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Abstract

In this paper we present some new asymptotic results for high frequency statistics
of Brownian semi-stationary (BSS) processes. More precisely, we will show that sin-
gularities in the weight function, which is one of the ingredients of a BSS process, may
lead to non-standard limits of the realised quadratic variation. In this case the limiting
process is a convex combination of shifted integrals of the intermittency function. Fur-
thermore, we will demonstrate the corresponding stable central limit theorem. Finally,
we apply the probabilistic theory to study the asymptotic properties of the realised
ratio statistics, which estimates the smoothness parameter of a BSS process.

Keywords: Brownian semi-stationary processes, high frequency data, limit theo-
rems, stable convergence.
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1 Introduction

In the last years Brownian semi-stationary processes and their tempo-spatial extensions,
ambit fields, have been widely studied in the literature. This class of models has been
originally proposed by Barndorff-Nielsen and Schmiegel [8] in the context of turbulence
modeling. In their general form, Brownian semi-stationary processes without drift are
defined as

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds), t ∈ R
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On non-standard limits of Brownian semi-stationary processes 2

where µ is a constant, W is a Brownian measure on R, g : R → R is a deterministic
weight function with g(t) = 0 for t ≤ 0, and σ is a càdlàg processes. If σ is stationary
and independent of W , then (Xt)t∈R is stationary, which explains the name Brownian
semi-stationary process. In the framework of turbulence modeling, (Xt)t∈R denotes the
velocity of a turbulent flow in the direction of the mean field measured at a fixed point
in space. The stochastic process (σt)t∈R embodies the intermittency of the dynamics of
X. We refer to [8, 9, 10, 11] for application of Brownian semi-stationary processes and
ambit fields to turbulence modeling, and to [2, 6] for further applications in mathematical
finance and biology.

Recently, probabilistic properties of high frequency statistics of BSS processes have
been investigated in several papers. We refer to a series of articles [4, 5, 13], which studies
the asymptotic behaviour of (multi)power variation of BSS models. Typically, the weight
function g considered in the aforementioned work has the form

g(x) = xαf(x), α ∈ (−1/2, 0) ∪ (0, 1/2),

where f is a sufficiently smooth function slowly varying at 0 and with rapid decay at
infinity. This type of weight functions satisfies g ∈ L2(R), but g′ 6∈ L2(R) since g′ is
not square integrable near 0; in other words, the latter property means that 0 is the
only singularity point of the weight function g. As a consequence, the process X is not
a semimartingale. Moreover, its local behaviour corresponds to the one of a fractional
Brownian motion with Hurst parameter H = α+ 1/2.

Understanding the limit theory for BSS processes requires an analysis of the following
probability measure. For any A ∈ B(R), we define

πn(A) :=

∫
A{g(x+ ∆n)− g(x)}2dx∫
R{g(x+ ∆n)− g(x)}2dx

. (1.1)

In the setting of weight functions as above, we deduce that πn
d−→ δ0 as ∆n → 0, where

δ0 denotes the Dirac measure at 0 (cf. [4]). In this case the limit of the power variation
of a BSS process is given as

∆nτ
−p
n

[t/∆n]∑
i=1

|Xi∆n −X(i−1)∆n
|p u.c.p.

=⇒ mp

∫ t

0
|σs|pds, as ∆n → 0, (1.2)

where mp = E[|N (0, 1)|p], τn is a certain normalizing sequence and
u.c.p.
=⇒ stands for conver-

gence in probability uniformly on compact sets. In [4, 5] the asymptotic mixed normality
of (multi)power variation is proved and the paper [13] studies the application of the limit
theory to estimation of the smoothness parameter α. We remark that the asymptotic re-
sults are quite similar to the theory of power variations of continuous Itô semimartingales
(cf. [7, 15] among many others), although the methodologies of proofs are completely
different.

The aim of this paper is to demonstrate that other type of limits for power variations
may appear when the weight function g exhibits further singularity points. More precisely,
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we will prove that

∆nτ
−2
n

[t/∆n]∑
i=1

(Xi∆n −X(i−1)∆n
)2 u.c.p.

=⇒
∫ ∞

0

(∫ t−θ

−θ
σ2
sds

)
π(dθ), as ∆n → 0, (1.3)

where π is a finite probability measure on [0,∞) whose support is a subset of all singu-
larity points of g. Consequently, the limit theory for BSS processes is richer than the
corresponding theory for continuous Itô semimartingales. Furthermore, we will show the
associated stable central limit theorem including the setting of higher order differences.
We remark that this type of limits has already appeared in [8]. The authors proved
convergence in probability for the realised quadratic variation under the independence
assumption between σ and W , and under further conditions on certain measures associ-
ated with g, which identify π. However, it remained quite unclear when a given weight
function g satisfies the proposed set of conditions. The main goal of our paper is to show
that singularity points of g, i.e. all points around which g′ is not square integrable, de-
termine the support and the weights of π. We remark that in physics multiple singularity
points of g lead to non-homogeneous turbulent flows. Moreover, we will study the effect of
this new class of weight functions g on smoothness parameter estimation. More precisely,
we will present the asymptotic behaviour of a realised ratio statistic that compares the
realised quadratic variation at two different frequencies. Applying the limit theory on a
short enough time interval, we will derive the central limit theorem for the smoothness
parameter of the model, which turns out to be the minimal power associated with singu-
larity points of g. This shows some robustness of the realised ratio statistics investigated
in [4, 5] with respect to misspecification of the kernel g.

The paper is organised as follows. Section 2 presents the main framework and a set
of assumptions. In Section 3 we demonstrate the complete asymptotic theory for the
realised quadratic variation of BSS processes, including the law of large numbers and the
associated stable central limit theorem. In Section 4 we apply the probabilistic results to
determine the asymptotic behaviour of a realised ratio statistic, which is an estimator of
the smoothness parameter of X. Finally, all proofs are collected in Section 5.

2 The setting

2.1 Model

We start with a given filtered probability space (Ω,F , (Ft)t∈R,P) on which our processes
are defined. We consider a BSS process (Xt)t∈R (without drift) given as

Xt = µ+

∫ t

−∞
g(t− s)σsW (ds), t ∈ R, (2.1)

where W is an (Ft)t∈R-adapted white noise on R, g : R → R is a deterministic weight
function satisfying g(t) = 0 for t ≤ 0 and g ∈ L2(R). The intermittency process σ is
assumed to be an (Ft)t∈R-adapted càdlàg process. We recall that (Ft)-adapted white
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noise W is zero-mean Gaussian random measure on {A ∈ B(R) : λ(A) < ∞}, where λ
denotes the Lebesgue measure, whose covariance kernel is given by

E[W (A)W (B)] = λ(A ∩B).

The finiteness of the process X is guaranteed by the condition∫ t

−∞
g2(t− s)σ2

sds <∞ almost surely, (2.2)

for any t ∈ R, which we assume from now on. The underlying observations of the BSS
process X are

X0, X∆n , X2∆n , . . . , X∆n[t/∆n]

with ∆n → 0 and t fixed. In other words, we are in the framework of infill asymptotics.
Our realised quadratic variation statistics will be based upon higher order increments of
X computed at different frequencies. For any k ∈ N and v = 1, 2, the k-th order difference
∆n,v
i,k X at frequency v∆n and at stage i ≥ vk is defined by

∆n,v
i,k X :=

k∑
j=0

(−1)j
(
k

j

)
X(i−vj)∆n

. (2.3)

The quantity ∆n,v
i,k X is a particular example of a k-th order filter applied to the process

X. When v = 1 we usually write ∆n
i,kX instead of ∆n,1

i,kX. For instance,

∆n
i,1X = Xi∆n −X(i−1)∆n

and ∆n
i,2X = Xi∆n − 2X(i−1)∆n

+X(i−2)∆n
.

The realised quadratic variation statistic based upon ∆n,v
i,k X is defined as

QV (X, k, v∆n)t :=

[t/∆n]∑
i=vk

(∆n,v
i,k X)2 (2.4)

As in [4, 5], the Gaussian core G is crucial for understanding the fine structure of X. The
process G = (Gt)t∈R is a zero-mean stationary Gaussian process given by

Gt :=

∫ t

−∞
g(t− s)W (ds), t ∈ R. (2.5)

We remark that |Gt| < ∞ since g ∈ L2(R). A straightforward computation shows that
the correlation kernel r of G has the form

r(t) =

∫∞
0 g(u)g(u+ t)du

‖g‖2L2(R)

, t ≥ 0.

Another important quantity for the asymptotic theory is the variogram R, i.e.

R(t) := E[(Gt+s −Gs)2] = 2‖g‖2L2(R)(1− r(t)), τk(v∆n) :=
√

E[(∆n,v
i,k G)2]. (2.6)

The quantity τk(v∆n) will appear as a proper scaling in the law of large numbers for the
statistic QV (X, k, v∆n).
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2.2 Main assumptions

As we mentioned in the introduction, understanding the asymptotic behaviour of the
probability measure

πn(A) =

∫
A{g(x+ ∆n)− g(x)}2dx∫
R{g(x+ ∆n)− g(x)}2dx

, A ∈ B(R),

is absolutely crucial for determining the limit theory for the realised quadratic variation
QV (X, 1, v∆n) (for QV (X, k, v∆n), k ≥ 2, there exists an analogous probability measure).
Indeed, the condition

πn
d−→ π,

where π is a certain probability measure on R, is necessary (but not sufficient) to obtain
a non-standard law of large numbers at (1.3). In [4, 5, 13] it has been dealt with the case
π = δ0, and hence we obtained a rather standard convergence as in (1.2). However, due
to a moving average structure of the process X, even trivial weight functions g may lead
to π 6= δ0 as the next simple example shows.

Example 2.1 Let us consider the function g(x) = 1[0,1](x). A simple computation shows
that

πn(A) =
{λ(A ∩ [−∆n, 0]) + λ(A ∩ [1−∆n, 1])}

2∆n
,

and consequently πn
d−→ π = 1

2(δ0 + δ1). Indeed, the convergence in (1.3) with τ2
n =

τ1(∆n)2 = 2∆n can be shown in a straightforward manner. For our weight function g, we
deduce that

Xt = Yt − Yt−1 with Yt =

∫ t

−1
σsW (ds),

for t ≥ −1. Noticing that Y is a martingale, we easily conclude

∆nτ
−2
n

[t/∆n]∑
i=1

(Xi∆n −X(i−1)∆n
)2 u.c.p.

=⇒ 1

2

(∫ t

0
σ2
sds+

∫ t−1

−1
σ2
sds

)
, as ∆n → 0,

which confirms (1.3). This example demonstrates that if g(x) =
∑l

i=1 ai1[θ
(1)
i ,θ

(2)
i ]

with

0 ≤ θ(1)
1 < θ

(2)
1 < θ

(1)
2 < θ

(2)
2 < · · · < θ

(2)
l <∞ then

supp(π) = {θ(1)
1 , θ

(2)
1 , . . . , θ

(1)
l , θ

(2)
l } and π({θ(1)

i }) = π({θ(2)
i }) =

a2
i

2
∑l

i=1 a
2
i

,

and (1.3) holds. 2

Barndorff-Nielsen and Schmiegel [8] provide conditions on certain rather complex mea-

sures associated with g (including πn
d−→ π), which are sufficient for proving law of large

numbers of the type (1.3) under the independence assumption between σ and W . How-
ever, it is not a priori clear when a given weight function g satisfies those conditions.
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Furthermore, conditions ensuring the associated central limit theorem are expected to be
even more complex.

In this paper we follow a different route. We present an explicit large class of weight
functions g, which leads to the law of large numbers of (1.3), such that the limiting
probability measure π is easily identified. Moreover, the associated central limit theorems
are obtained (the limit theory does not require independence of σ and W ). The crucial
message of this paper is that singularity points of g defined below determine the support
and the weights of π.

Let 0 = θ0 < θ1 < · · · < θl < ∞ be a set of given points and α0, . . . , αl ∈ (−1/2, 0) ∪
(0, 1/2). For any function h ∈ Cm(R), h(m) denotes the m-th derivative of h. Recall that
k ≥ 1 stands for the order of the filter defined in (2.3). We introduce the following set of
assumptions.

(A): For δ < 1
2 min1≤i≤l(θi − θi−1) it holds that

(i) g(x) = xα0f0(x) for x ∈ (0, δ).

(ii) g(x) = |x− θi|αifi(x) for x ∈ (θi − δ, θi) ∪ (θi, θi + δ), i = 1, . . . , l.

(iii) g(θi) = 0, fi ∈ Ck ((θi − δ, θi + δ)) and fi(θi) 6= 0 for i = 0, . . . , l.

(iv) g ∈ Ck(R \ {θ0, . . . , θl}) and g(k) ∈ L2
(
R \ ∪li=0(θi − δ, θi + δ)

)
.

(v) For any t > 0

Ft =

∫ ∞
θl+1

g(k)(s)2σ2
t−sds <∞. (2.7)

We also set

α := min{α0, . . . , αl}, A := {0 ≤ i ≤ l : αi = α}. (2.8)

Let us give some remarks on this set of conditions.

Remark 2.2 The points θ0, . . . , θl are singularities of g in the sense that g(k) is not square
integrable around these points, because α0, . . . , αl ∈ (−1/2, 0) ∪ (0, 1/2) and conditions
(A)(i)-(iii) hold. Condition (A)(iv) indicates that g exhibits no further singularities. The
papers [4, 5, 13] deal with the framework of a single singularity at 0. 2

Remark 2.3 The parameter α ∈ (−1/2, 0) ∪ (0, 1/2) defined at (2.8) determines the
smoothness coefficient of the BSS process X. In some sense, the coefficients αi with i ∈ A
will dominate when proving the limit theory for QV (X, k, v∆n)t. In particular, we will
prove that supp(π) = {θi}i∈A. 2

Remark 2.4 The weight function considered in Example 2.1 obviously does not sat-
isfy the assumption (A). Indeed, in the framework of Example 2.1 the limit theory for
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QV (X, k, v∆n)t relies on semimartingale methods (cf. [7]) as X is a difference of two
martingales (although X is not a semimartingale). In the case of assumption (A) we are
in the framework of fractional processes. More precisely, the small scale behaviour of the
Gaussian core G of X is close to the small scale bahaviour of a fractional Brownian motion
with Hurst parameter H = α+ 1/2. In this situation the limit theory for QV (X, k, v∆n)t
relies on Malliavin calculus and Bernstein’s blocking technique. 2

Remark 2.5 In papers [4, 5, 13], where l = 0 holds, the function f0 is assumed to be
slowly varying at θ0 = 0. In this setting more assumptions are required to establish the
limit theory than mere condition (A). In our paper we impose a bit stronger assumptions
on functions fj , j = 0, . . . , l, in order to avoid a longer set of further conditions.

Note that condition (A)(ii) implies a symmetric behaviour of the function g around
the points θj , j = 1, . . . , l. Instead we could have assumed different power behaviour left
and right from θj . Although certain constants in the limit theorems would change in this
case, the asymptotic theory remains essentially the same. 2

3 Limit theorems

3.1 Law of large numbers

For any number k ≥ 1 and v = 1, 2, we introduce a k-th order filter associated with g via

∆n,v
k g(x) :=

k∑
j=0

(−1)j
(
k

j

)
g(x− vj∆n), x ∈ R. (3.1)

There is a straightforward relationship between the scaling quantity τk(v∆n) defined at
(2.6) and the function ∆n,v

k g, namely

τk(v∆n)2 = ‖∆n,v
k g‖2L2(R).

Now, we define the corresponding measures associated with ∆n,v
k g:

πvn,k(A) :=

∫
A(∆n,v

k g(x))2dx

‖∆n,v
k g‖2L2(R)

, A ∈ B(R). (3.2)

In order to identify the limit of πvn,k, we define the following functions

h0(x) := f0(θ0)
k∑
j=0

(−1)j
(
k

j

)
(x− j)α0

+ , (3.3)

hi(x) := fi(θi)
k∑
j=0

(−1)j
(
k

j

)
|x− j|αi , i = 1, . . . , l,

where x+ := max{x, 0}. At this stage we suppress the dependence of functions hi on the
index k. Our first result presents the limiting measure πk, which will appear in the law of
large numbers.
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Proposition 3.1 Assume that condition (A) holds. Then we deduce that

πvn,k
d−→ πk,

for any k ≥ 1 and v = 1, 2, where the probability measure πk is given as

supp(πk) = {θi}i∈A, πk(θi) =
‖hi‖2L2(R)1i∈A∑l
j=0 ‖hj‖2L2(R)

1j∈A
. (3.4)

Recalling the definition of the set A at (2.8), Proposition 3.1 says that only singularities
corresponding to the minimal indexes αi (i.e. indexes with αi = α) contribute to the limit.
We remark that the norms ‖hi‖L2(R) are indeed finite, since for |x| large enough

|hi(x)|2 ≤ C|x|2(αi−k) and 2(αi − k) < −1,

for any k ≥ 1 and αi ∈ (−1/2, 0) ∪ (0, 1/2) due to Taylor expansion. Our next result is
the law of large numbers for the statistic QV (X, k, v∆n).

Theorem 3.2 Assume that condition (A) holds. Then

∆n

τk(v∆n)2
QV (X, k, v∆n)t

u.c.p.
=⇒ QV (X, k)t :=

∫ ∞
0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ), (3.5)

where the probability measure πk is introduced in (3.4).

3.2 Central limit theorem

Now, we will present a stable central limit theorem associated with convergence in (3.5).
Let us shortly recall the notion of stable convergence, which is originally due to Rényi [20].
We say that a sequence of processes Y n converges stably in law to a process Y , where Y is
defined on an extension (Ω′,F ′,P′) of the original probability space (Ω,F ,P), in the space

D([0, T ]) equipped with the uniform topology (Y n dst−→ Y ) if and only if

lim
n→∞

E[f(Y n)Z] = E′[f(Y )Z]

for any bounded and continuous function f : D([0, T ])→ R and any bounded F-measurable
random variable Z. We refer to [1, 20] for a detailed study of stable convergence. Note
that stable convergence is a stronger mode of convergence than weak convergence, but it
is weaker than u.c.p. convergence.

The stable central limit theorem associated with convergence in (3.5) is different com-
pared to the corresponding result in the case of a single singularity (cf. [4, 5]). In par-
ticular, as we will see below, the limiting process is not an F-conditional martingale on
every interval [0, T ], but just for small enough T . For the purpose of statistical inference
we present a joint central limit theorem for the pair (QV (X, k,∆n), QV (X, k, 2∆n)).
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Theorem 3.3 Assume that condition (A) holds and the intermittency process σ is Hölder
continuous of order γ > 1/2. If k = 1 we further assume that αj ∈ (−1

2 , 0) for all 0 ≤ j ≤ l.
Then, under condition

αi − α > 1/4 for all i 6∈ A, (3.6)

we obtain the stable convergence

∆−1/2
n

(
∆n

τk(∆n)2
QV (X, k,∆n)t −QV (X, k)t,

∆n

τk(2∆n)2
QV (X, k, 2∆n)t −QV (X, k)t

)?
dst−→ Lt =

∫ t

0
V1/2
s dBs (3.7)

on D2([0,min1≤j≤l(θj − θj−1)]) equipped with the uniform topology, where B is a two-
dimensional Brownian motion, independent of F , defined on an extension of the original
probability space (Ω,F ,P) and x? denotes the transpose of x. The matrix Vs is given by

Vs =

(∫ ∞
0

σ2
s−θπk(dθ)

)2

Λk, (3.8)

where the 2× 2 matrix Λk = (λkij)1≤i,j≤2 is defined by

λk11 = lim
n→∞

∆−1
n var

( ∆n

τ̂k(∆n)2
QV (BH , k,∆n)1

)
,

λk22 = lim
n→∞

∆−1
n var

( ∆n

τ̂k(2∆n)2
QV (BH , k, 2∆n)1

)
(3.9)

λk12 = lim
n→∞

∆−1
n cov

( ∆n

τ̂k(∆n)2
QV (BH , k,∆n)1,

∆n

τ̂k(2∆n)2
QV (BH , k, 2∆n)1

)
with BH being a fractional Brownian motion with Hurst parameter H = α + 1/2 and
τ̂k(v∆n)2 := E[(∆n,v

i,k B
H)2].

The Hölder condition is a standard requirement for the validity of the blocking technique
applied in the proofs (cf. [4, 5]). As we remarked earlier, the singularity points θi with
i 6∈ A do not affect the law of large numbers in (3.5). However, they are responsible
for a certain bias, which might explode in the central limit theorem. Assumption (3.6)
guarantees that it does not happen.

The appearance of the fractional Brownian motion in the definition of the matrix Λk
is explained by the fact that the local behaviour of the Gaussian core G is close to the
local behaviour of BH with H = α + 1/2. In the terminology of the theory of Gaussian
fields it means that BH is a tangent process of G. In particular, the correlation structure
of increments of G converges to the correlation structure of increments of BH .

Remark 3.4 The limiting process L is an F-conditional Gaussian martingale on the
interval [0,min1≤j≤l(θj − θj−1)]. Outside of this interval the F-conditional martingale
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property gets lost. One may still show a stable central limit theorem with an F-conditional
Gaussian process as the limit, but only when θj − θj−1 ∈ N for all j, since otherwise the
covariance structure of the original statistic does not converge. We dispense with the exact
presentation of this case. 2

Remark 3.5 The limits in (3.9) are indeed finite and can be computed explicitly. To see
this, let us define the fractional Brownian noise of order k and scale v = 1, 2 via

∆v
i,kB

H :=
k∑
j=0

(−1)j
(
k

i

)
BH
i−vj , (3.10)

and set

ρv1,v2k (j) := corr(∆v1
i,kB

H ,∆v2
i+j,kB

H) (3.11)

(Recall that BH has stationary increments.) Using the covariance kernel of the fractional
Brownian motion one can compute the quantity ρv1,v2k (j) explicitly. For instance,

ρ1,1
1 (j) =

1

2

(
|j + 1|2H − 2|j|2H + |j − 1|2H

)
, j ≥ 1.

A straightforward computation shows that |ρv1,v2k (j)| = O(|j|2(H−k)) as |j| → ∞. Hence,
using H-self similarity of BH and the formula E[(Y 2

1 − 1)(Y 2
2 − 1)] = 2E[Y1Y2]2 for jointly

normal vector (Y1, Y2) with standard normal marginal distribution, we conclude that

λkv1,v2 = 2

1 +
∑

j∈Z\{0}

ρv1,v2k (j)2

 ,

where the latter series is finite for all k ≥ 2 and also for k = 1 if H = α + 1/2 < 3/4
holds. The condition H < 3/4 is well known in the framework of Breuer-Major central
limit theorems for quadratic functionals (see [12]). This condition directly translates to
α < 1/4. However, we require an additional restriction α < 0 when k = 1 in Theorem 3.3
due to a certain bias, which might affect the central limit theorem. 2

Remark 3.6 Theorem 3.3 deals with realised quadratic variation only, since it is sufficient
for the estimation of the smoothness parameter α as we will see below. However, we do
think that the asymptotic theory can be extended to functionals of the type

V (X,h, k, v∆n)t :=

[t/∆n]∑
i=vk

h

(
∆n,v
i,k X

τk(v∆n)

)
,

where h ∈ C1(R) is an even function. The main step of the proof is the approximation

∆n,v
i,k X ≈

l∑
j=0

σi∆n−θj∆
n,v
i,k G

(j),
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where ∆n,v
i,k G

(j), j = 0, . . . , l, are certain Gaussian random variables. Using Bernstein’s
blocking technique, which amounts in freezing the intermittency process σ in the beginning
of sub-blocks, the asymptotic behaviour of the statistic V (X,h, k, v∆n) is determined by
the functional

Q(z, h̃, k, v∆n)t :=

[t/∆n]∑
i=vk

h̃

(
z0

∆n,v
i,k G

(0)

τk(v∆n)
, . . . , zl

∆n,v
i,k G

(l)

τk(v∆n)

)
, z ∈ Rl+1,

where h̃ ∈ C1(Rl+1). The central limit theorem for a standardized version ofQ(·, h̃, k, v∆n)
relies on the stable convergence of finite dimensional distributions and tightness. The
convergence of finite dimensional distributions is a classical setting of Breuer-Major central
limit theorem. It can be shown via method of moments or using more modern methods
of Malliavin calculus (see [18, 19] among others). We remark that in the case h(x) = xp,
where p is an even number, we do not need to consider the process Q(·, h̃, k, v∆n) and the
proof becomes simpler due to binomial formula. 2

4 The ratio statistic

The smoothness parameter α defined at (2.8) describes the Hölder continuity index of X,
i.e. X is Hölder continuous of any order smaller than H = α + 1/2. In the context of
turbulence modeling the parameter α is connected to the so called Kolmogorov’s 2/3-law
(see [17]). It predicts that α ≈ −1/6 (or, in other words, 2(α + 1/2) ≈ 2/3). From this
perspective it is important to construct a consistent estimator of α to check if BSS models
adequately describe the physical laws.

The next lemma is crucial for estimating α.

Lemma 4.1 Assume that conditions (A) and (3.6) hold. When k = 1 we further assume
that αj ∈ (−1/2, 0) for all 0 ≤ j ≤ l. Then we obtain

τk(v∆n)2 = (v∆n)2α+1
l∑

j=1

‖hj‖2L2(R)1j∈A + o(∆2α+3/2
n ), (4.1)

where the functions hj were defined in (3.3).

Now, Lemma 4.1 and Theorem 3.2 provide a direct way of estimating the scaling parameter
α. Indeed, we observe that

Sn :=
QV (X, k, 2∆n)t
QV (X, k,∆n)t

P−→ 22α+1,

for any fixed t > 0. Thus, a consistent estimator of α is given via

α̂n =
1

2

(
log2

(
QV (X, k, 2∆n)t
QV (X, k,∆n)t

)
− 1

)
P−→ α, (4.2)
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where log2 denotes the logarithm at basis 2. We remark that this is exactly the same
estimator as proposed in [4, 5] for BSS processes with a single singularity at 0. A feasible
central limit theorem for α̂n is obtained as follows. Note that the applicability of the result
below relies on an a priori knowledge of the lower bound of min1≤j≤l(θj − θj−1).

Theorem 4.2 Assume that conditions of Theorem 3.3 hold and choose t < min1≤j≤l(θj−
θj−1).

(i) Define

QQ(X, k, v∆n)t :=

[t/∆n]∑
i=vk

(∆n,v
i,k X)4. (4.3)

Then we obtain that

∆n

τk(v∆n)4
QQ(X, k, v∆n)t

u.c.p.
=⇒ 3

∫ t

0

(∫ ∞
0

σ2
s−θ πk(dθ)

)2

ds

(ii) Furthermore, we have for any fixed t > 0

2 log(2)QV (X, k,∆n)t(α̂n − α)√
1
3QQ(X, k,∆n)t(−1, 1)Λnk(−1, 1)?

d−→ N (0, 1), (4.4)

where log denotes the logarithm at basis e and the matrix Λnk is defined as Λk in (3.9),
where the unknown parameter α is replaced by α̂n (recall that due to Remark 3.5 the matrix
Λk is a function of α).

Proof. Here we demonstrate the proof of part (ii), while part (i) will be proved in Section 5.
First of all, we remark that under the condition t < min1≤j≤l(θj−θj−1) we may apply the
result of Theorem 3.3. Define the functions r(x, y) = 22α+1 y

x and h(x) = 1
2(log2(x) − 1).

Lemma 4.1 implies that
τk(2∆n)2

τk(∆n)2
= 22α+1 + o(∆1/2

n ).

Hence,

Sn = r

(
∆n

τk(∆n)2
QV (X, k,∆n)t,

∆n

τk(2∆n)2
QV (X, k, 2∆n)t

)
+ oP(∆1/2

n ).

Putting things together we conclude that

∆−1/2
n (α̂n − α) = h ◦ r

(
∆n

τk(∆n)2
QV (X, k,∆n)t,

∆n

τk(2∆n)2
QV (X, k, 2∆n)t

)
+ oP(1).

Applying Theorem 3.3 and delta method for stable convergence we deduce that

∆−1/2
n (α̂n − α)

dst−→MN (0, V 2),
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whereMN (0, V 2) denotes a mixed normal variable with mean 0 and conditional variance
V 2 defined by

V 2 :=
(−1, 1)Λk(−1, 1)?

∫ t
0

(∫∞
0 σ2

s−θ πk(dθ)
)2
ds(

2 log(2)QV (X, k)t

)2 ,

where the matrix Λk is defined by (3.9). Notice that Λk is a continuous function of α due
to Remark 3.5. Hence,

Λnk
P−→ Λk.

The two other random quantities involved in the definition of V 2 can be directly estimated
via part (i) of Theorem 4.2 and Theorem 3.2. Consequently, the properties of stable con-
vergence imply part (ii) of Theorem 4.2. 2

Note that the standardized statistic in (4.4) is feasible as it does not require the knowledge
of the weight function g. We remark that (4.4) coincides with the statistic presented in [13,
Proposition 4.2] in the framework of a single singularity at 0. This demonstrates that the
test statistic in (4.4) is robust to model misspecification within the setting of assumption
(A) and condition (3.6). In the context of turbulence modeling this is a very important
property.

5 Proofs

5.1 Proof of Proposition 3.1 and Lemma 4.1

We first prove Lemma 4.1 as its proof essentially implies Proposition 3.1. Throughout
this section all positive constants are denoted by C, or Cp if they depend on an external
parameter p, although they may change from line to line.

Proof of Lemma 4.1. We assume without loss of generality that l = 2, α0 = α1 = α
and α2 − α > 1/4 (since condition (3.6) was assumed). Moreover, let v = 1. Recall the
identity

τk(∆n)2 = ‖∆n,1
k g‖2L2(R)

(cf. Section 3.1). We consider the decomposition

‖∆n,1
k g‖2L2(R) =

2∑
j=0

∫ θj+δ

θj−δ
∆n,1
k g(x)2dx+

∫ θ1−δ

δ
∆n,1
k g(x)2dx+

∫ θ2−δ

θ1+δ
∆n,1
k g(x)2dx

+

∫ ∞
θ2+δ

∆n,1
k g(x)2dx. (5.1)

We will now show that∫ θj+δ

θj−δ
∆n,1
k g(x)2dx = ∆2α+1

n ‖hj‖L2(R) + o(∆2α+3/2
n ), j = 0, 1, (5.2)
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and all other terms in the decomposition are o(∆
2α+3/2
n ) under the assumptions of Lemma

4.1. We start with the negligibility of the three last terms in (5.1). Using Taylor expansion
of order k and integrability condition (A)(iv), we immediately conclude that∫ θ1−δ

δ
∆n,1
k g(x)2dx = O(∆2k

n ),

∫ θ2−δ

θ1+δ
∆n,1
k g(x)2dx = O(∆2k

n ),∫ ∞
θ2+δ

∆n,1
k g(x)2dx = O(∆2k

n ),

so all these terms are o(∆
2α+3/2
n ) under assumptions of Lemma 4.1. Now, we show (5.2)

for j = 0; the case j = 1 works similarly. Proving this statement for j = 0 essentially
means that we can replace f0(x) involved in the integral by the constant f0(0). Let ε > 0
be small enough with ε >> ∆n. Using again Taylor expansion of order k and integrability
condition (A)(iv), we conclude that (recall that g(x) = 0 for x ≤ 0)∫ δ

−δ
∆n,1
k g(x)2dx =

∫ ε

0
∆n,1
k g(x)2dx+O(∆2k

n ε
2(α−k)+1).

When we replace the function f0 that appears in the latter integral by a constant f0(0),
we deduce by substitution x = ∆ny

f0(0)2

∫ ε

0
(∆n,1

k (xα))2dx = ∆2α+1
n

∫ ε/∆n

0
h0(y)2dy

= ∆2α+1
n

∫ ∞
0

h0(y)2dy +O(∆2k
n ε

2(α−k)+1),

since |h0(x)|2 ≤ C|x|2(α−k) for large x and 2(α− k) < −1. Note that the dominating term
is exactly the one given in (5.2). Now, let us evaluate the difference∫ ε

0
∆n,1
k g(x)2dx− f0(0)2

∫ ε

0
(∆n,1

k (xα))2dx =

∫ k∆n

0
∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2dx

+

∫ ε

k∆n

∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2dx.

Using differentiability of f0 we immediately conclude that∫ k∆n

0
|∆n,1

k g(x)2 − f0(0)2(∆n,1
k (xα))2|dx = O(∆2α+2

n ).

The other integral has to be treated differently. In the following we present the compu-
tations only for k = 1, 2 (in fact, the case k ≥ 3 is easier to treat). We start with k = 1.
Using binomial rule, differentiability of f0 and substitution, we conclude that∣∣∣ ∫ ε

∆n

∆n,1
1 g(x)2 − f0(0)2(∆n,1

1 (xα))2dx
∣∣∣ ≤ C∆2α+2

n

∫ ε/∆n

1
|h0(y)|yα+1dy
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Using the inequality |h0(x)| ≤ C|x|α−1 for large x, we deduce that

∆2α+2
n

∫ ε/∆n

k
|h0(y)|yα+1dy ≤ C∆nε

2α+1

Setting ε = ∆
1/2
n , we deduce that all involved small order terms are o(∆

2α+3/2
n ) when

α < 0. Now, we consider the case k = 2. Since f0 is twice continuously differentiable, we
may apply the Taylor expansion to

f0(x+m∆n) = f0(0) +mf ′0(0)∆n +
1

2
m2∆2

nf
′′
0 (xm),

where xm ∈ (0, x + m∆n) and m = 0, 1, 2. Using the above Taylor expansion and the
binomial formula, we deduce that∣∣∣ ∫ ε

k∆n

∆n,1
k g(x)2 − f0(0)2(∆n,1

k (xα))2dx
∣∣∣ ≤ C(q1(n, ε) + q2(n, ε) + q3(n, ε)),

where

q1(n, ε) =

∫ ε

k∆n

h0(x)2xdx,

q2(n, ε) = ∆n

∫ ε

k∆n

|h0(x)||(x+ 2∆n)α − (x+ ∆n)α|dx,

q3(n, ε) =

∫ ε

k∆n

|h0(x)|xα+2dx.

Applying the substitution x = ∆ny, we get

q1(n, ε) = O(∆2α+2
n ), q2(n, ε) = O(∆2α+2

n ), q3(n, ε) = O(∆2
nε

2α+1).

Setting now ε = ∆
1/2
n , we conclude that all second order terms are o(∆

2α+3/2
n ).

Finally, let us treat the case j = 2. Since∫ θ2+δ

θ2−δ
∆n,1
k g(x)2dx = O(∆2α2+1

n )

as shown above and α2 − α > 1/4, we see that this term is o(∆
2α+3/2
n ). Consequently, we

obtain the assertion of Lemma 4.1. 2

Proof of Proposition 3.1. The assertion of Proposition 3.1 now easily follows from the
proof of Lemma 4.1. First of all, it implies that

‖∆n,v
k g‖2L2(R) = (v∆n)2α+1

l∑
j=0

‖hj‖2L2(R)1j∈A + o(∆2α+1
n ),
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even without condition (3.6). On the other hand the proof of Lemma 4.1 also implies that∫ θj+ε

θj−ε
∆n,v
k g(x)2dx = (v∆n)2α+1‖hj‖2L2(R) + o(∆2α+1

n ) if j ∈ A,

for any ε < min1≤i≤l(θi − θi−1), and∫ b

a
∆n,v
k g(x)2dx = o(∆2α+1

n )

if the interval [a, b] does not contain any θj with j ∈ A. This completes the proof of
Proposition 3.1. 2

5.2 Some preliminaries

Before we prove the main results of the paper, we start with some preliminaries. We
remark that the intermittency process σ is cádlág, hence σ− is locally bounded. Since our
Theorems 3.2, 3.3 and 4.2 are stable under localization (cf. [7]), we may and will assume
that σ is bounded on compact intervals.

Recalling the notation of (3.1) we introduce the following Gaussian random variables

∆n,v
i,k G

(j) :=

∫ i∆n−θj+δ

i∆n−θj−δ
∆n,v
k g(i∆n − s)W (ds), j = 0, . . . , l, (5.3)

where the constant δ > 0 was defined in (A). Notice that the above Gaussian variables
are independent for different j’s when computed at the same stage i∆n. One of the key
steps of our proofs is to show the approximation

∆n,v
i,k X ≈

l∑
j=0

σ(i−vk)∆n−θj∆
n,v
i,k G

(j). (5.4)

(cf. Sections 5.3 and 5.4.) The ideas behind the proofs of Theorems 3.2, 3.3 and 4.2
follow a similar structure as presented in [4, 5], although the situation is more complex
due to multiple singularities of the weight function g. First of all, we will use a blocking
technique, which amounts in considering a subdivision of the interval [0, t] into equidistant
sub-blocks and freezing the intermittency process σ within each sub-block. In a second
step, we will prove joint limit theorems over the sub-blocks applying Malliavin calculus
and properties of stable convergence.

We start with the limit theory for the Gaussian variables ∆n,v
i,k G

(j), which has been
essentially treated in [4]. Define

τk,j(v∆n)2 := E[(∆n,v
i,k G

(j))2], rv1,v2,j1,j2k,n (q) := corr
(

∆n,v1
1,k G

(j1),∆n,v2
1+q,kG

(j2)
)
. (5.5)
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We consider the statistics

QV (k, v∆n)j1,j2t := ∆n

[t/∆n]∑
i=vk

∆n,v
i,k G

(j1)∆n,v
i,k G

(j2)

τk,j1(v∆n)τk,j2(v∆n)
, 0 ≤ j1, j2 ≤ l, (5.6)

and set

ρv1,v2,jk (q) := corr(∆v1
1,kB

Hj ,∆v2
1+q,kB

Hj ), (5.7)

where BHj is a fractional Brownian motion with Hurst parameter Hj = αj + 1/2 and the
quantity ∆v

i,kB
Hj is defined in (3.10). The next result is essentially a combination of [4,

Theorems 1 and 2] and [5, Section 2].

Theorem 5.1 Assume that condition (A) holds.

(i) We have the convergence

QV (k, v∆n)j1,j2t
u.c.p.
=⇒ QV (k)j1,j2t := δj1,j2t, j1, j2 ∈ A, (5.8)

where δj1,j2 = 1 when j1 = j2 and 0 otherwise.

(ii) When k = 1 we further assume that αj < 0 for all 0 ≤ j ≤ l. Then

∆−1/2
n

(
QV (k, v∆n)j1,j2 −QV (k)j1,j2

)v=1,2

j1,j2∈A,j1≤j2
dst−→ V = (V j1,j2

k,v )v=1,2
j1,j2∈A,j1≤j2 , (5.9)

on D|A|(|A|+1)([0,min1≤j≤l(θj − θj−1)]), where V is a Gaussian martingale, defined on an
extension (Ω′,F ′,P′) of the original probability space and independent of F . The covari-
ance structure is given as

E′[V j1,j2
k,v (t)V

j′1,j
′
2

k,v′ (s)] = 0 when (j1, j2) 6= (j′1, j
′
2),

E′[V j,j
k,v (t)V j,j

k,v′(s)] = 2 min{t, s}

1 +
∑

q∈Z\{0}

ρv,v
′,j

k (q)2

 ,

E′[V j1,j2
k,v (t)V j1,j2

k,v′ (s)] = min{t, s}

1 +
∑

q∈Z\{0}

ρv,v
′,j1

k (q)ρv,v
′,j2

k (q)

 for j1 6= j2.

We remark that for j, j1, j2 ∈ A we immediately conclude that

E′[V j,j
k,v (1)V j,j

k,v′(1)] = λkv,v′ , (5.10)

E′[V j1,j2
k,v (1)V j1,j2

k,v′ (1)] =
1

2
λkv,v′ for j1 6= j2,

where λkv,v′ is defined by (3.9).

Proof. We divide the proof into several steps.
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Step 1. We will not work with the random variables ∆n,v
i,k G

(j) directly, but with their
approximations. For any 0 ≤ j ≤ l, we define a new Gaussian process

G̃
(j)
t :=

∫
R
g̃(j)(t− s)W (ds),

where the function g̃(j) (j ≥ 1) is given via

g̃(j)(x) = f̃j(x)|x− θj |αj ,

with f̃j = fj on x ∈ (θj − δ/2, θj + δ/2), f̃j = 0 outside of the interval (θj − δ, θj + δ),

and f̃j ∈ Ck(R) (the function f̃0 is defined similarly). Then, if we consider the k-th order

increments ∆n,v
i,k G̃

(j) of G̃ at frequency v∆n, we readily deduce that

E[(∆n,v
i,k G̃

(j) −∆n,v
i,k G

(j))2] ≤ C∆2k
n (5.11)

due to assumption (A). Now, let us define the statistics

Q̃V (k, v∆n)j1,j2t := ∆n

[t/∆n]∑
i=vk

∆n,v
i,k G̃

(j1)∆n,v
i,k G̃

(j2)

τ̃k,j1(v∆n)τ̃k,j2(v∆n)
, τ̃k,j(v∆n)2 := E[(∆n,v

i,k G̃
(j))2],

(5.12)

for 0 ≤ j1, j2 ≤ l. Then, due to (5.11), τ̃k,j(v∆n)/τk,j(v∆n)→ 1 and

Q̃V (k, v∆n)j1,j2t −QV (k, v∆n)j1,j2t
u.c.p.
=⇒ 0, (5.13)

and also

∆−1/2
n

(
Q̃V (k, v∆n)j1,j2t −QV (k, v∆n)j1,j2t

)
u.c.p.
=⇒ 0 (5.14)

under the assumption of Theorem 5.1(ii), which is due to Cauchy-Schwarz inequality.

Thus, it suffices to prove the asymptotic theory for the statistics Q̃V (k, v∆n)j1,j2t . 2

Step 2. In this step we analyze the correlation structure of the increments ∆n,v
i,k G̃

(j).
We define

r̃v1,v2,j1,j2k,n (q) := corr
(

∆n,v1
1,k G̃

(j1),∆n,v2
1+q,kG̃

(j2)
)
. (5.15)

The next proposition describes the asymptotic behaviour of the correlation function r̃v1,v2,j1,j2k,n (q).

Proposition 5.2 Assume that condition (A) holds. Then we obtain that

r̃v1,v2,j,jk,n (q)→ ρv1,v2,jk (q), (5.16)

where ρv1,v2,jk (q) is defined at (5.7). Furthermore, for any ε > 0 there exists C > 0 such
that

|r̃v1,v2,j,jk,n (q)| ≤ C|q|2Hj−2k−ε. (5.17)

Likewise, if j1, j2 ∈ A, j1 > j2 then for any ε > 0 there exists C > 0 such that

|r̃v1,v2,j1,j2k,n (q)| ≤ C|q + ∆−1
n (θj1 − θj2)|2α+1−2k−ε. (5.18)
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Proof. We start with the proof of (5.16) and (5.17). Without loss of generality we prove it
only for the case k = 1, v1 = v2 = 1 and j = 0; the rest follows by similar arguments. For
simplicity we set r̃n(q) := r̃1,1,0,0

1,n (q), ρ(q) := ρ1,1,0
1 (q) and ∆n

i G̃
(0) := ∆n,1

i,1 G̃
(0). Observe

that

cov
(

∆n
1 G̃

(0),∆n
1+qG̃

(0)
)

=

∫ ∆n+δ

(1+q)∆n−δ
{g̃(0)(∆n − s)− g̃(0)(−s)}

× {g̃(0)((1 + q)∆n − s)− g̃(0)(q∆n − s)}ds.

Now, recalling that g̃(0)(x) = xα0f0(x) for x ∈ (0, δ/2), we conclude as in the proof of
Lemma 4.1

∆−(2α0+1)
n cov

(
∆n

1 G̃
(0),∆n

1+qG̃
(0)
)
→ f0(0)2

∫
R
{(1− s)α0

+ − (−s)α0
+ }

× {(q + 1− s)α0
+ − (q − s)α0

+ }ds.

The latter limit is, up to a factor f0(0)2, the covariance function of a (non-standard)

fractional Brownian noise (B̃
α0+1/2
i − B̃α0+1/2

i−1 )i≥1, where B̃α0+1/2 is defined as

B̃
α0+1/2
t :=

∫
R
{(t− s)α0

+ − (−s)α0
+ }W (ds).

Thus, using again Lemma 4.1, we deduce that

r̃n(q)→ ρ(q) as n→∞,

which completes the proof of (5.16).

Now, we define the function

R̃u :=

∫ δ

−δ
(g̃(0)(−s)− g̃(0)(−u− s))2ds

and note that R̃∆n = τ̃1,0(∆n)2. According to [3, Lemma 1] and conditions (A1)-(A3)
therein, it is sufficient to show that

R̃u = u2α0+1Zu, u > 0,

where Z ∈ C2(0,∞) and limu→0 Zu 6= 0, to conclude (5.17). Observe that for u < δ

R̃u =

∫ u

0
s2α0 f̃2

0 (s)ds+

∫ δ

u
(sα0 f̃0(s)− (s− u)α0 f̃2

0 (s− u))2ds

= u2α0+1

(∫ 1

0
x2α0 f̃2

0 (ux)dx+

∫ δ/u

1
(xα0 f̃0(ux)− (x− 1)α0 f̃2

0 (ux− u))2dx

)

= u2α0+1Zu.
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Now, Z ∈ C2(0,∞) since f̃0 ∈ C2(0, δ); see condition (A)(iii). Furthermore,

lim
u→0

Zu = f2
0 (0)

(∫ 1

0
x2α0dx+

∫ ∞
1

(xα0 − (x− 1)α0)2dx

)
,

where the limit is finite since α0 < 1/2 and strictly positive because f0(0) 6= 0 (see again
(A)(iii)). Thus, (5.17) follows.

Finally, we need to prove (5.18). We assume without loss of generality that k = 1, v1 =
v2 = 1 and θj1 > θj2 > 0. For q < 0 such that (1+q)∆n−θj2−δ ∈ [∆n−θj1−δ,∆n−θj1−δ),
we obtain that

cov
(

∆n
1 G̃

(j1),∆n
1+qG̃

(j2)
)

=

∫ ∆n−θj1+δ

(1+q)∆n−θj2−δ
{g̃(j1)(∆n − s)− g̃(j1)(−s)}{g̃(j2)((1 + q)∆n − s)− g̃(j2)(q∆n − s)}ds

=

∫ ∆n−θj1+δ

(1+q)∆n−θj2−δ
{f̃j1(∆n − s)|∆n − s− θj1 |α − f̃j1(−s)|s+ θj1 |α}

× {f̃j2((1 + q)∆n − s)|(1 + q)∆n − s− θj2 |α − f̃j2(q∆n − s)|q∆n − s− θj2 |α}ds,

where we recall that αj1 = αj2 = α. In the next step we compare this expression with the
following covariance

cov
(

∆n
1 G̃

(j1),∆n
1+q̄G̃

(j1)
)

=

∫ ∆n−θj1+δ

(1+q̄)∆n−θj1−δ
{f̃j1(∆n − s)|∆n − s− θj1 |α − f̃j1(−s)|s+ θj1 |α}

× {f̃j1((1 + q̄)∆n − s)|(1 + q̄)∆n − s− θj1 |α − f̃j1(q̄∆n − s)|q̄∆n − s− θj1 |α}ds.

Now, by setting q̄ = [q+∆−1
n (θj1−θj2)] and recalling that all functions f̃j satisfy the same

assumption (A)(iii), and keeping in mind Lemma 4.1, we conclude that

|rj1,j2n (q)| ≤ C|rj1,j1n (q̄)|,

which implies (5.18) by applying (5.17). 2

Step 3. Due to Step 1 it suffices to prove Theorem 5.1 for the statistics Q̃V (k, v∆n)j1,j2t .
We start with part (i). Assertions (5.16) and (5.17) immediately imply the convergence
(5.8) by [4, Theorem 1] (or, more precisely, by its multivariate extension).

Part (ii) essentially follows from [4, Theorem 2]. First, we observe that our multivari-
ate statistic is a functional of a Gaussian process. In this case it is sufficient to prove
asymptotic normality for each component and to identify the covariance structure (this is
due to the results of [19]). The asymptotic normality follows from the square summability
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of the bound in (5.17), i.e.
∞∑
q=1

q2(2α+1−2k+ε) <∞

for ε > 0 small enough (if k = 1 we require that α < 1/4), which is a sufficient condition
for asymptotic normality of each component due to [4, Theorem 2]. Furthermore, the
convergence in (5.16) easily identifies the covariance structure of each component (see
again [4, Theorem 2]), hence the last two identities of Theorem 5.1.

Now, let us prove the asymptotic independence of the involved components. As before
we assume without loss of generality that k = 1, v1 = v2 = 1. We define

Ṽ j
n (t) = ∆−1/2

n

(
Q̃V (1,∆n)j,jt −QV (1)j,jt

)
and show that E[Ṽ j1

n (t)Ṽ j2
n (s)] → 0 for j1, j2 ∈ A with j1 6= j2 (the asymptotic inde-

pendence of all other components is shown in exactly the same manner). Recall that
|t− s| < min1≤j≤l(θj − θj−1). We deduce that

E[Ṽ j1
n (t)Ṽ j2

n (s)] = 2∆n

[t/∆n]∑
i1=1

[s/∆n]∑
i2=1

|r̃j1,j2n (i2 − i1)|2

Now, for the sake of demonstration, we consider the case t = s = min1≤j≤l(θj − θj−1) =
θj1 − θj2 (so θj1 > θj2); in fact, the situation t, s < θj1 − θj2 is easier to treat. Then the
estimate (5.18) gives

|E[Ṽ j1
n (t)Ṽ j2

n (s)]| ≤ C∆n

[t/∆n]−1∑
i=−[t/∆n]+1

|i+ ∆−1
n (θj1 − θj2)|2(2α−1+ε)([t/∆n]− |i|)

Let w ∈ (0, 1). We conclude that

∆n

[t/∆n]−1∑
i=−w[t/∆n]+1

|i+ ∆−1
n (θj1 − θj2)|2(2α−1+ε)([t/∆n]− |i|) ≤ C(1− w)∆−4α+1−2ε

n .

On the other hand we have that

∆n

−w[t/∆n]∑
i=−[t/∆n]+1

|i+ ∆−1
n (θj1 − θj2)|2(2α−1+ε)([t/∆n]− |i|) ≤ C(1− w),

since t = θj1 − θj2 , α < 1/4 and ε > 0 can be chosen arbitrarily small. Hence, letting first

∆n → 0 and then w → 1 we obtain the desired convergence E[Ṽ j1
n (t)Ṽ j2

n (s)]→ 0. 2

Finally, let us note that due to Theorem 5.1(i) we have that

∆nτk(∆n)−2

[t/∆n]∑
i=vk

(∆n,v
i,k G

(j))2 = oP(∆1/2
n ) ∀j 6∈ A,
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due to Lemma 4.1 and the condition αj − α > 1/4. On the other hand, when j1 6= j2 and
either j1 6∈ A or j2 6∈ A, then we conclude that

var
(
QV (k, v∆n)j1,j2t

)
= OP(∆n)

under assumptions of Theorem 5.1 (the arguments are similar to the proof of Theorem
5.1). Thus, using again Lemma 4.1, we conclude that

∆nτk(∆n)−2

[t/∆n]∑
i=vk

∆n,v
i,k G

(j1)∆n,v
i,k G

(j2) = oP(∆1/2
n ) (5.19)

whenever j1 6∈ A or j2 6∈ A, under conditions of Theorem 3.3.

5.3 Proof of Theorem 3.2 and Theorem 4.2(i)

Proof of Theorem 3.2. Below we apply a blocking technique, which means that we sub-
divide the interval [0, t] into sub-blocks and freeze the intermittency process within each
block. We remark that the statistic QV (X, k, v∆n)t is increasing in t and the limiting
process QV (X, k)t at (3.5) is continuous in t. For this reason it is sufficient to prove
pointwise convergence

∆n

τk(v∆n)2
QV (X, k, v∆n)t

P−→ QV (X, k)t =

∫ ∞
0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ)

for a fixed t > 0.

Now, we fix a natural number m and introduce the decomposition

∆n

τk(v∆n)2
QV (X, k, v∆n)t −QV (X, k)t = An +Bn,m + Cn,m +Dm, (5.20)

where

An :=
∆n

τk(v∆n)2

[t/∆n]∑
i=vk

(∆n,v
i,k X)2 −

( l∑
j=0

σ(i−vk)∆n−θj∆
n,v
i,k G

(j)
)2



Bn,m :=
∆n

τk(v∆n)2

[t/∆n]∑
i=vk

( l∑
j=0

σ(i−vk)∆n−θj∆
n,v
i,k G

(j)
)2
−

[mt]∑
r=1

∑
i∈Im(r)

( l∑
j=0

σ(r−1)/m−θj∆
n,v
i,k G

(j)
)2



Cn,m :=
∆n

τk(v∆n)2

[mt]∑
r=1

∑
i∈Im(r)

( l∑
j=0

σ(r−1)/m−θj∆
n,v
i,k G

(j)
)2
− 1

m

[mt]∑
r=1

∫ ∞
0

σ2
(r−1)/m−θπk(dθ)

Dm :=
1

m

[mt]∑
r=1

∫ ∞
0

σ2
(r−1)/m−θπk(dθ)−

∫ ∞
0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ)
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with

Im(r) :=
{
i| i∆n ∈

(r − 1

m
,
r

m

]}
.

Let us give an interpretation to the introduced decomposition. The term An is the error
associated with the crucial approximation introduced in (5.4). In a second step we divide
the interval [0, t] into [mt] sub-blocks and freeze the intermittency σ in the beginning of
each block; the associated error is represented by Bn,m. Within each sub-block we apply
the law of large numbers to the Gaussian part. The error of this procedure is denoted by
Cn,m. Finally, Dm represents the error of a Riemann sum approximation. Next we will
prove that

lim
m→∞

lim sup
n→∞

P(|An +Bn,m + Cn,m +Dm| > ε) = 0,

for any ε > 0. This will complete the proof of Theorem 3.2.

The term An. The convergence An
P−→ 0 is shown exactly as in [4, Section 7.3]. Therein

the proof is given for the case of a single singularity at 0. However, it directly extends to
the case of multiple singularities. 2

The term Bn,m. Observe that

|Bn,m| ≤
∆n

τk(v∆n)2

[mt]∑
r=1

l∑
j1,j2=0

sup

s∈
(

r−2
m
, r
m

] |σ(r−1)/m−θj1σ(r−1)/m−θj2 − σs−θj1σs−θj2 |

×
∣∣∣ ∑
i∈Im(r)

∆n,v
i,k G

(j1)∆n,v
i,k G

(j2)
∣∣∣+Rn,m

with limm→∞ lim supn→∞ P(|Rn,m| > ε) = 0. The dominating term converges in probabil-
ity to

Bm :=
1

m

[mt]∑
r=1

∑
j∈A

π(θj) sup

s∈
(

r−2
m
, r
m

] |σ2
(r−1)/m−θj − σ

2
s−θj |

as n → ∞ due to Theorem 5.1(ii) and convergence τk,j(v∆n)2/τk(v∆n)2 → π(θj). Ob-
serving the estimation

|Bm| ≤
∑
j∈A

π(θj)

∫ t

0
sup

s∈
(

[um]−1
m

,
[um]+1

m

] |σ2
[um]
m
−θj
− σ2

s−θj |du,

we conclude that
Bm

P−→ 0 as m→∞,

by bounded convergence theorem, since σ is cádlág and bounded on compact intervals.
Thus, the proof of this part is completed. 2
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The term Cn,m. According to Theorem 5.1(ii), we have

∆n

∑
i∈Im(r)

∆n,v
i,k G

(j1)∆n,v
i,k G

(j2)

τk,j1(v∆n)τk,j2(v∆n)

P−→ δj1,j2m
−1t

for any r. Furthermore, the proof of Proposition 3.1 shows that

τk,j(v∆n)2

τk(v∆n)2
→ π(θj).

Thus, for any fixed m, we conclude that

Cn,m
P−→ 0 as n→∞,

which completes the proof of this part. 2

The term Dm. Recall that the measure π is finite and the process σ is cádlág bounded.

Hence, the convergence Dm
P−→ 0 as m → ∞ follows by Lebesgue integrability. This

completes the proof of Theorem 3.2. 2

Proof of Theorem 4.2(i): The proof of this result follows along the same lines as the
previous one. For the treatment of the terms Bn,m and Cn,m we use the convergence in
probability

∆n

[t/∆n]∑
i=vk

(∆n,v
i,k G

(j1)∆n,v
i,k G

(j2))2

(τk,j1(v∆n)τk,j2(v∆n))2

u.c.p.
=⇒ t when j1 6= j2,

∆n

[t/∆n]∑
i=vk

(∆n,v
i,k G

(j))4

(τk,j(v∆n))4

u.c.p.
=⇒ 3t,

which follows from a general result of [4, Theorem 1]. The remaining proof of Theorem
3.2 applies directly to Theorem 4.2(i). 2

5.4 Proof of Theorem 3.3

Here we use a slightly different decomposition than in the proof of Theorem 3.2. Observe
that

∆−1/2
n

(
∆n

τk(v∆n)2
QV (X, k, v∆n)t −QV (X, k)t

)
= Ãvn + B̃v

n,m + C̃vn,m + D̃v
n, (5.21)
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where

Ãvn :=
∆

1/2
n

τk(v∆n)2

[t/∆n]∑
i=vk

(∆n,v
i,k X)2 −

( l∑
j=0

σ(i−vk)∆n−θj∆
n,v
i,k G

(j)
)2



B̃v
n,m := ∆1/2

n

 1

τk(v∆n)2

[t/∆n]∑
i=vk

( l∑
j=0

σ(i−vk)∆n−θj∆
n,v
i,k G

(j)
)2
−

[t/∆n]∑
i=vk

∫ ∞
0

σ2
(i−vk)∆n−θπk(dθ)



−∆1/2
n

 1

τk(v∆n)2

[mt]∑
r=1

∑
i∈Im(r)

( l∑
j=0

σ(r−1)/m−θj∆
n,v
i,k G

(j)
)2

− 1

m

[mt]∑
r=1

∫ ∞
0

σ2
(r−1)/m−θπk(dθ)



C̃vn,m := ∆1/2
n

 1

τk(v∆n)2

[mt]∑
r=1

∑
i∈Im(r)

( l∑
j=0

σ(r−1)/m−θj∆
n,v
i,k G

(j)
)2
− 1

m

[mt]∑
r=1

∫ ∞
0

σ2
(r−1)/m−θπk(dθ)



D̃v
n := ∆−1/2

n

∆n

[t/∆n]∑
i=vk

∫ ∞
0

σ2
(i−vk)∆n−θπk(dθ)−

∫ ∞
0

(∫ t−θ

−θ
σ2
sds

)
πk(dθ)


In the next step we will prove that

lim
m→∞

lim sup
n→∞

P(‖Ãvn + B̃v
n,m + D̃v

n‖∞ > ε) = 0,

for any ε > 0. The term C̃vn,m will give us the central limit theorem. More precisely, we
will show that

(C̃1
n,m, C̃

2
n,m)

dst−→ Cm as n→∞,

for some process Cm and Cm
dst−→ L, where the process L is defined at (3.7). This would

complete the proof of Theorem 3.3.

Term Ãvn. The convergence Ãvn
u.c.p.
=⇒ 0 has been proved for k = 1 in [4, Section 7] and

for k = 2 in [5, Section 5.2] (the latter proof easily extends to any k ≥ 2). Although both
results are only valid for the case of single singularity at 0, they extend to the case of
multiple singularities exactly as in the proof of Theorem 3.2. 2

Term B̃v
n,m. The negligibility of the quantity B̃v

n,m is proven by means of fractional cal-
culus in a recent work [14, Section 4]. 2

Term C̃vn,m. We recall first that

τk,j(v∆n)2

τk(v∆n)2
= π(θj) + o(∆1/2

n ) j ∈ A,
τk,j(v∆n)2

τk(v∆n)2
= o(∆1/2

n ) j 6∈ A,
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which follows from the proof of Proposition 3.1 and condition (3.6). Define the statistics

Sv,j1,j2n,m (r) := ∆1/2
n

 1

τk(v∆n)2

∑
i∈Im(r)

∆n,v
i,k G

(j1)∆n,v
i,k G

(j2) − δj1,j2
π(θj1)

m

 , j1, j2 ∈ A.

Applying Theorem 5.1(ii) and the properties of stable convergence, we conclude that(
σ(r−1)/m−θj , S

v,j1,j2
n,m (r)

)r=1,...,m, v=1,2

j,j1,j2∈A

dst−→
(
σ(r−1)/m−θj ,

√
π(θj1)π(θj2)

(
V j1,j2
k,v

( r
m

)
− V j1,j2

k,v

(r − 1

m

)))r=1,...,m, v=1,2

j,j1,j2∈A
,

where the process V is defined at (5.9). Next, we observe that

∆1/2
n

1

τk(v∆n)2

∑
i∈Im(r)

∆n,v
i,k G

(j1)∆n,v
i,k G

(j2) = oP(1)

when j1 6∈ A or j2 6∈ A, which is due to (5.19). Hence, it holds that

C̃vn,m =

[mt]∑
r=1

∑
j1,j2∈A

σ(r−1)/m−θj1σ(r−1)/m−θj2S
v,j1,j2
n,m (r) + oP(1).

Now, applying the continuous mapping theorem for stable converge and recalling the
identity (5.10), we deduce that

(C̃1
n,m, C̃

2
n,m)

dst−→
[mt]∑
r=1

(∫ ∞
0

σ2
r−1
m
−θ πk(dθ)

)
Λ

1/2
k (B r

m
−B r−1

m
) as n→∞,

where Λk and B are defined at (3.7). Finally,

[mt]∑
r=1

(∫ ∞
0

σ2
r−1
m
−θ πk(dθ)

)
Λ

1/2
k (B r

m
−B r−1

m
)
dst−→ Lt as m→∞,

which completes this step. 2

Term D̃v
n. Since σ is Hölder continuous of order γ with γ > 1/2, we readily deduce

that D̃v
n

u.c.p.
=⇒ 0. This completes the proof of Theorem 3.3. 2
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