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Abstract

In this paper, we present a test for the maximal rank of the volatility process in
continuous diffusion models observed with noise. Such models are typically applied
in mathematical finance, where latent price processes are corrupted by microstructure
noise at ultra high frequencies. Using high frequency observations we construct a test
statistic for the maximal rank of the time varying stochastic volatility process. Our
methodology is based upon a combination of a matrix perturbation approach and
pre-averaging. We will show the asymptotic mixed normality of the test statistic and
obtain a consistent testing procedure.
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1 Introduction

In the last twenty years, asymptotic theory for high frequency data has received a great
deal of attention in probability and statistics. This is mainly motivated by financial appli-
cations, where observations of stock prices are recorded very frequently. In an ideal world,
i.e. under no-arbitrage conditions, price processes must follow an Itô semimartingale,
which is a celebrated result of Delbaen and Schachermayer [4]. We refer to a monograph
[8] for a comprehensive study of limit theorems for Itô semimartingales and their manifold
applications in statistics.
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Despite the aforementioned theoretical result, at ultra high frequencies, the financial
data is contaminated by microstructure noise such as rounding errors, bid-ask bounces and
misprints. One of the standard models for the microstructure noise is an additive i.i.d.
process independent of the latent price (see e.g. [3, 14] among many others; an extension
of this model can be found in [6]). More formally, the model is given as

Yti = Xti + εti with dXt = btdt+ σtdWt, (1.1)

where (Xt)t∈[0,T ] is a d-dimensional continuous Itô semimartingale, ti = i∆n and (εt)t∈[0,T ]

is a d-dimensional i.i.d process independent of X with

E[εt] = 0 and E[εtε
?
t ] =: Σ ∈ Rd×d. (1.2)

We are in the framework of infill asymptotics, i.e. ∆n → 0 while T remains fixed. This
paper is devoted to the test for the maximal rank of the co-volatility matrix ct = σtσ

?
t

of the unobserved diffusion process X. We remark that this is an equivalent formulation
of the following problem: What is the minimal amount of independent Brownian motions
required for modeling the d-dimensional diffusion X? Answering this question might give
a direct economical interpretation of the financial data at hand. Furthermore, testing for
the full rank of ct is connected to testing for completeness of financial markets.

In a recent paper [7], the described statistical problem has been solved in a continuous
diffusion setting without noise (we also refer to an earlier article [5] for a related problem).
The main idea is based upon a matrix perturbation method, which helps to identify
the rank of a given matrix. The maximal rank of the stochastic co-volatility process
(ct)t∈[0,T ] is then asymptotically identified via a certain ratio statistic, which uses the
scaling property of a Brownian motion. Clearly, the test statistic becomes invalid in the
framework of continuous diffusion models observed with noise. To overcome this problem
we apply the pre-averaging approach, which has been originally proposed in [6, 11]. As
the name suggests, weighted averages of increments of the process Y are built over a
certain window in order to eliminate the influence of the noise to some extent. This in
turn gives the possibility to infer the co-volatility process (ct)t∈[0,T ]. The size of the pre-

averaging window kn is typically chosen as kn = O(∆
−1/2
n ) and objects as the integrated

co-volatility
∫ T

0 ctdt can be estimated with the convergence rate of ∆
−1/4
n , which is known

to be optimal.

At this stage, we would like to stress that combining the pre-averaging approach and
the matrix perturbation method is by far not trivial. There are mainly two problems that

need to be solved. First of all, when using the optimal window size of kn = O(∆
−1/2
n )

in the pre-averaging approach, the diffusion and the noise parts have the same order,
and it becomes virtually impossible to distinguish the rank of the co-volatility from the
unknown rank of the covariance matrix Σ. Hence, we will choose a proper sub-optimal
window size to still obtain a reasonable convergence rate for the test statistic. The second
and more severe problem is that the ratio statistic proposed in [7] heavily relies on the
scaling property of a Brownian motion. This scaling property is not shared by an i.i.d.
noise process introduced in (1.2). Thus, a much deeper probabilistic analysis of the main
statistic is required to come up with a valid testing procedure.
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The paper is organized as follows. Section 2 gives the probabilistic description of the
model, presents the main assumptions and defines the testing hypotheses. The background
on matrix perturbation and pre-averaging method is demonstrated in Section 3. Section
4 presents the main results of the paper. Section 5 is concerned with a simulation study.
All proofs are collected in Section 6.

2 The setting and main assumptions

We start with a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), on which all stochastic
processes are defined. As indicated at (1.1) we observe the d-dimensional process Y = X+ε
at time points i∆n, i = 0, 1, . . . , [T/∆n]. The process X is given via

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs, (2.1)

where (bt)t∈[0,T ] is a d-dimensional drift process, (σt)t∈[0,T ] is a Rd×q-valued volatility
process and W denotes a q-dimensional Brownian motion. We introduce the notation

ct = σtσ
?
t , rt = rank(ct), Rt = sup

s∈[0,t)
rs.

We need more structural assumptions on the processes b and σ.

Assumption (A): The processes b and σ have the form

σt = σ0 +

∫ t

0
asds+

∫ t

0
vsdWs,

bt = b0 +

∫ t

0
a′sds+

∫ t

0
v′sdWs, (2.2)

vt = v0 +

∫ t

0
a′′sds+

∫ t

0
v′′sdWs,

where bt and a′t are Rd-valued, σt, at and v′t are Rd×q-valued, vt and a′′t are Rd×q×q-
valued, and v′′t is Rd×q×q×q-valued, all those processes being adapted. Finally, the processes
at, v

′
t, v
′′
t are càdlàg and the processes a′t, a

′′
t are locally bounded. 2

Notice that (A) is exactly the same assumption, which has been imposed in [7]. We
remark that, by enlarging the dimension q of the Brownian motion W if necessary, we
may assume without loss of generality that all processes X, b, σ, v are driven by the same
Brownian motion. In the framework of a stochastic differential equation, i.e. when bt =
h1(Xt) and σt = h2(Xt), assumption (A) is automatically satisfied whenever h1 ∈ C2(R)
and h2 ∈ C4(R) (due to Itô’s formula). We also remark that assumption (A) is rather
unusual in the literature. Indeed, for classical high frequency statistics, such as e.g. power
variations (cf. [2]), only the first line of (2.2) is required. However, when RT < d our
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test statistic, which will be introduced in Section 4, turns out to be degenerate and, in
contrast to classical cases, we require a higher order stochastic expansion of the increments
of X. This explains the role of the second and third line of (2.2). Finally, we specify our
assumptions on the noise process ε introduced at (1.2).

Assumption (E): The i.i.d. process (ε)t∈[0,T ] is (Ft)-adapted and independent of a, a′,
a′′, v′, v′′, W , hence also independent of b, σ and X. Furthermore, it is Gaussian, meaning
that εt ∼ Nd(0,Σ) and E[εsε

?
t ] = 0 for all s, t ∈ [0, T ] with s 6= t. 2

Remark 2.1. Theoretically, we could discuss a more general structure of the noise. In
particular, we could give up the assumption of the Gaussianity. What we really require
is the mutual independence of the noise at different times as well as the existence of the
moments up to a certain order. Also the independence assumption between the noise ε
and the semimartingale X could be generalized; see e.g. [6, 10] for an exposition of the
details. 2

Now, for any r ∈ {0, 1, . . . , d}, we introduce the following subsets of Ω:

Ωr
T := {ω ∈ Ω : RT (ω) = r}, Ω≤rT := {ω ∈ Ω : RT (ω) ≤ r}. (2.3)

Notice that the sets Ωr
T and Ω≤rT are indeed FT -measurable. This can be justified as

follows. The rank rt is the biggest integer r ≤ d such that the sum of the determinants
of the matrices (cijt )i,j∈J , where J runs through all subsets of {1, . . . , d} with r points, is
positive; see e.g. [5, Lemma 3]. Since the mapping t 7→ ct is continuous by assumption (A),
this implies that for any r the random set {t : rt(ω) > r} is open in [0, T ), so the mapping
t 7→ rt is lower semi-continuous. The very same argument proves that the random set

{t ∈ [0, T ) : RT (ω) = rt(ω)}

is non-empty and open for each ω ∈ Ω. Hence, this set has a positive Lebesgue measure,
which helps to statistically identify the maximal rank RT (in contrast to lower ranks
rt < RT , which might be attained at a single point on the interval [0, T ]).

The following discussion is devoted to testing the null hypothesis H0 : RT = r against
the alternative H1 : RT 6= r (or H0 : RT ≤ r against H1 : RT > r). Notice that this a
pathwise hypothesis, since we test whether a given path ω belongs to Ωr

T (or Ω≤rT ) or not.
It is in general impossible to know whether this hypothesis holds for another path ω′ ∈ Ω.

3 Matrix perturbation and pre-averaging approach

3.1 Matrix perturbation method

The matrix perturbation method is a numerical approach to the computation of the rank
of a given matrix. It has been introduced in [7] in the context of rank testing. To explain
the main idea of our method, we need to introduce some notation. Recall that d and q
are the dimensions of X and W , respectively. Let M denote the set of all d× d matrices
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and Mr, r ∈ {0, . . . , d}, the set of all matrices in M with rank r. Furthermore, let M′
be the set of all d× q matrices. For any matrix A we denote by Ai the ith column of A;
for any vectors x1, . . . , xd in Rd, we write mat(x1, · · · , xd) for the matrix in M whose ith
column is the column vector xi. For r ∈ {0, . . . , d} and A,B ∈M we define the quantity

Mr
A,B :=

{
G ∈M : Gi = Ai or Gi = Bi with #{i : Gi = Ai} = r

}
.

In other words, Mr
A,B is the set of all matrices G ∈ M with r columns equal to those of

A and the remaining d − r ones equal to those of B (all of them being at their original
places). We also define the number

γr(A,B) :=
∑

G∈Mr
A,B

det(G). (3.1)

We demonstrate the main ideas of the matrix perturbation approach for a deterministic
problem first. Let A ∈ M be an unknown matrix with rank r. Assume that, although
A is unknown, we have a way of computing det(A + λB) for all λ > 0 and some given
matrix B ∈ Md. The multi-linearity property of the determinant implies the following
asymptotic expansion

det(A+ λB) = λd−rγr(A,B) +O(λd−r+1) as λ ↓ 0. (3.2)

This expansion is the key to identification of the unknown rank r. Indeed, when γr(A,B) 6=
0 we deduce that

det(A+ 2λB)

det(A+ λB)
→ 2d−r as λ ↓ 0. (3.3)

However, it is impossible to choose a matrix B ∈M which guarantees γr(A,B) 6= 0 for all
A ∈Mr. To solve this problem, we can use a random perturbation. As it has been shown
in [7], for any A ∈Mr we have γr(A,B) 6= 0 almost surely when B is the random matrix
whose entries are independent standard normal (in fact, the random variable γr(A,B) has
a Lebesgue density). This is intuitively clear, because the multivariate standard normal
distribution does not prefer directions. It is exactly this idea which will be the core of our
testing procedure.

3.2 Pre-averaging approach

In this subsection, we briefly introduce the pre-averaging method; we refer to e.g. [6, 11]
for a more detailed exposition.

Let g : [0, 1] → R be a weight function with g(0) = g(1) = 0, which is continuous,
piecewise C1 with piecewise Lipschitz derivative g′ and

∫ 1
0 g

2(x)dx > 0. A canonical choice
of such a function is given by g(x) = min(x, 1− x); see [6] for its interpretation. Now, let
(kn)n≥1 be a sequence of positive integers representing the window size such that kn →∞
and un := kn∆n → 0. For any stochastic process V , we define the pre-averaged increments
via

V
n
i :=

kn−1∑
j=1

g

(
j

kn

)
∆n
i+jV = −

kn−1∑
j=0

(
g

(
j + 1

kn

)
− g

(
j

kn

))
V(i+j)∆n

, (3.4)



Testing the maximal rank of the volatility process 6

where ∆n
i V := Vi∆n −V(i−1)∆n

. Roughly speaking, this local averaging procedure reduces
the influence of the noise process when we apply it to the noisy diffusion process Y defined
at (1.1). Indeed, we may show that

X
n
i = OP(

√
kn∆n) and εni = OP(

√
1/kn),

where the first approximation is essentially justified by the independence of the increments
of W and the first identity of (3.4), and the second approximation follows from the i.i.d.
structure of the noise process and the second identity of (3.4). We clearly see that a large
kn increases the influence of the diffusion part X and diminishes the influence of the noise
part ε. However, in standard statistical problems, e.g. estimation of quadratic variation,
the optimal rate of convergence is obtained when the contributions of both terms are

balanced. This results in the choice of the window size kn with kn
√

∆n = θ + o(∆
1/4
n ),

where θ ∈ (0,∞). With this window size we deduce for instance that

√
∆n

[T/∆n]−kn+1∑
i=0

(Y
n
i )(Y

n
i )?

P−→ θψ2

∫ T

0
ctdt+ θ−1ψ1TΣ,

where the constants ψ1 and ψ2 are defined by

ψ1 :=

∫ 1

0
(g′(x))2dx, ψ2 :=

∫ 1

0
g2(x)dx,

(cf. [6]). The bias can be corrected via

Cnt =

√
∆n

θψ2

[T/∆n]−kn+1∑
i=0

(Y
n
i )(Y

n
i )? − ψ1∆n

2θ2ψ2

[T/∆n]∑
i=0

(∆n
i Y )(∆n

i Y )?
P−→
∫ T

0
ctdt,

and the statistic Cnt becomes a consistent estimator of the quadratic covariation of X with

convergence rate ∆
−1/4
n . This rate is known to be optimal.

As explained in the introduction, the optimal choice of the window size kn as introduced
above would not lead to a feasible testing procedure for the maximal rank RT . Due to the
complex structure of the test statistic, which will be introduced in Section 4, there is no
de-biasing procedure as above (when there are no further restrictions on the rank of the
covariance matrix Σ). For this reason we introduce the following window size kn:

kn∆2/3
n = θ + o(∆1/6

n ), θ ∈ (0,∞), un := kn∆n. (3.5)

Within the framework of our test statistic, this choice of kn leads to an optimal rate of

convergence, which becomes ∆
−1/6
n (although better rates of convergence are theoretically

possible when using alternative test statistics). We show the intuition behind this choice
in the next section. We remark that an easier choice of the window size would be kn =
O(∆

−3/4
n ), which would completely eliminate the influence of the noise process on the

central limit theorem. However, this would lead to a slower rate of convergence ∆
−1/8
n .

For this reason we dispense with the exact exposition of this case.
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4 Main results

4.1 Test statistic

In this subsection, we introduce a random perturbation of the original data and define the
main statistics. Following the basic ideas of [7] and the motivation of Subsection 3.1, we
define a d-dimensional ‘perturbation’ process X ′ by

X ′t = σ̃W ′t ,

where σ̃ is a positive definite deterministic d×d matrix and W ′ is a d-dimensional Brownian
motion. Without loss of generality, we may assume that W ′ is also defined on the filtered
probability space (Ω,F , (Ft)t∈[0,T ],P). Let G ⊂ F be the sub-σ-algebra, which is generated
by all processes appearing in (A) and by the noise process ε. We assume that W ′ is
independent of G. Now, we use X ′ to define the perturbed process

Zn,κt := Yt +
√
κunX

′
t, (4.1)

where κ = 1, 2 and the sequence un is defined at (3.5). In some sense, the perturbation
process X ′t plays the role of the random perturbation matrix B introduced after (3.3). As
we will see below, our two main statistics will be constructed at two different frequencies
∆n and 2∆n, which will be indicated by the constant κ = 1, 2.

Recall the definition of the pre-averaged quantity V
n
i introduced in (3.4) for a stochastic

process V . We sometimes write V (g)ni instead of V
n
i if we want to stress the dependency

of the term V
n
i on the weight function g. Furthermore, we use the notation V (g)n,κi to

indicate that the quantity V (g)ni is built using frequency κ∆n with κ = 1, 2, i.e.

V (g)n,κi =

kn−1∑
j=1

g

(
j

kn

)
(V(i+κj)∆n

− V(i+κ(j−1))∆n
). (4.2)

If V = Zn,κ defined at (4.1), we will slightly abuse the notation introduced in (4.2) and
use the convention Z(g)n,κi := Zn,κ(g)n,κi . Now, we define our main test statistics via

S(g)n,κT = 3dun

[T/3dun]−1∑
i=0

f

((
Z(g)n,κ((3i+κ−1)d+κ(j−1))kn

/√
κun

)
j=1,...,d

)
, (4.3)

for κ = 1, 2 with the test function f on (Rd)d given as

f(x1, . . . , xd) := det(mat(x1, . . . , xd))
2. (4.4)

Note that the summands in (4.3) use non-overlapping increments of the process Zn,κ, and
also the statistics Zn,1 and Zn,2 are based on distinct increments.

Remark 4.1. The statistic S(g)n,κT is similar in spirit to the one introduced in [7], where a
d-dimensional continuous Itô semimartingale without noise has been considered. Therein,
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the statistics Sn,κT defined in [7, Equation (2.13)], which use the raw increments instead of
pre-averaged ones, satisfy the following law of large numbers

Sn,2T

Sn,1T

P−→ 2d−RT .

This should be compared with the motivation described at (3.3). The latter convergence
asymptotically identifies the maximal rank RT . The crucial difference to our framework
is that this convergence is no longer valid when we use the statistics S(g)n,κT introduced
in (4.3). It relies on the fact that the noise process ε does not have the scaling property
of the driving Brownian motion W . To overcome this issue, we will not only use differ-
ent frequencies ∆n and 2∆n, but also two different weight functions g and h, which are
connected through certain identities. For this purpose a very thorough analysis of the
asymptotic behaviour of S(g)n,κT is required. 2

Remark 4.2. Let us explain the choice of the window size kn introduced at (3.5) and
the perturbation rate

√
κun. Under assumptions (A) and (E) we will prove the following

asymptotic decomposition for i = 0, . . . , [T/3dun]− 1

1
√
κun

mat
(
Z(g)n,κ(3i+κ−1)dkn

, · · · , Z(g)n,κ((3i+κ−1)d+κ(d−1))kn

)
(4.5)

= A(g)n,κi +
√
κun (B(1, g)n,κi +B(2, g)n,κi +B(3, g)n,κi ) + κunC(g)n,κi + κunD(g)n,κi ,

where the Rd×d-valued sequences A(g)n,κi , C(g)n,κi , D(g)n,κi and B(g)n,κi := B(1, g)n,κi +
B(2, g)n,κi +B(3, g)n,κi are tight. The matrix A(g)n,κi , which is the dominating term in the
expansion, is defined by

A(g)n,κi =
σ(3i+κ−1)dun√

κun
mat

(
W (g)n,κ(3i+κ−1)dkn

, · · · ,W (g)n,κ((3i+κ−1)d+κ(d−1))kn

)
,

while B(1, g)n,κi depends on b, v introduced in (2.2), B(2, g)n,κi comes solely from the
perturbation X ′ and B(3, g)n,κi is associated with the noise process ε (the third order term
C(g)n,κi is connected to a, v′, v′′ and the term D(g)n,κi depends on a, a′, a′′, v′, v′′, defined in
(2.2)). Since det(A(g)n,κi ) = 0 whenever RT < d, our statistic S(g)n,κT is degenerate in the
sense that the second order term enters the law of large numbers. At this stage, we realize

that the choice of the window size kn = O(∆
−2/3
n ) and the perturbation rate

√
κun creates

a balance between the second order term B(g)n,κi in the stochastic expansion coming from
the diffusion process, the noise process ε and the perturbation process X ′. The classical

choice kn = O(∆
−1/2
n ) would make the noise part one of the dominating terms, but in

this case, the estimation of the maximal rank RT would be virtually impossible since we
impose no assumptions on the covariance matrix Σ of the noise. On the other hand,

when kn = O(∆
−3/4
n ) the noise part would enter the third order term and thus would not

influence the limit theory. Although the asymptotic results become much easier in the

latter case, the convergence rate gets rather low (∆
−1/8
n ). Hence, within the framework of

our test statistic, the choice kn = O(∆
−2/3
n ) meets the balance between feasibility of the

testing procedure and the optimal rate of convergence.
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Clearly, B(g)n,κi plays the role of the perturbation matrix B defined in section 3.1 while
λ =
√
κun. Since it is impossible to guarantee that the matrices B(1, g)n,κi and B(3, g)n,κi

have full rank, we require the presence of the matrix B(2, g)n,κi to insure almost sure
invertibility of the sum. Thus, the perturbation process X ′ plays the role of regularization.
2

4.2 Notation

In order to state the limit theory for the statistics S(g)n,κT , we need to introduce some
notation. For any weight function g we define the quantities

ψ1(g) =

∫ 1

0
(g′(x))2dx, ψ2(g) =

∫ 1

0
g2(x)dx, (4.6)

ψ3(g) =

∫ 1

0
g(x)dx, ψ4(g) =

∫ 1

0
xg2(x)dx.

For r ∈ {0, 1, . . . , d}, we define the function Fr on (R2d)d by

Fr(v1, . . . , vd) = γr (mat(x1, . . . , xd),mat(y1, . . . , yd))
2 , vj =

(
xj
yj

)
∈ R2d, (4.7)

where γr was introduced at (3.1). Let W and W
′

be Brownian motions of dimen-
sion q and d, respectively, and let Θ = (Θi)i≥1 be a i.i.d. sequences of d-dimensional

standard normal random variables. W , W
′
, and Θ are defined on some filtered prob-

ability space (Ω,F , (F t)t≥0,P) and are assumed to be independent. Let M≥0 be the
space of all symmetric positive-semidefinite matrices ϕ ∈ M. We introduce the space
U =M′×M×Rdq2 ×Rd×M≥0, and let u = (α, β, γ, a, ϕ) ∈ U . By ϕ1/2 ∈M we denote
the matrix root of ϕ.

Now, for κ = 1, 2, we define the 2d-dimensional variables (explicitly writing the com-
ponents with l ∈ {1, . . . , d})

Ψ(u, g, κ)lj =
1√
κ

q∑
m=1

αlm
∫ κj

κ(j−1)
g(s/κ− (j − 1)) dW

m
s , (4.8)

Ψ(u, g, κ)d+l
j =

1

κ
al
∫ κj

κ(j−1)
g(s/κ− (j − 1)) ds (4.9)

+
1

κ

q∑
m,k=1

γlkm
∫ κj

κ(j−1)
g(s/κ− (j − 1))W

k
sdW

m
s

+
1√
κ

d∑
m=1

βlm
∫ κj

κ(j−1)
g(s/κ− (j − 1)) dW

′m
s

+
1

κ

(
ψ1(g)

θ3

)1/2 d∑
m=1

(
ϕ1/2

)lm
Θ
m
κj .
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Some explanations are in order to understand these definitions.

Remark 4.3. To get an intuition for the notation we remark that the components of
u ∈ U account for the processes in assumption (A) that will appear in the limit. This
means that α is related to σt, β to σ̃, γ to vt and a to bt. Finally, ϕ accounts for the
covariance structure of the noise and is associated with Σ. As motivated above we use
different rates in our procedure. Therefore, we also have to define the limit for the two
cases κ = 1, 2. 2

Remark 4.4. Note that the random-vectors Ψ(u, g, κ)i and Ψ(u, g, κ)j are uncorrelated
whenever i 6= j. 2

Using the notation at (4.7), we define for a weight function g, u = (α, β, γ, a, ϕ) ∈ U
and κ = 1, 2 the real-valued random variables

F r(u, g, κ) = Fr (Ψ(u, g, κ)1, . . . ,Ψ(u, g, κ)d) ,

and set

Γr(u, g, κ) = E
[
F r(u, g, κ)

]
, (4.10)

Γ′r(u, g, κ) = E
[
F r(u, g, κ)2

]
− Γr(u, g, κ)2.

Remark 4.5. Under the special assumption that ϕ = 0 (which corresponds to the sit-
uation without noise), the sequences (Ψ(u, g, 1)j)j≥1 and (Ψ(u, g, 2)j)j≥1 have the same
global law which implies also that Γr(u, g, 1) = Γr(u, g, 2) and Γ′r(u, g, 1) = Γ′r(u, g, 2).
This is not the case when ϕ 6= 0. Proposition 4.9 will demonstrate under which con-
ditions one can find another weight function h such that Γr(u, g, 1) = Γr(u, h, 2) and
Γ′r(u, g, 1) = Γ′r(u, h, 2) even in the general situation that ϕ 6= 0. 2

Remark 4.6. We have introduced the random variables Ψ(u, g, κ)j only for weight func-
tions, implying that g is continuous and piecewise C1 with a piecewise Lipschitz derivative
g′. As a matter of fact, we will often work with a discretized version gn of g defined as

gn(s) :=

kn−1∑
i=1

g

(
i

kn

)
1( i−1

kn
, i
kn

](s). (4.11)

Note that gn(0) = gn(1) = 0 and that gn converges to g uniformly on [0, 1]. By defini-
tion, gn fails to be a weight function as it is not continuous. Nevertheless, the integrals∫ 1

0 g
n(s)ds,

∫ 1
0 g

n(s)dW
m
s and

∫ 1
0 g

n(s)W
k
sdW

m
s still make sense. This corresponds to the

fact that ψl(g
n) introduced at (4.6) is well-defined for l = 2, 3, 4. Moreover, we have by a

Riemann approximation argument that

ψl(g
n) = ψl(g) +O(k−1

n ), l = 2, 3, 4.

For ψ1(gn), we must approximate the derivative and set

ψ1(gn) :=
1

kn

kn−1∑
i=0

g
(
i+1
kn

)
− g

(
i
kn

)
1/kn

2

= ψ1(g) +O(k−1
n ), (4.12)
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where the second identity follows again by a Riemann approximation argument. With this
convention, we can extend the notation and write Ψ(u, gn, κ)j , F r(u, g

n, κ), Γr(u, g
n, κ)

and Γ′r(u, g
n, κ), respectively. 2

4.3 Law of large numbers

In this subsection, we present the law of large numbers for the statistic S(g)n,κT . The quan-
tity Γr(u, g, κ) defined at (4.10) will essentially determine the limit. First, we demonstrate
how the terms Γr(u, g, κ) and Γ′r(u, g, κ) depend on the rank of the argument α. The
following lemma has been shown in [7, Lemma 3.1].

Lemma 4.7. Let u = (α, β, γ, a, ϕ) ∈ U with β ∈ Md and g be a weight function. Then,
if r ∈ {0, . . . , d} and κ = 1, 2, we deduce that

rank(α) = r =⇒ Γr(u, g, κ) > 0, Γ′r(u, g, κ) > 0, (4.13)

rank(α) < r =⇒ Γr(u, g, κ) = Γ′r(u, g, κ) = 0. (4.14)

The law of large numbers is as follows.

Theorem 4.8. Assume that conditions (A) and (E) hold. Let r ∈ {0, . . . , d} and g be a
weight function. Then, on Ωr

T and for κ = 1, 2, we obtain the convergence

(κun)r−dS(g)n,κT
P−→ S(r, g)κT :=

∫ T

0
Γr(σs, σ̃, vs, bs,Σ, g, κ)ds > 0. (4.15)

In view of Remark 4.1, Theorem 4.8 is not directly applicable since the limit S(r, g)κT
crucially depends on κ, meaning that generally S(r, g)1

T 6= S(r, g)2
T . In particular, the ratio

statistics S(g)n,2T /S(g)n,1T does not contain any information about the unknown maximal
rank RT . To make use of Theorem 4.8 we need a better understanding of the structure of
the functional Γr. The following proposition is absolutely crucial for our testing procedure.

Proposition 4.9. (i) Fix r ∈ {0, . . . , d}, u ∈ U and κ = 1, 2. Then there exist C∞-
functions τr,u,κ, τ

′
r,u,κ : R4 → R such that

Γr(u, g, κ) = τr,u,κ(ψ1(g), . . . , ψ4(g)), Γ′r(u, g, κ) = τ ′r,u,κ(ψ1(g), . . . , ψ4(g)) (4.16)

for any weight function g.
(ii) Let g and h be weight functions such that ψ1(h) = 4ψ1(g) and ψl(h) = ψl(g) for
l = 2, 3, 4. Then, for any r ∈ {0, . . . , d} and any u ∈ U , we obtain that

Γr(u, g, 1) = Γr(u, h, 2), Γ′r(u, g, 1) = Γ′r(u, h, 2).

Proposition 4.9(i) says that the quantity Γr(u, g, κ) does not depend on the entire func-
tion g, but only on the quantities ψl(g), l = 1, . . . , 4. But most importantly, Proposition
4.9(ii) and Theorem 4.8 imply the convergence

S(h)n,2T
S(g)n,1T

P−→ 2d−r on Ωr
T , (4.17)
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(a) gc from Example 4.10 with c = 8+
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(b) hc from Example 4.10 with c = 8+
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Figure 1: A pair of weight functions satisfying the conditions of Proposition 4.9(ii).

whenever the pair of weight functions g, h satisfies the conditions of Proposition 4.9(ii).
This opens the door to hypothesis testing. We now give an example of a pair of weight
function g, h which fulfills the conditions of Proposition 4.9(ii).

Example 4.10. We define the two auxiliary weight functions g̃(x) := max(0,min(x, 1−x))
and h̃(x) := max(0,min(ax, b(1−x))) with a = 2

2−
√

3
and b = 2

2+
√

3
. Then, a pair of weight

functions satisfying the conditions of Proposition 4.9(ii) is given by gc(x) := g̃(cx) and

hc(x) := h̃(cx− c+ 1) where c = 8+
√

3
8 (see Figure 1). Indeed, for c ≥ 1, we obtain that

ψ1(hc) = 4ψ1(gc) = 4c,

ψ2(hc) = ψ2(gc) =
1

12c
,

ψ3(hc) = ψ3(gc) =
1

4c
,

ψ4(hc) =
8c− 4−

√
3

96c2
, ψ4(gc) =

1

24c2
,

and for c = 8+
√

3
8 , we have 8c−4−

√
3

96c2
= 1

24c2
= 536−128

√
3

11163 . 2

Remark 4.11. From a statistical point of view and regarding the definition of the pre-
averaged increments in (3.4), we see that it is certainly not ideal to chose weight functions
which are locally constant. Nevertheless, Example 4.10 is an attempt to reduce the parts
where the weight functions are constant while still sticking to a rather simple ‘triangular’
form. 2

4.4 Central limit theorem and testing procedure

In order to provide a formal testing procedure associated with the convergence in prob-
ability at (4.17) we need to show a joint stable central limit theorem for the statistics
(S(g)n,1T , S(h)n,2T ). We say that a sequence of random variables Hn converges stably in law
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to H (Hn
dst−→ H), where H is defined on an extension (Ω̃, F̃ , P̃) of the original probability

space (Ω,F ,P), if and only if

lim
n→∞

E[φ(Hn)Z] = Ẽ[φ(H)Z]

for any bounded and continuous function φ and any bounded F-measurable random vari-
able Z. We refer to [1], [9] or [12] for a detailed study of stable convergence. Note that
stable convergence is a stronger mode of convergence than weak convergence, but it is
weaker than convergence in probability.

Now, let g and h be two weight functions satisfying the conditions of Proposition
4.9(ii). We define the statistic U(r, g, h)nT = (U(r, g, h)n,1T , U(r, g, h)n,2T ) via

U(r, g, h)nT =
1
√
un

(
ur−dn S(g)n,1T − S(r, g)1

T , (2un)r−dS(h)n,2T − S(r, h)2
T

)
. (4.18)

The following theorem is one of the most important results of the paper.

Theorem 4.12. Assume that conditions (A) and (E) are satisfied, the weight functions
g, h fulfill the assumptions of Proposition 4.9(ii) and RT (ω) ≤ r for some r ∈ {0, . . . d}.
Then we obtain the stable convergence

U(r, g, h)nT
dst−→MN (0, V (r, g, h)T ), (4.19)

where

V (r, g, h)T = diag

(
3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, g, 1)ds, 3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, h, 2)ds

)
(4.20)

is a diagonal matrix. MN (0, V (r, g, h)T ) denotes the two dimensional mixed normal dis-
tribution with G-conditional mean 0 and G-conditional covariance matrix V (r, g, h)T .

Note that the rate of convergence u
−1/2
n corresponds to ∆

−1/6
n for our choice of the

window size kn at (3.5). We remark that due to Proposition 4.9(ii), we know that
S(r, g)1

T = S(r, h)2
T such that the same centering term appears in both components on

the right-hand side of (4.18). Again thanks to Proposition 4.9(ii) we see that the two di-
agonal elements of V (r, g, h)T coincide. In order to obtain a feasible version of the stable
convergence in (4.19), we need to construct a consistent estimator of the G-conditional co-
variance matrix V (r, g, h)T . To this end, we define the following estimators for the ‘second
moments’:

V (g, h)n,11
T = 9d2un

[T/3dun]−1∑
i=0

f2

((
Z(g)n,1(3id+(j−1))kn

/√
un

)
j=1,...,d

)
, (4.21)

V (g, h)n,22
T = 9d2un

[T/3dun]−1∑
i=0

f2

((
Z(h)n,2(3id+d+2(j−1))kn

/√
2un

)
j=1,...,d

)
, (4.22)
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V (g, h)n,12
T = 9d2un

[T/3dun]−1∑
i=0

f

((
Z(g)n,1(3id+(j−1))kn

/√
un

)
j=1,...,d

)
× f

((
Z(h)n,2(3id+d+2(j−1))kn

/√
2un

)
j=1,...,d

)
,

(4.23)

where f is given at (4.4). Following the intuition from (4.17) we define an estimator
R̂(g, h)nT via

R̂(g, h)nT := d−
log
(
S(h)n,2T

/
S(g)n,1T

)
log 2

. (4.24)

Now, we obtain the following proposition.

Proposition 4.13. Assume that conditions (A) and (E) are satisfied and the weight
functions g, h fulfill the assumptions of Proposition 4.9(ii).
(i) Let r ∈ {0, . . . , d}. Then, on Ω≤rT :

(u2
n)r−dV (g, h)n,11

T
P−→ 3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, g, 1) + Γ2

r(σs, σ̃, vs, bs,Σ, g, 1)ds, (4.25)

(4u2
n)r−dV (g, h)n,22

T
P−→ 3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, h, 2) + Γ2

r(σs, σ̃, vs, bs,Σ, h, 2)ds, (4.26)

(2u2
n)r−dV (g, h)n,12

T
P−→ 3d

∫ T

0
Γr(σs, σ̃, vs, bs,Σ, g, 1)Γr(σs, σ̃, vs, bs,Σ, h, 2)ds. (4.27)

(ii) We have the (stable) central limit theorem

1
√
un

R̂(g, h)nT −RT√
V (n, T, g, h)

dst−→ Φ ∼ N (0, 1), (4.28)

where Φ is defined on an extension (Ω̃, F̃ , P̃) of the original probability space (Ω,F ,P) and
is independent of the σ-algebra G. The random variable V (n, T, g, h) is defined via

V (n, T, g, h) :=
V (g, h)n,11

T + 4R̂(g,h)nT−dV (g, h)n,22
T − 21+R̂(g,h)nT−dV (g, h)n,12

T

(S(g)n,1T log 2)2
. (4.29)

We remark that Proposition 4.13(ii) follows directly from Theorem 4.12, Proposition
4.13(i) and the delta method for stable convergence. For this, it is essential to realize that,
even though the estimator V (n, T, g, h) for the conditional variance is not G-measurable,
it converges to a G-measurable limit due to Proposition 4.13(i) and Theorem 4.8.

Notice also that due to Proposition 4.9(ii) the right-hand side of (4.25) and (4.26)
coincide and, moreover, that the right-hand side of (4.27) can be written as

3d

∫ T

0
Γ2
r(σs, σ̃, vs, bs,Σ, g, 1)ds.
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Remark 4.14. Instead of using the estimators for the second moments given in (4.21)
till (4.23), we could also use a more direct approach and consider

V ′(g)nT := 3d2un

[T/2dun]−1∑
i=0

{
f

((
Z(g)n,1(2id+j−1)kn

/√
un

)
j=1,...,d

)

−f
((

Z(g)n,1(2id+d+j−1)kn

/√
un

)
j=1,...,d

)}2

.

(4.30)

Notice that similar to Proposition 4.13(i) we have that

(u2
n)r−dV ′(g)nT

P−→ 3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, g, 1)ds. (4.31)

Then (4.28) also holds upon replacing V (n, T, g, h) defined at (4.29) by

V ′(n, T, g) :=
2V ′(g)nT

(S(g)n,1T log 2)2
. (4.32)

2

The feasible central limit theorem at (4.28) opens the door to hypothesis testing. Let
us define the rejection regions via

Cn,=rα := {ω : |R̂(g, h)nT − r| > z1−α/2
√
unV (n, T, g, h)}, (4.33)

Cn,≤rα := {ω : R̂(g, h)nT − r > z1−α
√
unV (n, T, g, h)}, (4.34)

where zα denotes the α-quantile of the standard normal distribution. Obviously, the
rejection region Cn,=rα corresponds to H0 : RT = r vs. H1 : RT 6= r, while Cn,≤rα

corresponds to H0 : RT ≤ r vs. H1 : RT > r. The asymptotic level and consistency of
the test are demonstrated in the following corollary.

Corollary 4.15. Assume that conditions (A) and (E) are satisfied and the weight func-
tions g, h fulfill the assumptions of Proposition 4.9(ii).
(i) The test defined through (4.33) has asymptotic level α in the sense that

A ⊂ Ωr
T , P(A) > 0 =⇒ P(Cn,=rα |A)→ α. (4.35)

Furthermore, the test is consistent, i.e.

P(Cn,=rα ∩ (Ωr
T )c)→ P((Ωr

T )c). (4.36)

(ii) The test defined through (4.34) has asymptotic level at most α in the sense that

A ⊂ Ω≤rT , P(A) > 0 =⇒ lim sup
n→∞

P(Cn,≤rα |A) ≤ α. (4.37)

Furthermore, the test is consistent, i.e.

P(Cn,≤rα ∩ (Ω≤rT )c)→ P((Ω≤rT )c). (4.38)
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5 Simulations

In this section, we want to examine how well the testing procedure for the maximal rank
performs in finite samples. The main focus lies on considering the convergence results in
(4.28), (4.35) and (4.36). Complementing these results, we examine how well the estimator
R̂(g, h)nT works to estimate the maximal rank RT (using the law of large numbers which
is implicitly given by (4.28)). To this end, we consider the integer-valued modification of
R̂(g, h)nT defined as

R̂int(g, h)nT := max(0,min(d, R̂(g, h)nT )). (5.1)

We emphasize that due to the rate of convergence of ∆
−1/6
n we expect a worse performance

in finite samples in comparison to the simulation study in [7] (there, the rate of convergence

is ∆
−1/2
n ).

5.1 Results

All processes are simulated on the interval [0, 1] and we use four different frequencies
∆n = 10−4, 10−5, 10−6, and 10−7. We remark that even the highest frequency ∆n = 10−7

is nowadays available for liquid assets. Following the simulation study in [7], we set σ̃ = 2Id
and due to [6] we use θ = 1/3 for the pre-averaging procedure. This results in window
sizes of kn = 157, 718, 3 333, and 15 471, respectively. We use the weight functions g, h
explicitly constructed in Example 4.10. We perform 500 repetitions to uncover the finite
sample properties. The following quantities are reported

• ∆n : the sampling frequency;

• [1/3dun] : the number of big blocks;

• the first four moments of the test statistic
R̂(g,h)n1−R1√
unV (n,1,g,h)

defined at (4.28) to check

for the normal approximation;

• Ωr
1 : the proportion of rejection for the possible null hypotheses Ωr

1 with r ∈ {0, . . . , d}
defined at (2.3) at level α = 0.05;

• R̂int(g, h)n1 : the proportion of the event that the estimator R̂int(g, h)n1 defined at (5.1)
coincides with R1.

We conduct the simulation study for the cases d = 1, 2, 3. For each of them, we
examine different models for the semimartingale X. We are interested in how robust our
testing procedure is with respect to a violation of assumption (A). This can be seen in case
3, respectively, where the volatility σt is not continuous. For the noise part, we always
assume the covariance structure of Σ = 0.0005Id.

5.1.1 d = 1

We consider the following four models:
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(i) Model 1: We have vanishing drift bt = 0 and constant volatility σt = 1, implying
R1 = 1.

(ii) Model 2: We observe pure noise, so bt = 0 and σt = 0, implying R1 = 0.

(iii) Model 3: We have a constant drift of bt = 1 and a volatility of σt = 1{t≤0.5}, implying
R1 = 1.

(iv) Model 4: We have a drift of bt = 1 + sin(2tπ) and a volatility of σt = cos(2tπ),
implying R1 = 1.

The results for the four models are summarized in the following table according to their
order:

∆n [1/3dun] 1st mt 2nd mt 3rd mt 4th mt Ω0
1 Ω1

1 R̂int(g, h)n1

10−4 21 -0.134 1.460 -0.363 6.567 0.378 0.106 0.734
10−5 46 -0.075 1.268 -0.579 5.343 0.652 0.084 0.862
10−6 100 -0.036 1.089 -0.153 3.665 0.934 0.068 0.950
10−7 215 -0.068 1.097 -0.079 3.932 0.998 0.060 0.990

10−4 21 -0.056 1.403 -0.403 6.206 0.096 0.454 0.790
10−5 46 0.020 1.323 0.171 5.998 0.084 0.672 0.860
10−6 100 0.006 1.129 0.168 3.913 0.062 0.926 0.952
10−7 215 -0.016 1.024 -0.039 3.536 0.048 1.000 0.992

10−4 21 -0.252 2.018 -2.222 17.611 0.298 0.132 0.664
10−5 46 -0.050 1.364 -0.477 6.220 0.484 0.092 0.802
10−6 100 -0.140 1.105 -0.427 3.596 0.708 0.076 0.878
10−7 215 -0.026 1.013 -0.159 3.100 0.940 0.054 0.966

10−4 21 -0.373 1.959 -3.042 15.488 0.310 0.154 0.684
10−5 46 -0.231 1.389 -1.271 6.902 0.484 0.076 0.788
10−6 100 -0.115 1.080 -0.489 3.475 0.808 0.058 0.912
10−7 215 -0.048 0.985 -0.257 3.129 0.986 0.052 0.982

5.1.2 d = 2

We consider the following four models:

(i) Model 1: We have vanishing drift bt = 0 and constant volatility σt = I2, implying
R1 = 2.

(ii) Model 2: We have pure noise, so R1 = 0.

(iii) Model 3: We have a drift of bt =

(
1
−1

)
, and a volatility of σt =

(
1{t≤0.5} 0

0 1{t>0.5}

)
,

implying R1 = 1.
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(iv) Model 4: We have a drift of bt =

(
1 + sin(2tπ)
1 + cos(2tπ)

)
, and a volatility of

σt =

(
cos(2tπ) cos(2tπ)
sin(2tπ) sin(2tπ)

)
, implying R1 = 1.

The results for the four models are summarized in the following table according to their
order:

∆n [1/3dun] 1st mt 2nd mt 3rd mt 4th mt Ω0
1 Ω1

1 Ω2
1 R̂int(g, h)n1

10−4 10 -0.146 2.836 -1.952 33.933 0.524 0.264 0.226 0.616
10−5 23 -0.034 1.892 -0.119 13.661 0.690 0.336 0.140 0.678
10−6 50 -0.033 1.379 -0.081 5.987 0.890 0.448 0.088 0.774
10−7 107 -0.059 1.238 -0.263 4.451 0.992 0.626 0.078 0.842

10−4 10 -0.097 3.839 -15.410 297.391 0.212 0.316 0.558 0.646
10−5 23 -0.074 2.054 -0.181 24.391 0.130 0.328 0.720 0.716
10−6 50 0.113 1.357 0.775 6.365 0.104 0.390 0.926 0.780
10−7 107 -0.066 1.290 -0.274 4.658 0.084 0.672 0.992 0.882

10−4 10 -0.293 3.747 -0.119 101.560 0.288 0.246 0.388 0.286
10−5 23 -0.388 1.916 -1.635 11.157 0.236 0.156 0.428 0.346
10−6 50 -0.090 1.251 -0.396 4.483 0.424 0.090 0.482 0.590
10−7 107 -0.152 1.214 -0.501 4.777 0.602 0.082 0.704 0.740

10−4 10 -0.062 3.308 -6.196 88.100 0.294 0.206 0.304 0.260
10−5 23 -0.279 2.020 -2.432 17.677 0.246 0.162 0.386 0.418
10−6 50 -0.061 1.438 -0.481 6.609 0.434 0.098 0.450 0.522
10−7 107 0.008 1.148 -0.123 4.544 0.668 0.058 0.678 0.756

5.1.3 d = 3

We consider the following four models:

(i) Model 1: We have vanishing drift bt = 0 and constant volatility σt = I3. Hence, the
maximal rank is R1 = 3.

(ii) Model 2: We have pure noise, so R1 = 0.

(iii) Model 3: We have a drift of bt =

 1
−1

5

, and a volatility of σt =

1{t≤0.5} 0 0

0 1{t>0.5} 0

0 0 0

,

implying R1 = 1.

(iv) Model 4: We have a drift of bt =

1 + sin(2tπ)
1 + cos(2tπ)

0

, and a volatility of

σt =

cos(2tπ) cos(2tπ) 0
sin(2tπ) sin(2tπ) 0

0 0 1

, implying R1 = 2.
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The results for the four models are summarized in the following table according to their
order:

∆n [1/3dun] 1st mt 2nd mt 3rd mt 4th mt Ω0
1 Ω1

1 Ω2
1 Ω3

1 R̂int(g, h)n1

10−4 7 -0.291 4.854 -11.705 195.934 0.622 0.460 0.344 0.326 0.556
10−5 15 -0.041 2.631 -1.521 37.908 0.764 0.538 0.288 0.192 0.636
10−6 33 0.057 1.844 -0.258 10.721 0.930 0.692 0.368 0.146 0.702
10−7 71 0.014 1.459 0.116 6.382 0.988 0.870 0.414 0.098 0.776

10−4 7 -0.177 5.507 -9.964 221.460 0.318 0.370 0.500 0.674 0.594
10−5 15 0.017 2.779 2.579 59.508 0.174 0.314 0.570 0.792 0.652
10−6 33 0.023 1.565 -0.003 7.529 0.122 0.308 0.708 0.940 0.706
10−7 71 -0.035 1.507 -0.340 6.874 0.100 0.452 0.860 0.990 0.754

10−4 7 -0.365 5.509 -11.808 413.241 0.294 0.278 0.378 0.562 0.202
10−5 15 -0.282 2.392 -1.297 21.282 0.264 0.184 0.344 0.660 0.288
10−6 33 -0.333 1.701 -1.506 8.125 0.254 0.130 0.418 0.818 0.392
10−7 71 -0.074 1.279 0.026 5.215 0.446 0.074 0.502 0.948 0.574

10−4 7 -0.238 9.259 70.679 2873.157 0.470 0.368 0.348 0.440 0.190
10−5 15 -0.082 3.063 -3.513 56.660 0.560 0.320 0.212 0.340 0.246
10−6 33 -0.137 1.762 -0.736 9.407 0.644 0.292 0.140 0.362 0.380
10−7 71 -0.054 1.683 -0.691 8.858 0.848 0.412 0.128 0.430 0.494

5.2 Summary

According to our theoretical results, the empirical counterpart of the first four moments,
level and power seem to converge to their theoretical analogues as ∆n → 0. However, the
speed of convergence depends on the particular model and the dimension d.

First, we observe that higher moments seem to converge much slower than lower mo-
ments. An extreme example is d = 3, Model 4, where the simulated fourth moment equals
2873.157 at frequency ∆n = 10−4. This effect appears to be stronger for higher dimen-
sions. It can be explained by the fact that the true rate of convergence is [T/3dun]1/2

rather than ∆
−1/6
n , which decreases when d is growing. Furthermore, there are several

small order terms in the expansion of the main statistic, which seem to influence the finite
sample performance at relatively low frequencies. This is confirmed by the observation
that we get the best simulation results for constant volatility and vanishing drift, where
these lower order terms do not appear.

The approximation of power again depends on the complexity of time-varying coef-
ficients of the model and the dimension d. Quite intuitively, we observe a better power
performance for alternative hypotheses, which are more distant to the true one. For in-
stance, for d = 3 and Model 1, where the maximal rank is 3, the simulated powers for
Ω2

1, Ω1
1 and Ω0

1 at frequency ∆n = 10−7 are 0.414, 0.87 and 0.988, respectively. Finally,
we remark that, although Model 3 (d = 1, 2, 3) does not satisfy our assumptions since the
volatility process is not continuous, the power and level performance is well comparable
with other simulated models.
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6 Proofs

Before presenting the proofs in detail, let us briefly outline the roadmap of this section.
In Subsection 6.1 we introduce some technical results about expansions of determinants.
We justify the asymptotic expansion at (3.2) and also show some more involved results.

In Subsection 6.2, we show that – using a standard localization procedure – we obtain
the stochastic decomposition explained in Remark 4.2. Moreover, we show how the law of
the dominating term in the expansion can be expressed in terms of the notation introduced
in Subsection 4.2.

Subsection 6.3 is especially concerned with the proof of Proposition 4.9. To this end,
we perform a very detailed analysis of the terms Γr and Γ′r introduced at (4.10) and their
dependency on the weight function g. This mainly relies on an application of the Leibniz
rule for the calculation of the determinants and a repeated use of the Itô isometry to
calculate the expectations.

Subsection 6.4 deals with the proof of the main Theorem 4.12 and of Proposition 4.13.
First, we show that – thanks to the stochastic expansion established in Subsection 6.2 –
the main approximation idea motivated in Subsection 3.1 works in the stochastic setting.
The second main step in the proof of Theorem 4.12 is the application of a stable central
limit theorem for semimartingales (see e.g. [9, Theorem IX.7.28 ]). Proposition 4.13(i)
follows along the lines of parts of the proof of Theorem 4.12. Proposition 4.13(ii) follows
by Theorem 4.12, Theorem 4.8 – which in tern is a direct consequence of Theorem 4.12 –
and Proposition 4.13(ii) by applying the delta method for stable convergence. Note that
this procedure does only work under a proper choice of the pair of weight functions which
fulfills Proposition 4.9(ii).

The proof of Corollary 4.15 is essentially a consequence of the stable convergence at
(4.28) and is referred to Subsection 6.5.

6.1 Expansion of determinants

Due to Subsection 3.1, the key to identifying the unknown rank of a matrix A ∈ M is
the matrix perturbation method which results in the expansion at (3.2). While we could
show the law of large numbers at (4.15) with an expansion like the one at (3.2), we need
a higher order expansion of the determinant to derive the central limit theorem at (4.19).
Therefore, we shall introduce some additional notation to the one in Subsection 3.1 which
is similar to the one introduced in [7].

In the sequel, ‖A‖ denotes the Euclidean norm of a matrix A ∈ M. For any positive
integer m ≥ 1 we denote with Pm the set of all multi-integers p = (p1, . . . , pm) with pj ≥ 0
and p1 + · · ·+ pm = d, and Ip the set of all partitions I = (I1, . . . , Im) of {0, . . . , d} such
that Ij contains exactly pj points. For p ∈ Pm, I ∈ Ip and A1, . . . , Am ∈ M, we call
GI
A1,...,Am

the matrix in M whose ith column is the ith column of Aj when j ∈ Ij .
Due to the multi-linearity property of the determinant we have the following identity
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for all A1, . . . , Am ∈M

det(A1 + · · ·+Am) =
∑

p∈Pm

∑
I∈Ip

det(GI
A1,...,Am). (6.1)

For A,B,C ∈M and r ∈ {0, . . . , d}, recalling (3.1), we recover the identity

γr(A,B) =
∑

I∈I(r,d−r)

det(GI
A,B) (6.2)

and set
γ′r(A,B,C) :=

∑
I∈I(r,d−r−1,1)

det(GI
A,B,C), (6.3)

with the convention that γ−1(A,B) = 0 and γ′d(A,B,C) = 0. Let A,B,C,D ∈ M and
rank(A) ≤ r. Using (6.1) we obtain the asymptotic expansion

det(A+ λB + λ2C + λ2D) = λd−rγr(A,B) (6.4)

+ λd−r+1
(
γr−1(A,B) + γ′r(A,B,C) + γ′r(A,B,D)

)
+O(λd−r+2) as λ ↓ 0.

This observation gives rise to the following lemma (see also [7, Lemma 6.2]).

Lemma 6.1. There is a constant K > 0 such that for all r ∈ {0, . . . , d}, all λ ∈ (0, 1] and
all A,B,C,D ∈M with rank(A) ≤ r we have with Λ = ‖A‖+ ‖B‖+ ‖C‖+ ‖D‖∣∣∣det(A+ λB + λ2C + λ2D)− λd−rγr(A,B)

−λd−r+1(γr−1(A,B) + γ′r(A,B,C))
∣∣∣ ≤ Kλr−d+1Λd−1(λΛ + ‖D‖), (6.5)

∣∣∣ 1

λ2d−2r
det(A+ λB + λ2C + λ2D)2 − γr(A,B)2

− 2λγr(A,B)(γr−1(A,B) + γ′r(A,B,C))
∣∣∣ ≤ KλΛ2d−1(λΛ + ‖D‖). (6.6)

If further λ′ ∈ (0, 1], A′, B′, C ′, D′ ∈M with rank(A′) ≤ r and Λ′ = ‖A′‖+ ‖B′‖+ ‖C ′‖+
‖D′‖, then∣∣∣ 1

(λλ′)2d−2r
det(A+ λB + λ2C + λ2D)2 det(A′ + λ′B′ + λ′2C ′ + λ′2D′)2

− γr(A,B)2γr(A
′, B′)2

∣∣∣ ≤ K(λ+ λ′)ΛΛ′. (6.7)

Proof. The inequalities at (6.5) and (6.7) essentially follow from the asymptotic expansion
at (6.4) and the fact that there is a K > 0 such that for any p ∈ P4, I ∈ Ip and λ ∈ (0, 1]
we have | det(GI

A,λB,λ2C,λ2D)| = λp2+2p3+2p4 |det(GI
A,B,C,D)| ≤ Kλp2+2p3+2p4Λd−p4‖D‖p4 .

(6.6) follows from (6.5) by taking squares. 2
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6.2 The stochastic decomposition

Under assumption (A) and by a standard localization procedure (see e.g. [2, Section 3]),
it is no restriction to make the following technical assumption.

Assumption (A1): Assumption (A) holds and the processes Xt, bt, σt, at, vt, a
′
t, v
′
t, a
′′
t ,

v′′t defined at (2.1) and (2.2) are uniformly bounded in (ω, t). 2

We make the convention that all constants are denoted by K, or Kp if they depend on
an additional parameter p. The constants never depend on T, t, n, i, j. To ease notation,
we use generic constants that may change from line to line. We introduce the filtration
(Ht)t∈[0,T ] defined as

Ht := Ft ∨ σ(ε),

where σ(ε) is the σ-field generated by the whole process (ε)t∈[0,T ]. For any process V and
for the filtrations (Ft)t∈[0,T ], (Ht)t∈[0,T ] and κ = 1, 2, we will use the simplifying notation

V n,κ
i = V(3i+κ−1)dun , Fn,κi = F(3i+κ−1)dun , Hn,κi = H(3i+κ−1)dun . (6.8)

Note that we have the ‘nesting property’ Fn,1i ⊂ Fn,2i and Hn,1i ⊂ Hn,2i , respectively. Now,
we show that under (A) we can obtain the stochastic decomposition at (4.5) explained in
Remark 4.2. To do so, we notice (see [7, Section 6]) that under (A), and for any z ≤ t ≤ s,
we have the following expansion for the increment Xs −Xt =

∫ s
t bu ds+

∫ s
t σs dWs (using

vector notation): ∫ s

t
bu du = α1 + α2 + α3 + α4,∫ s

t
σu dWu = α5 + α6 + α7 + α8 + α9 + α10 + α11,

where

α1 = bz(s− t), α2 =

∫ s

t

(∫ u

z
a′w dw

)
du, (6.9)

α3 = v′z

∫ s

t
(Wu −Wz) du, α4 =

∫ s

t

(∫ u

z
(v′w − v′z) dWw

)
du,

α5 = σz(Ws −Wt), α6 = az

∫ s

t
(u− z) dWu,

α7 =

∫ s

t

(∫ u

z
(aw − az) dw

)
dWu, α8 = vz

∫ s

t
(Wu −Wz) dWu,

α9 =

∫ s

t

(∫ u

z

(∫ w

z
a′′r dr

)
dWw

)
dWu, α10 = v′′z

∫ s

t

(∫ u

z
(Ww −Wz) dWw

)
dWu,

α11 =

∫ s

t

(∫ u

z

(∫ w

z
(v′′r − v′′z ) dWr

)
dWw

)
dWu.

By the Burkholder-Gundy inequality (see e.g. [13]) we have under (A1) for all p, t, s > 0
and for V = X,σ, b, v that

E[ sup
u∈[0,s]

‖Vt+u − Vt‖p | Ft] ≤ Kp s
p/2. (6.10)
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We set

ηt,s = sup
u∈[0,s], V=a,v′,v′′

‖Vt+u − Vt‖2, nn,κi =
√
E[η(3i+κ−1)dun,κdun | F

n,κ
i ].

Using the Burkholder-Gundy inequality and Hölder inequality leads to (recall that z ≤ s)

E[‖αj‖p | Fz] ≤



Kp(s− z)p/2 if j = 5

Kp(s− z)p if j = 1, 8

Kp(s− z)3p/2 if j = 3, 6, 10

Kp(s− z)2p if j = 2, 9

Kp(s− z)3p/2 E[ηpz,s−z | Fz] if j = 4, 7, 11.

(6.11)

Let g be a weight function (see Subsection 3.2) and gn its discretization introduced at
(4.11). For κ = 1, 2 we define the function

gn,κ(x) := gn(κunx) =

kn−1∑
j=1

g

(
j

kn

)
1(κ(j−1)∆n,κj∆n](x).

Using (6.9) with z = (3i+κ−1)dun, t = ((3i+κ−1)d+κ(j−1))un, s = ((3i+κ−1)d+κj)un
with i ∈ {0, . . . , [T/3dun] − 1}, j ∈ {1, . . . , d} and κ = 1, 2 we then obtain the stochastic
decomposition at (4.5), namely

1
√
κun

mat
(
Z(g)n,κ(3i+κ−1)dkn

, · · · , Z(g)n,κ((3i+κ−1)d+κ(d−1))kn

)
= A(g)n,κi +

√
κun (B(1, g)n,κi +B(2, g)n,κi +B(3, g)n,κi ) + κunC(g)n,κi + κunD(g)n,κi ,

where (using vector notation)

A(g)n,κi,j =
σn,κi√
κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un) dWs,

B(1, g)n,κi,j =
bn,κi
κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un) ds

+
vn,κi
κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un)

×
(
Ws −W(3i+κ−1)dun

)
dWs,

B(2, g)n,κi,j =
σ̃
√
κun

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un) dW ′s,

B(3, g)n,κi,j =
1

κun
ε(g)n,κ((3i+κ−1)d+κ(j−1))kn

,

C(g)n,κi,j =
an,κi

(κun)3/2

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un)

× (s− (3i+ κ− 1)dun) dWs
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+
v′n,κi

(κun)3/2

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un)

×
(
Ws −W(3i+κ−1)dun

)
ds

+
v′′n,κi

(κun)3/2

∫ ((3i+κ−1)d+κj)un

((3i+κ−1)d+κ(j−1))un

gn,κ(s− ((3i+ κ− 1)d+ κ(j − 1))un)

×

(∫ s

(3i+κ−1)dun

(
Wu −W(3i+κ−1)dun

)
dWu

)
dWs,

and D(g)n,κi,j is the remainder term. In the sequel, we will make the convention that
B(g)n,κi := B(1, g)n,κi +B(2, g)n,κi +B(3, g)n,κi . With the following lemma, we can deduce
that under assumption (A1) the Rd×d-valued sequences A(g)n,κi , B(g)n,κi , C(g)n,κi , D(g)n,κi
are tight (see also equation (6.15) in [7]).

Lemma 6.2. Let the assumptions (A1) and (E) be statisfied. For p ≥ 1 there is a Kp > 0
such that we have the following estimates

E
[
‖A(g)n,κi,j ‖

p + ‖B(g)n,κi,j ‖
p + ‖C(g)n,κi,j ‖

p
∣∣Fn,κi

]
≤ Kp,

E
[
‖D(g)n,κi,j ‖

p
∣∣Fn,κi

]
≤ Kp

(
up/2n + (ηn,κi )p∧2

)
≤ Kp.

Proof. To show the estimate for the term B(3, g)n,κi,j , we refer to [8, Equation (16.2.3)]

which implies that E[‖ε(g)n,κi ‖p] ≤ Kpk
−p/2
n , such that the claim follows by recalling (3.5).

For the remaining terms we use (6.11) with z = (3i+κ− 1)dun, t = ((3i+κ− 1)d+κ(j−
1))un, s = ((3i+ κ− 1)d+ κj)un plus the fact that gn,κ is uniformly bounded in n. 2

Lemma 6.3. Assume (A1) and (E). Then unE
[∑[T/3dun]−1

i=0 ηn,κi

]
→ 0.

Proof. The proof follows along the lines of the proof of Lemma 6.3 in [7]. 2

Lemma 6.4. Let the assumptions (A1) and (E) be satisfied. Fix a weight function g.
Then, for any r ∈ {0, . . . , d}, i = 0, . . . , [T/3dun] − 1 and κ = 1, 2 the Fn,κi -conditional
law of

γr(A(g)n,κi , B(g)n,κi )2

coincides with the Fn,κi -conditional law of

F r(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ),

where

Σn :=
θ3

k3
n∆2

n

Σ. (6.12)

Proof. The quantity F r(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ) can be realized on (Ω,F , (Ft)t∈[0,T ],P)

by taking

W t =
W((3id+κ−1)d+t)un −W(3id+κ−1)dun√

un
, W

′
t =

W ′((3id+κ−1)d+t)un
−W ′(3id+κ−1)dun√
un

.
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Then define Θ implicitly, such that

1

κ

(
ψ1(g)

θ3

)1/2 d∑
m=1

(
(Σn)1/2

)lm
Θ
m
κj = B(3, g)n,κi,j .

Indeed, we know that B(3, g)n,κi,j is a centered Gaussian random variable with covariance
matrix

1

κ2u2
n

kn−1∑
µ=0

(
g

(
µ+ 1

kn

)
− g

(
µ

kn

))2

Σ =
ψ1(gn)

κ2k3
n∆2

n

Σ =
1

κ2

ψ1(gn)

θ3
Σn,

where ψ1(gn) is defined at (4.12). We also remark that due to (3.5) we obtain that

Σn = (1 + o(∆
1/6
n ))Σ. 2

As a direct consequence of Lemma 6.4 we can deduce that

E[γr(A(g)n,κi , B(g)n,κi )2 | Fn,κi ] = Γr(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ), (6.13)

Var[γr(A(g)n,κi , B(g)n,κi )2 | Fn,κi ] = Γ′r(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ). (6.14)

6.3 Proof of Lemma 4.7 and Proposition 4.9

Proof of Lemma 4.7. The proof of Lemma 4.7 follows along the lines of the proof of [7,
Lemma 3.1]. (Notice that we can incorporate the additional terms with Θj appearing in
(4.9) in the terms Θj at [7, Equation (6.8)].) 2

Proof of Proposition 4.9. We start with the proof of part (i). Let r ∈ {0, . . . , d}, u =
(α, β, γ, a, ϕ) ∈ U , κ = 1, 2 and g be any weight function. Using the notation at (4.8) and
(4.9), we define the matrices

A(u, g, κ) :=
(

Ψ(u, g, κ)ji

)
i,j=1,...,d

, B(u, g, κ) :=
(

Ψ(u, g, κ)d+j
i

)
i,j=1,...,d

,

being elements of M. Furthermore, for I ∈ I(r,d−r) we will use the notation

GI
A(u,g,κ),B(u,g,κ) =

((
GI
A(u,g,κ),B(u,g,κ)

)j
i

)
i,j=1,...,d

.

Then, developing the determinant with the Leibniz rule, we obtain the identity

Γr(u, g, κ) = E
[
γr(A(u, g, κ), B(u, g, κ))2

]
(6.15)

= E

 ∑
I,I′∈I(r,d−r)

det
(
GI
A(u,g,κ),B(u,g,κ)

)
det
(
GI′

A(u,g,κ),B(u,g,κ)

)
= E

 ∑
I,I′∈I(r,d−r)

∑
π,π′∈Sd

sgn(π)sgn(π′)
d∏
i=1

(
GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

d∏
j=1

(
GI′

A(u,g,κ),B(u,g,κ)

)π′(j)
j
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=
∑

I,I′∈I(r,d−r)

∑
π,π′∈Sd

sgn(π)sgn(π′)

d∏
i=1

E
[(
GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

(
GI′

A(u,g,κ),B(u,g,κ)

)π′(i)
i

]
,

where Sd denotes the group of all permutations of the set {1, . . . , d} and sgn(π) ∈ {−1, 1}
is the sign of the permutation π ∈ Sd. The last step in the computation is due to the fact

that the vectors
(
GI
A(u,g,κ),B(u,g,κ)

)
i

and
(
GI′

A(u,g,κ),B(u,g,κ)

)
j

are uncorrelated if i 6= j.

Thus, for fixed r ∈ {0, . . . , d} and κ = 1, 2, the mapping (u, g) 7→ Γr(u, g, κ) can be

considered as a polynomial in
(
d
r

)2 × (d !)2 × d variables of the form

E
[(
GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

(
GI′

A(u,g,κ),B(u,g,κ)

)π′(i)
i

]
, (6.16)

where I, I′ ∈ I(r,d−r), π, π
′ ∈ Sd and i = 1, . . . , d. Using Itô’s isometry, (6.16) takes one of

the following three forms with l, l′ ∈ {1, . . . , d}:

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)l

′
i

]
= ψ2(g)

q∑
m=1

αlmαl
′m,

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)d+l′

i

]
= 0,

E
[
Ψ(u, g, κ)d+l

i Ψ(u, g, κ)d+l′

i

]
= ψ3(g)2alal

′
+
(
ψ4(g) + (i− 1)ψ2(g)

) q∑
m,k=1

γlkmγl
′km

+ ψ2(g)
d∑

m=1

βlmβl
′m +

ψ1(g)

κ2θ3

d∑
m=1

(
ϕ1/2

)lm (
ϕ1/2

)l′m
.

Hence, if we additionally fix u ∈ U , then there is a polynomial τr,u,κ : R4 → R such
that the mapping g 7→ Γr(u, g, κ) can be written as

g 7→ τr,u,κ(ψ1(g), ψ2(g), ψ3(g), ψ4(g)).

This shows the first part of (4.16). To show the second part, we use the relationship

Γ′r(u, g, κ) = E
[
γr(A(u, g, κ), B(u, g, κ))4

]
− Γr(u, g, κ)2.

By a similar calculation as in (6.15) we obtain that

E
[
γr(A(u, g, κ), B(u, g, κ))4

]
=

∑
I,I′,I′′,I′′′∈I(r,d−r)

∑
π,π′,π′′,π′′′∈Sd

sgn(π)sgn(π′)sgn(π′′)sgn(π′′′)
d∏
i=1

E
[(
GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

×
(
GI′

A(u,g,κ),B(u,g,κ)

)π′(i)
i

(
GI′′

A(u,g,κ),B(u,g,κ)

)π′′(i)
i

(
GI′′′

A(u,g,κ),B(u,g,κ)

)π′′′(i)
i

]
.
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If we fix again r ∈ {0, . . . , d} and κ = 1, 2, the mapping (u, g) 7→ E
[
γr(A(u, g, κ), B(u, g, κ))4

]
can be considered as a polynomial in

(
d
r

)4 × (d !)4 × d variables of the form

E
[(
GI
A(u,g,κ),B(u,g,κ)

)π(i)

i

(
GI′

A(u,g,κ),B(u,g,κ)

)π′(i)
i

(
GI′′

A(u,g,κ),B(u,g,κ)

)π′′(i)
i

(
GI′′′

A(u,g,κ),B(u,g,κ)

)π′′′(i)
i

]
,

(6.17)
where I, I′, I′′, I′′′ ∈ I(r,d−r), π, π

′, π′′, π′′′ ∈ Sd and i = 1, . . . , d. By a careful calculation,
we can see that (6.17) takes one of the following five forms with l, l′, l′′, l′′′ ∈ {1, . . . , d}:

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)l

′
i Ψ(u, g, κ)l

′′
i Ψ(u, g, κ)l

′′′
i

]
= ψ2(g)2Kα,

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)l

′
i Ψ(u, g, κ)l

′′
i Ψ(u, g, κ)d+l′′′

i

]
= 0,

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)l

′
i Ψ(u, g, κ)d+l′′

i Ψ(u, g, κ)d+l′′′

i

]
= ψ2(g)

q∑
m=1

αlmαl
′m

×

ψ3(g)2al
′′
al
′′′

+
(
ψ4(g) + (i− 1)ψ2(g)

) q∑
m,k=1

γl
′′kmγl

′′′km

+ψ2(g)
d∑

m=1

βl
′′mβl

′′′m +
ψ1(g)

κ2θ3

d∑
m=1

(
ϕ1/2

)l′′m (
ϕ1/2

)l′′′m)
,

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)d+l′

i Ψ(u, g, κ)d+l′′

i Ψ(u, g, κ)d+l′′′

i

]
= 0,

E
[
Ψ(u, g, κ)li Ψ(u, g, κ)l

′
i Ψ(u, g, κ)d+l′′

i Ψ(u, g, κ)d+l′′′

i

]
= ψ3(g)4alal

′
al
′′
al
′′′

+
(
ψ4(g) + (i− 1)ψ2(g)

)2
Kγ + ψ2(g)2Kβ +

(ψ1(g)

κ2θ3

)2
Kϕ + ψ3(g)2

(
ψ4(g) + (i− 1)ψ2(g)

)
Ka,γ

+ ψ3(g)2ψ2(g)Ka,β + ψ3(g)2ψ1(g)

κ2θ3
Ka,ϕ +

(
ψ4(g) + (i− 1)ψ2(g)

)
ψ2(g)Kγ,β

+
(
ψ4(g) + (i− 1)ψ2(g)

)ψ1(g)

κ2θ3
Kγ,ϕ + ψ2(g)

ψ1(g)

κ2θ3
Kβ,ϕ.

We remark that the constants do not depend on κ. Consequently, if we additionally fix
u ∈ U , there is a polynomial τ ′r,u,κ : R4 → R such that the mapping g 7→ Γ′r(u, g, κ) can be
written as

g 7→ τ ′r,u,κ(ψ1(g), ψ2(g), ψ3(g), ψ4(g)),

which proves part (i) of Proposition 4.9. By an inspection of the previous calculations, we

see that the only term where κ appears is the term ψ1(g)
κ2θ3

. Hence, for any r ∈ {0, . . . , d},
u ∈ U , we have

τr,u,1(x1, x2, x3, x4) = τr,u,2(4x1, x2, x3, x4),

τ ′r,u,1(x1, x2, x3, x4) = τ ′r,u,2(4x1, x2, x3, x4), (x1, x2, x3, x4) ∈ R4.

This shows part (ii) of Proposition 4.9. 2
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6.4 Proof of Theorem 4.12 and Proposition 4.13

Let g be a weight function. We begin by constructing approximations for the main test

statistics S(g)n,κT defined at (4.3) and V (g, h)n,κκ
′

T given at (4.21), (4.22) and (4.23). The
approximations are discretized versions of S(r, g)κT (see (4.15)) and the right-hand sides of
(4.25) to (4.27)

S(r, g)n,κT := 3dun

[T/3dun]∑
i=0

γr(A(g)n,κi , B(g)n,κi )2,

V (r, g, h)n,κκ
′

T :=


9d2un

∑[T/3dun]−1
i=0 γr(A(g)n,1i , B(g)n,1i )4, if κ = κ′ = 1,

9d2un
∑[T/3dun]−1

i=0 γr(A(h)n,2i , B(h)n,2i )4, if κ = κ′ = 2,

9d2un
∑[T/3dun]−1

i=0 γr(A(g)n,1i , B(g)n,1i )2

×γr(A(h)n,2i , B(h)n,2i )2, if κ = 1, κ′ = 2.

(6.18)

The lemma is based on the asymptotic expansion at (6.4).

Lemma 6.5. Assume (A1), (E), let r ∈ {0, . . . , d}, κ, κ′ = 1, 2 and g, h be two weight
functions (not necessarily satisfying the conditions of Proposition 4.9(ii)). Then, on Ω≤rT ,
we have that

1
√
un

(
1

(κun)d−r
S(g)n,κT − S(r, g)n,κT

)
P−→ 0, (6.19)

1

(κκ′u2
n)d−r

V (g, h)n,κκ
′

T − V (r, g, h)n,κκ
′

T
P−→ 0. (6.20)

Proof. The proof is an adaption of the proof of [7, Lemma 6.4]. Let ξ(g)n,κi denote the ith
summand on the right-hand side of (4.3). We start by showing (6.19). To this end, we use
the fact that rank(A(g)n,κi ) ≤ r for all i to apply the inequality at (6.6) with λ =

√
κun

to obtain

1

(κun)d−r
ξ(g)n,κi = γr(A(g)n,κi , B(g)n,κi )2 + 2

√
κunζ(g)n,κi + ζ̃(g)n,κi ,

where with the Cauchy-Schwarz inequality (using the conventions after (6.3))

ζ(g)n,κi := γr(A(g)n,κi , B(g)n,κi )(γr−1(A(g)n,κi , B(g)n,κi ) + γ′r(A(g)n,κi , B(g)n,κi , C(g)n,κi )),

E
[
|ζ̃(g)n,κi |

]
≤ Kun +K

√
un E[ηn,κi ].

Applying Lemma 6.3, we deduce that
√
un
∑[T/3dun]−1

i=0 ζ̃(g)n,κi
P−→ 0. Regarding the

structure of S(r, g)n,κT we need to prove that un
∑[T/3dun]−1

i=0 ζ(g)n,κi
P−→ 0. To this end, we

consider the decomposition ζ(g)n,κi = ζ ′(g)n,κi +ζ ′′(g)n,κi , where ζ ′′(g)n,κi = E[ζ(g)n,κi | F
n,κ
i ].
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We obtain

E

un [T/3dun]−1∑
i=0

ζ ′′(g)n,κi

2 = u2
n

[T/3dun]−1∑
i,j=0

E[ζ ′′(g)n,κi ζ ′′(g)n,κj ]

= u2
n

[T/3dun]−1∑
i=0

E[|ζ ′′(g)n,κi |
2]

≤ unKT → 0,

(6.21)

where the second identity follows from the fact that ζ ′′(g)n,κi is Fn,κi+1-measurable and the
last estimate is a consequence of Lemma 6.2 and the fact that γr and γ′r are continuous

functions. Hence, we know that un
∑[T/3dun]−1

i=0 ζ ′′(g)n,κi
P−→ 0. So it is sufficient to show

that ζ ′(g)n,κi = 0, or the even stronger result that

E[ζ(g)n,κi |H
n,κ
i ∨ σ(W ′)] = 0, (6.22)

where σ(W ′) is the σ-field generated by the whole process W ′ and Hn,κi was introduced
before and in (6.8). Recalling the definitions at (6.2) and (6.3), equation (6.22) follows by
the implication

I ∈ I(r,d−r), I
′ ∈ I(r−1,d−r+1), I

′′ ∈ I(r,d−r−1,1) =⇒

E
[
det
(
GI
A(g)n,κi ,B(g)n,κi

)
det
(
GI′

A(g)n,κi ,B(g)n,κi

)
|Hn,κi ∨ σ(W ′)

]
= 0, (6.23)

E
[
det
(
GI
A(g)n,κi ,B(g)n,κi

)
det
(
GI′′

A(g)n,κi ,B(g)n,κi ,C(g)n,κi

)
|Hn,κi ∨ σ(W ′)

]
= 0. (6.24)

Note that due to the conventions after (6.3) the left-hand side of (6.23) is 0 if r = 0, and
the left-hand side of (6.24) is 0 if r = d. The d-dimensional variables A(g)n,κi,j , B(g)n,κi,j and
C(g)n,κi,j can be written in the form

Φ
(
ω, (W (ω)(3i+κ−1)dun+t −W (ω)(3i+κ−1)dun)t≥0

)
,

where Φ is a (Hn,κi ∨σ(W ′))⊗Cq-measurable function on Ω×C(R+,Rq). Here C(R+,Rq)
is the set of all continuous functions on R+ with values in Rq and Cq is its Borel σ-field
for the local uniform topology. Notice that for Φ = A(g)n,κi,j or Φ = C(g)n,κi,j , the mapping
x 7→ Φ(ω, x) is odd, meaning that Φ(ω,−x) = −Φ(ω, x), and for Φ = B(g)n,κi,j , it is even,
meaning that Φ(ω,−x) = Φ(ω, x). We set

Ψ = det
(
GI
A(g)n,κi ,B(g)n,κi

)
,

Ψ′ = det
(
GI′

A(g)n,κi ,B(g)n,κi

)
,

Ψ′′ = det
(
GI′′

A(g)n,κi ,B(g)n,κi ,C(g)n,κi

)
,

where Ψ,Ψ′,Ψ′′ are functions similar to Φ. Due to the multilinearity of the determinant
we can deduce that if r is even, then Ψ is even and Ψ′, Ψ′′ are odd. If r is odd, Ψ is odd
and Ψ′,Ψ′′ are even. Thus, in all cases, the products ΨΨ′ and ΨΨ′′ are odd. Now, the
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(Hn,κi ∨ σ(W ′))-conditional law of
(
W(3i+κ−1)dun+t −W(3i+κ−1)dun

)
t≥0

is invariant under

the map x 7→ −x on C(R+,Rq), which implies (6.23), and hence (6.22).

The proof of (6.20) is more direct. We apply the estimate at (6.7) with λ =
√
κun, λ

′ =√
κ′un. With the previous notation and Lemma 6.2 we obtain

E
[∣∣∣∣ 1

(κκ′u2
n)d−r

V (g, h)n,κκ
′

T − V (r, g, h)n,κκ
′

T

∣∣∣∣]

≤ 9d2un

[T/3dun]−1∑
i=0

E
[∣∣∣∣ 1

(κκ′u2
n)d−r

ξ(g)n,κi ξ(h)n,κ
′

i − γ′r(A(g)n,κi , B(g)n,κi )2γ′r(A(h)n,κ
′

i , B(h)n,κ
′

i )2

∣∣∣∣]
≤ 9d2KT

√
un → 0,

which implies (6.20). 2

With respect to Lemma 6.5, Theorem 4.12 follows by showing the following lemma.

Lemma 6.6. Assume (A1), (E). Let r ∈ {0, . . . , d} and g, h be two weight function satis-
fying the conditions of Proposition 4.9(ii). Then, on Ω≤rT , we have the stable convergence

U ′(r, g, h)nT
dst−→MN (0, V (r, g, h)T ),

where V (r, g, h)T is defined at (4.20) and the two-dimensional statistic U ′(r, g, h)nT =

(U ′(r, g, h)n,1T , U ′(r, g, h)n,2T ) is given via

U ′(r, g, h)nT :=
1
√
un

(
S(r, g)n,1T − S(r, g)1

T , S(r, h)n,2T − S(r, h)2
T

)
.

We will do the proof of Lemma 6.6 in three steps:

(i) Recall that due to Proposition 4.9(ii) we have that S(r, g)1
T = S(r, h)2

T . By a
Riemann approximation argument, one can show that

1
√
un

3dun

[T/3dun]−1∑
i=0

Γr(σ
n,1
i , σ̃, vn,1i , bn,1i ,Σ, g, 1)−

∫ T

0
Γr(σs, σ̃, vs, bs,Σ, g, 1) ds

 P−→ 0,

(6.25)

1
√
un

3dun

[T/3dun]−1∑
i=0

Γr(σ
n,2
i , σ̃, vn,2i , bn,2i ,Σ, h, 2)−

∫ T

0
Γr(σs, σ̃, vs, bs,Σ, h, 2) ds

 P−→ 0.

More precisely, we use the fact that for a fixed weight function g and κ = 1, 2, the map
U 3 u 7→ Γr(u, g, κ) is a polynomial (and hence C∞) as well as the fact that thanks to
assumption (A) the processes σ, v and b are Itô semimartingales and hence càdlàg (see
section 8 in [2] for more details).

(ii) We identify the limit by proving that

3d
√
un

[T/3dun]−1∑
i=0

(
Γr(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, gn, 1)− Γr(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σ, g, 1)

)
P−→ 0,

(6.26)
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3d
√
un

[T/3dun]−1∑
i=0

(
Γr(σ

n,2
i , σ̃, vn,2i , bn,2i ,Σn, hn, 2)− Γr(σ

n,2
i , σ̃, vn,2i , bn,2i ,Σ, h, 2)

)
P−→ 0.

(6.27)

(iii) We prove the stable convergence

U ′′(r, g, h)nT
dst−→MN (0, V (r, g, h)T ), (6.28)

for the two-dimensional statistic U ′′(r, g, h)nT = (U ′′(r, g, h)n,1T , U ′′(r, g, h)n,2T ) with compo-
nents

U ′′(r, g, h)n,1T = 3d
√
un

[T/3dun]−1∑
i=0

(
γr(A(g)n,1i , B(g)n,1i )2 − Γr(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, gn, 1)

)
,

U ′′(r, g, h)n,2T = 3d
√
un

[T/3dun]−1∑
i=0

(
γr(A(h)n,2i , B(h)n,2i )2 − Γr(σ

n,2
i , σ̃, vn,2i , bn,2i ,Σn, hn, 2)

)
.

The following lemma is concerned with the convergence at (6.26) and (6.27), respectively.

Lemma 6.7. Assume (A1), (E). Let r ∈ {0, . . . , d}, κ = 1, 2 and g be a weight function.
Then, on Ω≤rT , it holds that

√
un

[T/3dun]−1∑
i=0

(Γr(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ)− Γr(σ

n,κ
i , σ̃, vn,κi , bn,κi ,Σ, g, κ))

P−→ 0.

(6.29)

Proof. Fix r ∈ {0, . . . , d}, κ = 1, 2 and a weight function g. Recall that by Proposition
4.9(i) for any u ∈ U there is a polynomial τr,u,κ such that Γr(u, g, κ) = τr,u,κ(ψ1(g), . . . , ψ4(g)).
An inspection of the proof of Proposition 4.9(i) yields that the map

U × R4 → R, (α, β, γ, a,Σ, ψ1(g), . . . , ψ4(g)) 7→ τr,(α,β,γ,a,Σ),κ(ψ1(g), . . . , ψ4(g))

is a C∞-function. Consider the first order partial derivatives in (Σ, ψ1(g), . . . , ψ(g)). For
fixed Σ, g, they are continuous in (α, β, γ, a). Therefore, by a first order Taylor expansion,
we obtain that for any compact set A ⊂M′ ×M× Rdq2 × Rd

sup
(α,β,γ,a)∈A

|Γr(α, β, γ, a,Σn, gn, κ)− Γr(α, β, γ, a,Σ, g, κ)|

≤ KA

∥∥(Σn, ψ1(gn), . . . , ψ4(gn))− (Σ, ψ1(g), . . . , ψ4(g))
∥∥
Rd2×R4 ,

where ‖ · ‖Rd2×R4 is the Euclidean norm in Rd2 × R4. Combining (6.12) and (3.5) we

get that (Σn)ij − Σij = o(∆
1/6
n ), i, j = 1, . . . , d, and with (4.11), (4.12), we have that

ψl(g
n)− ψl(g) = O(k−1

n ), l = 1, . . . , 4. Again using (3.5) this implies that∥∥(Σn, ψ1(gn), . . . , ψ4(gn))− (Σ, ψ1(g), . . . , ψ4(g))
∥∥
Rd2×R4 = o(∆1/6

n ).
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Now, we apply assumption (A1) to deduce that

sup
s∈[0,T ]

E
[
|Γr(σs, σ̃, vs, bs,Σn, gn, κ)− Γr(σs, σ̃, vs, bs,Σ, g, κ)|

∣∣Fs] = o(∆1/6
n ),

and hence

√
un

[T/3dun]−1∑
i=0

E
[
|Γr(σn,κi , σ̃, vn,κi , bn,κi ,Σn, gn, κ)

− Γr(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σ, g, κ)|

∣∣Fn,κi

]
= o

(
∆

1/6
n√
un

)
= o(1),

which implies (6.29). 2

The next lemma deals with the stable convergence at (6.28).

Lemma 6.8. Assume (A1), (E). Let r ∈ {0, . . . , d} and g, h be two weight function satis-
fying the conditions of Proposition 4.9(ii). Then, on Ω≤rT , we have the stable convergence

U ′′(r, g, h)nT
dst−→MN (0, V (r, g, h)T ),

where V (r, g, h)T is defined at (4.20) and the two-dimensional statistic U ′′(r, g, h)nT =

(U ′′(r, g, h)n,1T , U ′′(r, g, h)n,2T ) is given after (6.28).

Proof. We apply a simplified version of Theorem IX.7.28 in [9]. To this end, we introduce
the two-dimensional variables ξni with components

ξn,1i = 3d
√
un

(
γr(A(g)n,1i , B(g)n,1i )2 − Γr(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, gn, 1)

)
,

ξn,2i = 3d
√
un

(
γr(A(h)n,2i , B(h)n,2i )2 − Γr(σ

n,2
i , σ̃, vn,2i , bn,2i ,Σn, hn, 2)

)
.

We must prove the following five statements where κ, κ′ = 1, 2:

[T/3dun]−1∑
i=0

E[ξn,κi | Fn,1i ]
P−→ 0, (6.30)

[T/3dun]−1∑
i=0

E[ξn,κi ξn,κ
′

i | Fn,1i ]
P−→ V (r, g, h)κ,κ

′

T , (6.31)

[T/3dun]−1∑
i=0

E[ξn,κi (Wm
3(i+1)dun

−Wm
3idun) | Fn,1i ]

P−→ 0, (6.32)

[T/3dun]−1∑
i=0

E[‖ξni ‖21{‖ξni ‖>ε} | F
n,1
i ]

P−→ 0 ∀ε > 0, (6.33)

[T/3dun]−1∑
i=0

E[ξn,κi (N3(i+1)dun −N3idun) | Fn,1i ]
P−→ 0, (6.34)



Testing the maximal rank of the volatility process 33

where Wm is any of the components of W and N is a one-dimensional bounded martingale,
orthogonal to (W,W ′) in the sense that the covariation between N and Wm, as well as
the covariation between N and W ′m vanishes. We will later specify the conditions on N .
If (6.30) to (6.34) hold, then Theorem IX.7.28 in [9] yields that

U ′′(r, g, h)nT
dst−→ U ′′(r, g, h)T ,

where the random random variable U ′′(r, g, h)T is defined on an extension (Ω̃, F̃ , P̃) of the
original probability space (Ω,F ,P). It can be realized as

U ′′(r, g, h)T =

∫ T

0
ysdW

′
s +

∫ T

0
zsdW̃s, (6.35)

where W̃ is a d-dimensional Brownian motion independent of F , and – for fixed σ̃,Σ, g, h
– y and z are càdlàg processes with values in Rd×d which are adapted to the filtration
generated by σ, b, v. Moreover, y and z can be characterized by

[T/3dun]−1∑
i=0

E[ξn,κi (W ′m3(i+1)dun
−W ′m3idun) | Fn,1i ]

P−→
∫ T

0
yms ds,

and

V (r, g, h)T =

∫ T

0

(
ysy

?
s + zsz

?
s

)
ds.

Since W̃ and W ′ are independent of G and y, z are G-measurable, (6.35) yields that
U ′′(r, g, h)T is mixed normal with G-conditional mean 0 and G-conditional covariance
V (r, g, h)T . Now, we turn to the proof of (6.30) to (6.34).

(i) We use equation (6.13) to derive that E[ξn,κi | Fn,κi ] = 0 for κ = 1, 2. Using the

nesting property Fn,1i ⊆ Fn,2i and the tower property, we immediately obtain (6.30).

(ii) With equation (6.14) one can show that

E[ξn,1i ξn,1i | F
n,1
i ] = 9d2unΓ′r(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, gn, 1),

E[ξn,2i ξn,2i | F
n,2
i ] = 9d2unΓ′r(σ

n,2
i , σ̃, vn,2i , bn,2i ,Σn, hn, 2).

Now, we have to carefully evaluate the term E[Γ′r(σ
n,2
i , σ̃, vn,2i , bn,2i ,Σn, hn, 2) | Fn,1i ]. Recall

(6.10) which implies that

sup
V=σ,v,b

E[‖V n,2
i − V n,1

i ‖ |F
n,1
i ] ≤ K

√
un.

Using the multi-linearity property of the determinant and the fact that Γ′r consists of
determinants to the power four, we end up with

E[Γ′r(σ
n,2
i , σ̃, vn,2i , bn,2i ,Σn, hn, 2) | Fn,1i ]

= E[Γ′r(σ
n,1
i + (σn,2i − σn,1i ), σ̃, vn,1i + (vn,2i − vn,1i ), bn,1i + (bn,2i − b

n,1
i ),Σn, hn, 2) | Fn,1i ]

= Γ′r(σ
n,1
i , σ̃, vn,1i , bn,1i ,Σn, hn, 2) +O(u2

n).
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Hence,

[T/3dun]−1∑
i=0

(
E[ξn,2i ξn,2i | F

n,1
i ]− Γ′r(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, hn, 2)

)
P−→ 0.

Since ξn,1i is Fn,2i -measurable, Fn,1i ⊆ Fn,2i and E[ξn,2i | F
n,2
i ] = 0, we can deduce that

E[ξn,1i ξn,2i | F
n,1
i ] = 0. It follows along the lines of the proof of Lemma 6.7 that

9d2un

[T/3dun]−1∑
i=0

(
Γ′r(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, gn, 1)− Γ′r(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σ, g, 1)

)
P−→ 0,

9d2un

[T/3dun]−1∑
i=0

(
Γ′r(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σn, hn, 2)− Γ′r(σ

n,1
i , σ̃, vn,1i , bn,1i ,Σ, h, 2)

)
P−→ 0.

And by a Riemann approximation argument similar to the one used to show (6.25), one
can deduce that

9d2un

[T/3dun]−1∑
i=0

Γ′r(σ
n,1
i , σ̃, vn,1i , bn,1i ,Σ, g, 1)− 3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, g, 1)ds

P−→ 0,

9d2un

[T/3dun]−1∑
i=0

Γ′r(σ
n,1
i , σ̃, vn,1i , bn,1i ,Σ, h, 2)− 3d

∫ T

0
Γ′r(σs, σ̃, vs, bs,Σ, h, 2)ds

P−→ 0

which gives (6.31).

(iii) We will show (6.32) by proving that

E[ξn,1i (Wm
3(i+1)dun

−Wm
3idun) |Hn,1i ∨ σ(W ′)] = 0, (6.36)

E[ξn,2i (Wm
3(i+1)dun

−Wm
(3i+1)dun

) |Hn,2i ∨ σ(W ′)] = 0. (6.37)

Indeed, for κ = 1, (6.36) directly implies (6.32). For κ = 2, we use the relationship

E[ξn,1i (Wm
3(i+1)dun

−Wm
3idun) | Fn,1i ] = E

[
(Wm

(3i+1)dun
−Wm

3idunE[ξn,2i | F
n,2
i ]

∣∣Fn,1i

]
+ E

[
E[(Wm

3(i+1)dun
−Wm

(3i+1)dun
ξn,2i |H

n,2
i ∨ σ(W ′)]

∣∣Fn,1i

]
.

Since E[ξn,2i | F
n,2
i ] = 0, showing (6.37) implies (6.32) in this case. Similar to the proof of

Lemma 6.5 one can write ξn,κi as function of the form

Φ
(
ω, (W (ω)(3i+κ−1)dun+t −W (ω)(3i+κ−1)dun)t≥0

)
,

where Φ is a (Hn,κi ∨σ(W ′))⊗Cq-measurable function on Ω×C(R+,Rq). We have already

seen that A(g)n,κi,j and B(g)n,1i,κ can also be considered as function of the form (6.4) where
A(g)n,κi,j is an odd function and B(g)n,κi,j is an even function. Since ξn,κi consists of squared
determinants, the function Φ in (6.4) is always even in the sense that Φ(ω, (x1, . . . , xq)) =
Φ(ω,−(x1, . . . , xq)), no matter if r is even or odd. Consequently the map

(x1, . . . , xq) 7→ xmΦ(ω, (x1, . . . , xq))
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is odd such that (6.36), (6.37) follow by a standard argument.

(iv) Lemma 6.2 implies that E[‖ξni ‖4 | F
n,1
i ] ≤ Ku2

n, such that (6.33) follows by a
standard argument.

(v) The proof of (6.34) is somewhat more involved than the previous steps. First,

we introduce two filtrations: (F (0)
t )t∈[0,T ] which is generated by all processes appearing in

assumption (A) plus the Brownian motion W ′. In contrast, the filtration (F (1)
t )t∈[0,T ] is

generated by the noise process ε only. Note that due to assumption (E), F (0)
t and F (1)

t

are independent. Following the proof of [6, Lemma 5.7], it is sufficient to show (6.34) for
all one-dimensional bounded martingales in a set N = N 0 ∪N 1. Here, N 0 consists of all

(F (0)
t )-martingales which are orthogonal to (W,W ′). The setN 1 comprises all (F (1)

t )-Lévy-
martingales N , such that there exists an integer m ≥ 1, time points 0 ≤ t1 < · · · < tm ≤ T
and a bounded Borel-function f̃ : (Rd)m → R with the relation

Nt = E[N∞ | F (1)
t ], N∞ = f̃(εt1 , . . . , εtm). (6.38)

Let N ∈ N 0. With a similar argumentation like in point (iii), (6.34) follows by proving
that

E[ξn,κi (N3(i+1)dun −N(3i+κ−1)dun) |Hn,κi ] = 0. (6.39)

By assumption, N is independent of ε so N is also orthogonal to (W,W ′) conditionally
on Hn,κi . The variable ξn,κi can be considered as a Hn,κi ⊗ Cq ⊗ Cd-measurable function on
Ω× C(R+,Rq)× C(R+,Rd) of the form

Φ
(
ω, (W (ω)(3i+κ−1)dun+t −W (ω)(3i+κ−1)dun)t≥0, (W

′(ω)(3i+κ−1)dun+t −W ′(ω)(3i+κ−1)dun)t≥0

)
.

By virtue of the representation theorem (see [13, Proposition V.3.2]), we can – condition-
ally on Hn,κi – write Φ as the sum of a constant and a stochastic integral over the interval
((3i + κ − 1)dun, 3(i + 1)dun] with respect to (W,W ′) for a suitable (q + d)-dimensional
predictable integrand. Then, thanks to the Itô-isometry and the fact that the covariation
of N and any component of (W,W ′) vanishes, one ends up with (6.39).

Now, let N ∈ N 1 with the representation (6.38). If {t1, . . . , tm}∩ (3idun, 3(i+ 1)dun] = ∅,
then ξn,κi and (N3(i+1)dun − N3idun) are independent conditionally on Fn,1i , so we obtain

that E[ξn,κi (N3(i+1)dun −N3idun) | Fn,1i ] = 0. If {t1, . . . , tm} ∩ (3idun, 3(i+ 1)dun] 6= ∅, the

fact that f̃ is bounded plus Lemma 6.2 imply that

E[ |ξn,κi (N3(i+1)dun −N3idun)| | Fn,1i ] ≤ K
√
un.

Since the intervals (3idun, 3(i+ 1)dun] are disjoint for different i, the number of such in-
tervals having a non-empty intersection with {t1, . . . , tm} is bounded by m. Consequently,
we end up with

[T/3dun]−1∑
i=0

E[ |ξn,κi (N3(i+1)dun −N3idun)| | Fn,1i ] ≤ mK
√
un,

which gives us (6.34). This completes the proof of Lemma 6.8 and therefore the proof of
Theorem 4.12. 2



Testing the maximal rank of the volatility process 36

The proof of Proposition 4.13 is somewhat simpler in comparison to the proof of
Theorem 4.12. Regarding Lemma 6.5, part (i) of Proposition 4.13 follows by showing the
following lemma.

Lemma 6.9. Assume (A1), (E). Let r ∈ {0, . . . , d}, κ, κ′ = 1, 2 and g, h be any weight
functions. Then, on Ω≤rT , we have that

V (r, g, h)n,κκ
′

T

P−→


3d
∫ T

0 Γ′r(σs, σ̃, vs, bs,Σ, g, 1) + Γr(σs, σ̃, vs, bs,Σ, g, 1)2ds, if κ = κ′ = 1,

3d
∫ T

0 Γ′r(σs, σ̃, vs, bs,Σ, h, 2) + Γr(σs, σ̃, vs, bs,Σ, h, 2)2ds, if κ = κ′ = 2,

3d
∫ T

0 Γr(σs, σ̃, vs, bs,Σ, g, 1)Γr(σs, σ̃, vs, bs,Σ, h, 2)ds, if κ = 1, κ′ = 2.

(6.40)

Proof. Define the variables

ρ(g, h)n,κκ
′

i =


γr(A(g)n,1i , B(g)n,1i )4, if κ = κ′ = 1,

γr(A(h)n,2i , B(h)n,2i )4, if κ = κ′ = 2,

γr(A(g)n,1i , B(g)n,1i )2γr(A(h)n,2i , B(h)n,2i )2, if κ = 1, κ′ = 2,

which is the ith summand in the right-hand side of (6.18). Define the variables

ρ′(g, h)n,κκ
′

i = E[ρ(g, h)n,κκ
′

i | Fn,1i ], ρ′′(g, h)n,κκ
′

i = ρ(g, h)n,κκ
′

i − ρ′(g, h)n,κκ
′

i .

Using Lemma 6.4, we get that

ρ′(g)n,κi = Γ′r(σ
n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ) + Γr(σ

n,κ
i , σ̃, vn,κi , bn,κi ,Σn, gn, κ)2.

Just as in the proof of (6.31) we can deduce that 9d2un
∑[T/3dun]−1

i=0 ρ′(g, h)n,κκ
′

i con-
verges in probability to the right hand side of (6.40). By construction, the sequence

(ρ′′(g, h)n,κκ
′

i )i≥0 is a (Fn,1i )-martingale. Hence, we can use Doob’s inequality and a cal-
culation similar to the one in (6.21) to end up with

9d2un

[T/3dun]−1∑
i=0

ρ′′(g, h)n,κκ
′

i
P−→ 0,

which completes the proof of (6.40). 2

Part (ii) of Proposition 4.13 essentially follows by the following lemma.

Lemma 6.10. Assume (A1), (E). Let r ∈ {0, . . . , d} and g, h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on Ωr

T , we have that

R̂(g, h)nT − r√
un

−
U(r, g, h)n,1T − U(r, g, h)n,2T

log 2S(r, g)1
T

P−→ 0. (6.41)
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Proof. Using the fact that S(r, g)1
T = S(r, h)2

T , we obtain by an elementary calculation
that, on Ωr

T ,

R̂(g, h)nT − r =
log(1 +

√
unU(r, g, h)n,1T /S(r, g)1

T )− log(1 +
√
unU(r, g, h)n,2T /S(r, g)1

T )

log 2
.

Due to (4.19) the sequence U(r, g, h)nT is tight. By a Taylor expansion, one obtains that
log(1 + x) = x+O(x2) for |x| < 1, so we get (for n sufficiently large)

log(1 +
√
unU(r, g, h)n,κT /S(r, g)1

T ) =
√
unU(r, g, h)n,κT /S(r, g)1

T ) +OP(un).

This readily implies (6.41). 2

The continuous mapping theorem for stable convergence then implies that, on Ωr
T ,

U(r, g, h)n,1T − U(r, g, h)n,2T
log 2S(r, g)1

T

dst−→
U ′′(r, g, h)1

T − U ′′(r, g, h)2
T

log 2S(r, g)1
T

, (6.42)

where U ′′(r, g, h)T is the limit in (4.19) (see also equation (6.35)). The right-hand side of
(6.42) is mixed normal with G-conditional mean 0 and G-conditional variance

3d
∫ T

0 Γ′r(σs, σ̃, vs, bs,Σ, g, 1)ds+ 3d
∫ T

0 Γ′r(σs, σ̃, vs, bs,Σ, h, 2)ds

(S(r, g)1
T log 2)2

> 0.

The positivity of the variance is a consequence of (4.13) in Lemma 4.7. At this stage,
(4.28) follows by part (i) of Proposition 4.13, Theorem 4.8 and the delta method for stable
convergence. 2

6.5 Proof of Corollary 4.15

The implication at (4.35) is a direct consequence of the stable convergence at (4.28). To
prove the consistency at (4.36), it is sufficient to show that for any r′ 6= r we have that

P(Cn,=rα ∩ Ωr′
T )→ P(Ωr′

T ).

Let Φ be the right-hand side of (4.28). Then we have by Proposition 4.13(ii) that

P(Cn,=rα ∩ Ωr′
T )− P̃

({∣∣Φ +
r′ − r√

unV (n, T, g, h)

∣∣ > z1−α/2
}
∩ Ωr′

T

)
→ 0.

By Proposition 4.13, Theorem 4.8 and Lemma 4.7, V (n, T, g, h) converges in probability

to a positive-valued limit, such that unV (n, T, g, h)
P−→ 0 and hence

P̃
({∣∣Φ +

r′ − r√
unV (n, T, g, h)

∣∣ > z1−α/2
}
∩ Ωr′

T

)
→ P(Ωr′

T ),

which shows (4.36). To show (4.37), let A ⊂ Ω≤rT with P(A) > 0. Then we obtain
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P(Cn,≤rα |A) =
∑
r′≤r

P(Cn,≤rα ∩ Ωr′
T |A) ≤

∑
r′≤r

P(Cn,≤r′α ∩ Ωr′
T |A)

→
∑
r′≤r

P̃({Φ > za−α} ∩ Ωr′
T |A) = αP(Ω≤rT |A) = α.

We essentially used the convergence at (4.28) as well as the fact that Φ is independent of
G and Ωr′

T ∈ G. The consistency result at (4.38) follows in the same manner as (4.36). 2
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