ≥ ε) ≤ p∑
l=1

N∑
k=1

EeD
∣∣∣ 1
T

∑T
t=1 z

2
k,t,lε

2
k,t

∣∣∣1/2
eDε

1/2
≤ BpNTe−Dε1/2 .
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Set ε = M(log(pNT ))2 for someM > 0 and note that the upper bound of the preceding probabil-

ity becomes arbitrarily small forN andM sufficiently large. Thus, max1≤l≤p max1≤k≤N

∣∣∣ 1
T

∑T
t=1 z

2
k,t,lε

2
k,t

∣∣∣ =

Op((log(pNT ))2). Therefore,∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

zi,td
′
i,tεi,tπ

′
i,t(γ̂ − γ)

∥∥∥∥∥
∞

≤

(
max
1≤l≤p

max
1≤k≤N

1

T

T∑
t=1

z2
k,t,lε

2
k,t

)1/2
1√
NT

∥∥Π(γ̂ − γ)
∥∥

≤ Op(log(pNT ))
1√
NT

∥∥Π(γ̂ − γ)
∥∥ . (7.44)

Now consider the second term of (7.43). A typical element of 1√
NT

∑N
i=1

∑T
t=1 zi,td

′
i,t[π

′
i,t(γ̂−γ)]2

is

1√
NT

N∑
i=1

T∑
t=1

zi,t,ldi,t,k[π
′
i,t(γ̂ − γ)]2 ≤ max

1≤i≤N
max

1≤t≤T

√
N |zi,t,ldi,t,k|

1

NT
‖Π(γ̂ − γ)‖2

≤ max
1≤t≤T

√
N |zk,t,l|

1

NT
‖Π(γ̂ − γ)‖2

for some l ∈ {1, . . . , p}, k ∈ {1, . . . , N}. Using Markov’s inequality, we have for any ε > 0

P
(

max
1≤l≤p

max
1≤k≤N

max
1≤t≤T

|zk,t,l| ≥ ε
)
≤

p∑
l=1

N∑
k=1

T∑
t=1

P
(
|zk,t,l| ≥ ε

)
≤ pNT K

2
e−Cε

2
.

Set ε =
√
M log(pNT ) for some M > 0 to see that the upper bound of the preceding probability

becomes arbitrarily small forN andM sufficiently large. Thus, max1≤l≤p max1≤k≤N max1≤t≤T |zk,t,l| =
Op(

√
log(pNT )). In total,∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

zi,td
′
i,t[π

′
i,t(γ̂ − γ)]2

∥∥∥∥∥
∞

≤ max
1≤l≤p

max
1≤k≤N

max
1≤t≤T

√
N |zk,t,l|

1

NT
‖Π(γ̂ − γ)‖2

= Op(
√
N log(pNT ))

1

NT
‖Π(γ̂ − γ)‖2. (7.45)

Therefore, combining (7.44) and (7.45)

|ρ′1Θ̂ZΣ̂2,Nρ2 − ρ′1Θ̂ZΣ̃2,Nρ2| ≤
∥∥Σ̂2,N − Σ̃2,N

∥∥
∞Op(

√
h1h2s̄)

= Op
(√

h1h2s̄ log(pNT )
) 1√

NT

∥∥Π(γ̂ − γ)
∥∥+Op

(√
h1h2s̄N log(pNT )

) 1

NT
‖Π(γ̂ − γ)‖2

= op(1),

where the last equality is due to Assumption 6(b)(iii)-(iv), which establishes (7.40).
Next, turn to (7.41). Note that

|ρ′1Θ̂ZΣ̃2,Nρ2 − ρ′1Θ̂ZΣ2,Nρ2| ≤
∥∥Σ̃2,N − Σ2,N

∥∥
∞
∥∥Θ̂′Zρ1

∥∥
1

√
h2.

Given (7.32), it suffices to consider

∥∥Σ̃2,N − Σ2,N

∥∥
∞ = max

1≤l≤p
max

1≤k≤N

∣∣∣∣ 1√
NT

N∑
i=1

T∑
t=1

(zi,t,ldi,t,kε
2
i,t − E[zi,t,ldi,t,kε

2
i,t])

∣∣∣∣
= max

1≤l≤p
max

1≤k≤N

∣∣∣∣ 1√
NT

T∑
t=1

(zk,t,lε
2
k,t − E[zk,t,lε

2
k,t])

∣∣∣∣ .
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By subgaussianity, Assumption 3, we can use the same technique as in (8.3) in Proposition 3

in Appendix B to prove EeD|
1
T

∑T
t=1(zk,t,lε

2
k,t−E[zk,t,lε

2
k,t])|

2/3

≤ BT for some positive constant B.
Using Markov’s inequality, we have for any ε > 0

P
(

max
1≤l≤p

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t − E[zk,t,lε

2
k,t])

∣∣∣ ≥ ε) ≤ p∑
l=1

N∑
k=1

P
(∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t − E[zk,t,lε

2
k,t])

∣∣∣ ≥ ε)

≤
p∑
l=1

N∑
k=1

EeD
∣∣∣ 1
T

∑T
t=1(zk,t,lε

2
k,t−E[zk,t,lε

2
k,t])

∣∣∣2/3
eDε

2/3
≤ BpNTe−Dε2/3 .

Set ε =
√
M(log(pNT ))3 for some M > 0 and note that the upper bound of the preceding

probability becomes arbitrarily small for N and M sufficiently large. Thus,

max
1≤l≤p

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t − E[zk,t,lε

2
k,t])

∣∣∣ = Op
(√

(log(pNT ))3
)

and so

∥∥Σ̃2,N − Σ2,N

∥∥
∞ =

1√
N

max
1≤l≤p

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(zk,t,lε
2
k,t − E[zk,t,lε

2
k,t])

∣∣∣ = Op

(√(log(pNT ))3

N

)
.

(7.46)

In total,

|ρ′1Θ̂ZΣ̃2,Nρ2 − ρ′1Θ̂ZΣ2,Nρ2| = Op

(√(log(p ∨N ∨ T ))3h1h2s̄

N

)
= op(1),

where the last equality is due to Assumption 6(a)(ii), establishing (7.41).
We now establish (7.42).

|ρ′1Θ̂ZΣ2,Nρ2 − ρ′1ΘZΣ2,Nρ2| ≤ ‖Σ2,N‖∞‖(Θ̂′Z −Θ′Z)ρ1‖1
√
h2

= ‖Σ2,N‖∞Op(s̄λnode
√
h1h2) = O (1/

√
N)Op(s̄λnode

√
h1h2) = op(1),

where the first equality is due to (7.39), the second equality is due to the definition of Σ2,N and
(8.1), and the last equality is due to Assumption 6(a)(ii). Thus, we have established (7.42),
concluding the proof of that (7.27) is op(1).

(7.28) is op(1):

We now prove that (7.28) is op(1). First,

|ρ′2Σ̂3,Nρ2 − ρ′2Σ3,Nρ2| ≤
∥∥Σ̂3,N − Σ3,N

∥∥
∞ h2 ≤ h2

(∥∥Σ̂3,N − Σ̃3,N

∥∥
∞ +

∥∥Σ̃3,N − Σ3,N

∥∥
∞
)
,

where Σ̃3,N := 1
T

∑N
i=1

∑T
t=1 ε

2
i,tdi,td

′
i,t. We consider

∥∥Σ̂3,N − Σ̃3,N

∥∥
∞ first.

∥∥∥Σ̂3,N − Σ̃3,N

∥∥∥
∞

=

∥∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

ε̂2
i,tdi,td

′
i,t −

1

T

N∑
i=1

T∑
t=1

ε2
i,tdi,td

′
i,t

∥∥∥∥∥
∞

≤ 2

∥∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

di,td
′
i,tεi,tπ

′
i,t(γ̂ − γ)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

di,td
′
i,t[π

′
i,t(γ̂ − γ)]2

∥∥∥∥∥
∞

. (7.47)
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Consider the first term of (7.47). A typical element of 1
T

∑N
i=1

∑T
t=1 di,td

′
i,tεi,tπ

′
i,t(γ̂ − γ) is

1

T

NT∑
j=1

dj,ldj,kεjπ
′
j(γ̂ − γ) ≤ 1

T

(NT∑
j=1

d2
j,ld

2
j,kε

2
j

)1/2(NT∑
j=1

[π′j(γ̂ − γ)]2
)1/2

=

(
1

T

N∑
i=1

T∑
t=1

d2
i,t,ld

2
i,t,kε

2
i,t

)1/2
1√
T

∥∥Π(γ̂ − γ)
∥∥ =

(
1

T

T∑
t=1

ε2
k,t

)1/2
1√
T

∥∥Π(γ̂ − γ)
∥∥

for some l, k ∈ {1, . . . , N}, where the inequality is due to Cauchy-Schwarz inequality. By
Assumption 3 we have P(|ε2

i,t| ≥ ε) ≤ P(|εi,t| ≥ ε1/2) ≤ 1
2Ke

−Cε for every ε > 0. It follows from

Lemma 2.2.1 in van der Vaart and Wellner (1996) that ‖ε2
i,t‖ψ1 ≤ (1 +K/2)/C for all i and t.

Hence, by subadditivity of the Orlicz norm and Jensen’s inequality, ‖ε2
i,t−E[ε2

i,t]‖ψ1 ≤ 2‖ε2
i,t‖ψ1 ≤

(2 +K)/C. Using the definition of the Orlicz norm, we have E exp( C
2+K |ε

2
i,t −E[ε2

i,t]|) ≤ 2. Use

independence of εi,t across t to invoke Proposition 2 in Appendix B for D = C
2+K and α = 1/3

to conclude

P
(∣∣∣ T∑
t=1

(ε2
i,t − E[ε2

i,t])
∣∣∣ ≥ Tε) ≤ Ae−B(ε2T )1/3

,

for positive constants A and B. Setting ε =

√
M(logN)3

T for some M > 0
(
ε & 1√

T

)
, one has

P
(

max
1≤k≤N

∣∣∣ T∑
t=1

(ε2
k,t − E[ε2

k,t])
∣∣∣ ≥ Tε) ≤ N∑

k=1

P
(∣∣∣ T∑
t=1

(ε2
k,t − E[ε2

k,t])
∣∣∣ ≥ Tε) ≤ AN1−BM1/3

.

The upper bound of the preceding probability becomes arbitrarily small for N and M sufficiently
large. Hence,

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(ε2
k,t − E[ε2

k,t])
∣∣∣ = Op

(√
(logN)3

T

)
. (7.48)

Furthermore, since max1≤k≤N max1≤t≤T E[ε2
k,t] ≤ max1≤k≤N max1≤t≤T ‖ε2

k,t‖ψ1 ≤ (1+K/2)/C =
O(1)

max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

ε2
k,t

∣∣∣ ≤ max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(ε2
k,t − E[ε2

k,t])
∣∣∣+ max

1≤k≤N
max

1≤t≤T
E[ε2

k,t] = Op

(√(logN)3

T

)
+O(1).

(7.49)

Therefore,∥∥∥∥∥ 1

T

N∑
i=1

T∑
t=1

di,td
′
i,tεi,tπ

′
i,t(γ̂ − γ)

∥∥∥∥∥
∞

= Op

((logN)3/4

T 1/4
∨ 1
) 1√

T
‖Π(γ̂ − γ)‖. (7.50)

Now consider the second term of (7.47). A typical element of 1
T

∑N
i=1

∑T
t=1 di,td

′
i,t[π

′
i,t(γ̂ − γ)]2

is

1

T

N∑
i=1

T∑
t=1

di,t,ldi,t,k[π
′
i,t(γ̂ − γ)]2 ≤ max

1≤i≤N
max

1≤t≤T
|di,t,ldi,t,k|

1

T
‖Π(γ̂ − γ)‖2 =

1

T
‖Π(γ̂ − γ)‖2,

(7.51)

uniformly over l, k ∈ {1, . . . , N}. Combining (7.50) and (7.51), we have∥∥∥Σ̂3,N − Σ̃3,N

∥∥∥
∞

= Op

((logN)3/4

T 1/4
∨ 1
) 1√

T
‖Π(γ̂ − γ)‖+

1

T
‖Π(γ̂ − γ)‖2. (7.52)
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Next, consider
∥∥∥Σ̃3,N − Σ3,N

∥∥∥
∞

.

∥∥∥Σ̃3,N − Σ3,N

∥∥∥
∞

= max
1≤l≤N

max
1≤k≤N

∣∣∣ 1

T

N∑
i=1

T∑
t=1

(ε2
i,tdi,t,ldi,t,k − E[ε2

i,tdi,t,ldi,t,k])
∣∣∣

= max
1≤k≤N

∣∣∣ 1

T

T∑
t=1

(ε2
k,t − E[ε2

k,t])
∣∣∣ = Op

(√
(logN)3

T

)
, (7.53)

where the last equality is due to (7.48). Summing up (7.52) and (7.53) yields

|ρ′2Σ̂3,Nρ2 − ρ′2Σ3,Nρ2|

= h2Op

((logN)3/4

T 1/4
∨ 1
) 1√

T
‖Π(γ̂ − γ)‖+ h2

1

T
‖Π(γ̂ − γ)‖2 +Op

(
h2

√
(logN)3

T

)
= op(1),

where the last equality is due to Assumptions 6(b)(v), which, in turns, implies that (7.28) is
op(1).

Thus, we have proved (7.25). (3.20) then follows trivially since the conclusions of Theorem
1 and Corollary 1 are uniform over the set F(s1, s2, cN ) and the true parameter vector only
entered the above arguments when these results were used.

7.4.2 Numerators of t1 and t′1

We now show that the numerators of t1 and t′1 are asymptotically equivalent, i.e.,

|ρ′Θ̂S−1Π′ε− ρ′ΘS−1Π′ε| = op(1). (7.54)

Note that

|ρ′Θ̂S−1Π′ε− ρ′ΘS−1Π′ε| ≤ ‖ρ′(Θ̂−Θ)‖1‖S−1Π′ε‖∞ = ‖ρ′1(Θ̂Z −ΘZ)‖1‖S−1Π′ε‖∞

= Op(s̄λnode
√
h1)
( 1√

NT

∥∥Z ′ε∥∥∞ ∨ 1√
T

∥∥D′ε∥∥∞) = Op(s̄λnode
√
h1)Op (

√
(log(p ∨N))3) = op(1),

where the second equality is due to (7.39), and the third equality is due to (7.12) and (7.13),
and the last equality is due to Assumption 6(a)(iii).

7.4.3 t′1
d−→ N(0, 1)

We now prove that t′1 is asymptotically distributed as a standard normal by verifying (i)-(iii)
of Theorem 5 in Appendix B. Note that

t′1 :=
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

=

ρ′ΘS−1
∑N

i=1

∑T
t=1

( zi,tεi,t
di,tεi,t

)
√
ρ′ΘΣΠεΘ′ρ

=

ρ′ΘS−1
∑kN

j=1

( zjεj
djεj

)
√
ρ′ΘΣΠεΘ′ρ

,

where kN := NTN = NT . In the proof of Lemma 5, we have shown that t′1 is a martingale
difference array with variance

var(t′1) = E[t′21 ] =
ρ′ΘS−1E[Π′εε′Π]S−1Θ′ρ

ρ′ΘΣΠεΘ′ρ
= 1

where we have used the definition of ΣΠε. We have already shown in (7.24) that the denominator
of t′1 is uniformly bounded away from zero. Thus, verifying that t′1 satisfies (i) and (ii) of
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Theorem 5 in Appendix B is equivalent to verifying that the numerator of t′1 satisfies (i) and
(ii) of Theorem 5. First, note that

∥∥ρ′1ΘZ

∥∥
1

=

∥∥∥∥∥∑
j∈H1

ρ1jΘ
′
Z,j

∥∥∥∥∥
1

≤
∑
j∈H1

|ρ1j |
∥∥∥Θ′Z,j

∥∥∥
1

= O(
√
h1s̄), (7.55)

where the last equality is due to (7.23). Next,∣∣∣ρ′ΘS−1
( zi,tεi,t
di,tεi,t

)∣∣∣ ≤ ∣∣∣ρ′1ΘZ
zi,tεi,t√
NT

∣∣∣+
∣∣∣ρ2,iεi,t√

T

∣∣∣ ≤ ∥∥ρ′1ΘZ

∥∥
1

max
l∈Ξ

∣∣∣zi,t,lεi,t√
NT

∣∣∣+
‖ρ2‖∞|εi,t|√

T

.
√
h1s̄max

l∈Ξ

∣∣∣zi,t,lεi,t√
NT

∣∣∣+
‖ρ2‖∞|εi,t|√

T
,

for Ξ :=
⋃
j∈H1

(Snode,j ∪ {j}), where the last inequality due to (7.55). We have already shown
in the proof of Lemma 5 that zi,t,lεi,t has uniformly bounded ψ1-Orlicz norm. The same is the
case for εi,t. Hence,∥∥∥√h1s̄max

l∈Ξ

∣∣∣zi,t,lεi,t√
NT

∣∣∣+
‖ρ2‖∞|εi,t|√

T

∥∥∥
ψ1

≤
√
h1s̄

NT

∥∥∥max
l∈Ξ

zi,t,lεi,t

∥∥∥
ψ1

+
‖ρ2‖∞√

T

∥∥εi,t∥∥ψ1

.

√
h1s̄

NT
log(1 + |Ξ|) max

l∈Ξ

∥∥zi,t,lεi,t∥∥ψ1
+
‖ρ2‖∞√

T

∥∥εi,t∥∥ψ1

.

√
h1s̄

NT
log(1 + [h1(s̄+ 1) ∧ p]) +

‖ρ2‖∞√
T

,

for all i and T , where the second inequality is due to Lemma 2.2.2 in van der Vaart and Wellner
(1996).7 Using Lemma 2.2.2 in van der Vaart and Wellner (1996) one more time,∥∥∥ max

1≤i≤N
max

1≤t≤T

∣∣∣ρ′ΘS−1
( zi,tεi,t
di,tεi,t

)∣∣∣∥∥∥
ψ1

. log(1 +NT )
[√ h1s̄

NT
log(1 + [h1(s̄+ 1) ∧ p]) +

‖ρ2‖∞√
T

]
= o(1),

where the last equality is due to Assumption 6(a)(iv)-(v). Since ‖U‖Lr ≤ r!‖U‖ψ1 for any
random variable U (van der Vaart and Wellner (1996), p95), we conclude that (i) and (ii) of
Theorem 5 are satisfied.

We now verify (iii) of Theorem 5. That is,

∑kN
j=1

[
ρ′ΘS−1

( zjεj
djεj

)]2

ρ′ΘΣΠεΘ′ρ
=

ρ′Θ
( Σ̃1,N Σ̃2,N

Σ̃′2,N Σ̃3,N

)
Θ′ρ

ρ′ΘΣΠεΘ′ρ

p−→ 1.

Since we have already shown in (7.24) that the denominator of t′1 is uniformly bounded away
from zero, it suffices to show∣∣∣ρ′Θ( Σ̃1,N Σ̃2,N

Σ̃′2,N Σ̃3,N

)
Θ′ρ− ρ′ΘΣΠεΘ

′ρ
∣∣∣ = op(1). (7.56)

The left-hand side of (7.56) can be bounded by∣∣∣ρ′Θ( Σ̃1,N Σ̃2,N

Σ̃′2,N Σ̃3,N

)
Θ′ρ− ρ′ΘΣΠεΘ

′ρ
∣∣∣

≤ |ρ′1ΘZΣ̃1,NΘ′Zρ1 − ρ′1ΘZΣ1,NΘ′Zρ1| (7.57)

+ 2|ρ′1ΘZΣ̃2,Nρ2 − ρ′1ΘZΣ2,Nρ2| (7.58)

+ |ρ′2Σ̃3,Nρ2 − ρ′2Σ3,Nρ2|. (7.59)

7|Ξ| has at most h1(s̄ + 1) elements given its definition and is also bounded from above by the dimension of
zi,t, p.
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Thus, we establish that (7.57), (7.58) and (7.59) are op(1). Consider (7.57) first.

|ρ′1ΘZΣ̃1,NΘ′Zρ1 − ρ′1ΘZΣ1,NΘ′Zρ1| ≤ ‖Σ̃1,N − Σ1,N‖∞ ‖Θ
′
Zρ1‖21 = Op

(√
(log(p2T ))5

N

)
O(h1s̄) = op(1)

where the first equality is due to (7.55) and (7.38), and the last equality is due to Assumption
6(a)(i). Now consider (7.58).

|ρ′1ΘZΣ̃2,Nρ2 − ρ′1ΘZΣ2,Nρ2| ≤ ‖Σ̃2,N − Σ2,N‖∞ ‖Θ
′
Zρ1‖1 ‖ρ2‖1 = Op

(√
(log(pNT ))3h1h2s̄

N

)
= op(1),

where the first equality is due to (7.46), and the last equality is due to Assumption 6(a)(ii).
Finally, consider (7.59).

|ρ′2Σ̃3,Nρ2 − ρ′2Σ3,Nρ2| ≤ ‖Σ̃3,N − Σ3,N‖∞ ‖ρ2‖21 = Op

(√(logN)3

T

)
O(h2) = op(1),

where the first equality is due to (7.53), and the last equality is due to Assumption 6(b)(v).
Therefore, we have established (7.56) and t′1 is asymptotically standard gaussian.

7.4.4 t2 = op(1)

Last, we prove that t2 = op(1). Since the denominator of t2 is bounded away from zero by
a positive constant with probability approaching one by (7.24) and (7.25), it suffices to show
ρ′∆ = op(1).

|ρ′∆| =
∣∣∣∑
j∈H

ρj∆j

∣∣∣ ≤ √hmax
j∈H
|∆j | ≤

√
h‖S(γ̂ − γ)‖1 max

j∈H

∥∥Θ̂′jΨN − I′p+N,j
∥∥
∞

=
√
h‖S (γ̂ − γ) ‖1

(
max
j∈H1

∥∥∥∥( 1
NT Z

′ZΘ̂Z,j − ej
1

T
√
N
D′ZΘ̂Z,j

)∥∥∥∥
∞
∨max
i∈H2

∥∥∥∥( 1
T
√
N
Z ′Dei

0

)∥∥∥∥
∞

)
=
√
h‖S(γ̂ − γ)‖1

(
max
j∈H1

(∥∥∥ 1

NT
Z ′ZΘ̂Z,j − ej

∥∥∥
∞
∨
∥∥∥ 1

T
√
N
D′ZΘ̂Z,j

∥∥∥
∞

)
∨max
i∈H2

∥∥∥∥ 1

T
√
N
Z ′D

∥∥∥∥
∞

)
≤
√
h‖S(γ̂ − γ)‖1

(
max
j∈H1

(∥∥∥ 1

NT
Z ′ZΘ̂Z,j − ej

∥∥∥
∞
∨
∥∥Θ̂Z,j

∥∥
1

∥∥∥ 1

T
√
N
D′Z

∥∥∥
∞

)
∨max
i∈H2

∥∥∥∥ 1

T
√
N
Z ′D

∥∥∥∥
∞

)
where Θ̂j is the jth row of Θ̂ but written as a (p+N)× 1 vector, and Ip+N,j is the jth row of
Ip+N but written as a (p+N)× 1 vector. Note that

max
j∈H1

∥∥∥ 1

NT
Z ′ZΘ̂Z,j − ej

∥∥∥
∞
≤ max

j∈H1

λnode
τ̂2
j

= Op(λnode),

where the inequality is due to the extended KKT conditions (3.9), and the equality is due to
(3.14). Recall that by (7.15) we have that for every ε > 0

P
(

max
1≤i≤N

max
1≤l≤p

∣∣∣ 1√
NT

T∑
t=1

zi,t,l

∣∣∣ ≥ ε) ≤ N∑
i=1

p∑
l=1

P
(∣∣∣ 1√

NT

T∑
t=1

zi,t,l

∣∣∣ ≥ ε) ≤ ApNe−Bε2N ,
for positive constants A,B. Setting ε =

√
M log(pN)

N (M > 0) makes the upper bound of the
preceding inequality arbitrarily small for sufficiently large N and M , such that∥∥Θ̂Z,j

∥∥
1

∥∥∥ 1

T
√
N
D′Z

∥∥∥
∞

= Op

(√
s̄ log(pN)

N

)
.

Thus, |ρ′∆| = op(1) by Assumption 6(c). For later reference,

sup
γ∈F(s1,s2,cN )

|ρ′∆| = op(1) (7.60)

by the same reasoning leading to the uniform validity of (3.20).
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7.5 Proof of Theorem 3

Proof of Theorem 3. For every ε > 0, define

A1,N :=

{
sup

γ∈F(s1,s2,cN )
|ρ′∆| < ε

}
A2,N :=

{
sup

γ∈F(s1,s2,cN )

∣∣∣∣∣
√
ρ′Θ̂Σ̂ΠεΘ̂′ρ
√
ρ′ΘΣΠεΘ′ρ

− 1

∣∣∣∣∣ < ε

}
A3,N :=

{
|ρ′Θ̂S−1Π′ε− ρ′ΘS−1Π′ε| < ε

}
.

By (7.60), (3.20), (7.24) and (7.54), the probabilities of the preceding three events all tend to
one. Thus, for every t ∈ R,∣∣∣∣∣P

(
ρ′S (γ̃ − γ)√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t

)
− Φ(t)

∣∣∣∣∣
≤

∣∣∣∣∣P
(

ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
− Φ(t)

∣∣∣∣∣+ P
(
∪3
i=1A

c
i,N

)
.

We consider P
(

ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
first.

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≤ P
(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1 + ε) +
ε+ ε√

ρ′ΘΣΠεΘ′ρ

)
≤ P

(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1 + ε) + 2Dε

)
for some positive constant D, where the first and second inequalities are due to the fact that
ρ′ΘΣΠεΘ

′ρ is uniformly bounded away from zero, see (7.24). Since the last inequality in the
above does not depend on γ,

sup
γ∈F(s1,s2,cN )

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≤ P
(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1 + ε) + 2Dε

)
.

By the asymptotic normality of t′1, for N sufficiently large,

sup
γ∈F(s1,s2,cN )

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≤ Φ(t(1 + ε) + 2Dε) + ε.

As the above arguments are valid for every ε > 0, we can use the continuity of q 7→ Φ(q) to
conclude that for every δ > 0, one can choose ε sufficiently small such that

sup
γ∈F(s1,s2,cN )

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≤ Φ(t) + δ + ε. (7.61)
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We next find a lower bound for P
(

ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
.

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≥ P
(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1− ε)− ε+ ε√
ρ′ΘΣΠεΘ′ρ

,A1,N , A2,N , A3,N

)
≥ P

(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1− ε)− 2Dε,A1,N , A2,N , A3,N

)
≥ P

(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1− ε)− 2Dε

)
+ P(∩3

i=1Ai,N )− 1

for some positive constant D, where the first and second inequalities are due to the fact that
ρ′ΘΣΠεΘ

′ρ is uniformly bounded away from zero, see (7.24). Since the last inequality in the
above display does not depend on γ, and P(∩3

i=1Ai,N ) can be made arbitrarily close to one for
sufficiently large N ,

inf
γ∈F(s1,s2,cN )

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)

≥ P
(
ρ′ΘS−1Π′ε√
ρ′ΘΣΠεΘ′ρ

≤ t(1− ε)− 2Dε

)
− ε.

By the asymptotic normality of t′1, for N sufficiently large,

inf
γ∈F(s1,s2,cN )

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≥ Φ

(
t(1− ε)− 2Dε

)
− 2ε.

As the above arguments are valid for every ε > 0, we can use the continuity of q 7→ Φ(q) to
conclude that for every δ > 0, one can choose ε sufficiently small such that

inf
γ∈F(s1,s2,cN )

P

(
ρ′Θ̂S−1Π′ε√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

− ρ′∆√
ρ′Θ̂Σ̂ΠεΘ̂′ρ

≤ t, A1,N , A2,N , A3,N

)
≥ Φ (t)− δ − 2ε. (7.62)

Thus, by (7.61), (7.62) and the fact that supγ∈F(s1,s2,cN ) P(∪3
i=1A

c
i,N ) = P(∪3

i=1A
c
i,N ) = o(1), we

have proved (4.1) (the uniformity over t ∈ R follows from the fact that Φ(t) is continuous). To
see (4.2), note that

P
(
αj /∈

[
α̃j − z1−δ/2

σ̃α,j√
NT

, α̃j + z1−δ/2
σ̃α,j√
NT

])
= P

(∣∣∣∣
√
NT (α̃j − αj)

σ̃z,j

∣∣∣∣ > z1−δ/2

)
≤ 1− P

(√
NT (α̃j − αj)

σ̃z,j
≤ z1−δ/2

)
+ P

(√
NT (α̃j − αj)

σ̃z,j
≤ −z1−δ/2

)
.

Thus, taking the supremum over γ ∈ F(s1, s2, cN ) and letting N tend to infinity yields (4.2)
via (4.1). The proof is the same for (4.3). Next, we turn to (4.4).

√
NT sup

γ∈F(s1,s2,cN )
diam

([
α̃j − z1−δ/2

σ̃α,j√
NT

, α̃j + z1−δ/2
σ̃α,j√
NT

])
= 2z1−δ/2

(√
[ΘZΣ1,NΘZ ]jj + op(1)

)
≤ 2z1−δ/2

(√
maxeval(Σ1,N )

mineval(ΨZ)
+ op(1)

)
= Op(1),
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where the first equality is due to (3.20), and the last equality is due to Assumptions 4(a) and
6(d). Similarly, we can prove (4.5):

√
T sup
γ∈F(s1,s2,cN )

diam
([
η̃i − z1−δ/2

σ̃η,i√
T
, η̃i + z1−δ/2

σ̃η,i√
T

])
= 2z1−δ/2

(√
[Σ3,N ]ii + op(1)

)

= 2z1−δ/2

([
1

T

T∑
t=1

E[ε2
i,t]

]1/2

+ op(1)

)
= Op(1),

where the third equality follows from the arguments above (7.49).

8 Appendix B

Proposition 1. Let A and B be two positive semidefinite (p − 1) × (p − 1) matrices and
δ := max1≤l,k≤p−1 |Alk −Blk|. For some integer r ∈ {1, . . . , p− 1}, one has

κ2(B, r) ≥ κ2(A, r)− δ16r.

Proof. The proof is exactly the same as that of Lemma 6.

Theorem 4 (Fan et al. (2012)). Let α ∈ (0, 1). Assume that (Xi,Fi)ni=1 is a sequence of

supermartingale differences satisfying supi E[e|Xi|
2α

1−α
] ≤ C1 for some constant C1 ∈ (0,∞).

Define Sk :=
∑k

i=1Xi. Then, for all ε > 0,

P
(

max
1≤k≤n

Sk ≥ nε
)
≤ C(α, n, ε)e−(ε/4)

2α
nα ,

where

C(α, n, ε) := 2 + 35C1

[
1

161−α(nε2)α
+

1

nε2

(
3(1− α)

2α

) 1−α
α

]
.

The preceding theorem is not exactly the same as Theorem 2.1 in Fan et al. (2012), but
taken from the proof of Theorem 2.1 in Fan et al. (2012). This theorem generalises Theorem
3.2 in Lesigne and Volny (2001).

Proposition 2. Let α ∈ (0, 1). Assume that (Xi,Fi)ni=1 is a sequence of martingale differences

satisfying satisfying supi E[eD|Xi|
2α

1−α
] ≤ C1 for some positive constant D. (C1 could change with

the sample size n.) Then, for all ε & 1√
n

,

P
(∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ nε) ≤ AC1e
−K(ε2n)α ,

for positive constants A and K.

Proof. This proposition is a simple adaptation of preceding theorem. Note that for some positive
constant D,

P
( n∑
i=1

Xi ≥ nε
)

= P
( n∑
i=1

D
1−α
2α Xi ≥ nD

1−α
2α ε

)
= P

( n∑
i=1

Yi ≥ nδ
)
,

where Yi := D
1−α
2α Xi and δ := D

1−α
2α ε. Now (Yi)

n
i=1 is a sequence of martingale differences

satisfying supi E[e|Yi|
2α

1−α
] ≤ C1. Invoking the preceding theorem, we have

P
( n∑
i=1

Yi ≥ nδ
)
≤ C(α, n, δ)e−(δ/4)

2α
nα .
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(−Yi)ni=1 is also a sequence of martingale differences satisfying the same exponential moment
condition. Thus,

P
(∣∣∣ n∑
i=1

Xi

∣∣∣ ≥ nε) = P
(∣∣∣ n∑
i=1

Yi

∣∣∣ ≥ nδ) ≤ 2C(α, n, δ)e−(δ/4)
2α
nα

= 2C(α, n,D
1−α
2α ε)e−(D

1−α
2α ε/4)2αnα ≤ AC1e

−Kε2αnα ,

for positive constants A,K, where the last inequality used that if ε & 1√
n

then 2C(α, n,D
1−α
2α ε) ≤

AC1 for some positive constant A.

Proposition 3. Suppose we have random variables Zl,i,t,j uniformly subgaussian for l = 1, . . . , L
(L ≥ 2 fixed), i = 1, . . . , N , t = 1, . . . , T and j = 1, . . . , p. Both p and T increase with N
(functions of N). Zl1,i1,t1,j1 and Zl2,i2,t2,j2 are independent as long as i1 6= i2 regardless of the
values of other subscripts. Then,

max
1≤j≤p

max
1≤t≤T

max
1≤i≤N

E
[ L∏
l=1

Zl,i,t,j

]
≤ A = O(1), (8.1)

for some positive constant A and

max
1≤j≤p

∣∣∣ 1

NT

N∑
i=1

T∑
t=1

( L∏
l=1

Zl,i,t,j − E
[ L∏
l=1

Zl,i,t,j

])∣∣∣ = Op

(√(log(pT ))L+1

N

)
. (8.2)

Proof. For every ε ≥ 0, P
(
|
∏L
l=1 Zl,i,t,j | ≥ ε

)
≤
∑L

l=1 P
(
|Zl,i,t,j | ≥ ε1/L

)
≤ LK2 e

−Cε2/L for posi-
tive constants K,C. Next, using Hölder’s inequaliy, we have

max
1≤j≤p

max
1≤t≤T

max
1≤i≤N

E
[ L∏
l=1

Zl,i,t,j

]
≤ max

1≤j≤p
max

1≤t≤T
max

1≤i≤N

L∏
l=1

(
E
[
|Zl,i,t,j |L

]) 1
L
.

Uniform subgaussianity implies that
(
E
[
|Zl,i,t,j |L

]) 1
L

is uniformly bounded. That is,
(
E
[
|Zl,i,t,j |L

]) 1
L ≤

L!‖Zl,i,t,j‖ψ1 ≤ L!(log 2)−1/2‖Zl,i,t,j‖ψ2 ≤ L!(log 2)−1/2
(1+K/2

C

)1/2
, where the first two inequali-

ties are taken from p95 of van der Vaart and Wellner (1996), and the third inequality is due to
Lemma 2.2.1 in van der Vaart and Wellner (1996). (8.1) then follows.

For every ε ≥ 0,

P
(∣∣∣ 1

T

T∑
t=1

( L∏
l=1

Zl,i,t,j − E
[ L∏
l=1

Zl,i,t,j

])∣∣∣ ≥ ε) ≤ P
(

max
1≤t≤T

∣∣∣ L∏
l=1

Zl,i,t,j

∣∣∣ ≥ ε−A)
≤

T∑
t=1

P
(∣∣∣ L∏
l=1

Zl,i,t,j

∣∣∣ ≥ ε−A ∧ ε) ≤ L

2
TKe−C(ε−A∧ε)2/L ≤ L

2
TKe−C[ε2/L−(A∧ε)2/L] ≤ TK ′e−Cε2/L ,

for K ′ = L
2Ke

CA2/L
and where the second to last inequality is due to subadditivity of x 7→ x2/L

such that x2/L ≤ y2/L+(x−y)2/L for x ≥ y ≥ 0, L ≥ 2. LetXi,j denote 1
T

∑T
t=1

(∏L
l=1 Zl,i,t,j − E[

∏L
l=1 Zl,i,t,j ]

)
.

Consider some positive constant D < C.

E
[
eD|Xi,j |

2/L
]

=

∫
x∈R

∫ |x|2/L
0

DeDsdsP (dx) + 1 =

∫ ∞
0

DeDsP(|Xi,j | > sL/2)ds+ 1

≤
∫ ∞

0
TK ′De(D−C)sds+ 1 =

TK ′D

C −D
+ 1 ≤ BT, (8.3)
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for some positive constant B, where the second equality is by Fubini’s theorem. Then we can
use independence across i to invoke Proposition 2 in Appendix B with α = 1

L+1 and C1 = BT ,

for ε & 1√
N

,

P
(∣∣∣ N∑
i=1

1

T

T∑
t=1

( L∏
l=1

Zl,i,t,j − E
[ L∏
l=1

Zl,i,t,j

])∣∣∣ ≥ Nε) ≤ A′Te−K(ε2N)
1

L+1

for positive constants A′ and K. Setting ε =

√
M(log(pT ))L+1

N

(
& 1√

N

)
for some M > 0, we have

P
(

max
1≤l≤p

∣∣∣ N∑
i=1

1

T

T∑
t=1

( L∏
l=1

Zl,i,t,j − E
[ L∏
l=1

Zl,i,t,j

])∣∣∣ ≥ Nε) ≤ pA′Te−K(ε2N)
1

L+1
= A′(pT )1−KM

1
L+1

.

The upper bound of the preceding probability becomes arbitrarily small for N and M sufficiently
large. Hence (8.2) follows.

Lemma 9. Let A be a symmetric p× p matrix, and v̂ and v ∈ Rp. Then

|v̂′Av̂ − v′Av| ≤ ‖A‖∞‖v̂ − v‖21 + 2‖Av‖‖v̂ − v‖.

Proof. See Lemma 6.1 in the working-paper version of van de Geer et al. (2014).

Theorem 5 (McLeish (1974)). Let {Xn,i, i = 1, ..., kn} be a martingale difference array with
respect to the triangular array of σ-algebras {Fn,i, i = 0, ..., kn} (i.e., Xn,i is Fn,i-measurable
and E[Xn,i|Fn,i−1] = 0 almost surely for all n and i) satisfying Fn,i−1 ⊆ Fn,i for all n ≥ 1.
Assume,

(i) maxi≤kn |Xn,i| is uniformly bounded in L2 norm,

(ii) maxi≤kn |Xn,i|
p−→ 0, and

(iii)
∑kn

i=1X
2
n,i

p−→ 1.

Then, Sn =
∑kn

i=1Xn,i
d−→ N(0, 1) as n→∞.
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