
 

Department of Economics and Business 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Indirect inference with time series observed with error 

 

Eduardo Rossi and Paolo Santucci de Magistris 

 

CREATES Research Paper 2014-57 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Indirect inference with time series observed with error
∗

Eduardo Rossi†

University of Pavia

Italy

Paolo Santucci de Magistris

CREATES, Aarhus University

Denmark

January 12, 2016

Abstract

We analyze the properties of the indirect inference estimator when the observed series are con-
taminated by measurement error. We show that the indirect inference estimates are asymptoti-
cally biased when the nuisance parameters of the measurement error distribution are neglected
in the indirect estimation. We propose to solve this inconsistency by jointly estimating the
nuisance and the structural parameters. The range of applicability of this methodology is sup-
ported by theoretical results based on several examples for both discrete and continuous-time
models. Indirect inference is used to estimate the parameters of stochastic volatility models with
auxiliary specifications based on realized volatility measures. Monte Carlo simulations show the
bias reduction of the indirect estimates obtained when the microstructure noise is explicitly
modeled. Finally, an empirical application illustrates the relevance of a realistic specification of
the microstructure noise distribution to match the features of the observed log-returns at high
frequencies.
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1 Introduction

A common feature of many economic and financial time series is that they are recorded with errors
or frictions. In some cases they are estimated rather than observed exactly. For instance, in
macroeconomics the error in the measurement of GDP is a well-known problem, see Aruoba et al.
(2013). In finance, the estimates of the relative risk aversion parameter in the C-CAPM are highly
dependent on the quality of the measurement of the aggregated consumption, so that proxies for
the latter are adopted in empirical studies, see for example Savov (2011). Moreover, asset returns
sampled at high frequency are subject to a vast number of frictions, so that the observed transaction
log-price is the sum of an unobservable efficient price and a noise component due to the imperfections
of the trading process. The analysis of models with errors in variables started historically with the
investigation of relations between statistical variables when all or some of them are subject to
errors of measurement, e.g. see Anderson (1984). Regressions for time series models with errors in
measurement have been discussed by Hannan (1963), Moran (1971), Grether and Maddala (1973)
and Robinson (1986). Identifiability problems for such models appear in Anderson and Deistler
(1984), Maravall (1979), Nowak (1985) and Solo (1986). In a pure time-series framework, Chanda
(1995) studied the identifiability and the estimation of ARMAmodels which have errors in variables.
Chanda (1996) deals with autoregressive models and establishes the asymptotic properties of the
OLS estimator based on a set of modified Yule-Walker equations. Staudenmayer and Buonaccorsi
(2005) study the estimation of parameters in autoregressive models when measurement errors are
uncorrelated but possibly heteroskedastic. Recently, more general hypotheses on measurement
error have been considered. For instance, Komunjer and Ng (2014) study the general conditions
for identification of single and multiple-equation dynamic models subject to serially correlated
measurement error. Song et al. (2015) consider both endogeneity and measurement error in the
same variable when the structural model is nonlinear. In a time-series framework, well known
econometric methods, such as the Kalman filter or the instrumental variables, can be employed to
deal with the measurement error problem and to provide parameter estimates that are consistent
also in presence of errors-in-variables. However there are limits to the range of applicability of the
standard methodologies. For example, the Kalman filter, in its basic form, can only be adopted
in a linear-Gaussian state-space framework. Alternatively, several filtering techniques for non-
linear and non-Gaussian cases have been proposed, see for example Durbin and Koopman (2012,
part II). However, the practical implementation of these methodologies is often complicated and
computationally intensive. Finally, the instrumental variables, such as the lagged observed series,
are very weak when the signal is not persistent (see Hansen and Lunde, 2014).

We propose an alternative and general methodology to deal with the errors-in-variables problem
that is valid also when the likelihood function (or any other criterion function that might form the
basis of estimation) is analytically intractable or too difficult to evaluate. The proposed method-
ology is based on indirect inference. Indirect inference has been introduced in the econometric
literature by Smith (1993), Gouriéroux et al. (1993), Bansal et al. (1995) and Gallant and Tauchen
(1996), and is surveyed in Gouriéroux and Monfort (1996) and Jiang and Turnbull (2004) to deal
with the problem of estimating the parameters of an economic/financial model, called structural
model, for which is too complicated to obtain a closed-form expression for the probability distri-
butions associated with the observable variables. The estimation consists of two stages. First,
an auxiliary model is estimated on the observed data. Then an analytical or simulated mapping,
called binding function, of the structural model parameters to the auxiliary statistic is calculated.
Indirect inference chooses the parameters of the economic model so that these two estimates of the
parameters of the auxiliary model are as close as possible. The indirect inference estimators are
typically placed into one of two categories: score-based estimators made popular by Gallant and
Tauchen (1996), or distance-based estimators proposed by Smith (1993) and refined by Gouriéroux
et al. (1993). The simulated score-based estimators have the computational advantage that the
auxiliary parameters are estimated from the observed data only once. On the other hand, the
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distance-based estimators must re-estimate the auxiliary parameters from simulated data at each
step of the optimization algorithm. The indirect inference methods have been successfully employed
in the estimation of continuous-time models for asset prices and volatility, that have experienced
important developments in the last twenty years, see among others Gallant et al. (1997), Chernov
et al. (2003). Since the transition density functions are often unknown and the stochastic volatility
(SV ) process is not directly observable, the estimation with latent variables can be carried out
using simulation methods.

In this article, we first formally study how neglecting the presence of measurement error in the
observed time series affects the indirect inference estimates. We shows that the errors-in-variables
cause the auxiliary model to produce an inconsistent functional estimator of the theoretical binding
function, as the latter depends on the nuisance parameters governing the noise. This discrepancy
makes the indirect inference estimates inconsistent and biased in finite samples. Indeed, as noted by
Ghysels and Khalaf (2003) and Dridi et al. (2007) indirect inference theory, as originally proposed
by Gouriéroux et al. (1993), Gouriéroux and Monfort (1996) and Gallant and Tauchen (1996), does
not take nuisance parameters formally into consideration. The theoretical analysis is also supported
by examples based on ARMA and continuous time stochastic processes.

Second, we propose a simple solution to the inconsistency of the indirect inference estimator
that is to explicitly account for the presence of measurement error, and to treat it as a structural
feature. This means that the nuisance parameters characterizing the conditional distribution of the
noise must be estimated jointly with the structural parameters. This implies that the simulated
trajectories of the structural model must be contaminated by measurement error. It follows that
the simulated binding function will explicitly depend on the noise parameters, thus leading to a
consistent matching of the auxiliary estimates. The main advantage of this approach is that it is
fully built within the indirect inference framework, so that the asymptotic consistency and normality
of this estimator can be easily proved under correct specification of the contaminating processes.
Close to the approach taken here is the simulated minimum distance by Gospodinov et al. (2015)
proposed for the case of ARDL models with measurement errors when external instruments may
not be available or are weak.

Third, the issue of identification is discussed in detail. Indeed, while the indirect inference
framework provides a general setup to tackle the problem of measurement errors, choosing an
auxiliary model able to identify both the structural and the noise parameters may be non trivial.
A crucial assumption in the indirect inference framework is that the binding function must be locally
injective to guarantee identification. We prove that when the structural model is an ARMA(r, l)
with r > l contaminated by i.i.d. noise with non-zero variance, the Jacobian of the binding function
generated by autoregressive auxiliary models with m > r+ l lags has full-column rank. Since many
economic and financial models have an ARMA representation, this result gives a necessary condition
for the identifiability of the structural models in presence of measurement error.

Fourth, the proposed method is employed in the estimation of continuous-time SV models
based on ex-post measurement of daily volatility like realized volatility (RV ). When the volatility
is generated by the Heston (1993) model, then the binding function relative to the HAR-RV model
of Corsi (2009) can be written in terms of the SV parameters so that the identification condition
is formally verified. The analysis is further extended to the case of leverage, drift and price jumps,
modeled as a compound Poisson process with independent Gaussian innovations. We show that all
parameters of the Heston model with drift and jumps, including those governing the jumps and the
microstructure noise, are identifiable by a multivariate auxiliary model for daily returns, RV and
signed jump variations with the leverage parameter is identified by the contemporaneous correlation
between daily returns and RV . A set of Monte Carlo simulations confirm that accounting for the
microstructure noise produces unbiased SV parameter estimates, when employing intraday returns
at very high frequencies (e.g. 30 seconds). On the contrary, neglecting the microstructure noise
leads to severe biases especially in the estimates of the long-run mean of volatility. Alternatively,
sampling returns at low intradaily frequencies attenuates the impact of the market microstructure
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noise on the volatility estimates. In terms of efficiency of the estimates, sampling at the highest
frequency has the advantage that no data is discarded. On the other hand, additional nuisance
parameters need to be estimated.

Finally, an empirical study based on the RV series of JP Morgan corroborates the evidence
emerged in the theoretical study and highlights the advantages and limits of the proposed method-
ology. In particular, neglecting the microstructure noise makes the estimates of the SV parameters
highly dependent on the choice of the sampling frequency adopted in the construction of RV . In-
deed, it is not possible to reconcile the estimates of the auxiliary parameters obtained with RV
based on log-returns sampled at 5 seconds and 5 minutes, unless the microstructure noise is ex-
plicitly modeled. Moreover, using the data at very high frequency allows to verify if the assumed
structural model and the generation of the microstructure noise are coherent descriptions of the
properties of the observed log-returns. Sampling at low frequencies does not provide sufficient
information on the price generation mechanism in a realistic scenario and makes the identification
of price jumps very difficult. On the contrary, sampling the returns at 5-seconds allows to evaluate
the impact of price decimalization on the indirect inference estimates. This also explains why in
previous studies, based on daily returns only, the jump parameters were weakly identified, and
hence were constrained, see e.g. Chernov et al. (2003). It turns out that, when the signed jump
variation is adopted to disentangle price jumps from volatility dynamics and microstructure noise
is in the form of a bid-ask spread, the fit of the model is dramatically improved.

The paper is organized as follows. Section 2 illustrates the effect of the presence of measurement
error on the indirect inference estimator in the pure time series case. We formally prove the
inconsistency of the indirect inference estimates in this case and we illustrate it by means of several
examples. In Section 3 we prove the consistency of the proposed estimator that accounts for the
noise and we illustrate its reliability in finite samples by means of a number of example both in
discrete and in continuous time. In Section 4 we illustrate, both theoretically and by means of
Monte Carlo simulations, the peculiar problems that arise in the indirect estimation of continuous-
time SV model by means of RV , and Section 5 reports the evidence based on real data. Finally,
Section 6 concludes.

2 The effect of measurement error on the indirect inference esti-

mator

Following the framework and notation of Gouriéroux et al. (1993), we first present the properties
of the indirect inference method in presence of measurement error. The parameters of interest are
those in the vector θ which characterizes the data-generating process of the unobserved series yt.
Here we consider the case of a discrete-time process yt which is contaminated by an error term. To
simplify the notation and the exposition of the results, we consider only the dependence on past
values of yt, i.e. the pure time series case.

Assumption 1 The process {yt} is a strictly stationary and ergodic process with transition density
p(yt|yt−1; θ), where yt−1 = (yt−1, . . . , yt−l), that is difficult or impossible to evaluate analytically.
The vector containing the true structural parameters is θ0 ∈ Θ ⊆ R

p.

Assumption 2 A sample of T observations {xt}Tt=1 is observed as

xt = g(yt, ut) t = 1, 2, . . . , T (1)

Assumption 3 The term ut is the measurement error which is supposed to be covariance stationary
with a known conditional distribution, i.e. f(ut|ut−1, ut−2, . . . ;ψ0), where ψ0 ∈ Ψ ⊆ R

h.
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Assumption 1 is rather standard in this framework, as indirect inference requires the process yt to
be stationary with constant moments to be asymptotically valid. Assumption 2 is quite general, it
allows a non-linear mapping between the observed series xt, the signal yt and ut. Generally g(·) is
a linear/additive function or can be reduced to be linear, i.e. xt = yt + ut. For example, suppose
that the observed stock price Pt is equal to a latent efficient price times an error term with positive
support, Pt = P ∗

t · ǫ̃t, then the efficient log-price, p∗t , is contaminated by an additive measurement
error term, i.e. pt = p∗t + ǫt, where ǫt = log(ǫ̃t). Assumption 3 characterizes the dynamic features
of measurement error, which depends on a number of true nuisance parameters, contained in the
vector ψ0, and it does not exclude correlation between the signal and the noise and autocorrelation
in ut. As it will be clear from the discussion in Section 3, the knowledge of the functional form of
the conditional distribution of ut is crucial when we want to simulate from it.

We now investigate the impact of neglecting the possible presence of measurement error when
carrying out indirect inference on θ0 employing observations of the contaminated process xt. The
indirect inference consists of two steps: the estimation of the auxiliary (or instrumental) model
and the calibration. The auxiliary model is defined by a conditional probability density function
f(xt|xt−1;β) which depends on a q-dimensional parameter vector, β ∈ B ⊆ R

q. This density has
a convenient analytical expression. The number of parameters in the auxiliary model must be at
least as large as the number of parameters in the economic model, i.e., q ≥ p. The auxiliary model
is, in general, incorrectly specified, i.e. need not describe accurately the conditional distribution of
xt. The parameters of the auxiliary model can be estimated using the observed data by maximizing
the log-likelihood function or any other criterion function, QT (xT ;β), which satisfies some technical
assumptions, see Gouriéroux and Monfort (1996, p.85), i.e.

β̂T = argmax
β

QT (x1, . . . , xT ;β). (2)

In a likelihood setting, identification requires the true densities of the data being ”smoothly em-
bedded” within the scores of the auxiliary model, see Gallant and Tauchen (1996). The criterion
is assumed to tend asymptotically (and uniformly almost certainly) to a non-stochastic limit (see
Gouriéroux et al., 1993, Assumption 2)

lim
T→∞

QT (x1, . . . , xT ;β) = Q∞(θ0, ψ0, β). (3)

When the series is measured without noise, this limit depends only on the unknown auxiliary
parameter β and on the true parameter of interest θ0 ∈ Θ ⊆ R

p. However when the series at hand is
contaminated by noise this limit depends also on the true nuisance parameter vector, ψ0 ∈ Ψ ⊆ R

h,
where h is the dimension of ψ0. For example, when ut is assumed to be an i.i.d.N(0, σ2u), then
ψ0 = σ2u,0 and h = 1. As in Gouriéroux et al. (1993) we assume that this limit criterion is continuous
in β and has a unique maximum

β0 = argmax
β∈B

Q∞(θ0, ψ0, β)

The binding function, i.e. the link between the auxiliary model parameters and the structural
parameters, is given by

b(θ, ψ) = argmax
β∈B

Q∞(θ, ψ, β) (4)

it follows that
β0 = b(θ0, ψ0).

β̂T is a consistent estimator of b(θ0, ψ0) which is an unknown function that depends on θ0 and ψ0.
In the second step of the procedure, we simulate S trajectories from the DGP of yt and the

estimation of the auxiliary model is carried out on each simulated series. The auxiliary estimator
based on the s-th simulated path of the signal’s DGP for some θ is

β̂sT (θ) = argmin
β∈B

QT (y
(s)
1 (θ), . . . , y

(s)
T (θ);β).
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When T → ∞, β̂sT (θ) converges to the solution of the limit problem

b̃(θ) = argmax
β∈B

Q∞(θ, β)

that is
lim
T→∞

β̂sT (θ) = b̃(θ)

therefore β̂sT (·) is an inconsistent functional estimator of b(θ, ψ).

Proposition 2.1 If the auxiliary estimator has the following Edgeworth expansion, given Assump-
tions 1-3,

β̂T (θ0, ψ0) = b(θ0, ψ0) +
A(vx; θ0, ψ0)√

T
+
B(vx; θ0, ψ0)

T
+ o

(

1

T

)

(5)

then the indirect inference estimator can be expressed as

θ̂ST (ψ0) = θ0 +
a∗√
T

+
b∗

T
+ o

(

1

T

)

(6)

where

a∗ =
√
T

[

∂b̃(θ0)

∂θ′

]−1

[b(θ0, ψ0)− b̃(θ0)] +

[

∂b̃(θ0)

∂θ′

]−1

[A(vx; θ0, ψ0)−
1

S

S
∑

s=1

A(vs; θ0)] (7)

and

b∗ =

[

∂b̃(θ0)

∂θ′

]−1 [

B(vx; θ0, ψ0)−
1

S

S
∑

s=1

B(vs; θ0)

]

−
[

∂b

∂θ′
(θ0, ψ0)

]−1
{

1

S

S
∑

s=1

∂A(vs; θ0)

∂θ′
a∗ +

1

2

(

Iq ⊗ a∗
)′
F (θ0)a

∗

}

, (8)

where
F (θ) = [F1(θ)

′, . . . , Fq(θ)
′]′

with Fi(θ) =
∂b̃i(θ)
∂θ∂θ′ , and b̃i(θ) the i-th element of b̃(θ).1

The consequence of Proposition 2.1 is that the indirect inference estimator of θ, found by minimizing
the distance between β̂T and 1

S

∑S
s=1 β̂

s
T (θ) under a metric given by the positive definite matrix Ω,

as

θ̂ST (ψ) = argmin
θ

∥

∥

∥

∥

∥

β̂T − 1

S

S
∑

s=1

β̂sT (θ)

∥

∥

∥

∥

∥

2

Ω

is inconsistent. The estimator θ̂ST (ψ) depends on the data via β̂T , and thus on the nuisance param-

eter ψ. Indeed, the limit of β̂T as T → ∞ is b(θ0, ψ0). Instead, when S → ∞, 1
S

∑S
s=1 β̂

s
T (θ)

p−→
E[β̂sT (θ)] and E[β̂sT (θ)] = b̃(θ). This discrepancy induces an asymptotic bias in the indirect inference

estimator. When p = q, it is possible to show that p lim θ̂ST = θ0 +
[

∂b̃(θ0)
∂θ′

]−1
[b(θ0, ψ0) − b̃(θ0)].

2

This makes clear that the term responsible for the distortion and the inconsistency of θ̂ST , i.e.

1The proof of Proposition 2.1 is in the document with supplementary material.

2Note that the short-hand notation ∂b̃(θ0)
∂θ′

indicates ∂b̃(θ)
∂θ′

∣

∣

∣

∣

θ=θ0

. Moreover, the document with additional material

reports the details on the derivation of this result.
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[

∂b̃(θ0)
∂θ′

]−1
[b(θ0, ψ0)− b̃(θ0)], does not vanish asymptotically since b(θ0, ψ0) depends also on ψ0. No-

tably, this result is general and it holds for any misspecification that involves nuisance parameters,
ψ. The solution to this inconsistency is therefore based on the idea of treating measurement error
as a potential source of misspecification, thus considering it as a structural feature, see Section 3.

In the following subsections we present a few examples where the distortion in the binding
function induced by the presence of measurement error can be computed analytically. In the
analysis, the framework consists of a linear measurement equation:

xt = yt + ut, t = 1, 2, . . . , T (9)

where ut is supposed to be independent and identically distributed with Var[ut] <∞ and Var[ut] =
σ2u, independent of all leads and lags of yt.

2.1 ARMA processes

The identifiability and estimation of ARMA processes contaminated by additive i.i.d. noise has
been studied in literature, see among others Chanda (1995), Jones (1980), Lee and Shin (1997) and
Maravall (1979). More recently, de Luna and Genton (2001) have proposed an indirect estimation
method to robustify the estimation of ARMA under outliers contamination. In this section, we
show the consequences for the indirect estimation of ARMA models when the signal is contam-
inated by measurement error. We derive closed-form expressions of the binding function when
an autoregressive auxiliary model is adopted and the ARMA signal is contaminated by an i.i.d.
measurement error.

Example 2.1 Consider a zero-mean stationary ARMA(1, 1) signal yt

(1− αL)yt = (1 + ϕL)εt, εt ∼ i.i.d.N(0, σ2ε)

The polynomials 1− αz and 1 + ϕz have roots outside the unit circle. Given the result of Granger
and Morris (1976), xt is also an ARMA(1, 1). Since measurement error is uncorrelated with con-
stant variance, the error leads to an increase in the variance of xt. The parameter vector of the
ARMA(1, 1) is θ = (α, ϕ, σ2ε)

′. Suppose the auxiliary model is an AR(2) process

(1− φ1L− φ2L
2)xt = et (10)

with parameters in β = (φ1, φ2, σ
2
e)

′ that can be estimated by OLS. In this case, p = q and the model
is exactly identified. Let φ = (φ1, φ2)

′, the binding function is

b(θ, σ2u) = p lim
T→∞

[

φ̂T
σ̂2e,T

]

with

p lim φ̂T =
(α+ ϕ)(1 + αϕ)

(1− α2)

[

(

1+ϕ2+2αϕ
1−α2 +

σ2
u

σ2
ε

)2

−
(

(α+ϕ)(1+αϕ)
1−α2

)2
] ×





(

1+ϕ2+2αϕ
1−α2 +

σ2

u

σ2
ε

)

− α(α+ϕ)(1+αϕ)
1−α2

α
(

1+ϕ2+2αϕ
1−α2 +

σ2

u

σ2
ε

)

− (α+ϕ)(1+αϕ)
1−α2



 (11)

and

p lim σ̂2
e,T =

(

σ2
ε

1 + ϕ2 + 2αϕ

1− α2
+ σ2

u

)

(

1−
(

σ2
ε

(α+ ϕ)(1 + αϕ)

1− α2

)2

+

(

σ2
ε

α(α+ ϕ)(1 + αϕ)

1− α2

)2
)

. (12)

The function b̃(θ), which is the limit of the estimators of the auxiliary parameters based on the
simulated data, is simply obtained by setting σ2u = 0 in (11) and (12), while when σ2u > 0, the
difference b(θ, σ2u)-b̃(θ) is non zero as T → ∞.
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2.2 Continuous-time models

Let suppose that we are interested in estimating the parameter vector θ0 which characterizes now
the transition density, often unknown, of a continuous-time process {z(t)}. Denote with yt the
function of discrete observations on z(t)

yt = h(z(t);∆), t = 1, 2, . . . , T

where h(·; ∆) is a known function and ∆ is a known parameter which represents the discretization
step. In a simple case, the series yt can be the discretized z(t) process. It is well known that when
yt is observed in place of z(t) standard indirect inference procedures corrects for the discretiza-
tion error, see Gouriéroux et al. (1993) and Broze et al. (1998). However, there are cases where
transformations of discrete realizations of the process z(t), employed in the indirect estimation of
continuous-time models, are likely to be contaminated by measurement error. In other words, the
observed process xt is the result of the interaction between the latent signal, z(t), the measurement
error, ut, the function h(·; ∆) and the discretization step, ∆. Hence, xt is

xt = g [h(z(t);∆), ut] , t = 1, 2, . . . , T

In cases like this, it is often impossible to obtain a closed form expression of the likelihood function
for the parameters which characterize the process z(t) and ut based only on the observation of xt.
The examples presented below illustrate the impact that measurement error has on the indirect
inference estimator.

Example 2.2 An Ornstein-Uhlenbeck process is the solution of the differential equation:

dz(t) = k(ω − z(t))dt+ σdW (t), t > 0 (13)

where k, ω, σ ≥ 0 and W (t) is a standard Brownian motion on R. The initial value of z(0) is a
given random variable (possibly, a constant) taken to be independent of {W (t)}t≥0. The data z(t)
is recorded discretely at points (∆, 2∆, . . . , n∆) in the time interval [t− 1, t] with t = 1, . . . , T , that
is zt−1+i∆, for i = 1, . . . , n = 1/∆. Let assume without loss of generality that ∆ = 1 so that yt = zt
is the discrete realization of z(t) on the unit interval. The observed series, xt, is given by (9). As
in Gouriéroux and Monfort (1996), the auxiliary model is

xt = xt−1 + β1(β2 − xt−1) + β3et, et ∼ i.i.d.N(0, 1) (14)

where the set of auxiliary parameters is β = (β1, β2, β3)
′. Let θ0 = (k0, ω0, σ0)

′ be the vector of
unknown true model parameters. The asymptotic bias of the indirect inference estimator θ̂ST can

be derived noting that ∂b̃(θ0)
∂θ′

−1
[b(θ0, ψ0)− b(θ0)] responsible for the inconsistency is equal to3







e−k0 0 0
0 1 0

σ
2

[(

2k0
1−e−2k0

)1/2(
e−2k0

k0
− 1−e−2k0

2k20

)]

0
(

1−e−2k0

2k0

)1/2







−1

×











e−k0 − e−k0σ2
0

σ2
0+2k0σ2

u,0

0
{(

σ2
0

2k0
+ σ2u,0

)[

1 +

(

e−k0σ2
0

σ2
0+2k0σ2

u,0

)2
]

−
(

e−k0σ2
0

σ2
0+2κ0σ2

u,0

)

e−k0 σ2
0

k0

}1/2
− [(

σ2
0

2k0
(1− e−2k0))]1/2











(15)

3Details on the derivation of an expression of ∂b̃(θ0)
∂θ′

−1
[b(θ0, ψ0)− b̃(θ0)] for the Ornstein-Uhlenbeck process are in

the document with supplementary material.
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that is non null when σ2u,0 > 0. Therefore, the indirect inference estimates of k and σ are asymp-
totically biased. Interestingly, the estimator of the long-run mean parameter ω is not affected by
measurement error. This is a consequence of the fact that the error term is an additive i.i.d process
with zero mean, so that xt and yt have the same long-run mean. Moreover, when σ2u,0 = 0, i.e.

measurement error is absent, the vector [b(θ0, ψ0)− b̃(θ0)] in (15) is zero so that θ̂ST is consistent.

3 A consistent indirect inference estimator

So far, we have shown that neglecting the measurement error generates a bias in the indirect
inference estimator, as a result of an inconsistent functional estimation of the binding function.
Therefore, a straightforward solution to the inconsistency caused by the presence of measurement
error is to consider the nuisance parameters ψ among the structural parameters that need to be
estimated. The (p+ h)× 1 parameter vector to be estimated is now denoted by ζ = (θ′, ψ′)′. The
parameter space of ζ is Z. The auxiliary model is characterized by a criterion function QT (xT , β),
where β ∈ B with B compact subset of Rq, with q ≥ p+h. The proposed indirect inference procedure
requires that we can simulate trajectories from the structural model contaminated by measurement

error. This means that we simulate y
(s)
t from the structural model and the measurement error from

the assumed conditional density. The contaminated artificial series, i.e. x
(s)
t = y

(s)
t + u

(s)
t , are used

in place of y
(s)
t , thus

β̂sT (ζ) = argmin
β
QT (x

(s)
1 (ζ), . . . , x

(s)
T (ζ);β).

The estimated binding function, b̂(ζ), which now explicitly depends on θ and ψ, is used to match
both sets of parameters.

Assumption 4.v (see Appendix A.1) guarantees that b(ζ) is locally identified, so that the equa-
tion β = b(ζ) admits a unique solution in ζ at the true parameter value, ζ0. The indirect estimator
of ζ, i.e. of the structural and nuisance parameters, is obtained as

ζ̂ST = argmin
ζ

Ξ(ζ) (16)

with Ξ(ζ) =
∥

∥

∥
β̂T − 1

S

∑S
s=1 β̂

s
T (ζ)

∥

∥

∥

2

Ω
. Indeed, Assumptions 1-4 guarantee that the indirect infer-

ence problem at hand is standard, so that the asymptotic distribution of ζ̂ST is the same as in
Proposition 3 in Gouriéroux et al. (1993), see Appendix A.1. In other words, indirect inference
provides asymptotically unbiased and normal estimates in presence of measurement error, if the
parameters governing the latter are considered among the structural ones and pseudo-data can be
simulated from the contaminated structural model. If the auxiliary model is such that it identifies
all structural parameters, i.e. Assumption 4.v is satisfied, then standard theory applies.

In the next Section, we analyze the identification condition for ARMA models. We establish
a necessary condition for the identification of the ARMA parameters and the variance of the
measurement error, i.e. that Assumption 4.v holds.

3.1 Identification of ARMA models

This section briefly discusses the identification condition for the indirect estimation of a stationary
ARMA(r, l) signal observed with additive measurement error:

xt = yt + ut t = 1, . . . , T

α(L)yt = c+ ϕ(L)εt εt ∼ i.i.d.N(0, σ2ε) (17)
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We assume that the roots of α(L) = 1− α1L− . . .− αrL
r and ϕ(L) = 1 + ϕ1L+ . . .+ ϕlL

l all lie
outside the unit circle, and there are no common roots. Note that

α(L)xt = c+ ϕ(L)εt + α(L)ut (18)

is an ARMA(r,max {r, l}). The parameter vector to be estimated is ζ = (c, α1, . . . , αr, ϕ1, . . . , ϕl, σ
2
ε , σ

2
u)

′.
The auxiliary model is an AR(m), i.e.

φ(L)xt = φ0 + et, (19)

where E(et) = 0, E(e2t ) = σ2e and φ(L) = (1− φ1L− . . .− φmL
m). The (q × 1) vector of auxiliary

parameters is β = (φ0, φ1, . . . , φm, σ
2
e)

′, with q = (m+ 2) ≥ p+ 1 = 3 + r + l.
Lemma 2.5 in Chanda (1995) makes clear that the identifiability of ϕ1, . . . , ϕl, σ

2
ε and σ2u is

possible if and only if r > l. In the following proposition we explicit the identification condition of
ζ0 (Assumption 4.v) when the auxiliary model is an AR(m).

Proposition 3.1 Let the structural model be the stationary ARMA(r,l) in (17) with measurement
error ut ∼ WN(0, σ2u) and the auxiliary model be the AR(m) in (19) with m > r + l. The binding
function is

b(ζ) =

[

Q−1
ZZQZX

QXX −QXZQ
−1
ZZQZX

]

where QZZ , QXX and QZX contain the mean, the variance and the autocovariances of the process
for xt in (18) up to lag m. Then the Jacobian matrix

∂b(ζ)

∂ζ ′
=

[

−(Q′
ZXQ

−1
ZZ ⊗Q−1

ZZ)
∂vecQZZ

∂ζ′ +Q−1
ZZ

∂QZX

∂ζ′
∂QXX

∂ζ′ − vec(QZXQXZ)
′(Q−1

ZZ ⊗Q−1
ZZ)

∂vecQZZ

∂ζ′ − 2QXZQ
−1
ZZ

∂QZX

∂ζ′

]

has full column rank in ζ0 ∈ Z if r > l.

Proof : See Appendix A.2.

The proposition says that the ARMA structural model is not identified when the number of
the moving average parameters is larger or equal to the number of autoregressive coefficients, even
if q ≥ p + 1. Indeed, the Assumption 4.v does not hold for any choice of the auxiliary AR(m)
model with m > l + r. In other words, if the structural model is not identifiable, then there is no
possibility also for the indirect inference estimator to guarantee consistency. Therefore, r > l is a
necessary condition for the identification of ARMA plus noise processes by AR(m) models.4 The
case of an MA(1) contaminated by measurement error provides an example of the violation of the
identification condition.

Example 3.1 In the case of MA(1) plus noise, the set of structural parameters is ζ = [ϕ, σ2ε , σ
2
u]

′.
Hence, the number of auxiliary parameters must be at least 3 to satisfy the order condition q ≥
p + 1. If the auxiliary model is a zero-mean AR(2), the (3 × 1) vector of auxiliary parameters is
β = [φ1, φ2, σ

2
e ]

′. The binding function is given by

b(ζ) = p lim
T→∞













φ̂1,T

φ̂2,T

σ̂2e,T













=

















[(1+ϕ2)σ2
ε+σ2

u]ϕσ
2
ε

[(1+ϕ2)σ2
ε+σ2

u]
2−ϕ2σ4

ε

−ϕ2σ4
ε

[(1+ϕ2)σ2
ε+σ2

u]
2−ϕ2σ4

ǫ

(1 + ϕ2)σ2ε + σ2u + 3 [(1+ϕ2)σ2
ε+σ2

u]ϕ
2σ4

ε

[(1+ϕ2)σ2
ε+σ2

u]
2−ϕ2σ4

ε

















4We conjecture that this condition is also sufficient. But the proof is fairly involved, since it would consist of
showing that full-column rank of the Jacobian implies r > l.
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and a closed form expression of ∂b(ζ)
∂ζ′ can be obtained.5 However, ∂b(ζ)

∂ζ′ has rank equal to 2 for any
ζ0 ∈ Z, while the number of structural parameters is 3. This is a consequence of the fact that
the ARMA condition r > l is not satisfied for the MA(1) case, meaning that the structural model
cannot be identified by any AR(m) with m > 1.

Another example is the identification of the Ornstein-Uhlenbeck process plus noise, presented in
Example 2.2, where the measurement error variance is considered as a structural parameter. Note
that the discretized Ornstein-Uhlenbeck process is an AR(1), therefore it satisfies the condition of
Proposition 3.1.

Example 3.2 The (4 × 1) vector of structural parameters is ζ = (k, ω, σ, σ2u)
′. The auxiliary

model in equation (14), which contains only 3 parameters, must be extended to satisfy the order
condition, q ≥ p + 1. The additional auxiliary parameter is σ2x = Var(xt), so that the vector of
auxiliary parameters becomes β = (β1, β2, β3, σ

2
x)

′. The binding function results to be

b(ζ) =















1− e−kσ2

σ2+2kσ2
u

ω
[

(

σ2

2k + σ2u

)[

1 +
(

e−kσ2

σ2+2kσ2
u

)2]

−
(

e−kσ2

σ2+2kσ2
u

)

e−k σ2

k

]1/2

σ2

2k + σ2u















(20)

and the Jacobian matrix ∂b(ζ0)
∂ζ′ has full rank for any ζ0 ∈ Z. Hence, the auxiliary model identifies

all the parameters in ζ, including the variance of the measurement error.

An alternative approach to the indirect estimation is the method of Chanda (1995). However,
the recursive and nonlinear form of the conditions that define the estimator and the necessity
of relying on preliminary estimates of the autoregressive coefficients makes it computationally
involved. Komunjer and Ng (2014) discuss the identification of VARX models, when the dependent
variables and the covariates can be contaminated by serially correlated error. They obtain necessary
order and sufficient rank conditions for local identification of the structural parameters, which
exploit the triangular structure of the problem. However, their results only apply to the case
of dynamic process without a moving average component, thus ruling out ARMA signals. The
identification condition in Proposition 3.1 is similar to the one put forward by Komunjer and
Ng (2014) in Proposition 3. Gospodinov et al. (2015) consider the estimation of an ARDL(p,q)
model by means of the simulated minimum distance estimator, which is an indirect inference
estimator. In their setup the only variable to be measured with error is the covariate. Analogously,
to the approach taken here, they consider the joint estimation of the parameters of interest and
the nuisance ones. They obtain the identification condition for the ARDL(0,0) and ARDL(1,0)
when p = q, by establishing the invertibility of the binding function. Therefore, the results of
Gospodinov et al. (2015) can be seen as a further example of the applicability of indirect inference
to solve errors-in-variables problems.

4 Estimation of SV models with RV

The recent results in the theory of RV based on high frequency data open the door to the estimation
of continuous-time SV models by GMM and indirect inference. Under unrealistic assumptions, e.g.
the absence of microstructure noise (MN), the RV is an asymptotically unbiased and efficient
estimator of IV . However, the presence of MN can dramatically affect the consistency of the SV
parameter estimates. The MN is generated by structural features of financial markets, like trading

5Details on the derivation of these results are shown in the document with supplementary material. Due to space
constraints the expression of ∂b(ζ)/∂ζ′ is not reported. It is available upon request from the authors.
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rules, the bid-ask spread and the discreteness of price changes. Neglecting the MN in calculating
RV leads to biased and inconsistent estimates of integrated volatility (IV ) as a true measure of
daily volatility. Indeed, when the sample interval shrinks to zero, the MN obscures the IV signal.
In a GMM framework, Bollerlsev and Zhou (2002) propose a simplified approach to deal with this
problem which does not disentangle the discretization error from the MN. Differently, Corsi and
Renò (2012), in an indirect inference framework, sample log-returns at low frequencies and do not
explicitly model the MN. We call this approach neutralization.

The problem of the estimation of the parameters of SV models by RV under the presence of MN
has been tackled also in Corradi and Distaso (2006), Todorov (2009) and, more recently, by Creel
and Kristensen (2015). Corradi and Distaso (2006) propose a SMM approach and derive a set of
sufficient conditions for the asymptotic negligibility of the measurement error, when the moments
of the unobservable IV are replaced by the moments of the RV . Todorov (2009) uses a corrected
estimator robust to MN and price jumps, but he also derives the moment conditions in closed form
so that there is no need for simulation. However, the use of corrected realized estimators, like those
proposed in Zhang et al. (2005), Barndorff-Nielsen et al. (2008), Hansen et al. (2008) and Andersen
et al. (2012), may not be the best solution in the indirect inference framework proposed in this
paper. Indeed, these realized estimators depend in a non trivial way on the nuisance parameters of
the MN distribution, and their consistency is derived under some (strong) assumptions about the
MN. In this case, the binding function would still depend on the MN nuisance parameters, making
impossible to be matched by the simulated trajectories and hence potentially causing inconsistent
estimates of the SV parameters. Alternatively, Creel and Kristensen (2015) explicitly deal with
the problem of accounting for the intradaily sampling error when realized measures are used in the
estimation of continuous-time SV models. They propose a limited information method, based on
the Approximate Bayesian Computation, which is an alternative to indirect inference.

Instead, consistently with the general approach outlined in this paper, we suggest to estimate
the parameters of the MN distribution jointly with the SV structural parameters. In other words,
instead of deriving conditions for the asymptotic negligibility of the measurement error, we show
that indirect inference, coupled with a contamination scheme of the simulated trajectories, avoids
the need to neutralize a-priori the impact of the MN on the volatility estimates. Hence, the auxiliary
model can be based on potentially distorted but efficient and simple estimators of IV , like RV ,
BPV or signed jump variation as in Barndorff-Nielsen et al. (2010) and Patton and Sheppard
(2015). This represents a very general approach to the treatment of the problem of measurement
error in the estimation of the SV framework, as it is potentially valid for any SV model and
contamination scheme. Since the parameters of the MN distribution must be estimated jointly
with the structural ones, special attention has to be devoted to the identification issue. In the
following section, we closely look at the identification of the Heston SV model parameters with
MN.

4.1 Estimation of the Heston model with microstructure noise

The Heston (1993) model is a well known continuous-time stochastic process used to describe the
evolution of the volatility of an underlying asset and widely used in option pricing. Assume that
σ2(t) follows a square root process as in Heston (1993), then

dp∗(t) = σ(t)dW1(t) (21)

dσ2(t) = κ(ω − σ2(t))dt+ ςσ(t)dW2(t) (22)

where κ > 0 governs the speed of mean reversion, ς > 0 is the volatility of volatility parameter,
while ω > 0 is the long run mean of σ2(t), where the latter is the instantaneous volatility and it is
independent of the process W1(t). The assumption that Corr[dW1(t), dW2(t)] = 0, i.e. absence of
leverage, is relaxed in Section 4.2. The condition 2κω ≥ ς2 guarantees that the volatility process
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is stationary and it can never reach zero. Following the general representation of Meddahi (2003),
we assume that the instantaneous volatility can be written as an autoregressive variance process:

σ2(t) = a0 + a1P1(f(t)) (23)

where ft is a state-variable process. The function P1(·) is defined so that it has the following
properties:

E[P1(ft)] = 0, Var[P1(f(t))] = 1, E[P1(f(t+∆))|P1(f(τ)), τ ≤ t] = e−λ1∆P1(f(t)).

Following Meddahi (2003), model (22) for σ2(t) can be rewritten as in (23) with P1(f(t)) =√
2κ√
ως2

(ω − f(t)), a0 = ω, a1 = −ς
√

ω
2κ , λ1 = κ and σ2(t) = f(t). Now, we focus on the properties

of the ex-post estimates of IV , defined as IVt =
∫ t
t−1 σ

2(u)du, which cumulates the instantaneous

volatility over periods of unit length. A non-parametric estimator of IVt is RVt(∆) =
∑n

i=1 r
2
t−1+i∆,

where n = 1/∆, and rt−1+i∆ are the intradaily returns over the intervals [t−1+(i−1)∆; t−1+i∆],
for i = 1, . . . , n. When the MN is present and contaminates the high-frequency returns the observed
intradaily price is observed with error, i.e.

pt,i(∆) = p∗t,i(∆) + ǫt,i(∆) for t = 1, ..., T and i = 1, ..., n (24)

where p∗t,i(∆) is the i-th latent efficient log-price on day t. The term ǫt,i(∆) is the noise around the
true price, with mean 0 and finite fourth moment and it is assumed i.i.d. and independent of the
efficient price. Over periods of length ∆, the log-return rt,i(∆) ≡ rt−1+i∆ is given by

rt,i(∆) =
(

p∗t,i(∆)− p∗t,i−1(∆)
)

+ (ǫt,i(∆)− ǫt,i−1(∆)) = r∗t,i(∆) + νt,i(∆) (25)

with σ2ν = Var [νt,i(∆)] <∞.
When there is no drift in prices, the RVt is observed with a measurement error, that is due

both to the discretization error and to the MN:

RVt(∆) = IVt + ut(∆), (26)

where

ut(∆)
L
= ηt(∆) +

n
∑

i=1

ν2t,i(∆) + 2
n
∑

i=1

σt,i,∆zt,iνt,i,∆, (27)

where ηt(∆) =
∑n

i=1 ηt−1+i∆ is the discretization error. Meddahi (2002) proves that ηt(∆) has a
nonzero mean, when the drift in prices is non-zero, and is heteroskedastic. The correlation between
IV and ηt(∆) is zero when there is no leverage effect (Barndorff-Nielsen and Shephard, 2002b
and Meddahi, 2002). Assuming that the drift is null and there is no leverage effect, Barndorff-
Nielsen and Shephard (2002a) show that, for finite ∆ > 0, the discretization error for the interval
[t− 1 + (i− 1)∆, t− 1 + i∆] can be written as

ηt−1+i∆(∆)
L
= σ2t,i(∆)

(

z2t,i − 1
)

(28)

where zt,i is i.i.d.N(0, 1) and it is independent of σ2t,i(∆) =
∫ t−1+i∆
t−1+(i−1)∆ σ

2(s)ds, σ2t,i(∆) is the

integrated variance over the i-th subinterval of length ∆. Meddahi (2003) proves that when the
instantaneous volatility is a square-root process, like in the Heston (1993) model, then both IV
and RV have an ARMA(1,1) representation.6

6As noted by Meddahi (2003), already Bollerlsev and Zhou (2002) explicitly recognized that IV and RV are
ARMA(p, p) processes, p = 1, 2 , when the spot variance depends on p square-root processes.
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For a given ∆ > 0, the mean and the variance of RV are equal to

E[RVt(∆)] = E[IVt] + E[ut(∆)] (29)

Var[RVt(∆)] = Var[IVt] + Var[ut(∆)] (30)

with E[IVt] = ω, E[ut(∆)] = ∆−1σ2ν , and Var[ut(∆)] = 2∆−1E
[(

σ2t,i(∆)
)2]

+4ωσ2ν+∆−1
(

κν−σ4ν
)

,

κν = E[νt,i(∆)4], see Rossi and Santucci de Magistris (2014). A closed form expression of the term

2∆−1E
[(

σ2t,i(∆)
)2]

as a function of the structural parameters is derived in Meddahi (2002, 2003).

It follows that the variance of RVt(∆) is

γ(0) = Var[RVt(∆)] = 2
a21
κ2

[exp(−κ) + κ− 1] + Var[ut(∆)]

and the autocovariances of RVt(∆) are

γ(j) = Cov[RVt(∆), RVt−j(∆)] = Cov[IVt, IVt−j ]

= a21
[1− exp (−κ)]2 exp (−κ(j − 1))

κ2
j > 0. (31)

We are interested in estimating the parameters of the Heston model in (21)-(22) along with
those of conditional distribution of the MN which contaminates the log-returns at high frequency.
Estimates of the structural parameter vector, ζ = (κ, ω, ς, σ2ν)

′, can be obtained by indirect inference
using an auxiliary model based on RV . A well known example of a simple reduced-form model for
RV is the HAR-RV model of Corsi (2009), which is

xt = φ1 + φ2xt−1 + φ3x
w
t−1 + φ4x

m
t−1 + et, (32)

where xt = RVt(∆), xwt = 1
5

∑4
t=0 xt−j and xmt = 1

22

∑21
t=0 xt−j , and φ = [φ1, φ2, φ3, φ4]

′.7 The
(5× 1) vector of auxiliary parameters is β = (φ′, σ2e)

′.

Proposition 4.1 (Identification of Heston model with MN) Let the structural model be the Heston
model in (21) and (22), with the RV (∆) and the measurement error as in (26) and (27), respectively
with ∆ > 0. The auxiliary model is the HAR-RV in (32), which is an AR(22) with restrictions
contained in the (23× 4) matrix, R. The binding function results to be

b(ζ) =

[

[R′QZZR]
−1R′QZX

QXX − [QXZR(R
′QZZR)

−1R′QZX ]

]

(33)

where QZZ , QXX , QXZ are the moment matrices of RV and are function of ζ = (κ, ω, ς, σ2ν)
′. The

Jacobian matrix ∂b(ζ)
∂ζ′ has full column rank for any ζ0 ∈ Z.

Proof : See Appendix A.3.

Proposition 4.1 proves that the Heston parameters can be identified when the auxiliary model
is the HAR-RV since the rank of the binding function is full. At a first sight, this result seems
to contradict the evidence reported in Section 3.1 about the non-identifiability of an ARMA(r, l)
plus noise when l ≤ r. On the contrary, despite RV is the sum of an ARMA(1,1) and a noise
term, identification is guaranteed in this case. Indeed, as noted by Barndorff-Nielsen and Shephard
(2002b) and Meddahi (2003), the moving-average root of the IV signal is in turn the result of the

7In order to derive the binding function in closed form, the dependent variable of the HAR-RV is the RV in levels.
This is slightly different from the setup in Corsi (2009) and Corsi and Renò (2012) where the dependent variable is
logRV .
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state-space representation of an AR(1) signal plus noise, so that the MA parameter is restricted
and dependent on the autoregressive root. The consequence is that the AR and MA parameters
are no more functionally independent, which means that the parameter space dimension is reduced
by one. This explains why the ARMA(1,1) plus noise representation of RV is identifiable, in terms
of the underlying Heston parameters, by an autoregressive auxiliary model.

4.1.1 Binding function when ∆ → 0

Let’s consider now the case ∆ → 0. As noted by Meddahi (2003), in absence of MN, the moving
average roots of the RV converge to those of IV when ∆ → 0 and hence the ARMA representations
of IV and RV coincide. However, when the MN is present, then the mean and the variance of the
measurement error diverge as ∆ → 0, thus completely obscuring the volatility signal. As noted
by Bandi and Russell (2006), while the efficient return is of order Op(

√
∆), the MN is of order

Op(1) over any period of time. This means, that, when ∆ → 0, then the MN dominates over the
true return process, and longer period returns are less contaminated by noise than shorter period
returns. Taking the limits of E[RVt], Var[RVt] and Cov[RVt, RVt−j ] for ∆ → 0, we get

lim
∆→0

E[RVt(∆)] = +∞, lim
∆→0

Var[RVt(∆)] = +∞ lim
∆→0

Cov[RVt, RVt−j ] = Cov[IVt, IVt−j ]

Therefore, the limits in T → ∞ of the elements in QXX , QZZ , QZX diverge as ∆ → 0, so the limit
of the binding function in (33) is unbounded. This means that it is not possible to identify the
parameters of the the Heston SV model using RV in presence of MN when ∆ → 0. As stated in
Proposition 4.1, indirect inference with measurement error works without the hypothesis of ∆ → 0,
so in this setup, there is no need for infill asymptotics but only T has to diverge for any ∆ > 0.
This also represents the most realistic scenario in practice. Indeed, the sampling frequency of high-
frequency data has a lower bound, so that the binding function is always associated to a finite limit
in empirical applications. Clearly, choosing a small ∆ would convey more information about MN,
in line with Zhang et al. (2005) and Ait-Sahalia et al. (2005), while the volatility signal dominates
as ∆ increases. For this reason, in empirical applications, when the SV model presents additional
features, such as leverage, drift and price jumps, it might be necessary to adopt an auxiliary model
based on realized measures obtained from returns computed at different sampling frequencies, as
discussed below.

4.2 Leverage and microstructure noise

Now, we assume that in the Heston SV model, i.e. in the system (21)-(22), Corr[dW1(t), dW2(t)] =
ρdt, namely there is leverage. In this case,

Var[RVt(∆)] = Var[IVt] + Var[ut(∆)] + 2Cov[IVt, ut(∆)] (34)

Under leverage, see Meddahi (2002, Proposition 4.2)

Var[ηt−1+i∆] = 4
(a20∆

2

2
+
a21
κ2

(exp (−κ∆)− 1+κ∆)
)

+8ρ2a1e1,1
e1,0
κ

[

∆

κ
+

exp (−κ∆)(κ∆)

κ2

]

(35)

where e1,0 =
√
2κω, e1,1 = ς. The additional term which appears in (34) is the covariance between

IVt and ut(∆) which is equal to

Cov(IVt, ut(∆)) = 2∆−1ρa1e1,1
e1,0
κ

[

∆

κ
+

exp (−κ∆)(κ∆)

κ2

]

. (36)

As noted by Meddahi (2002), the correlation between the noise and the integrated volatility tends
to zero very quickly as one increases the frequency of intra-daily observations. Therefore, similarly
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to Bandi and Renò (2012, p.110), we suggest to identify the contemporaneous leverage parameter
by exploiting the contemporaneous covariance between the daily returns and RVt(∆), that is given
by

Cov(rt, RVt(∆)) = ρ
a1e1,0
κ2

[exp (−κ)− 1 + κ] +
ρ

∆

a1e1,0
κ2

[exp (−κ∆)− 1 + κ∆],

since Cov(rt,
∑n

i=1 ν
2
t,i(∆)) = 0 as daily observed returns can be assumed unaffected by MN, without

loss of generality, while for a small ∆, [exp (−κ∆) − 1 + κ∆] ∼ κ2∆2/2 so that the second term
doesn’t depend on ρ when ∆ → 0. Since the parametric expression of Cov(rt, RVt(∆)) doesn’t
involve any MN parameter, the leverage parameter ρ can be isolated from the noise and separately
identified by the contemporaneous covariance between daily returns and RV , while the other SV
parameters and the variance of MN can be identified by a HAR type auxiliary model as in (32), as
shown in Proposition 4.1.

4.3 Drift and jump prices with microstructure noise

We consider an extension of the Heston SV model that allows for non-zero drift and jumps in prices.
We assume that the efficient price process p∗(t) follows an Itô semimartingale, see Bates (1996),
namely

dp∗(t) = m(t)d(t) + σ(t)dW1(t) + τ(t)dN(t), (37)

which implies that the efficient log-return over an interval of length ∆ is

r∗t,i(∆) = µt,i + vt,i + Jt,i,

where µt,i =
∫ t−1+i∆
t−1+(i−1)∆m(u)d(u), vt,i =

∫ t−1+i∆
t−1+(i−1)∆ σ(u)dW1(u) and Jt,i =

∑Nt,i

j=1 τj . Nt,i =

N(t − 1 + i∆) − N(t − 1 + (i − 1)∆) denotes the number of jumps in the i -th subinterval of day
t. The jump size τ(t) is assumed time invariant and for the j-th jump arrival is distributed as
N(µτ , σ

2
τ ), while the jump arrival process, N(t) is Poisson distributed, uncorrelated with W1(t)

and W2(t), with λ, which is the average jump intensity on the unit interval [t − 1, t]. It follows
that Nt,i is Poisson with intensity λ∆. We maintain the assumption of no leverage. If the efficient
return is measured with MN, then

rt,i(∆) = µt,i + vt,i + Jt,i + νt,i, (38)

therefore,

r2t,i(∆) =

∫ t−1+i∆

t−1+(i−1)∆
σ2(u)du+ ξt,i(∆)

where ξt,i(∆) = J2
t,i+µ

2
t,i+

[

v2t,i−
∫ t−1+i∆
t−1+(i−1)∆ σ

2(u)du
]

+ν2t,i+2µt,ivt,i+2µt,iJt,i+2µt,iνt,i+2vt,iJt,i+

2vt,iνt,i + 2Jt,iνt,i. Assuming that the drift is constant, m(t) = µ ∀t, and that νt,i ∼ iidN(0, σ2ν),
the expected value and variance of the daily return is

E[rt] = µ+ λµτ

Var[rt] = ω + σ2ν + λ(σ2τ + µ2τ ).

The mean and variance of RVt are

E[RVt(∆)] = ω +∆−1σ2ν +∆−1E[J2
t,i] + ∆µ2 + 2∆µλµτ

Var[RVt(∆)] = Var[IVt] + 2∆−1E
[(

σ2t,i(∆)
)2]

+ 2∆−1σ4ν +∆−1E[J4
t,i] + 4ωσ2ν + 4∆−1E[J2

t,i]σ
2
ν

+4∆µ2σ2ν + 4E[J3
t,i]µ+ 8∆µλµτσ

2
ν + 4ωE[J2

t,i] + 4∆2µ2ω + 6∆µE[J2
t,i]

+8∆2µλµτω − 2∆µ(µ2 + 2λµτ )E[J2
t,i] + 4∆3µ3λµτ − 4∆3µ2λ2µ2τ ,
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where the moments of the squared jump component are computed as in Lemma A.1. The vari-
ance of the realized signed jump variation of Barndorff-Nielsen et al. (2010), defined as SJt(∆) =
[RS+

t (∆)−RS−
t (∆)], is

Var[SJt(∆)] = 3∆−1E
[(

σ2t,i(∆)
)2]

+ 3∆−1σ4ν + 6ωσ2ν + 6∆−1E[J2
t,i]σ

2
ν +∆−1E[J4

t,i]

+6∆µ2σ2ν + 4µE[J3
t,i] + 12∆µλµτσ

2
ν + 6ωE[J2

t,i]

+6∆2µ2ω + 6∆µE[J2
t,i] + 12∆2µλµτω + 4∆3µ3λµτ +∆3µ4.

Using these results, we can study the identification of the Heston model with jump prices and
non-zero drift. We evaluate if indirect inference, based on an auxiliary specification built on daily
returns and realized measures of volatility, is able to identify all the structural parameters. The
(8×1) vector of structural parameters with i.i.d. Gaussian MN is ζ = (κ, ω, ς, σ2ν , µ, λ, µτ , σ

2
τ )

′. We
consider the following multivariate auxiliary model based on daily returns, RVt and SJt

rt = α+ er,t,

RVt(∆1) = φ1 + φ2RVt−1(∆1) + φ3RVt−2(∆1) + eRV,t,

SJt(∆1) = eSJ1,t,

SJt(∆2) = eSJ2,t,

where ∆1 and ∆2 are two distinct sampling frequencies. The number of auxiliary parameters is
q = 8, i.e. we are in the exactly identified case. An evaluation of the rank for the Jacobian of
the binding function for any ζ0 in Ψ is unfeasible in closed form as it would require an analysis
in R

8. Therefore, we first compute the Jacobian for all the structural parameters but then we
fix κ0, ω0, ς0, σ

2
ν,0 to the values adopted in the Monte Carlo study in Section 4.4. Moreover, the

parameter µ is set equal to 0.2, which leads to a 5% drift on annual basis. We then compute the
determinant of the 8 × 8 Jacobian matrix of the binding function only for varying λ0, µτ,0 and
σ2τ,0. Since we have a triplet of parameters, we fix one of the three at a time to obtain a value of
the determinant of the Jacobian for each combination of the other two parameters. The results
are displayed in Figure 1. From Panel a) it emerges that, for a given µτ,0 = −0.1, both λ0 and
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Figure 1: Determinant of the Jacobian matrix of the binding function of model (39) for different
values of λ ∈ (0, 1), σ2τ,0 ∈ (0, 1) and µτ ∈ (−0.3, 0.3). Panel a) plots the determinant when

µτ,0 = −0.1, Panel b) plots the determinant when σ2τ,0 = 0.5 and Panel c) plots the determinant
when λ0 = 0.3.

σ2τ,0 need to be different from zero to guarantee identification. Not surprisingly, as both λ0 and

σ2τ,0 increase, the determinant moves away from zero. Indeed, identification is easier if the jump
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term has a greater impact on the return total variability. When instead σ2τ,0 = 0.5 in Panel b), the
determinant is zero for any µτ,0 ∈ (−0.3, 0.3) when λ0 = 0. On the contrary, the determinant is
larger than zero when µt = 0 and it increases with λ0. Similarly in Panel c) with λ0 = 0.3, the
determinant is zero for any µτ,0 ∈ (−0.3, 0.3) when σ2τ,0 = 0, while it increases (in absolute value)

as σ2τ,0 increases. In other words, variability in the jumps is required for identification purposes,

that is both λ0 and σ2τ,0 need to be larger than zero to guarantee a non-singular Jacobian matrix.

4.4 Monte Carlo simulations

In the Monte Carlo experiments reported below we study the indirect inference estimation of the
Heston SV model in (21) and (22) using the series of non-overlapping RV’s, i.e. {RVt(∆)}Tt=1

under the presence of MN. Table 1 reports the Monte Carlo summary statistics of the indirect
inference estimates of the Heston model parameters with and without accounting for the presence
of MN, using different sampling frequencies, 30 seconds, 1, 5 and 30 minutes to construct the
daily RV . The true parameter set is calibrated to values close to those found in empirical works,
see Bollerlsev and Zhou (2002) and Garcia et al. (2011), and are relative to percentage returns.
The long-run mean parameter, ω, is set equal to 0.5 and 0.8, which corresponds to an annualized
volatility of 11.2% and 14.2% respectively. The speed of mean reversion, κ, is equal to either 0.1
or 0.05, while the vol-of-vol parameter ς is either 0.1 or 0.2. For each Monte Carlo replication, a
simulated trajectory for the intradaily returns is generated from Euler discretization of model (22)
for T = 1500 days, with intradaily step of 30 seconds, which corresponds to n = 780. The intraday
return is contaminated with an additive MN, νi,t, that is assumed to be i.i.d. Gaussian with mean
0 and variance σ2ν = 0.0005.8 This choice for σ2ν is in line with the numbers reported in Ait-Sahalia
et al. (2005, p.364), and corresponds to a percentage standard deviation of 0.02%. According
to Ait-Sahalia et al. (2005), the optimal sampling frequency, under the assumption of constant
volatility, should be between 1 and 5 minutes. The RV series is constructed from high-frequency
returns with different sub-sampling and, similarly to Corsi and Renò (2012), the HAR-RV model
on log(RVt) is used as auxiliary model such that the set of auxiliary parameters in the indirect
inference estimation is β =

[

φ1, φ2, φ3, φ4, σ
2
ǫ

]′
. The approximation of the binding function is

based on S = 100 simulated trajectories of equation (22) with the same Euler discretization as the
sampling frequency used to compute the RV series on the real data. When the possible presence of
MN is neglected in the indirect inference estimation, the set of structural parameters is θ = [κ, ω, ς]′.
On the contrary, if the MN is considered in the indirect inference estimation, the set of structural
parameters, ζ, also includes σ2ν . In this case, the simulated trajectories of the log-returns used in
the second stage of the indirect estimation are contaminated with a Gaussian MN with variance

σ2ν . In both cases, the HAR-RV model is used as auxiliary model on each simulated series, RV
(s)
t ,

for s = 1, . . . , S, and the set of parameters β is estimated by OLS.
The results for the indirect inference estimator are presented in the left panel of Table 1 and

are based on M = 1000 Monte Carlo simulations. In summary, the Monte Carlo results reflect the
properties of RV under MN, see Ait-Sahalia et al. (2005). If we don’t want to take into account
the MN, the best choice, in terms of bias, is to compute the RV using a low sampling frequency,
say 5 or 30 minutes. Indeed, sampling at 30 minutes neutralizes the effect of the MN on the
estimates of the RV , such that the indirect inference estimates are only slightly affected. For
example, the bias of ω̂30min and ς̂30min are negligible in all cases. On the other hand, sampling at
30 seconds or at 1 minute, but neglecting the presence of MN, induces large biases in the indirect
inference estimates of ω, which as expected is over-estimated, and in ς. Surprisingly, the estimates
of κ are unbiased for any choice of ∆ also when the MN is neglected in the estimation. In terms
of efficiency, the estimates corresponding to a 5-minutes sampling scheme without correction are

8As in Bandi and Russell (2006), we contaminate the intardaily log-returns instead of the intradaily log-prices.
This leads to equivalent results as σ2

ν = 2σ2
ǫ , where σ

2
ǫ is the variance of ǫt,i in pt,i = p∗t,i + ǫt,i.
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generally associated with a lower RMSE than those obtained sampling at 30 minutes. Indeed, the
effect of the MN when sampling returns every 5 minutes is rather limited, and the efficiency of
RV when n is relatively large leads to more precise estimates of the Heston parameters than those
obtained when the sampling frequency is 30 minutes. In other words, the squared bias component
of RMSE when sampling at 5 minutes is smaller than the variance component of RMSE when
sampling at 30 minutes. Moreover, when sampling at 30 seconds, the squared bias term dominates
over the parameter variance in the RMSE, especially for ω and ς.

Turning our attention to the results when the variance of MN is included among the structural
parameters, it emerges that sampling at the highest possible frequency provides unbiased estimates
of all structural parameters. Instead, the estimates of σ2ν are biased when sampling at low frequen-
cies, since the log-returns do not contain enough information about the MN. Therefore, if one is
interested in estimating the MN variance together with the SV parameters, the best option is to
sample at the highest frequency available. Notably, in Table 1, the RMSE of the estimates of ω
and ς obtained sampling at 30 seconds intervals is significantly smaller than the RMSE obtained
by neutralizing MN, i.e. sampling at 5 or 30 minutes. This means that the discretization error,

that is a function of the Heston parameters via the term 2∆−1E
[(

σ2t,i(∆)
)2]

in the variance of

ut(∆), affects more significantly the SV parameter estimates when the latent volatility process is
not very persistent and with a smaller long-run mean, as in Table 1. In these cases, the price paid
by sampling log-returns at low frequencies is relatively higher than in the setup characterized by a
persistent instantaneous volatility. Indeed, when the volatility signal is more persistent, with larger
long-run mean and vol-of-vol, as in the bottom panel of Table 1, the values of the RMSE at 30
seconds are roughly the same as those obtained neutralizing the MN and sampling at 5 minutes.
This means that the impact of the discretization error is less relevant in this case, and that sampling
at low frequency does not induce severe efficiency losses.

The right panel of Table 1 also reports the estimation results of the Heston parameters based on
a state-space representation of the process that characterizes RVt(∆), which, as discussed above,
has a restricted ARMA(1,1) plus noise representation. Indeed, following Barndorff-Nielsen and
Shephard (2002a), the parameters of the Heston model can be estimated by QML exploiting the
Kalman filter routine applied to an ARMA(1,1) plus noise in state-space form. The parameters
of the ARMA(1,1) are expressed as a function of the Heston’s model parameters, such that the
log-likelihood function is maximized with respect to the latter. As noted by Barndorff-Nielsen and
Shephard (2002a), in absence of MN, the variance of the measurement error, ut(∆), is a functional of
the Heston’s model parameters and the discretization step only. Therefore, when the impact of MN
is negligible (e.g. when sampling at 30 minutes), the Kalman filter is able to identify all the Heston
parameters thus providing unbiased estimates. Not surprisingly, the QML estimates θ̂30min are
more efficient than those obtained under indirect inference at the same frequency, although ut(∆)
and the innovation of the state variable are non Gaussian. On the contrary, when including the
variance of MN among the structural parameters, the estimates ζ̂30min obtained with the Kalman
filter are highly biased and present very large RMSE, especially for ω and ς. Interestingly, the
problem remains when increasing the sampling frequency, as the biases and RMSE are still very
large for ζ̂30sec. This is a clear indication that the estimation method based on the Kalman filter
is unable to assign to the discretization error and MN the correct proportion of variability in the
measurement error, ut(∆), thus leading to identification problems that instead do not affect the
indirect inference estimator.
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Indirect Inference Kalman Filter

κ = 0.1 ω = 0.5 ς = 0.1 σ2ν = 0.0005 κ = 0.1 ω = 0.5 ς = 0.1 σ2ν = 0.0005

θ̂30sec 0.1016 (0.0212) 0.8889 (0.3901) 0.0740 (0.0207) – 0.1037 (0.0166) 0.8874 (0.3886) 0.0751 (0.0251) –

ζ̂30sec 0.1014 (0.0197) 0.4994 (0.0274) 0.1013 (0.0097) 0.0005 (0.0000) 0.1040 (0.0157) 0.0550 (0.4493) 0.6306 (0.7155) 0.0011 (0.0011)

θ̂1min 0.1014 (0.0212) 0.6925 (0.2009) 0.0838 (0.0189) – 0.1037 (0.0158) 0.6932 (0.1944) 0.0849 (0.0155) –

ζ̂1min 0.1015 (0.0202) 0.4972(0.0552) 0.1014 (0.0105) 0.0005 (0.0001) 0.1037 (0.0158) 0.0505 (0.4553) 0.6039 (0.6468) 0.0016 (0.0017)

θ̂5min 0.1010 (0.0227) 0.5346 (0.0817) 0.0956 (0.0138) – 0.1043 (0.0181) 0.5373 (0.0430) 0.0966 (0.0069) —

ζ̂5min 0.1010 (0.0228) 0.4978 (0.0721) 0.1018 (0.0149) 0.0006 (0.0002) 0.1043 (0.0181) 0.0537 (0.4513) 0.8143 (0.9733) 0.0062 (0.0063)

θ̂30min 0.0965 (0.0264) 0.4911 (0.0680) 0.0958 (0.0158) – 0.1075 (0.0265) 0.5043 (0.0224) 0.1008 (0.0124) —

ζ̂30min 0.0966 (0.0256) 0.4718 (0.1014) 0.1022 (0.0307) 0.0016 (0.0046) 0.1075 (0.0265) 0.0797 (0.4319) 1.2032 (1.6417) 0.0327 (0.0336)

κ = 0.05 ω = 0.8 ς = 0.2 σ2ν = 0.0005 κ = 0.05 ω = 0.8 ς = 0.2 σ2ν = 0.0005

θ̂30sec 0.0493 (0.0153) 1.2008 (0.4149) 0.1514 (0.0542) – 0.0545 (0.0132) 1.1827 (0.3981) 0.1637 (0.0372) –

ζ̂30sec 0.0500 (0.0161) 0.8217 (0.1123) 0.2102 (0.0356) 0.0005 (0.0001) 0.0544 (0.0131) 0.1090 (0.7061) 1.6184 (1.9916) 0.0014 (0.0014)

θ̂1min 0.0482 (0.0144) 1.0027 (0.2338) 0.1657 (0.0424) – 0.0545 (0.0132) 0.9858 (0.2156) 0.1795 (0.0230) –

ζ̂1min 0.1015 (0.0154) 0.4972(0.1166) 0.1014 (0.0318) 0.0005 (0.0001) 0.0545 (0.0132) 0.1050 (0.7101) 1.8146 (2.2139) 0.0023 (0.0023)

θ̂5min 0.0506 (0.0131) 0.8448 (0.1239) 0.1892 (0.0267) – 0.0551 (0.0141) 0.8290 (0.1082) 0.1962 (0.0143) —

ζ̂5min 0.0511 (0.0140) 0.8023 (0.1261) 0.2064 (0.0294) 0.0006 (0.0005) 0.0551 (0.0141) 0.1118 (0.7044) 2.2207 (2.8610) 0.0092 (0.0094)

θ̂30min 0.0514 (0.0163) 0.8086 (0.1223) 0.1969 (0.0312) – 0.0564 (0.0161) 0.7953 (0.1029) 0.2018 (0.0217) —

ζ̂30min 0.0517 (0.0165) 0.7974 (0.1322) 0.2063 (0.0351) 0.0014 (0.0032) 0.0564 (0.0166) 0.1389 (0.6845) 2.4572 (3.3837) 0.0505 (0.0523)

Table 1: Heston SV model. Mean and RMSE (in parenthesis) of estimated parameters with and without correction for the MN. The true
parameter set are κ = (0.10, 0.05), ω = (0.5, 0.8), ς = (0.1, 0.2) and σ2ν = 0.0005. The simulation are carried out with Euler discretization scheme
with step size corresponding to 30 seconds. Three aggregation levels are considered to construct RV , 30 seconds and 1, 5 and 30 minutes. The
number of simulated days is T = 1500 with n = 780 intradaily observations generated in each day. The number of Monte Carlo simulations is
M=1000. The table reports the estimates obtained with indirect inference with the HAR model as auxiliary model and with QML coupled with
the Kalman filter.
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5 Empirical application

We provide some empirical evidence of the importance of accounting for the MN, when performing
indirect inference estimates of SV based on RV series. We estimate the parameters of the two-
factor Heston model (TFSV henceforth) on the RV series of JPMorgan (JPM) from July 2, 2003
to June 29, 2007 using intradaily returns sampled at 5-seconds frequency, i.e. n = 4680. The choice
of the sample period is motivated by the evidence of parameter instability for the TFSV model
during the sub-prime crisis, between June-2007 until June 2009, as shown in Grassi and Santucci de
Magistris (2015). Instead, in the period 2003-2007, the RV is not subject to major breaks and we
expect the parameters to be rather stable through time. The RV series is computed with returns
sampled at two frequencies, 5-seconds and 5-minutes, RV 5s and RV 5m respectively. The dynamics
of the two series are reported in Figure 2. The impact of the MN emerges clearly from the graph

2003−6 2004−6 2005−6 2006−6 2007−6
0

1

2

3

4

5

6

7

8

 

 

RV5sec

RV5min

Figure 2: RV of JPM based on 5 seconds (red) and 5 minutes (black) sampling.

since the long run mean of RV 5s is shifted upward compared to that of RV 5m. Moreover, RV 5m

is more noisy than RV 5s, meaning that the discretization error, denoted by ηt(∆) in equation (27)
seems to have a higher impact on the variance of the measurement error while the MN mainly
impacts on the mean of RV . This evidence is also confirmed by the sample statistics reported
in Table 2. The moments of the daily de-volatized returns, r̃t = rt/

√

RV 5m
t , are rather close to

those of the standard Gaussian distribution. Notably, the autocorrelation function of RV 5s is much
higher than that of RV 5m, as a consequence of the smaller impact of the discretization error on
the variance of the measurement error.

Mean SD SK KU AR(1) AR(20)

r̃t 0.0516 0.9019 0.0572 2.8371 -0.0074 0.0030
RV 5s

t 1.4073 0.6656 2.1826 11.454 0.6423 0.2861
RV 5m

t 1.0266 0.7381 2.9010 16.415 0.5204 0.0900
BPV 5s

t 0.6408 0.3464 2.7453 19.273 0.5558 0.0949
BPV 5m

t 0.9691 0.7239 3.0619 18.300 0.5148 0.0381
SJ5s

t -0.0102 0.1151 -1.2384 22.312 0.0632 0.0284
SJ5m

t 0.0025 0.3473 -1.7984 31.585 0.0223 0.0481

Table 2: Sample statistics of r̃t = rt/
√

RV 5m
t , and realized measures of JPM.

The BPV computed from returns sampled at 5-seconds is clearly downward biased, as its mean
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and variance are much lower than those of RV 5m. Conversely, the moments of RV 5m are very close
to those of BPV 5m. The reason for the bias in BPV 5s is the decimalization effect, which induces
discontinuities in the trajectories of returns sampled at very high-frequencies, so that the product
|rt,i−1| × |rt,i| is often equal to 0. For what concerns the signed jump variation, both SJ5s

t and
SJ5m

t are centered around 0 and display little autocorrelation, while SJ5m
t has more variability

than SJ5s
t .

5.1 A TFSV model with drift, jumps and leverage

We estimate the following TFSV Heston model, with drift, leverage and price jumps:

dp∗(t) = µdt+ σ1(t)dW1(t) + σ2(t)dW2(t) + τ(t)dN(t) (39)

dσ21(t) = κ1(ω − σ21(t))d(t) + ς1σ1(t)dW3(t) (40)

dσ22(t) = κ2(ω − σ22(t))d(t) + ς2σ2(t)dW4(t) (41)

Corr(dW1(t), dW3(t)) = ρ1dt, Corr(dW2(t), dW4(t)) = ρ2dt (42)

where the parameters κ1 and κ2 govern the speed of mean reversion, while ς1 and ς2 determine
the volatility of the volatility innovations. The parameter ω is the long-run mean of each volatility
component and, as in Corsi and Renò (2012), it is assumed to be the same for both σ21(t) and σ

2
2(t),

in order to guarantee identification. {W1(t) : t ≥ 0}, {W2(t) : t ≥ 0}, {W3(t) : t ≥ 0},{W4(t) :
t ≥ 0} are standard Brownian motions and p∗(t) denotes the efficient log-price. The leverage effect
depends on the parameters ρ1 and ρ2. Similarly to Section 4.3, we assume that N(t) ∼ Poisson(λ)
and τ(t) is time invariant with τj ∼ N(µτ , σ

2
τ ). The MN is modeled either as an i.i.d Gaussian

variable that is added to the log-returns as in Bandi and Russell (2006), rt,i = r∗t,i + νt,i, or as the
bid-ask spread. In particular, the bid-ask bounce is generated as

pt,i = p∗t,i +
ξ

2
1It,i (43)

where ξ is the spread, and the order-driven indicator variables 1It,i are independently across t and
i and identically distributed with Pr{1It,i = 1} = Pr{1It,i = −1} = 1

2 . This variable takes value 1
when the transaction is buyer-initiated, and −1 when it is seller-initiated.

The parameters of model (39) are collected in θ = [κ1, κ2, ω, ς1, ς2, µ, ρ1, ρ2, λ, µτ , σ
2
τ ]

′. Depend-
ing on the contamination scheme adopted, the structural parameters are collected in the vectors
ζG = [θ′, σ2ν ]

′ and ζBA = [θ′, ξ]′, where both ζG and ζBA are (12 × 1) vectors. Several restrictions
of model (39) are considered, as well as alternative specifications for the auxiliary models. Table 3
reports the parameter estimates. The top panel of Table 3 reports the parameter estimates for the
simple TFSV Heston model with no drift, no leverage and no jumps. If we neglect MN, the vector
of structural parameter is θ = [κ1, κ2, ω, ς1, ς2]

′. The auxiliary model adopted in this case is the
univariate HARV model in (32) based on RV computed with returns sampled at 5 minutes (Model
I) and 5 seconds (Model II). In this case, there are 5 auxiliary parameters and 5 structural param-
eters, so that the model is exactly identified. The estimates of the parameters strongly depend on
the sampling frequency selected to compute RV . Indeed, the long-run mean, ω, is approximately
30% higher for RV 5s than RV 5m, reflecting the differences observed in the sample statistics. The
speed of mean reversion κ2 is two times lower when RV 5s is used instead of RV 5m accommodating
the higher persistence of RV 5s. We also consider a bivariate HAR-RV model as auxiliary (Model
III), where the dependent variables are RV 5m and RV 5s.9 If the presence of MN is neglected, the
criterion function is minimized at Ξ = 126.9, which is statistically significant different from zero.

This means that it is not possible to match the moments arising from the two RV series unless
the presence of the MN is explicitly accounted for. Indeed, when the noise is modeled as an i.i.d.

9The document with additional material contains details on all auxiliary specifications adopted in this section.
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Gaussian random variable with variance σ2ν or with bid-ask spread of size ξ, the adherence of the
simulated processes to the observed RV series improves significantly and the ξ only leads to a
marginal rejection of the model. Looking at the estimates of the parameters, we notice they are
almost identical both under i.i.d. Gaussian distribution and bid-ask spread. As noted by Creel
and Kristensen (2015), the two contamination schemes have an identical impact on the RV since,
by a central limit theorem argument, they are approximately normally distributed. In particular,
the long-run mean ω is around 0.46 and the other TFSV parameters are generally within the
estimates obtained when the HAR model on RV 5m and RV 5s are estimated separately. Moreover,
the estimates of σ2ν and ξ are almost identical, indicating that the two perturbation schemes have
similar effects in the contamination of the latent efficient process.

The bottom panel of Table 3 reports the estimation results when drift, leverage and jumps are
also included in the model. First, we start with the univariate auxiliary specification of Corsi and
Renò (2012) (Model IV),

log(RVt) = β0 + β1 log(RVt−1) + β2 log(RVt−1,w) + β3 log(RVt−1,m) +

+γ1r
−
t−1 + γ2r

−
t−1,w + γ3r

−
t−1,m + δ1Jt−1 + δ2Jt−1,w + δ3Jt−1,m + et,

where r−t−1, r
−
t−1,w, r

−
t−1,m are the past negative log-returns aggregated over daily, weekly and monthly

horizons, and Jt = RVt−BPVt is a proxy for the squared jumps term. In the first auxiliary specifi-
cation considered, RVt and BPVt are based on log-returns sampled every 5 minutes, while in Model
V they are based on log-returns computed on grids of 5 seconds. Both specifications constrain the
mean of jumps, µτ , to be zero, as in Chernov et al. (2003). The parameter estimates and the fit
are dramatically affected by the sampling frequency adopted in the estimation. Interestingly, the
estimates of λ, which measures the average number of jumps per day, are very high in both cases,
but the jump sizes, as measured by σ2τ , are almost null, meaning that the price jump component
is statistically insignificant.10 In particular, sampling too sparsely, i.e. at 5 minutes, does not pro-
vide sufficient information to disentangle price jumps from discretization error and volatility, thus
resulting in insignificant estimates of the jumps, even if the overall fit is quite good, as Ξ = 6.899.
When sampling more frequently, the volatility signal is strongly affected by the MN, thus resulting
in biased estimates of ω, negligible estimates of the jump term and poor fit, since Ξ is above 40.
Moreover, the standard errors are very high for almost all parameters, so that only few of them are
found significant. This may signal poor identification of the structural parameters.

In line with the theoretical results obtained in Section 4.3, we therefore consider the following
multivariate specification (Model VI),

rt = φ0 + er,t,

RV 5m
t = β0 + β1RV

5m
t−1 + β2RV

5m
t−1,w + β3RV

5m
t−1,m + eRV,t,

SJ5m
t = eSJm,t,

SJ5s
t = eSJs,t,

Σ = Cov([er,t, eRV,t, eSJm,t, eSJs,t])

so that the set of auxiliary parameters is β = [φ0, β0, β1, β2, β3, vech(Σ)]
′, which is a 16× 1 vector.

Based on this auxiliary model, the estimates of the structural parameters are generally significant,
thus signaling a good overall identification. For what concerns the parameters governing the jump
term, we find that λ, µτ and σ2τ are highly significant in all cases, while the estimates of the other
SV parameters are not much affected by the inclusion of jumps compared to the values obtained in
absence of jumps. Interestingly, the estimates of the average jump size, µτ , is large and negative
in all cases, meaning that price jumps are typically associated to bad news.

10The product λ̂σ̂2
τ = 0.0167 has a standard error of 0.0202.

23



κ1 κ2 ω ς1 ς2 ρ1 ρ2 µ λ µτ σ2
τ ξ σ2

ν Ξ(ζ̂) q − p− h

No Drift, No Leverage, No Jumps:

I 2.3306a 0.0559a 0.4905a 1.7690a 0.1934a * * * * * * * * 0.000 0
II 2.9712a 0.0279b 0.6850a 1.4301a 0.1351a * * * * * * * * 0.000 0
III 2.4659a 0.0232a 0.6239a 1.3117a 0.1388a * * * * * * * * 126.9a 6
III 2.6781a 0.0396a 0.4698a 1.7758a 0.1674a * * * * * * 0.0001a * 10.94c 5
III 2.6917a 0.0394a 0.4699a 1.7849a 0.1668a * * * * * * * 0.0001a 11.06c 5

Drift, Leverage and Jumps:

IV 3.7082b 0.0811a 0.4280 2.3712 0.2161 0.1350 -0.5422 0.0438 13.891a * 0.0012 * * 6.899a 1
V 5.3100 0.0042 1.5996 2.2868 0.4518 -0.1119 0.1542 0.0035 40.248a * 0.0015 * * 40.49a 1
VI 5.0016a 0.0172a 0.3509a 4.0755a 0.2221a 0.0171 -0.1237a 0.0494a 0.2165a -0.4298a 0.0198a * * 63.55a 3
VI 2.3771a 0.0111a 0.4877a 2.0350a 0.2228a -0.2616a -0.0010 0.0499a 0.0615a -0.3440a 0.1063a 0.0005a * 25.20a 2
VI 3.7075a 0.0146a 0.4150a 3.0636a 0.2556a -0.1235a -0.0160b 0.0485a 0.0849a -0.5052a 0.0446a * 0.0001a 51.17a 2

Table 3: Indirect inference estimates of the TFSV model with jumps and leverage under MN in (39)-(42). Several restrictions on the full model
are considered. The asterisk indicates that the parameter is not estimated. The auxiliary model adopted for each structural specification is
indicated in the first column. a, b and c stand for significance at 1%, 5% and 10% respectively. The last columns report the value of the criterion
function, Ξ(ζ̂), and the difference q − p− h, with represent the degrees of freedom of the χ2 distribution.
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When instead we look at the estimated second moment of the jumps, that is E[J(t)2] = λµ2τ +
λ(σ2τ + µ2τ ), we note that it is quite low and equal to 0.0143 and 0.0275, when MN is included in
the structural model. In turns, this implies that the average jump contribution to the total return
variability of the jump term is estimated between 1.47% and 3.31%. Interestingly, when the MN is
modeled as a bid-ask bound, the estimated jump variability is close to zero, while the parameter
ξ is very high, meaning that the variability that otherwise would be attributed to the jumps is
instead due to the bouncing between bid and ask prices. Indeed, in absence of MN, the estimated
jump average variability is 0.0529, which is associated to a relative jump contribution to return
variability of 7.54%, a result in line with the values reported by Huang and Tauchen (2005). In this
case, the jump component is responsible for a significant portion of the total return variation so
that the estimates of the long-run mean, ω, are much smaller than those obtained without jumps.
This means that part of the gap between the unconditional mean of BPV 5s and RV 5s is attributed
to the jump term, see Table 2. On the other hand, the fit of the model is not optimal in all cases,
as the criterion function is still too large compared to the Ξ critical values. Notably, when the
MN is modeled as bid/ask spread, the criterion function is minimized at 25.20, while when it is
modeled as i.i.d. Gaussian noise, the criterion function is minimized at 51.17. An explanation
for this difference in the model fit is due to the inability of the contamination method based
on i.i.d. Gaussian noise to provide a realistic setup for the generation of high frequency returns
under the presence of jumps. Indeed, the log-prices at very high frequencies are characterized by
discreteness, due to the decimalization and rounding effects, making difficult to disentangle the
volatility signal from MN and jumps. This misspecification is responsible for the fact that the
criterion function is minimized far from zero, and its value is only marginally lower for the i.i.d.
Gaussian noise than that obtained when noise is completely neglected, while the bid/ask spread
seems to be more coherent with a realistic data generating process for the high-frequency returns.
This evidence confirms the importance of the correct specification of the contamination term to
guarantee a good fit. Unfortunately, generating log-prices under a decimalization scheme is not
a viable solution in the indirect inference framework as it induces discreetness in the observed
log-price thus masking the impact of changes in the SV parameters on the continuous dynamics
and leading to problems of identification. As a consequence, the numerical Jacobian of the binding
function, necessary for the calculation of the standard errors, contains many values near zero and
it is almost singular. This is very informative and may indicate that alternative structural models,
involving for example pure-jump Lévy processes as in Barndorff-Nielsen and Shephard (2001) or
trawl processes as in Barndorff-Nielsen et al. (2014), may be better suited to model stock returns
at very high-frequencies and could possibly be estimated by indirect inference.

6 Conclusions

This paper studies the inconsistency problem of indirect inference estimator caused by measure-
ment error in the observed series. We show that this inconsistency is originated by a mismatch
between the binding function implied by the observed data and that obtained by simulation. We
propose a general method to deal with this error-in-variable problem in the indirect inference frame-
work. The solution is to jointly estimate the nuisance parameters of the error term distribution and
the structural ones. Hence, the simulated series used to match the auxiliary parameters must be
contaminated by the noise. Under standard assumptions, this estimator is consistent and asymp-
totically normal. We show that ARMA models contaminated by i.i.d. noise can be estimated by
indirect inference when the autoregressive order of the signal is larger than the moving average.
This results may be helpful when estimating economic and financial models by indirect inference,
when the variables have an ARMA plus noise reduced form. One of these cases is represented
by the Heston SV model, for which we prove that the HAR-RV auxiliary model guarantees the
identification. Monte Carlo simulations show the viability of the proposed method in this frame-
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work and highlights the trade-off between bias reduction and efficiency as the sampling frequency
changes. We also show that the Heston SV model with jumps and leverage can be identified by
a multivariate model for daily returns, RV and signed jump variation. The empirical application
illustrates the practical usefulness of the proposed methodology and the need for a correct specifi-
cation of the conditional distribution of the microstructure noise term. A detailed analysis of the
robustness/sensitivity of the indirect inference estimation to misspecifications of the measurement
error is left to future research.
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A Proofs

A.1 A consistent and asymptotically normal indirect inference estimator with

ME

Assumption 4 Similarly to Gouriéroux et al. (1993), we assume that:

i. the normalized function QT (x
(s)
T (ζ), β) uniformly converges in (ζ, β) to a deterministic func-

tion Q∞(ζ, β) when T diverges.

ii. The limit function Q∞(ζ, β) has a unique maximum with respect to β. The maximum is
b(ζ) = argmaxβ∈BQ∞(ζ, β).

iii. The functions QT (x
(s)
T (ζ), β) and Q∞ are differentiable with respect to β.

iv. The only solution of the asymptotic first order condition is associated with β0 = b(ζ0).

v. b(ζ) is a one-to-one (locally injective) function and ∂b(ζ0)
∂ζ′ is a full-column rank matrix.

Proposition A.1 Under Assumptions 1-4 the indirect inference estimator ζ̂ST is consistent. More-
over, under regularity conditions, for T → ∞ and S fixed, the indirect inference estimator ζ̂ST is
asymptotically normal, with √

T (ζ̂ST − ζ0)
d→ N

(

0,W (S,Ω)
)

(A.1)

where W (S,Ω) is given in Gouriéroux and Monfort (1996, p.70).

Proof : See Gouriéroux et al. (1993).
The proof Proposition A.1 follows directly from the results in Gouriéroux et al. (1993).

A.2 Proof of Proposition 3.1

Let q = m + 2 and p + 1 = 3 + r + l, with q ≥ p + 1. Given the AR(m) model in (19), the
OLS estimates of β = (φ0, φ1, . . . , φm)′ converges in probability, when T diverges, to Q−1

ZZQZX (see
Proposition 8.10.1 and Theorem 8.1.1 in Brockwell and Davis, 1991), while

p lim
T→∞

σ̂2e = QXX −QXZQ
−1
ZZQZX

where

QZZ =















1 µx µx . . . µx
µx γx(0) + µ2x γx(1) + µ2x . . . γx(m− 1) + µ2x
µx γx(1) + µ2x γx(0) + µ2x . . . γx(m− 2) + µ2x
...

...
µx γx(m− 1) + µ2x γx(m− 2) + µ2x . . . γx(0) + µ2x















and QXZ = [µx, γx(1) + µ2x, . . . , γx(m) + µ2x] = Q′
ZX . Since we assume that E(ut) = 0, then

µx = µ ≡ E[yt]. The variance and the autocovariances of xt are QXX ≡ γx(0) = γ(0) + σ2u and
γx(k) = γ(k) when k 6= 0, where γ(k) = Cov[yt, yt−k]. Thus the binding function is

b(ζ) =

[

Q−1
ZZQZX

QXX −QXZQ
−1
ZZQZX

]

. (A.2)

In order to find the Jacobian matrix of b(ζ) consider the differential for each component of b(ζ).
Since

d(Q−1
ZZQZX) = (dQ−1

ZZ)QZX +Q−1
ZZ(dQZX)

= −(Q−1
ZZdQZZQ

−1
ZZ)QZX +Q−1

ZZdQZX
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and given that vec(ABCD) = (D′C ′ ⊗A)vec(B) for suitably dimensioned matrices, where the vec
operator transforms a matrix into a vector by stacking the columns of the matrix one underneath
the other,

dvec(Q−1
ZZQZX) = −(Q′

ZXQ
−1
ZZ ⊗Q−1

ZZ)dvec(QZZ) +Q−1
ZZ

∂QZX

∂ζ ′
dζ

=
[

−(Q′
ZXQ

−1
ZZ ⊗Q−1

ZZ)
∂vec(QZZ)

∂ζ ′
+Q−1

ZZ

∂QZX

∂ζ ′

]

dζ

The differential of the second component of b(ζ) is

d[QXX ]− d[QXZQ
−1
ZZQZX ] = d[QXX ]− d[QXZ ]Q

−1
ZZQZX −QXZd[Q

−1
ZZ ]QZX −QXZQ

−1
ZZd[QZX ]

= d[QXX ]−
{

QXZd[Q
−1
ZZ ]QZX

}

− 2
{

QXZQ
−1
ZZd[QZX ]

}

where

d[QXX ] =
∂QXX

∂ζ ′
dζ,

QXZd[Q
−1
ZZ ]QZX = −QXZ(Q

−1
ZZdQZZQ

−1
ZZ)QZX = −tr

(

QXZ(Q
−1
ZZdQZZQ

−1
ZZ)QZX

)

= −vec(QZXQXZ)
′(Q−1

ZZ ⊗Q−1
ZZ)

∂vecQZZ

∂ζ ′
dζ

and
{

QXZQ
−1
ZZd[QZX ]

}

= QXZQ
−1
ZZ

∂(QZX)

∂ζ ′
dζ

Finally,

d[QXX ]−d[QXZQ
−1
ZZQZX ] =

[

∂QXX

∂ζ ′
+ vec(QZXQXZ)

′(Q−1
ZZ ⊗Q−1

ZZ)
∂vecQZZ

∂ζ ′
− 2QXZQ

−1
ZZ

∂QZX

∂ζ ′

]

dζ.

The Jacobian matrix is

∂b(ζ)

∂ζ ′
=

[

−(Q′
ZXQ

−1
ZZ ⊗Q−1

ZZ)
∂vecQZZ

∂ζ′ +Q−1
ZZ

∂QZX

∂ζ′
∂QXX

∂ζ′ + vec(QZXQXZ)
′(Q−1

ZZ ⊗Q−1
ZZ)

∂vecQZZ

∂ζ′ − 2QXZQ
−1
ZZ

∂QZX

∂ζ′

]

.

it can be written as

∂b(ζ)

∂ζ ′
=

[

0
∂QXX

∂ζ′

]

+

[

−(Q′
ZXQ

−1
ZZ ⊗Q−1

ZZ) Q−1
ZZ

vec(QZXQXZ)
′(Q−1

ZZ ⊗Q−1
ZZ) −2QXZQ

−1
ZZ

]

[

∂vecQZZ

∂ζ′
∂QZX

∂ζ′

]

= A+BC

The rank of A is p + 1 no matter what it is the value of l and r. The rank of B is m + 2 which
is larger by assumption than p + 1. It follows that the rank of ∂b(ζ0)/∂ζ

′ depends on the column
rank of the ((m+1)2 + (m+1))× (p+1) matrix C. The rows of the matrix C contain the partial
derivatives of µ2 + γ(k), k = 0, 1, . . . ,m with respect to c, α = (α1, . . . , αl)

′, ϕ = (ϕ1, . . . , ϕr)
′, σ2ε

and σ2u, i.e.
[

∂(µ2+γx(k))
∂c

∂(µ2+γx(k))
∂α′

∂(µ2+γx(k))
∂ϕ′

∂(µ2+γx(k))
∂σ2

ε

∂(µ2+γx(k))
∂σ2

u

]
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where

∂(µ2x + γx(k))

∂c
=

2c

(1−∑r
i=1 αi)2

∂(µ2x + γx(k))

∂α′ = 2µ
∂µ

∂α′ +
∂γ(k)

∂α′

∂(µ2x + γx(k))

∂ϕ′ =
∂γ(k)

∂ϕ′

∂(µ2x + γx(k))

∂σ2ε
=
∂γ(k)

∂σ2ε

∂(µ2x + γx(k))

∂σ2u
=
∂γx(k)

∂σ2u
=

{

1 k = 0

0 k 6= 0

First, consider the case of ARMA(1,0). The rows of C have the following expression

ck =
[

∂(µ2+γx(k))
∂c

∂(µ2+γx(k))
∂α1

∂(µ2+γx(k))
∂σ2

ε

∂(µ2+γx(k))
∂σ2

u

]′
.

If C has reduced rank then Cw = 0 for w 6= 0, i.e. there exists a vector w = [w1, w2, w3w4]
′ such

that c′kw = 0 for all rows of C. The partial derivatives in ck are

∂(µ2 + γx(k))

∂c
=

2c

(1− α1)2

∂(µ2 + γx(k))

∂α1
= 2µ

∂µ

∂α1
+
(

kαk−1
1 γ(0) + αk

1

∂γ(0)

∂α1

)

∂(µ2 + γx(k))

∂σ2ε
= αk

1

∂γ(0)

∂σ2ε

The reduced rank condition implies

w1

(∂(µ2 + γx(0))

∂c

)

+ w2

(∂(µ2 + γx(0))

∂α1

)

+ w3

(∂(µ2 + γx(0))

∂σ2ε

)

+ w4 = 0 for k = 0

and for k > 0

w1

(∂(µ2 + γx(k))

∂c

)

+ w2

(∂(µ2 + γx(k))

∂α1

)

+ w3

(∂(µ2 + γx(k))

∂σ2ε

)

= 0.

Equating the two expressions above

w2

[

kαk−1
1 γ(0) + αk

1

(∂γ(0)

∂α1
− ∂γx(0)

∂α1

)]

+ w3
∂γx(0)

∂σ2ε
(ak − 1) = w4

it is easy to see that w4 varies with k which implies that cannot exist any vector w 6= 0 which lies
in the null column subspace of C. We conclude that in the case of ARMA(1,0) the column rank of
C is full. Now, we show that when r = l = 1, on the contrary, the rank of C is smaller than p+ 1.
In this case it is easy to show that there exists a vector w 6= 0 such that Cw = 0. For ARMA(1,1)
the rows of ∂b(ζ)/∂ζ ′ consist of

[

∂(µ2+γx(k))
∂c

∂(µ2+γx(k))
∂α1

∂(µ2+γx(k))
∂ϕ1

∂(µ2+γx(k))
∂σ2

ε

∂(µ2+γx(k))
∂σ2

u

]

,

where the variance and the autocovariances are

γx(0) = σ2ε
1 + ϕ2

1 + 2α1ϕ1

1− α2
1

+ σ2u
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γ(k) = σ2εα
k−1
1

(α1 + ϕ1)(1 + α1ϕ1)

1− α2
1

k > 1

with

∂γ(k)

∂ϕ1
= σ2εα

k−1
1

(1 + α1ϕ1) + α1(α1 + ϕ1)

1− α2
1

∂γ(k)

∂σ2ε
= αk−1

1

(α1 + ϕ1)(1 + α1ϕ1)

1− α2
1

.

The vector w that is orthogonal to the rows of C is

w = (0, 0, 1,−σ2ε
(1 + α1ϕ1) + α1(α1 + ϕ1)

(α1 + ϕ1)(1 + α1ϕ1)
, w5)

′

where

w5 = σ2ε
(1 + α1ϕ1) + α1(α1 + ϕ1)

(α1 + ϕ1)(1 + α1ϕ1)

∂γ(0)

∂σ2ε
− ∂γ(0)

∂ϕ1
.

For the case r < l an analogous argument shows that the column rank of C is reduced. Thus when
r ≤ l the rank of C is smaller than p+ 1.

A.3 Proof of Proposition 4.1

The HAR-RV model can be written as an AR(22) with linear restrictions on the autoregressive
parameters

xt = α0 + α1xt−1 + α2xt−2 + . . .+ α22xt−22 + et (A.3)

where α0 = φ1, α1 = (φ2+φ3/5+φ4/22), {α2, ..., α5} = (φ3/5+φ4/22) and {α6, ..., α22} = (φ4/22).
Let R be the 23× 4 matrix with the linear restrictions, then a compact expression for α is α = Rφ.
The restricted AR(22) model in (A.3) can be estimated by OLS imposing the restriction contained
in the matrix R. The (23× 4) matrix R is

R =



































1 0 0 0
0 1 1

5
1
22

0 0 1
5

1
22

0 0 1
5

1
22

0 0 1
5

1
22

0 0 1
5

1
22

0 0 0 1
22

0 0 0 1
22

...
...

...
...

0 0 0 1
22



































. (A.4)

The OLS estimate of φ is

φ̂T =

[

R′
(

∑

t

ztz
′
t

)

R

]−1

R′
∑

t

(ztxt)

where zt = (1, xt−1, . . . , xt−22)
′. Under standard assumptions, it can be shown that 1

T

∑

t(ztz
′
t)

p→
E[ztz

′
t] ≡ QZZ , where

QZZ =















1 µ µ . . . µ
µ γ(0) + µ2 γ(1) + µ2 . . . γ(21) + µ2

µ γ(1) + µ2 γ(0) + µ2 . . . γ(20) + µ2

...
...

...
...

...
µ γ(21) + µ2 γ(20) + µ2 . . . γ(0) + µ2














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and µ = E[xt]. The probability limit of α̂ is therefore

p lim
T→∞

α̂T = Q−1
ZZQZX

QZX = E[ztxt] = [µ, µ2 + γ(1), . . . , µ2 + γ(22)]′ and QXX = E[x2t ] = γ(0) + µ2. The limit of φ̂T

p lim
T→∞

φ̂T =

[

R′p lim
T→∞

(

∑

t

ztz
′
t

)

R

]−1

R′p lim
T→∞

∑

t

(ztxt)

=
[

R′QZZR
]−1

R′QZX

The matrix QZZ and the vector QZX both depend on the structural parameters ζ. The estimator
of the variance of et is

σ̂2e,T =

∑

t ê
2
t

T
p lim
T→∞

σ̂2e,T = QXX −QXZR(R
′QZZR)

−1R′QZX .

Then the binding function results to be

b(ζ) =

[

[R′QZZR]
−1R′QZX

QXX − [QXZR(R
′QZZR)

−1R′QZX ]

]

To calculate the derivative of b(ζ) with respect to ζ we use the differential of b(ζ):

d{
[

R′QZZR
]−1

R′QZX} = d{
[

R′QZZR
]−1}R′QZX +

[

R′QZZR
]−1

R′d{QZX} (A.5)

The differential of first term in the RHS of (A.5)

d{
[

R′QZZR
]−1}R′QZX = −(R′QZZR)

−1d{R′QZZR}(R′QZZR)
−1R′QZX

= −(R′QZZR)
−1R′d{QZZ}R(R′QZZR)

−1R′QZX ,

taking the vec of both sides

vec
[

d{
[

R′QZZR
]−1}R′QZX

]

= vec
[

−(R′QZZR)
−1R′d{QZZ}R(R′QZZR)

−1R′QZX

]

= −
[

QXZR(R
′QZZR)

−1R′ ⊗ (R′QZZR)
−1R′

]

dvec(QZZ)

= −
[

QXZR(R
′QZZR)

−1R′ ⊗ (R′QZZR)
−1R′

]∂vecQZZ

∂ζ ′
dvecζ

Thus

d{
[

R′QZZR
]−1

R′QZX} =
{

−
[

QXZR(R
′QZZR)

−1R′ ⊗ (R′QZZR)
−1R′

]∂vecQZZ

∂ζ ′
+ (R′QZZR)

−1R′∂QZX

∂ζ ′

}

dζ.

Now, the differential of the last row in b(ζ)

d{QXX − [QXZR(R
′QZZR)

−1R′QZX ]} = d{QXX} − d{[QXZR(R
′QZZR)

−1R′QZX ]}

with

d{QXX} =
∂QXX

∂ζ ′
dζ
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d{[QXZR(R
′QZZR)

−1R′QZX ]} = 2[QXZR(R
′QZZR)

−1R′d{QZX}] + [QXZRd{(R′QZZR)
−1}R′QZX ]

= 2[QXZR(R
′QZZR)

−1R′d{QZX}]
−QXZR(R

′QZZR)
−1R′d{QZZ}R(R′QZZR)

−1R′QZX

The second element in the previous expression can be rewritten, using the trace operator, as

QXZR(R
′QZZR)

−1R′d{QZZ}R(R′QZZR)
−1R′QZX

= tr(QXZR(R
′QZZR)

−1R′d{QZZ}R(R′QZZR)
−1R′QZX)

= vec(QZXQXZ)
′[(R(R′QZZR)

−1R′)⊗ (R(R′QZZR)
−1R′)]dvec(QZZ).

The complete expression for the differential of the last row of b(ζ) is then

d{QXX−[QXZR(R
′QZZR)

−1R′QZX ]} =
∂QXX

∂ζ ′
dζ − 2[QXZR(R

′QZZR)
−1R′]

∂QZX

∂ζ ′
dζ

+ vec(QZXQXZ)
′[(R(R′QZZR)

−1R′)⊗ (R(R′QZZR)
−1R′)]

∂vecQZZ

∂ζ ′
dζ

The Jacobian matrix of b(ζ)

∂b(ζ)

∂ζ ′
=

[

−
[

QXZR(R
′QZZR)

−1R′ ⊗ (R′QZZR)
−1R′

]

∂vecQZZ

∂ζ′
+ (R′QZZR)

−1R′ ∂QZX

∂ζ′

∂QXX

∂ζ′
+ vec(QZXQXZ)

′[(R(R′QZZR)
−1R′)⊗ (R(R′QZZR)

−1R′)]∂vecQZZ

∂ζ′
− 2[QXZR(R

′QZZR)
−1R′]∂QZX

∂ζ′

]

In order to prove that the Jacobian matrix has full-column rank, i.e. equal to 4, we focus on the
matrix (as in the Proof of Proposition 3.1)

C =

[

∂vecQZZ

∂ζ′
∂QZX

∂ζ′

]

.

This matrix contains the partial derivatives of the variance and the autocovariances of the RVt
in the case of the Heston model, see (31). Let denote cj the row of C which contains the partial
derivative of γ(j), i.e.

cj =
[

∂γ(j)
∂κ 2µ+ ∂γ(j)

∂ω
∂γ(j)
∂ς 2µ∆+ ∂γ(j)

∂σ2
ν

]′
.

The matrix C has reduced column rank if there exists a vector w = [w1, w2, w3, w4]
′ 6= 0 such that

c′jw = 0

and this must hold for all rows of C, that is Cw = 0. Since

∂γ(j)

∂σ2ν
= 0 for j > 0

we have that for j > 0

w1
∂γ(j)

∂κ
+ w2

(

2µ+
∂γ(j)

∂ω

)

+ w3

(

2µ∆+
∂γ(j)

∂ς

)

= 0 (A.6)

and for j = 0

w1
∂γ(0)

∂κ
+ w2

(

2µ+
∂γ(0)

∂ω

)

+ w3
∂γ(0)

∂ς
+ w4

(

2µ∆+
∂γ(0)

∂ς

)

= 0. (A.7)
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Now equating (A.6) and (A.7), we get

w1

[∂γ(j)

∂κ
− ∂γ(0)

∂κ

]

+ w2

[∂γ(j)

∂ω
− ∂γ(0)

∂ω

]

+ w3

[∂γ(j)

∂ς
− ∂γ(0)

∂ς

]

− w4
∂γ(0)

∂σ2ν
= 0. (A.8)

where the expressions in parenthesis are functions of j. This means that the value of w4 which
satisfies (A.8) is

w4 =
[∂γ(0)

∂σ2ν

]−1
{

w1

[∂γ(j)

∂κ
− ∂γ(0)

∂κ

]

+ w2

[∂γ(j)

∂ω
− ∂γ(0)

∂ω

]

+ w3

[∂γ(j)

∂ς
− ∂γ(0)

∂ς

]

}

which is obviously not constant since it depends on j. Thus the only vector w which satisfies (A.8)
is the null vector. We can conclude that the matrix C has full column rank.

Lemma A.1 (Moments of the compound Poisson process) Consider the compound Poisson process

J(t) =
∑N(t)

j=1 τj, where N(t) is a homogeneous Poisson process with parameter λ > 0 where the

jump size is time invariant with τj ∼ i.i.d.N(µτ , σ
2
τ ). The first four moments of J(t) are

E[J(t)] = λµτ t

E[J(t)2] = λ2µ2τ t
2 + λ(σ2τ + µ2τ )t

E[J(t)3] = (λ3t3 + 3λ2t2 + λt)µ3τ + 3(λ2t2 + λt)σ2τµτ

E[J(t)4] = (λ4t4 + 6λ3t3 + 7λ2t2 + λt)µ4τ + 6(λ3t3 + 3λ2t2 + λt)µ2τσ
2
τ + 3(λ2t2 + λt)σ4τ

Proof. Since the Gaussian distribution is closed with respect to the sum, it follows that J(t)|N(t) =
j ∼ i.i.d.N(jµτ , jσ

2
τ ). Therefore, the s-th moment of J(t) is given by the following formula

E[J(t)s] =
∞
∑

j=0

exp(−λt)(λt)j
j!

E
[

τ sj |Nt = j
]

, s = 1, 2, ... (A.9)

where E[τ sj |N(t) = j] is the s-th moment of a Gaussian distribution with mean jµτ and variance

jσ2τ . Integrating out the dependence on the Poisson process gives the desired result.
When the compound Poisson process is Jt,i over the interval ∆, the moments are

E[Jt,i] = ∆λµτ

E[J2
t,i] = ∆2λ2µ2τ +∆λ(σ2τ + µ2τ )

E[J3
t,i] = (∆3λ3 + 3∆2λ2 +∆λ)µ3τ + 3(∆2λ2 +∆λ)σ2τµτ

E[J4
t,i] = (∆4λ4 + 6∆3λ3 + 7∆2λ2 +∆λ)µ4τ

+ 6(∆3λ3 + 3∆2λ2 +∆λ)µ2τσ
2
τ + 3(∆2λ2 +∆λ)σ4τ .
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