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Abstract

A two-stage forecasting approach for long memory time series is introduced. In the

first step we estimate the fractional exponent and, applying the fractional differencing

operator, we obtain the underlying weakly dependent series. In the second step, we

perform the multi-step ahead forecasts for the weakly dependent series and obtain

their long memory counterparts by applying the fractional cumulation operator. The

methodology applies to stationary and nonstationary cases. Simulations and an

application to seven time series provide evidence that the new methodology is more

robust to structural change and yields good forecasting results.

Keywords: Forecasting, Spurious Long Memory, Structural Change, Local Whittle

JEL classification: C22, C53

1. Introduction

The issue of analysing economic and other series which possess hyperbolically

decaying autocorrelations has long been of concern in the time series analysis litera-

ture. The work of Granger (1980), Granger and Joyeux (1980) and Hosking (1981),
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among others, has been influential in the study and modelling of such long memory

series; see Beran (1994) and Baillie (1996) for an extensive survey of this field.

There has been a major debate on the estimation of long memory series in both

full and semi parametric setups, e.g. see, among others, Fox and Taqqu (1986),

Sowell (1992), Robinson (1995), Beran et al. (1998), Robinson (2006), Shimotsu and

Phillips (2006), Abadir, Distaso and Giraitis (2007) and Hualde and Robinson (2011)

for more details.

However, the topic of forecasting long memory series is still growing. Diebold and

Lindner (1996), Chan and Palma (1998), Bhansali and Kokoszka (2002), Bhardwaj

and Swanson (2006) and Baillie et al. (2012), among others, have been concerned

with predictions from ARFIMA models. A well-known approach is to obtain the

predictions by using a truncated version of the infinite autoregressive representation

of the model. Peiris (1987) and Peiris and Perrera (1988) discuss computationally

feasible ways for calculating these predictions and Crato and Ray (1996) and Poskitt

(2007) analyse information criteria in order to determine the lag of the autoregression.

In this paper, we suggest the use of a two-stage forecasting approach (TSF). The

TSF is a simple and intuitive methodology. To begin with, we estimate the long

memory parameter with any consistent estimator. Then we apply the fractional dif-

ferencing operator which results in the underlying weakly dependent series. Finally,

we compute the multi-step ahead forecasts for the latter and we apply the fractional

cumulation operator1 in order to obtain the corresponding forecasts for the original

long memory series. A similar approach has been adopted by Papailias et al. (2013)

who are concerned with the bootstrapping of long memory series.

Our claim is that forecasts of the underlying weakly dependent series when trans-

lated to their long memory equivalents should provide, on average, smaller forecast

errors, given that the weakly dependent series is less persistent, and hence, models

are able to provide better forecasts. Therefore, TSF avoids any “loss” of information

which might be the case when employing the truncation of the infinite AR represen-

tation of the model.

It should be noted that we are not concerned with the nature of the estimation

of the series, i.e. full or semi parametric methods, and hence we do not discuss their

1This is the inverse of the fractional differencing operator.
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advantages and/or disadvantages. We rely simply on the consistency of the estima-

tors to carry out our forecasting methodology. In our simulations and applications

we use the Fully Extended Local Whittle (FELW) of Abadir, Distaso and Giraitis

(2007), however other consistent estimators can be used equivalently.

A common issue that often arises when working with real time series which might

exhibit long memory is the possibility of structural change. This is commonly referred

to as spurious long memory. In such cases the change(s) in the structure of the

series might be mistaken as long memory or it might even be a co-existence of

strong dependence and structural change. This poses threats in the analysis and,

consequently, forecasting of the series. Diebold and Inoue (2001) is among the first

studies in the field that jointly analyse the phenomena of long memory and structural

change and prove how structural change can be misinterpreted as long memory.

Lazarovà (2005), Berkes et al. (2006), Ohanissian et al. (2008), Qu (2011), Shao

(2011) and Iacone et al. (2013), among others, develop tests to accommodate the

spurious long memory effect.

But, how should the applied researcher forecast series which might exhibit spu-

rious long memory? What happens if the tests fail to distinguish between pure

long memory and structural change? Wang et al. (2013) suggest that a simple au-

toregressive (AR) model should be used in the forecasting as it approximates well an

ARFIMA process subject to a mean shift or a change in the long memory parameter.

In this paper we show via simulations that a simple AR model used in the second

step of the hereby suggested TSF methodology results in accurate and more robust

forecasts when applied to long memory series with a break in the mean or a change

in the long memory parameter. This result is useful to practitioners who can employ

the methodology even when there is a possibility of spurious long memory. An

empirical exercise in seven real time series illustrates the applicability and advantages

of the TSF methodology, and in some cases the truncated version of the infinite AR

representation of the model, in an applied setup.

The rest of the paper is organised as follows: Section 2 provides some basic

definitions and the algorithm of the proposed forecasting methodology. Section 3

introduces the structural change in long memory series and discusses the simulation

results. Section 4 is concerned with the empirical exercise and Section 5 summarises

the conclusions.
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2. Long Memory: Concepts and Forecasting

2.1. Existing Framework

We start by considering the following general fractionally integrated model

(1− L)d xt = ut, t = 1, ...T (1)

where L denotes the lag operator, d is the degree of long memory and ut is a weakly

dependent, or short-range dependent, process. Hence, in the above setup xt is I (d)

and ut is I (0). We define I (0) processes such that their partial sums converge weakly

to Brownian motion; for more information regarding the definition of I(0) processes

see Stock (1994), Davidson and DeJong (2000), Davidson (2002), Müller (2008) and

Davidson (2009) among others. We model ut as

ut = ψ (L) εt (2)

with E (εt) = 0, E (ε2
t ) = σ2

ε and E (εtεs) = 0 for all t 6= s. ψ (λ) is given by ψ (λ) =∑∞
i=0 ψiλi where ψi is a sequence of real numbers such that ψ0 = 1,

∑∞
i=0 |ψi| <

∞ and
∑∞

i=0 ψiλi 6= 0. In the case where ut follows a stationary and invertible

ARMA (p, q) model then xt becomes the widely known ARFIMA (p, d, q) model.

For |d| < 0.5 the process is stationary and invertible, whereas for d > 0.5 the

process is nonstationary. The above defined process belongs to the Type I fractionally

integrated process; see Marinucci and Robinson (1999) and Robinson (2005) for

definitions regarding nonstationary processes and Beran (1994) and Baillie (1996)

for a more detailed introduction to long memory processes.

We can write xt as an infinite autoregression process as

xt =
∞∑
i=1

βixt−i + ut (3)

where βi = Γ(i−d)
Γ(i+1)Γ(d)

with Γ (·) being the gamma function. The above results follow

from the definition of the fractional differencing operator, (1− L)d, that is formally

valid for any real d; see Hosking (1981) for more details.

The standard forecasting method in the literature suggests that, given knowl-

edge of the parameters and using Equation (3), the theoretical s-step ahead forecast
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conditional on the available information at time T is given by

x̂T+s =
∞∑
i=1

βixT+s−i. (4)

Assuming that xT can be modelled as an ARFIMA(p,d,q) process a feasible way to

implement the above in practice is to estimate the parameters and use a truncated

version of the autoregressive weights obtained from the canonical representation of

the model. Then, the s-step ahead forecast is given by,

x̂T+s =
P∑
i=1

β̂ixT+s−i. (5)

Crato and Ray (1996) and Poskitt (2007) discuss different alternatives in choosing

the optimal lag order P such that Equation (4) is well approximated.

In a recent study Wang et al. (2013) suggest to fit an autoregressive model directly

to the long memory series choosing the order, k, via a selection criterion, i.e. AIC,

Akaike (1969), or, Cp, Mallows (1973). This results in,

x̂T+s =
k∑
i=1

β̂cixT+s−i. (6)

It is important to notice that β̂i and β̂ci differ, because the former is a function of

the parameters from the ARFIMA(p,d,q) specification computed as in Equation (3).

Wang et al. (2013) conclude that AIC provides better results and hence it is also

adopted in this study. Recently the topic of selection of long memory time series

models has been analysed by Baillie et al. (2013).

2.2. A Two-Stage Forecasting Algorithm

Along the lines discussed in the previous subsection, we propose the use of a two-

stage forecasting methodology, TSF , to tackle the issue of forecasting long memory

series. The general idea, first, is to obtain the forecasts for the underlying weakly

dependent series. Secondly, by using the fractional cumulation operator, we obtain

the corresponding forecasts for the long memory series. A similar approach has been
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applied to the bootstrap of such series in Papailias et al. (2013). The TSF procedure

can be implemented in the following steps:

1. Estimate the long memory parameter (full or semi parametrically) and obtain

d̂. Note that we assume d̂ to be a consistent estimator of d with
(
d̂− d

)
=

Op

(
T−δ

)
, with delta > 0. Then, apply the differencing operator and obtain

the weakly dependent process, ηt,

ηt = (1− L)d̂ xt = (1− L)d̂−d ut, (7)

where obviously ηt is I
(
d̂− d

)
.

2. Fit an AR (P ) to ηt. The 1-step ahead forecast is given by

η̂T+1 =
P̂∑
i=1

π̂iηT+1−i. (8)

3. Expand the original weakly dependent series ηt including the above forecast,

thus η̃t = (η1, ..., ηT , η̂T+1)′. Apply the fractional cumulation operator using

d̂ and obtain the vector which includes the 1-step ahead forecast for the long

memory series,

x̃t = (1− L)−d̂ η̃t, t = 1, ..., T, T + 1. (9)

The 1-step ahead forecast is then given by x̃T+1.

4. By continuing to repeat the above steps, we can recursively obtain the s-step

ahead forecast for the long memory series, x̃T+s.

In what follows we use two choices for the lag P : (i) one using the AIC, and (ii)

using a high-order with respect to the sample size P̂ =
⌊
(lnT )2⌋ ; b·c denotes integer

part.

The estimate d̂ can be obtained by MLE or a semi parametric method; see Fox

and Taqqu (1986), Sowell (1992), Robinson (1995), Beran et al. (1998), Robinson

(2006), Shimotsu and Phillips (2006) and Abadir, Distaso and Giraitis (2007) among

others. For reasons of simplicity and robustness to possible model misspecifications

we choose to use a semi parameteric method to obtain d̂, the Fully Extended Local

Whittle (FELW) of Abadir, Distaso and Giraitis (2007).
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A simple definition of the FELW, which can be found in Abadir, Distaso and

Giraitis (2011), is the following. Let there be d ∈ (p− 1/2, p+ 1/2], for p = 0, 1, 2, ....

The periodogram of the xt series is defined as

IFELW (ωj) =
∣∣1− eiωj

∣∣−2p
I(1−L)dyt

(ωj). (10)

Then the FELW is obtained by minimising,

RFELW (·) = ln

[
1

m

m∑
j=1

j2dIFELW (ωj)

]
− 2d

m

m∑
j=1

ln(j). (11)

The above estimator is consistent for stationary and nonstationary series. We use

the common choice of m = bT 0.5c bandwidth in the above estimation.

3. Simulation Experiments

As mentioned in the Introduction, a common issue that often arises in the analysis

of real time series is the presence of structural change. This poses threats to the time

series analysis as a series with a break in the mean might be mistaken as long memory

and vice versa. Therefore, the use of a robust forecasting methodology is necessary

to tackle the issue of spurious long memory. In this study we compare the predicting

ability of the previously mentioned methods in simulated series with: (i) no structural

change (pure long memory), (ii) a break in the mean of the series, (iii) a break in

the long memory parameter. Therefore, we forecast the following processes,

yt =

µ+ xt, 1 ≤ t ≤ b

µ+ ∆ + xt, b+ 1 ≤ t ≤ T
, (12)

and

yt =

µ+ xd1
t , 1 ≤ t ≤ b

µ+ xd2
t , b+ 1 ≤ t ≤ T

, (13)

with µ being the mean of the series, xd1
t = (1− L)−d1 ut and xd2

t = (1− L)−d2 ut for

d1 6= d2. Obviously if in the case of Equation (12) ∆ = 0 or in the case of Equation
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(13) d1 = d2 there is no structural change. For reasons of simplicity we choose to

use only one break in the mean or in the long memory parameter.

We report results from the following DGPs:

• Case 1: ARFIMA(0,d,0) using Equation (12) with d ={0, 0.2, 0.4}, T ={128,

256, 512}, b = 0 (no break) and b = 0.5T with ∆. = 1.5 (Table 1),

• Case 2: ARFIMA(1,d,0) using Equation (12) with φ = 0.5, d ={0, 0.2, 0.4},
T ={128,256,512}, b = 0 (no break) and b = 0.5T with ∆. = 1.5 (Table 2),

• Case 3: ARFIMA(1,d,0) using Equation (13) with φ ={0, 0.5}, T = 512,

b = 0.5T and (d1, d2) ={(0,0.4), (0.4, 0), (0.2, 0.4), (0.4, 0.2)} (Table 3).

It should be noted that we do not experiment with nonstationary series as the

structural break tests introduced in the empirical section of the paper are designed

for stationary series only. For all Cases we report the results when there is no break

(b = 0) and when a break occurs at the half of the sample. More results for different

break points (b = 0.25T , b = 0.75T ) are available on request, however the qualitative

conclusion does not change. Finally, the results for T = 1024 are omitted for two

reasons: (i) the qualitative conclusion does not change compared to T = 512 and (ii)

to mimic the conditions faced by the applied research who often deals with limited

data availability.

For each series realisation we compute the 1 to 12-step ahead forecasts using the

following methodologies:

• AR(AIC): fit a simple autoregressive model with order chosen by the AIC as

in Equation (6) and Wang et al. (2013),

• AR(P ): fit a simple autoregressive model with order P̂ =
⌊
(lnT )2⌋ and proceed

as above,

• AR(AIC)−Trunc.: truncate the infinite summation up to a specific lag chosen

by the AIC as in Equation (5),

• AR(P )−Trunc.: truncate the infinite summation up to lag P̂ =
⌊
(lnT )2⌋ and

proceed as above,

8



• AR(AIC)−TSF : use the TSF algorithm and fit an autoregressive model with

order chosen by AIC to the underlying weakly dependent process,

• AR(P ) − TSF : use the TSF algorithm and fit an autoregressive model with

order P̂ =
⌊
(lnT )2⌋ to the underlying weakly dependent process.

Then, we count which method results in the smallest squared forecast error 2.

This process is repeated for R=1000 series realisations according to the relevant

DGP. For reasons of brevity we report h ={1, 3, 6, 12} steps ahead.

Starting with the left panels of Table 1 we see that in the case of no break, thus

simple (fractional) white noise, AR(AIC) produces the smallest forecast error for

all steps-ahead. The next best method seems to be AR(AIC)-TSF. This result is

expected given the simplicity of the process.

However, if we look at the results of series with a break in the mean, on the

right panel of Table 1 , we see that AR(AIC)-TSF and AR(P)-TSF produce the best

results with the TSF methods producing the smallest forecast error for more than

40% of the times across all forecast horizons. This result is very encouraging and

provides a first evidence on the robustness of the TSF methodology. Of course, we

have to ask ourselves why this is the case. At first, it is easy to understand that

simple AR models (incl. high order models) fail to produce accurate forecasts in the

presence of a break. Next, we see that the truncated versions of the AR expansion

produce moderate results and, in that case, the AR(P)-Trunc. is better. This leads

to the fact that the break is mistaken as long memory.

But what does TSF do and results in more accurate forecasts? In the first step

of the TSF we estimate the “long memory” and we fractionally filter the series.

This means that the break presence is “smoothed” in the filtered series where the

simple AR models can produce better forecasts. This is the key aspect of the TSF

methodology that makes it favourable compared to its competitors. As we move to

DGPs with long memory and a break in the mean we see that TSF methods are

better, on average, followed by the simple AR methods. This result across all sample

sizes.

2The squared forecast error for the s-step ahead forecast is defined as (yT+s − ŷT+s)
2

where
yT+s is the true value and ŷT+s is the forecast estimate.
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Investigating the ARFIMA(1,d,0) DGP with φ = 0.5 in Table 2 we see that the

previously discussed qualitative conclusion still holds and the evidence in favour of

the TSF is even stronger. Now, we also find cases with series without break, i.e.

pure long memory, where the TSF methodology works better. In the medium and

large sample sizes, T = 256 and T = 512, the AR(AIC)-TSF is better compared

to all other methods providing a smaller forecast error in more than 20% of the

times. In the cases of spurious long memory with a break in the mean we see that

AR(AIC)-TSF is still better, on average, across all sample sizes, values of d and

forecast horizons.

The so far analysis is concerned with a break in the mean of the series. Table

3 reports the results when there is a break in the long memory parameter. Here

we see that AR(AIC) seems to be the best choice of method as it produces the

smallest forecast error more than 20% of the times followed by the AR(AIC)-TSF

and the AR(P)-TSF. However, if we sum the number of times the simple methods,

i.e. AR(AIC)+AR(P), and the TSF methods, i.e. AR(AIC)-TSF + AR(P)-TSF,

produce the smallest forecast error we see that the TSF methods are better in the

majority of cases (with a success rate of more than 40%).

Therefore, now that we have enough evidence and a better understanding of the

reasons that AR(AIC) and AR(AIC)-TSF result in better performance, a question

to consider is what happens if we exclude all other methods in the simulation com-

parison. This is what we do in Table 4. Table 4 reports the results for all cases

analysed above using series with a break in the mean or the long memory parameter

with the two competing methods. In the cases of a break in the mean (top panel of

Table 4) we see that AR(AIC)-TSF is a clear winner and it should always be cho-

sen. However, looking at the bottom panel of the table we see that AR(AIC)-TSF

is better in the cases where there is an increase in the long memory parameter after

the break, i.e. (0,0.4) and (0.2,0.4) cases.

From the above simulations we can conclude that the hereby suggested TSF

methodology is more robust to structural change and provides better forecasts if

breaks occur in the mean or the long memory parameter. Therefore it should be

chosen by the applied researcher who is often unaware of the true nature of the

series, i.e. pure or spurious long memory.
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4. Empirical Exercise

In the last part of this study we examine the applicability of the TSF methodology

in real time series. We report results for seven series where the distinction between

pure and spurious long memory is difficult. These include four US macroeconomic

series, the German CPI inflation, the UK M1 and the seasonally adjusted monthly

temperatures for the northern hemisphere. In details:

• Series 1-4: US Macroeconomic series. Monthly observations of NAPM

Production Index, Employees on Non-farm Payrolls - Total Private, Employee

Hours in Non-ag. Establishments (AR, bil. hours), NAPM New Orders Index.

These are included in the well known Stock and Watson (2006) dataset. The

data was collected from the authors’ website and has been transformed appro-

priately as in Stock and Watson (2006). It spans from 1960-02-01 to 2003-12-01

(527 observations).

• Series 5: DE CPI inflation. Period-to-period monthly change of the Ger-

man CPI. The data was collected using Macrobond Financial Software and

spans from 1991-01-01 to 2013-02-01 (266 observations).

• Series 6: UK M1. Period-to-period monthly change of the UK M1. The data

was collected using Macrobond Financial Software and spans from 1986-09-01

to 2013-02-01 (318 observations).

• Series 7: Climate Series. Seasonally Adjusted Monthly Temperatures

for the Northern Hemisphere (in degrees Centigrade, as a deviation from the

monthly averages) for the Northern Hemisphere. This data is chosen because

it has been extensively analysed in the literature; see Smith (1993), Beran

(1994), Deo and Hurvich (1998), Shao (2011). The series was collected from

C. M. Hurvich’s website. It spans from 1854-1989 (1632 observations).

In the above cases we try to think from the applied researcher’s point of view and

perform a rolling forecasting exercise which tends to be more robust to structural

changes. We compute the 1- to 12- step ahead forecasts for an out-of-sample cross-

validation period of N = 96 observations (i.e. 8 years) for all series apart from Series

7 where we use 120 observations (i.e. 10 years) due to data availability. The length
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of the window in each case is given by (T −N − hmax + 1) where hmax = 12. At the

end of the forecasting exercise we collect N forecasts for all forecast horizons using

a simple AR(1) model and the previously analysed AR(AIC), AR(P), AR(AIC)-

Trunc., AR(P)-Trunc., AR(AIC)-TSF and AR(P)-TSF. We compare the predicting

ability of the models by reporting the Root Mean Squared Forecast Error (RMSFE)3

of each model relative to the AR(1) which acts as a simple benchmark. Of course,

AR(1) serves as a reference point which still allows for the inter-comparison of the

other methods.

In Table 5 we report the FELW estimates along with the results of two tests for

a break in the mean of the series. At first we apply the average F-type test (aveF)4

as in Andrews (1993) and Andrews and Ploberger (1994) with p-values obtained as

in Hansen (1997). This is a simple test and does not account for long memory. The

second test we employ is introduced in Shao (2011) and tests for a break in the mean

of the series in the presence of long memory. However, it must be noted that the

test is valid only for stationary cases. The p-values are interpolated from Table 1 in

Shao (2011). The null hypothesis for both tests is ”no structural change” and the

significance level is 90%. For reasons of brevity we report h ={1, 3, 6, 12} steps

ahead.

In Table 5 we see that Shao (2011) test rejects the null hypothesis in all series

indicating that there is a break in the mean. In most cases this is accompanied by

a large degree of long memory (apart from Series 1 and Series 4 where d̂ is 0.04

and 0.063 respectively). This is inline with the aveF test which also rejects the null

hypothesis in all series apart from Series 3.

A first glance at Table 6 shows that the worst performers are the simple AR(AIC)

and AR(P) across all series. Analysing Series 1 we see that the AR(AIC)-TSF

provides the smallest forecast error across all forecasting horizons followed by the

AR(AIC)-Trunc. This fact is not surprising based on the simulation discussion of

the previous section.

3The RMSFE for the s-step ahead forecast across N evaluation periods is defined as√
1
N

∑
(yT+s − ŷT+s)

2
where yT+s is the true value and ŷT+s is the forecast estimate.

4The supF and exponential, expF, produce almost identical results and are omitted. This part
of computations is based on the R package “strucchange”.
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For Series 2 and 3 we observe minor differences between AR(AIC)-Trunc. and

AR(AIC)-TSF, with the latter being superior to the rest of the methods. For Series

4 and 5 we see that AR(AIC)-TSF is slightly better in shorter horizons and for Series

6 we see that AR(AIC)-TSF produces the smallest forecast error across all horizons.

For the last case of Series 7 we observe that all methods perform similarly. This

might be explained by the fact that there is plenty of data available and the window

length is much larger resulting in better estimation and more accurate forecasting.

In shorter horizons, h = 1 and h = 3, we see that AR(AIC)-TSF performs slightly

better than the other methods however in longer horizons, h = 6 and h = 12, we

see that AR(AIC)-Trunc. and AR(P)-Trunc. provide the forecasts with the smallest

error.

The empirical results in conjunction with the simulation results point out that

the truncated and the TSF methods should be considered in practical analysis with

the TSF being more robust in breaks in the mean and the long memory parameter.

5. Concluding Remarks

In this paper, we investigate the topic of forecasting long memory time series

focusing on spurious long memory cases. We introduce a two-stage approach, which

consists of applying the fractional differencing operator using any consistent estimate

of the long memory parameter to retrieve the underlying short memory series. Then

we obtain forecasts of this weakly dependent series in the usual way and, using the

fractional cumulation operator, we obtain the corresponding forecast estimates for

the strongly dependent series.

A detailed simulation study suggests that the new methodology is robust to

breaks in the mean or the long memory parameter and should be employed by the

applied researcher who is unaware of the true structure of the data. The empirical

exercise provides evidence that the two-stage approach and, in some cases, the trun-

cated version of the canonical AR representation of the model. However, as shown

by the simulation study in this paper, the latter is not suggested when breaks occur

in the memory parameter.

The issues of multiple breaks, breaks in the short-run dynamics and/or joint

breaks in the mean, long memory and short-run dynamics are not covered here and
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should be further investigated as there exist a large number of real time series with

frequent changes in the structure.
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Table 4: Comparing two of the methods; results in percent.

ARFIMA(1, d, 0), N = 512, b = 0.5
φ = 0 φ = 0.5

d h AR(AIC) AR(AIC)− TSF AR(AIC) AR(AIC)− TSF
0 1 46.6 53.4 42.3 57.7

3 43.7 56.3 40.4 59.6
6 46.1 53.9 36 64
12 47.4 52.6 36.6 63.4

0.2 1 45.3 54.7 42.1 57.9
3 46.4 53.6 40.7 59.3
6 44.3 55.7 39.7 60.3
12 47.1 52.9 36.6 63.4

0.4 1 47.9 52.1 48.9 51.1
3 49.4 50.6 49.9 50.1
6 49.8 50.2 50.4 49.6
12 49.6 50.4 54.5 45.5

(d1, d2) h AR(AIC) AR(AIC)− TSF AR(AIC) AR(AIC)− TSF
(0, 0.4) 1 49 51 46.1 53.9

3 48.5 51.5 46 54
6 47.4 52.6 45 55
12 46.7 53.3 46.3 53.7

(0.4, 0) 1 52 48 52.3 47.7
3 52.8 47.2 57.5 42.5
6 54.4 45.6 62.7 37.3
12 54.9 45.1 64.9 35.1

(0.2, 0.4) 1 48.2 51.8 48.5 51.5
3 45.5 54.5 48.4 51.6
6 46 54 48.5 51.5
12 45.1 54.9 47.6 52.4

(0.4, 0.2) 1 51.8 48.2 51.6 48.4
3 50.7 49.3 54.1 45.9
6 53.6 46.4 56.1 43.9
12 57.8 42.2 60.3 39.7
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Table 5: Various statistics for seven real time series.

Series d̂ Shao (2011) Critical Shao (2011) Statistic aveF
1 0.040 29.935 32.255 0.000
2 0.250 36.509 39.237 0.005
3 0.242 36.317 39.384 0.319
4 0.063 30.660 31.225 0.000
5 0.455 42.476 100.738 0.000
6 0.165 33.849 40.044 0.003
7 0.484 43.748 76.275 0.000

Series 1: NAPM Production Index, Series 2: Employees on Non-farm Payrolls
- Total Private, Series 3: Employee Hours in Non-ag. establishments (AR, bil.
hours), Series 4: NAPM New Orders Index, Series 5: CPI Germany, Series 6:
M1 UK, Series 7: Seasonally Adjusted Monthly Temperatures for the Northern
Hemisphere. Level of Significance: 90%
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Table 6: Forecasting results for seven real time series.

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
Series 1 Series 2

AR(AIC) 1.542 1.616 1.653 1.672 0.804 0.687 0.764 0.971
AR(P ) 1.961 2.061 2.104 2.160 0.964 0.914 1.149 1.494

AR(AIC)− Trunc. 0.659 0.603 0.621 0.694 0.761 0.618 0.632 0.778
AR(P )− Trunc. 0.720 0.690 0.737 0.869 0.860 0.760 0.892 1.171
AR(AIC)− TSF 0.624 0.568 0.594 0.721 0.765 0.635 0.657 0.799
AR(P )− TSF 0.653 0.624 0.733 0.966 0.815 0.700 0.770 0.955

Series 3 Series 4
AR(AIC) 0.936 0.964 1.000 0.992 1.393 1.504 1.510 1.525
AR(P ) 1.028 1.050 1.086 1.137 1.793 1.992 2.008 2.087

AR(AIC)− Trunc. 0.918 0.961 1.004 0.982 0.709 0.625 0.633 0.708
AR(P )− Trunc. 0.975 1.025 1.038 1.046 0.731 0.671 0.695 0.823
AR(AIC)− TSF 0.920 0.963 1.007 0.978 0.700 0.612 0.636 0.795
AR(P )− TSF 0.968 1.023 1.034 1.023 0.694 0.621 0.664 0.884

Series 5 Series 6
AR(AIC) 0.971 0.968 0.960 1.018 1.000 1.000 1.003 1.004
AR(P ) 1.196 1.103 1.022 1.197 1.029 1.024 1.027 1.014

AR(AIC)− Trunc. 0.925 0.919 0.919 0.971 0.963 0.962 0.968 0.984
AR(P )− Trunc. 1.108 1.048 0.986 1.131 1.023 1.018 1.018 1.006
AR(AIC)− TSF 0.901 0.938 1.011 0.956 0.944 0.940 0.948 0.982
AR(P )− TSF 1.031 1.023 1.001 1.020 0.998 0.984 0.987 0.988

Series 7
AR(AIC) 0.936 0.891 0.867 0.908
AR(P ) 0.936 0.889 0.859 0.897

AR(AIC)− Trunc. 0.932 0.884 0.854 0.896
AR(P )− Trunc. 0.933 0.884 0.853 0.893
AR(AIC)− TSF 0.919 0.880 0.967 1.645
AR(P )− TSF 0.920 0.879 0.960 1.633

Series 1: NAPM Production Index, Series 2: Employees on Non-farm Payrolls - Total Private, Series
3: Employee Hours in Non-ag. establishments (AR, bil. hours), Series 4: NAPM New Orders Index,
Series 5: CPI Germany, Series 6: M1 UK, Series 7: Seasonally Adjusted Monthly Temperatures for
the Northern Hemisphere.

25



Research Papers 
2013 

 
 

 

 

 

 

2014-38: Søren Johansen: Times Series: Cointegration  

2014-39: Søren Johansen and Bent Nielsen: Outlier detection algorithms for least 
squares time series regression 

 

2014-40: Søren Johansen and Lukasz Gatarek: Optimal hedging with the cointegrated 
vector autoregressive model 

 

2014-41: Laurent Callot and Johannes Tang Kristensen: Vector Autoregressions with 
Parsimoniously Time Varying Parameters and an Application to Monetary 
Policy 

 

2014-42: Laurent A. F. Callot, Anders B. Kock and Marcelo C. Medeiros: Estimation and 
Forecasting of Large Realized Covariance Matrices and Portfolio Choice 

 

2014-43: Paolo Santucci de Magistris and Federico Carlini: On the identification of 
fractionally cointegrated VAR models with the F(d) condition 

 

2014-44: Laurent Callot, Niels Haldrup and Malene Kallestrup Lamb: Deterministic and 
stochastic trends in the Lee-Carter mortality model 

 

2014-45: Nektarios Aslanidis, Charlotte Christiansen, Neophytos Lambertides and 
Christos S. Savva: Idiosyncratic Volatility Puzzle: Infl‡uence of Macro-Finance 
Factors 

 

2014-46: Alessandro Giovannelli and Tommaso Proietti: On the Selection of Common 
Factors for Macroeconomic Forecasting 

 

2014-47: Martin M. Andreasen and Andrew Meldrum: Dynamic term structure models: 
The best way to enforce the zero lower bound 

 

2014-48: Tim Bollerslev, Sophia Zhengzi Li and Viktor Todorov: Roughing up Beta: 
Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock 
Returns 

 

2914-49: Tim Bollerslev, Viktor Todorov and Lai Xu: Tail Risk Premia and Return 
Predictability 

 

2014-50: Kerstin Gärtner and Mark Podolskij: On non-standard limits of Brownian semi-
stationary 

 

2014-51: Mark Podolskij : Ambit fields: survey and new challenges  

2014-52: Tobias Fissler and Mark Podolskij: Testing the maximal rank of the volatility 
process for continuous diffusions observed with noise 

 

2014-53: Cristina M. Scherrer: Cross listing: price discovery dynamics and exchange 
rate effects 

 

2014-54: Claudio Heinrich and Mark Podolskij: On spectral distribution of high 
dimensional covariation matrices 

 

2014-55: Gustavo Fruet Dias and Fotis Papailias: Forecasting Long Memory Series 
Subject to Structural Change: A Two-Stage Approach 

 

 


	Introduction
	Long Memory: Concepts and Forecasting
	Existing Framework
	A Two-Stage Forecasting Algorithm

	Simulation Experiments
	Empirical Exercise
	Concluding Remarks

