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Abstract

Motivated by the implications from a stylized equilibrium pricing framework, we in-
vestigate empirically how individual equity prices respond to continuous, or “smooth,”
and jumpy, or “rough,” market price moves, and how these different market price risks,
or betas, are priced in the cross-section of expected returns. Based on a novel high-
frequency dataset of almost one-thousand individual stocks over two decades, we find
that the two rough betas associated with intraday discontinuous and overnight returns
entail significant risk premiums, while the intraday continuous beta is not priced in
the cross-section. An investment strategy that goes long stocks with high jump be-
tas and short stocks with low jump betas produces significant average excess returns.
These higher risk premiums for the discontinuous and overnight market betas remain
significant after controlling for a long list of other firm characteristics and explanatory
variables previously associated with the cross-section of expected stock returns.
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1 Introduction

The idea that only systematic market price risk should be priced represents one of the

cornerstones of finance. Even though numerous studies over the past half-century have

called into question the ability of the CAPM to fully explain the cross-section of expected

stock returns, the beta of an asset arguably remains the most commonly used systematic

risk measure in financial practice.1 Meanwhile, more recent empirical evidence pertaining to

the equity risk premium and the pricing of risk at the aggregate market level suggests that

the expected return variation associated with discontinuous price moves, or jumps, is priced

higher than the expected continuous price variation.2

Set against this background, we propose a general pricing framework involving three sep-

arate market betas: a continuous beta reflecting “smooth” intraday comovements with the

market, and two “rough” betas associated with intraday price discontinuities, or jumps, dur-

ing the active part of the trading day, and the overnight close-to-open return, respectively.

We find that the two rough betas on average exceed the continuous beta.3 Moreover, con-

sistent with the idea that investors view intraday smooth, and easier to hedge price moves

quite differently from intraday rough and day-to-day overnight price changes,4 we find that

the risk premiums associated with the two jump betas are both statistically significant and

indistinguishable, while the continuous beta does not appear to be priced in the cross-section.

The theoretical framework motivating our empirical investigations and the separate cross-

sectional pricing of continuous and discontinuous market price risks is very general, and

merely assumes the existence of a generic pricing kernel along the lines of Duffie et al. (2000).

Importantly, we make no explicit assumptions about the pricing of other non-market price

risks. As such, our setup includes the popular long-run risk model of Bansal and Yaron

1Early work by Fama et al. (1969) and Blume (1970) generally supports the CAPM. Subsequent promi-
nent empirical studies that call into question the explanatory power of market betas for satisfactorily ex-
plaining the cross-section of expected returns include Basu (1977, 1983), Roll (1977), Banz (1981), Stattman
(1983), Rosenberg et al. (1985), Bhandari (1988), and Fama and French (1992).

2Empirical evidence based on aggregate equity index options in support of this hypothesis includes Pan
(2002), Eraker et al. (2003), Bollerslev and Todorov (2011), and Gabaix (2012), among others.

3The seminal paper by Merton (1976) hypothesizes that jump risks for individual stocks are likely to be
non-systematic. On the other hand, more recent empirical evidence of increased cross-asset correlations for
higher (in an absolute sense) returns documented in Ang and Chen (2002), among many others, indirectly
suggests non-zero systematic jump risk.

4Optimally managing market diffusive and jump price risks require the use of different hedging tools
and derivative instruments; see e.g., the theoretical analysis in Liu et al. (2003a,b) as well as the more
recent discussion in Aı̈t-Sahalia et al. (2009) related to portfolio allocation in the presence of jumps. The
increased availability of short-maturity out-of-the-money options, which provide a particular convenient tool
for managing jump tail risk, also directly speaks to the practical importance of separately accounting for
these different types of risks.
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(2004), the habit persistence model of Campbell and Cochrane (1999), and the rare disaster

model of Gabaix (2012), as special cases obtained by further restricting the functional form

of the pricing kernel and the set of other priced risk factors.

The statistical theory underlying our estimation of the separate betas builds on recent

advances in financial econometrics related to the use of high-frequency intraday data and

so-called realized volatilities. Bollerslev and Zhang (2003), Barndorff-Nielsen and Shephard

(2004a), and Andersen et al. (2005, 2006), in particular, have previously explored the use

of high-frequency data and the asymptotic notion of increasingly finer sampled returns over

fixed time intervals for more accurately estimating realized betas. In contrast to these earlier

studies, which do not differentiate among different types of market price moves, we rely on

the theory originally developed by Todorov and Bollerslev (2010) for explicitly estimating

separate continuous and discontinuous betas for the open-to-close active part of the trading

day, together with overnight betas for the close-to-open returns.5

Our actual empirical investigations are based on a novel high-frequency dataset of all

the 985 stocks included in the S&P 500 index over the 1993-2010 sample period. We begin

by estimating the three separate betas as well as a standard CAPM regression-based beta

for each of the individual stocks on a rolling one-year basis. Consistent with the basic

tenets of the simple CAPM, we find that sorting the stocks in our sample on the basis of

their betas, results in a positive return differential between the High- and Low-beta quantile

portfolios for all of the four different beta estimates.6 However, even though all of the return

differentials are quite large numerically, the difference in the monthly returns between the

High- and Low-beta portfolios constructed on the basis of the standard CAPM betas is not

significantly different from zero at conventional levels. Similarly, sorting by our continuous

beta estimates, the monthly long-short excess return for the High- minus Low-beta quantile

portfolios is not significantly different from zero. On the other hand, sorting stocks on the

basis of their discontinuous and overnight betas, as well as their “relative betas” defined

by the difference between either of the two jump betas and the standard beta, results in

significantly positive risk-adjusted returns on the High-Low portfolios. This holds true for

both equally-weighted and value-weighted portfolios.

These portfolio sorts based on returns and betas estimated over the same holding period

5Branch and Ma (2012), Cliff et al. (2008), and Berkman et al. (2012) also document distinctly different
return patterns during trading and non-trading hours.

6This contrasts with the recent results in Frazzini and Pedersen (2014), which report an almost flat
security market line and highly significant positive CAPM alphas for portfolios “betting against beta.”
Compared to our investigations, which are limited by the availability of reliable high-frequency intraday
data and as such “only” involves 985 relatively large company stocks over the past two decades, the results
in Frazzini and Pedersen (2014) are based on a much larger sample of more than twenty thousand stocks
spanning almost a full century.
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represent the essence of the risk-return relationship implied by our theoretical model. How-

ever, more importantly from a practical perspective, we show that these same significant

contemporaneous return differentials carry over to a predictive setting, in which we compare

the subsequent realized monthly returns of the quintile portfolios based on grouping the

stocks according to their past rolling one-year beta estimates.

The predictive return differentials associated with the discontinuous and overnight betas

remain statistically significant in double portfolio sorts designed to control for a number

of other firm characteristics and risk factors previously associated with the cross-section of

expected returns, including firm size, book-to-market ratio, momentum, short-term reversal,

idiosyncratic volatility, maximum daily return, illiquidity, and various measures of skewness

and kurtosis. Standard predictive Fama-MacBeth regressions further corroborate the idea

that only rough market risks are priced. In particular, while the estimated risk premiums

associated with the intraday discontinuous and overnight betas are both significant after

simultaneously controlling for a long list of firm characteristics and other risk factors, the

estimated risk premium associated with the continuous beta is not.

Our main empirical findings rely on a relatively coarse 75-minute intraday sampling

frequency for the one-year rolling continuous and jump beta estimation, as a way to guard

against non-synchronous trading effects and other market microstructure complications that

arise at the highest intraday sampling frequency. However, our results remain robust to

the use of other sampling frequencies and inference procedures for the estimation of the

betas. Similarly, while our main results for the predictive portfolio sorts and cross-sectional

regressions are based on a standard one-year estimation and subsequent one-month holding

period, respectively, even stronger results hold true for other estimation windows and return

holding periods. Also, while some of the jumps that occur at the aggregate market level are

naturally associated with news about the economy, our results remain robust to the exclusion

of several important macroeconomic news announcement days.7

The idea of allowing for time-varying market betas to help explain the cross-section of

expected stock returns is related to the large literature on testing conditional versions of the

CAPM.8 In response to many of these studies, Lewellen and Nagel (2006) have forcefully

argued that the temporal variation required in conditional CAPM betas to fully explain

7Initial studies documenting large changes in high-frequency intraday returns in response to macroeco-
nomic news announcements include Fleming and Remolona (1999) and Andersen et al. (2003, 2007b).

8Early contributions to this literature include Ferson et al. (1987), Bollerslev et al. (1988) and Harvey
(1989), among others, along with more recent cross-sectionally oriented studies by Jagannathan and Wang
(1996) and Lettau and Ludvigson (2001). Bali et al. (2014) have also recently argued that GARCH-based
time-varying conditional betas help explain the cross-sectional variation in expected stock returns, while
Hedegaard and Hodrick (2013) show how higher frequency overlapping data may be used in more accurately
estimating the conditional CAPM.
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the widely documented asset pricing anomalies associated with size, value and momentum

appear implausibly large. In contrast to this literature, however, our empirical investigations

should not be interpreted as a test of the conditional CAPM. Instead, motivated by our

general pricing framework, we simply document that market risks with different degrees

of “jumpiness,” as determined by our high-frequency-based estimates of the time-varying

continuous and jump betas, are priced differently, and that these cross-sectional differences

in the returns can not be explained by other firm characteristics or commonly used risk

factors. In particular, we are not arguing that market risk is the only source of priced risk

in the cross-section.

Our work is also related to, but fundamentally different from, several recent studies that

have examined how jump risk may help explain the cross-section of expected stock returns.

Jiang and Yao (2013) argue that the size premium, the liquidity premium, and to a lesser

extent the value premium are all realized in the cross-sectional differences of jump returns.

Cremers et al. (2014) show that market expectations of aggregate jump risk implied from

options prices are useful for explaining the cross-sectional variation in expected returns, while

Yan (2011) documents that expected stock returns are negatively related to average jump

sizes. Our work differs from these studies in at least two important dimensions. First, we

focus explicitly on systematic jump risk, as measured by the exposure to non-diversifiable

marketwide jumps and the two rough betas. Second, our use of high-frequency data to

directly identify the intraday jumps and estimate the betas, sets our study apart from other

research inferring the jump risk from daily or lower-frequency data.

Our cross-sectional pricing results also complement recent time-series estimates of the

equity risk premium reported in Bollerslev and Todorov (2011) and Gabaix (2012), among

others, which suggest that a large portion of the aggregate equity premium and the temporal

variation therein may be attributable to jump tail risk. In line with these findings for

the aggregate market, the two rough betas associated with intraday jumps and day-to-day

overnight price changes directly reflect the individual stocks’ systematic response to jump

risk, and in turn receive the largest compensation in the cross-section. Intuitively, large

stock price movements likely provide better signals about true changes in fundamentals and

equity valuations than do smaller within-day price fluctuations, which may simply represent

“noise” in the price formation process.

The remainder of the paper is organized as follows. Section 2 formally defines the different

betas and the theory underlying their separate pricing within a stylized equilibrium-based

asset pricing framework. Readers primarily interested in the empirical results may skip this

section. The statistical procedures used for estimating the separate betas are discussed in
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Section 3. Section 4 describes the high-frequency data that we use to estimate the betas and

the control variables employed in our empirical investigations. Section 5 presents our initial

empirical evidence on the relation between the different betas and the cross-sectional return

differences based on single contemporaneous portfolio sorts. Section 6 extends the results to

a practically relevant predictive setting and also considers various double portfolio sorts. Sec-

tion 7 discusses the results of corresponding predictive firm-level cross-sectional regressions

and estimates of the risk premiums for the different betas. Section 8 presents the results

from a series of robustness checks related to the intraday sampling frequency used in the

estimation of the betas, possible non-synchronous trading effects, errors-in-variables in the

cross-sectional pricing regressions, the length of the beta estimation and return holding pe-

riods, conditional alphas, and the influence of specific macroeconomic news announcements.

Section 9 concludes.

2 Continuous and discontinuous market risk pricing

Our theoretical framework motivating the different betas and the separate pricing of con-

tinuous and discontinuous market price risks is extremely general, and merely relies on

no-arbitrage and the existence of a pricing kernel. By the same token, we do not provide

explicit equilibrium-based expressions for the separate risk premia. Doing so would require

additional assumptions beyond the ones necessary for simply separating the continuous and

discontinuous market risk premiums and the corresponding market betas.

To set out the notation, let the price of the aggregate market portfolio be denoted by

P
(0)
t , with the corresponding logarithmic price denoted by lowercase p

(0)
t ≡ logP

(0)
t . We will

assume the following general dynamic representation for the instantaneous return on the

market,

dp
(0)
t = α

(0)
t dt+ σtdWt +

∫
R
xµ̃(dt, dx), (1)

where Wt denotes a Brownian motion describing continuous Gaussian, or “smooth,” market

price shocks with diffusive volatility σt, and µ̃ is a (compensated) jump counting measure ac-

counting for discontinuous, or “rough,” market price moves.9 The drift term α
(0)
t is explicitly

related to the pricing of these separate market risks.

We will denote the cross-section of individual stock prices by P
(i)
t , i = 1, ..., n. In parallel

to the representation for the market portfolio above, we will assume that the instantaneous

9The compensated jump counting measure is formally related to the actual counting measure µ for the
jumps in P (0) by the expression µ̃(dt, dx) ≡ µ(dt, dx) − dt ⊗ νt(dx), where νt(dx) denotes the (possibly
time-varying) intensity of the jumps, thus rendering the µ̃ measure a martingale.
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logarithmic price process, p
(i)
t ≡ logP

(i)
t , for each of the n individual stocks may be expressed

as,

dp
(i)
t = α

(i)
t dt+ β

(c,i)
t σ

(i)
t dWt +

∫
R
β

(d,i)
t xµ̃(dt, dx) + σ̃

(i)
t dW

(i)
t +

∫
R
xµ̃(i)(dt, dx), (2)

where the W
(i)
t Brownian motion is orthogonal to Wt, but possibly correlated with W

(j)
t for

i 6= j, and the µ(i) jump measure is orthogonal to µ in the sense that µ({t},R)µ(i)({t},Rp) = 0

for every t, so that µ(i) only counts firm specific jumps occurring at times when the market

does not jump. By explicitly allowing the individual loadings, or betas, associated with the

market diffusive and jump risks to be time-varying, this decomposition of the continuous and

discontinuous martingale parts of asset i’s return into separate components directly related

to their market counterparts and orthogonal components (in a martingale sense) is extremely

general. For the diffusive part, in particular, this entails no assumptions and follows merely

from the partition of a correlated bivariate Brownian motion into its orthogonal components

(see, e.g., Theorem 2.1.2 in Jacod and Protter, 2012). For the discontinuous part, the

decomposition implicitly assumes that the relation between the systematic jumps in the

asset and the market index, while time-varying, does not depend on the size of the jumps.10

This type of restriction is arguably unavoidable. By their very nature, systematic jumps are

relatively “rare,” and as such it isn’t feasible to identify different jump betas for different

jump sizes, let alone identify the “small” jumps in the first place. As discussed further below,

this assumption also maps directly into the way in which we empirically estimate jump betas

for each of the individual stocks based solely on the “large” sized jumps.

To analyze the pricing of continuous and discontinuous market price risks, we follow

standard practice in the asset pricing literature and assume the existence of an economy-

wide pricing kernel of the form (see, e.g., Duffie et al., 2000),

Mt = e−
∫ t
0 rsdsE

(
−
∫ t

0

λsdWs +

∫ t

0

∫
R
(κ(s, x)− 1)µ̃(ds, dx)

)
M ′

t , (3)

where rt denotes the instantaneous risk-free interest rate, and E(·) refers to the stochastic

exponential.11 The càdlàg λt process and the predictable κ(t, x) function account for the

pricing of diffusive and jump market price risks, respectively. The last term M ′
t encapsulates

the pricing of all other (orthogonalized to the market price risks) systematic risk factors. In

10Formally, let s denote a time when the market jumps, and ∆p
(0)
s 6= 0. The representation in (2) then

implies that ∆p
(i)
s /∆p

(0)
s = β

(d,i)
s , allowing the jump beta to vary with the time s but not the actual size of

the jump.
11Formally, for some arbitrary process Z, E(Z) is defined by the solution to the SDE, dY

Y−
= dZ, with

initial condition Y0 = 1.

6



parallel to the first part of the expression for Mt, we will assume that this additional part of

the pricing kernel takes the form,

M ′
t = E

(
−
∫ t

0

λ′sdW
′
s +

∫ t

0

∫
R
(κ′(s,x)− 1)µ̃′(ds, dx)

)
, (4)

where the W ′
t Brownian motion is orthogonal to Wt, and the two jump measures µ and µ′

are orthogonal in the sense that µ({t},R)µ′({t},Rp) = 0 for every t, so that the respective

jumps never arrive at the exact same instant. The pricing kernel jointly defined by equations

(3) and (4) encompasses almost all parametric asset pricing models hitherto analyzed in the

literature as special cases.

To help fix ideas, consider the case of a static pure-endowment economy, with i.i.d.

consumption growth and a representative agent with Epstein-Zin preferences. In this basic

CCAPM setup, the dynamics of the pricing kernel will be driven solely by consumption.

Assuming that the market portfolio represents a claim on total consumption, it therefore

follows thatM ′
t ≡ 1, resulting in a pricing kernel that solely depends on the diffusive Gaussian

and discontinuous market price shocks. This same analysis continues to hold true for a

representative agent with habit persistence as in Campbell and Cochrane (1999), the only

difference being that in this situation the prices of the diffusive and jump market risks will be

time-varying due to the temporal variation in the degree of risk-aversion of the representative

agent. In general, of course, temporal variation in the investment opportunity set, as in the

ICAPM of Merton (1973), may induce additional sources of priced risks that cannot be

spanned by the market price risks alone. Leading examples of other state variables that

might affect the pricing kernel include the conditional mean and volatility of consumption

growth as in Bansal and Yaron (2004), and the time-varying probability of a disaster as in

Gabaix (2012) and Wachter (2013).12 However, given our primary focus on the pricing of

market price risk, we purposely do not take a stand on what these other risk factors might

be, instead simply relegating their influence to the additional M ′
t part of the pricing kernel.

The pricing kernel in (3) has also been widely used in the literature on derivatives pricing.

For reasons of analytical tractability, in that literature it is also commonly assumed that λt is

proportional to the market diffusive volatility σt, that the jump intensity νt(dx) is affine in σ2
t ,

and that the price of jump risk κ(t, x) is time-invariant; see, e.g., Duffie et al. (2000) where it

is shown that these assumptions greatly facilitate the calculation of “closed form” derivatives

pricing formulas. These same assumptions also imply that the equity risk premium should

be proportional to the variance of the aggregate market portfolio.13

12In models involving non-financial wealth, so that the market portfolio and the total wealth portfolio
aren’t perfect substitutes, additional sources of risks will also naturally arise.

13This simple relationship has, of course, been extensively investigated in the empirical asset pricing
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In general, it follows readily by a standard change-of-measure (see, e.g., Jacod and

Shiryaev, 2002) that without any additional restrictions on the pricing kernel defined by

(3) and (4), the instantaneous market risk premium must satisfy,

α
(0)
t − rt − δ

(0)
t − q

(0)
t = γct + γdt , (5)

where δ
(0)
t refers to the dividend yield on the market portfolio, and the compensation for

continuous and discontinuous market price risks are determined by,

γct ≡ σtλt, and γdt ≡
∫
R
xκ(t, x)νt(dx),

respectively, while q
(0)
t represents a standard convexity adjustment term.14 Since the com-

pensation stemming from M ′
t is orthogonal to the compensation for market price risk, this

expression for α
(0)
t only depends on the first part of the pricing kernel.

For the individual assets, however, even though the W
(i)
t and µ(i) diffusive and jump risks

are orthogonal to the corresponding market diffusive and jump risk components, they may

nevertheless be priced in the cross-section as they could be correlated with the W ′
t and µ′

risks that appear in the M ′
t part of the pricing kernel. Denoting the part of the instantaneous

risk premium for asset i arising from this separate pricing of W
(i)
t and µ(i) by α̃

(i)
t , it follows

again by standard arguments that,

α
(i)
t − rt − δ

(i)
t − q

(i)
t = β

(c,i)
t γct + β

(d,i)
t γdt + α̃

(i)
t , (6)

where δ
(i)
t refers to the dividend yield of asset i, and q

(i)
t denotes a standard convexity

adjustment term stemming from the pricing of market price risks.15

If α̃
(i)
t ≡ 0, as would be implied by M ′

t ≡ 1, and if β
(c,i)
t and β

(d,i)
t were also the same,

the expression in (6) trivially reduces to a simple continuous-time one-factor CAPM that

linearly relates the instantaneous return on stock i to its single beta. The restriction that

β
(c,i)
t = β

(d,i)
t implies that the asset responds the same to market diffusive and jump price

increments, or intuitively that the asset and the market co-move the same during “normal”

times and periods of “extreme” market moves. If, on the other hand, β
(c,i)
t and β

(d,i)
t differ,

empirical evidence for which is provided below, the cross-sectional variation in the continuous

and jump betas may be used to identify their separate pricing. Importantly, this remains

true in the presence of other priced risk factors, when α̃
(i)
t is not necessarily equal to zero.

literature; see, e.g., Bollerslev et al. (2012) and the many additional references therein.
14The q

(0)
t term is formally given by 1

2σ
2
t +

∫
R (ex − 1− x) νt(dx).

15In parallel to the expression for q
(0)
t above, q

(i)
t = 1

2

(
β
(c,i)
t σt

)2
+
∫
R

(
eβ

(d,i)
t x − 1− β(d,i)

t x
)
νt(dx).
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In practice, of course, the returns on the assets will have to be measured over some non-

trivial time-interval, say h > 0. Let r
(i)
t,t+h ≡ p

(i)
t+h− p

(i)
t denote the corresponding logarithmic

return on asset i. For empirical tractability assume that the betas remain constant over that

same (short) time-interval. The integrated conditional risk premium for asset i may then be

expressed as,

Et
(
r

(i)
t,t+h −

∫ t+h

t

(rs + δ(i)
s + q(i)

s )ds

)
= β

(c,i)
t Et

(∫ t+h

t

γcsds

)
+ β

(d,i)
t Et

(∫ t+h

t

γdsds

)
+ Et

(∫ t+h

t

α̃(i)
s ds

)
.

(7)

This expression for the discrete-time expected excess return maintains the same two-beta

structure as the expression for the instantaneous risk premia in (6).16 It clearly highlights

how the pricing of continuous and discontinuous market price risks may manifest differently

in the cross-section of expected stock returns, and in turn how separately estimating β
(c,i)
t

and β
(d,i)
t may allow for more accurate empirical predictions of the actual realized returns.

We turn next to a discussion of the new high-frequency based econometric procedures

that we use for estimating the betas and investigate the separate pricing of the two different

types of market price risks.

3 Continuous and discontinuous beta estimation

The decompositions of the prices for the market and each of the individual assets into separate

diffusive and jump components that formally underly β
(c,i)
t and β

(d,i)
t in equations (1) and

(2) above, are, of course, not directly observable. Instead, the different continuous-time

price components, and in turn the betas, will have to be deduced from actually observed

discrete-time prices and returns.

To this end, we will assume that high-frequency intraday prices are available at time

grids of length 1/n over the active intraday part of the trading day [t, t+ 1). For notational

simplicity, we will denote the corresponding logarithmic discrete-time return on the market

over the τ ’th intraday time-interval by r
(0)
t:τ ≡ p

(0)
t+τ/n − p

(0)
t+(τ−1)/n, with the τ ’th intraday

return for asset i defined accordingly as r
(i)
t:τ ≡ p

(i)
t+τ/n−p

(i)
t+(τ−1)/n. The theory underlying our

estimation is formally based on the notion of fill-in asymptotics and n → ∞, or ever finer

16This contrast with the derivations in Longstaff (1989), who shows how temporally aggregating the
simple continuous-time CAPM results in a multi-factor model, and the more recent paper by Corradi et al.
(2013) which delivers conditional time-varying alphas and betas within a similar setting. Instead, our
derivation is based on a general continuous-time jump-diffusion representation, and arrives at a consistent
two-factor discrete-time pricing relation under the assumption that the separate jump and diffusive betas
remain constant over the (short) return horizons.
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sampled high-frequency returns.17 To allow for reliable estimation, we will further assume

that the betas stay constant over multi-day time-intervals of length l > 1.18

To begin, consider the estimation of the continuous betas. To convey the intuition,

suppose that neither the market nor stock i jumps, so that µ ≡ 0 and µ(i) ≡ 0 almost surely.

For simplicity, suppose also that the drift terms in (5) and (6) are both equal to zero, so

that,

r(i)
s:τ = β

(i,c)
t r(0)

s:τ + r̃(i)
s:τ , where r̃(i)

s:τ ≡
∫ s+τ/n

s+(τ−1)/n

σ̃(i)
u dW

(i)
u ,

for any s ∈ [t − l, t]. Thus, in this situation, the continuous beta may simply be estimated

by an OLS regression of the discrete-time high-frequency returns for stock i on the high-

frequency returns for the market. Using a standard “polarization” of the covariance term,

the resulting regression coefficient may be expressed as,

∑t−1
s=t−l

∑
τ r

(i)
s:τr

(0)
s:τ∑t−1

s=t−l
∑

τ (r
(0)
s:τ )2

≡

∑t−1
s=t−l

∑
τ

[
(r

(i)
s:τ + r

(0)
s:τ )2 − (r

(i)
s:τ − r(0)

s:τ )2
]

4
∑t−1

s=t−l
∑

τ (r
(0)
s:τ )2

.

In general, of course, the market and stock i may both jump over the [t− l, t] time-interval,

and the drift terms are not identically equal to zero. Meanwhile, it follows readily by stan-

dard arguments that for n→∞, the impact of the drift terms are asymptotically negligible.

However, to allow for the possible occurrence of jumps, the simple estimator defined above

needs to be appropriately modified by removing the discontinuous components. The “polar-

ization” of the covariance provides a particularly convenient way of doing so by expressing

the estimator in terms of sample portfolio variances. In particular, as shown by Todorov

and Bollerslev (2010), the truncation-based estimator defined by,19

β̂
(c,i)
t =

∑t−1
s=t−l

∑n
τ=1

[
(r

(i)
s:τ + r

(0)
s:τ )21{|r(i)s:τ+r

(0)
s:τ |≤k

(i+0)
s,τ } − (r

(i)
s:τ − r(0)

s:τ )21{|r(i)s:τ−r
(0)
s:τ |≤k

(i−0)
s,τ }

]
4
∑t−1

s=t−l
∑n

τ=1(r
(0)
s:τ )21{|r(0)s:τ |≤k

(0)
s,τ}

, (8)

consistently estimates the continuous beta for n→∞ under very general conditions.

17As discussed further below, a host of practical market microstructure complications invariably prevents
us from sampling too finely. To assess the sensitive of our results to the specific choice of n, we experimented
with the use of several different sampling schemes, including ones in which n(i) varies across stocks.

18Due to the relatively rare nature of jumps, in our main empirical results, we will base the estimation
on a full year. However, as discussed further below, we also experimented with the use of shorter estimation
periods, if anything, resulting in even stronger results and more pronounced patterns.

19In the empirical analysis below we follow Bollerslev et al. (2013) in setting k
(·)
t,τ = 3 × n−0.49(RV

(·)
t ∧

BV
(·)
t ×TOD

(·)
τ )1/2, where RV

(·)
t and BV

(·)
t denote the so-called realized variation and bipower variation on

day t, respectively, and TOD
(·)
τ refers to an estimate of the intraday Time-of-Day volatility pattern.
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Next, consider the estimation of the discontinuous beta. Assuming that β
(d,i)
t is positive,

it follows that for any s ∈ [t − l, t] such that ∆p
(0)
s 6= 0, the discontinuous beta is uniquely

identified by,

β
(d,i)
t ≡

√√√√√√
(

∆p
(i)
s ∆p

(0)
s

)2

(
∆p

(0)
s

)4 .

Moreover, assuming that the beta is constant over the [t − l, t] time-interval, this same

ratio holds true for all of the market jumps that occurred between time t − l and t. The

actually observed high-frequency returns, of course, contain both diffusive and jump risk

components. However, by raising the high-frequency returns to powers of order greater than

two (four in the expression above), the diffusive martingale components become negligible,

so that the systematic jumps dominate asymptotically for n→∞.20 This naturally suggests

the following sample analogue to the expression for β
(d,i)
t above as an estimator for the

discontinuous beta,21

β̂
(d,i)
t =

√√√√√√
∑t−1

s=t−l
∑n

τ=1

(
r

(i)
s:τr

(0)
s:τ

)2

∑t−1
s=t−l

∑n
τ=1

(
r

(0)
s:τ

)4 . (9)

As formally shown in Todorov and Bollerslev (2010), this estimator is indeed consistent for

β
(d,i)
t for n→∞.

The continuous-time processes in (1) and (2) underlying the definitions of the separate

betas portray the prices as continuously evolving over time. In practice, of course, we only

have access to high-frequency prices for the active part of the trading day when the stock

exchanges are officially open. It is natural to think of the change in the price from the

close on day t to the opening on day t + 1 as a discontinuity, or a “jump.”22 As such,

the general continuous-time setup discussed in the previous section needs to be augmented

with a separate jump term and jump beta measure β
(n,i)
t accounting for the over-night co-

movements. The notion of an ever-increasing number of observations for identifying the

intraday discontinuous price moves underlying the β̂
(d,i)
t estimator in (9) does, of course,

20The basic idea of relying on higher order powers of returns to isolate the jump component of the price
has previously been used in many other situations, both parametrically and nonparametrically; see, e.g.,
Barndorff-Nielsen and Shephard (2003) and Aı̈t-Sahalia (2004).

21Since the sign of the jump betas gets lost by this transformation, our actual implementation also involves
a sign correction, as detailed in Todorov and Bollerslev (2010). From a practical empirical perspective this
is immaterial, as all of the estimated jump betas in our sample are positive.

22This characterization of the overnight returns as discontinuous movements occurring at deterministic
times mirrors the high-frequency modeling approach recently advocated by Andersen et al. (2011).
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not apply with the over-night jump returns. However, β
(n,i)
t may be similarly estimated by

applying the same formula to all of the l overnight jump return pairs.

In addition to the high-frequency based separate intraday and overnight betas, we also

calculate standard regression-based CAPM betas for each of the individual stocks, say β̂
(s,i)
t .

These are simply obtained by regressing the l daily returns for stock i on the corresponding

daily returns for the market. In the following, we will refer to each of these four different beta

estimates for stock i without the explicit time subscript and hat as βci , β
d
i , βni , and βsi for

short. We turn next to a more detailed discussion of the data that we use in implementing

these different estimators.

4 Data and variables

We begin this section with a discussion of the high-frequency data that we use in our analysis,

followed by a discussion of the key properties of the resulting beta estimates. We also briefly

discuss the other explanatory variables and controls that we use in our double portfolio sorts

and cross-sectional pricing regressions.

4.1 Data

The individual stocks included in our analysis are comprised of the 985 constituents of the

S&P 500 index over the January 1993 to December 2010 sample period. All the high-

frequency data for the individual stocks are obtained from the Trade and Quote (TAQ)

database. The TAQ database provides all the necessary information to create our dataset

containing second-by-second observations of trading volume, number of trades, and transac-

tion prices between 9:30am and 4:00pm EST for the 4,535 trading days in the sample.23 We

rely on high-frequency intraday S&P 500 futures prices from Tick Data Inc. as our proxy

for the aggregate market portfolio.

Our cleaning rule for the TAQ data follows Barndorff-Nielsen et al. (2009). It consists of

two main steps: removing and assigning. The removing step filters out recording errors in

prices and trade sizes. This step also deletes data points that TAQ flags as “problematic.”

The assigning step ensures that every second of the trading day has a single price. Additional

details are provided in Appendix A.1.

The sample consists of 738 stocks per month on average. Altogether, these stocks account

for approximately three-quarters of the total market capitalization of the entire stock universe

in the Center for Research in Securities Prices (CRSP) database. Average daily trading

23The original dataset on average consists of more than 17 million observations per day for each trading
day.
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volume for each stock increases from 302,026 in 1993 to 5,683,923 in 2010. Similarly, the

daily number of trades for each stock rises from an average of 177 in 1993 to 20,197 in 2010.

Conversely, the average trade size declines from 1,724 shares per trade in 1993 to just 202

in 2010.24

We supplement the TAQ data with data from CRSP on total daily and monthly stock

returns, number of shares outstanding, and daily and monthly trading volumes for each

individual stock. To guard against survivorship biases associated with delistings, we take

the delisting return from CRSP as the return on the last trading day following the delisting of

a particular stock. We also use stock distribution information from CRSP to adjust overnight

returns computed from the high-frequency prices.25 We rely on Kenneth R. French’s website

for daily and monthly returns on the Fama-French-Carhart four-factor portfolios. Lastly, we

use the Compustat database for book values and other accounting information required for

some of the control variables.

4.2 Beta estimation results

Our main empirical results are based on monthly continuous, discontinuous, and overnight

beta estimates for each of the individual stocks in the sample. We rely on a one-year rolling

overlapping monthly estimation scheme to balance the number of observations available

for the estimation with the possible temporal variation in the systematic risks.26 We also

experiment with the use of shorter 3- and 6-month estimation windows. If anything, as

further discussed in Section 8 below, these shorter estimation windows tend to result in even

stronger return-beta patterns than the ones from the one-year moving windows detailed

below.

We rely on a fixed intraday sampling frequency of 75 minutes in our estimation of the

continuous and jump betas, with the returns spanning 9:45am to 4:00pm.27 A 75-minute

sampling frequency may seem quite coarse compared to the 5-minute sampling frequency

24Additional details concerning the high-frequency data for the individual stocks are available in the
supplementary appendix Bollerslev et al. (2014).

25The TAQ database provides only the raw prices without considering price differences before and after
distributions. We use the variable, “Cumulative Factor to Adjust Price”(CFACPR), from CRSP to adjust
the high-frequency overnight returns after a distribution.

26The use of a relatively long estimation period may be especially important for the discontinuous betas,
as there may be few or even no systematic jumps for a particular stock during a particular month; see also
the discussion in Todorov and Bollerslev (2010). Annual horizon moving windows are also commonly used
for the estimation of traditional CAPM betas based on coarser daily or monthly observations, as in, e.g.,
Ang et al. (2006a) and Fama and French (2006).

27Starting the trading day at 9:45am ensures that on most days most stocks will have traded at least once
by that time. Patton and Verardo (2012) adopt a similar trading day convention in their high-frequency
based realized beta estimation.
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commonly advocated in the literature on realized volatility estimation; see, e.g., Andersen

et al. (2001) and the survey by Hansen and Lunde (2006). Yet estimation of multivari-

ate realized variation measures, including betas, is invariably plagued by additional market

microstructure complications relative to the estimation of univariate realized volatility mea-

sures. Coarser sampling frequencies are often used as a simple way to guard against any

biases induced by these complications; see, e.g, the discussion in Sheppard (2006) and Boller-

slev et al. (2008), along with the survey by Barndorff-Nielsen and Shephard (2007). However,

we also experiment with a number of other intraday sampling frequencies, ranging from 5

minutes to 3 hours, as well as a “mixed frequency” explicitly related to the trading activity

of each of the individual stocks. As further detailed in Section 8 below, our key empirical

findings remain robust across all of these different sampling schemes.

In parallel to our high-frequency-based estimates for βc, βd, and βn, our estimates for

the monthly standard CAPM βss are based on rolling overlapping regressions of the daily

returns for each of the individual stocks over the past year on the daily returns for the S&P

500 market portfolio.28

Turning to the actual estimation results, Panel A in Figure 1 depicts kernel density

estimates of the unconditional distributions of the four different betas averaged across time

and stocks. The discontinuous and overnight betas both tend to be somewhat higher on

average and also more right-skewed than the continuous and standard betas.29 At the same

time, the figure also suggests that the continuous betas are the least dispersed of the four

betas across time and stocks. Part of the dispersion in the betas, may, of course, be attributed

to estimation errors. Based on the expressions derived in Todorov and Bollerslev (2010), the

asymptotic standard errors for βc and βd averaged across all of the stocks and months in the

sample equal 0.06 and 0.12, respectively, compared to 0.14 for the conventional OLS-based

standard errors for the βs estimates.30

Panel B of Figure 1 shows the autocorrelograms for the four different betas averaged

28As an alternative to the standard CAPM betas, we also investigated high-frequency realized betas as
in Andersen et al. (2005, 2006). The cross-sectional pricing results for these alternative “standard” beta
estimates are very similar to the ones reported for the standard daily CAPM betas. Further details on these
additional results are available upon request.

29The value-weighted averages of all the different betas should be equal to unity when averaged across the
exact 500 stocks included in the S&P 500 index at a particular point in time. In practice, we are measuring
the betas over non-trivial annual time-intervals, and the S&P 500 constituents and their weights also change
over time, so the averages will not be exactly equal to one. For example, the value-weighted averages for βs,
βc, βd and βn based on the exact 500 stocks included in the index at the very end of the sample, equal 1.04,
0.98, 1.01, and 1.06, respectively.

30Intuitively, the continuous beta estimator may be interpreted as a regression based on truncated high-
frequency intraday returns. As such, the standard errors should be reduced by a factor of approximately
1/
√
n, relative to the standard errors for the standard betas based on daily returns, where n denotes the

number of intradaily observations used in the estimation, here 1/
√

5 ≈ 2.33.
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across stocks. The apparent kink in all four correlograms at the 11th lag is directly at-

tributable to the use of overlapping annual windows in the monthly beta estimation. Still,

the figure clearly suggests a higher degree of persistence in βc and βs than in βd and βn. This

complements the existing high-frequency based empirical evidence documenting that con-

tinuous variation for most financial assets tends to be much more persistent and predictable

than variation due to jumps; see, e.g., Barndorff-Nielsen and Shephard (2004b, 2006), and

Andersen et al. (2007a).

In order to visualize the temporal and cross-sectional variation in the different betas,

Figure 2 shows the time series of equally weighted portfolio betas, based on monthly quintile

sorts for each of the four different betas and all of the individual stocks in the sample. The

variation in the βs and βc sorted portfolios in Panels A and B are evidently fairly close.

The plots for the βd and βn quintile portfolios in Panels C and D, however, are distinctly

different and more dispersed than the standard and continuous beta quintile portfolios.

To further illuminate these relations, Table 1 reports the results from Fama-MacBeth style

regressions for explaining the cross-sectional variation in the standard betas as a function of

the variation in the three other betas. Consistent with the results in Figures 1 and 2, the

continuous beta βc exhibits the highest explanatory power for βs, with an average adjusted

R2 of 0.76. The two jump betas βd and βn each explain 62% and 46% of the variation in βs,

respectively. Altogether, 81% of the cross-sectional variation in βs may be accounted for by

the high-frequency betas, with βc having by far the largest and most significant effect.

The differences in information content of the betas also manifest in different relations

with the underlying continuous and discontinuous price variation. Relying on the truncation

rules discussed in Section 3, the intraday discontinuous variation and the overnight variation

account for approximately 9% and 30% of the total variation at the aggregate market level.

Applying the same truncation rule to the individual stocks, the discontinuous and overnight

variation account for an average of 10% and 32%, respectively, at the individual firm level.

Meanwhile, when sorting the stocks according to the four different betas, the sorts reveal

a clear monotonic relation between βd and the jump contribution and between βn and the

overnight contribution, but an inverse relation between βc and the proportion of the total

variation accounted for by jumps.

4.3 Other explanatory variables and controls

A long list of prior empirical studies have sought to relate the cross-sectional variation in

stock returns to other explanatory variables and firm characteristics. To guard against some

of the most prominent previously documented effects and anomalies vis-a-vis the standard
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CAPM, in the double portfolio sorts and cross-sectional regressions reported below, we ex-

plicitly control for: firm size (ME), book-to-market ratio (BM), momentum (MOM), reversal

(REV), idiosyncratic volatility (IVOL), coskewness (CSK), cokurtosis (CKT), realized skew-

ness (RSK), realized kurtosis (RKT), maximum daily return (MAX), and illiquidity (ILLIQ).

Our construction of these different control variables follows standard procedures in the lit-

erature, as discussed in more detail in Appendix A.2.

Table 2 displays time-series averages of monthly firm-level cross-sectional correlations

between the four different betas and the various explanatory variables listed above. All

of the four betas are negatively related to book-to-market and positively correlated with

momentum. The betas are also generally positively correlated with idiosyncratic volatility,

and the two jump betas more strongly so. On the other hand, while βs and βc are both

negatively correlated with illiquidity, βd and βn both appear to be positively related to

illiquidity.

To help further gauge these relations, Table 3 reports the results from a series of simple

single-sorts. At the end of each month, we sort stocks by each of their betas. We then

form five equal-sized portfolios and compute the time-series averages of the various firm

characteristics for the stocks within each of these quintile portfolios. Consistent with the

results discussed above, the portfolio sorts reveal a strong positive relation between all of

the four different betas. Meanwhile, it also follows from Panels C and D that stocks with

higher βd and βn tend to be smaller firms, stocks with lower book-to-market ratios, higher

momentum, and higher idiosyncratic volatility. Higher discontinuous and overnight betas

also tend to be associated with higher illiquidity, while the differences in illiquidity between

High- and Low-quintile portfolios for the continuous and standard beta sorts in Panels A

and B are both negative.31

5 Contemporaneous portfolio sorts

We begin our empirical investigations pertaining to the pricing of different market price risks

with an examination of the contemporaneous relation between individual stock returns and

the different betas. These investigations are directly motivated by the theory in Section

2 and equation (7) in particular, which implies a contemporaneous relation between the

different betas and the expected returns.

At the beginning of each month, we estimate the four different betas based on the previous

twelve months returns. We then sort the stocks into quintile portfolios based on their betas

and record the returns over the same 12-month period. Rebalancing monthly, we record the

31Bali et al. (2014) and Fu (2009) also report a negative relation between standard betas and illiquidity.
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excess returns on each portfolio, starting with the first portfolio formation period spanning

the first full year of the sample, ending with the last full year of the sample. This approach

directly mirrors the single portfolio sorts commonly employed in the literature (see, e.g. Ang

et al., 2006a, among numerous other studies).

Table 4 reports the results for equal-weighted portfolios. The average monthly returns for

portfolios sorted by the standard beta are shown in Panel A. Consistent with the standard

CAPM, the average excess returns increase across the βs segments.32 The spread between

the High- and Low-βs quintile portfolios is only weakly statistically significant, however. The

results for the continuous beta portfolio sorts reported in Panel B are comparable, with the

return spread and t-statistic for the High-Low βc-sorted portfolios equal to 1.61% and 1.81,

respectively. By comparison, the results for the two rough beta sorts reported in Panels C

and D, respectively, both show a stronger and more reliable relation between the betas and

the contemporaneous portfolio returns. For the βd-sorts the return spread for the High-Low

portfolio equals 1.71% with a t-statistic of 2.63, while for the βn-sorts the spread and the

corresponding t-statistic equal 1.64% and 2.59, respectively.

To more directly explore the idea that most of the premium for market price risks stem

from the compensation for jump risk, Panels E and F report the results based on portfolios

sorted by the relative betas βd − βs and βn − βs, respectively. As evident from the almost

flat βs loadings coupled with the increasing βd or βn loadings over the different quintiles,

the relative betas effectively eliminate the part of the cross-sectional variation in each of

the two jump betas that may be explained by the variation in the standard beta.33 Even

though the spreads in the returns are smaller when sorting on these relative jump betas

compared to the sorts based on the individual betas, the t-statistics equal to 3.34 and 3.18

are both higher than the t-statistics associated with any of individual beta sorts. As such,

this clearly highlights the important differences in the risks measured by the jump betas and

the standard betas and specifically the pricing thereof.

Table 5 further corroborates the findings discussed above, by reporting the results for

value-weighted quintile portfolios. Although the return differences appear slightly muted

relative to the results for the equally-weighted portfolios reported in Table 4, the same

general relations between the betas and the returns continue to hold true.34 In particular,

32Note that even though the relationship is monotonic, most of the spread in the returns between the
High and Low portfolios comes from the spread between the 4th and highest quintile. This is true for many
of the other portfolio sorts discussed below as well.

33Similar relative beta measures have also been used by Ang et al. (2006a) in their study of downside
beta risk, and by Bali et al. (2014) in their study of dynamic conditional betas.

34The finding that the jump beta risk manifest slightly weaker in value-weighted as opposed to equally-
weighted portfolios is consistent with many other previously analyzed non-linearities in the cross-section of
stock returns, as, e.g., the downside risk measure in Ang et al. (2006a) and the coskewness effect in Harvey

17



the monthly excess return spreads between the High and Low quintiles for the βd and βn

sorts equal to 1.56% and 1.60%, respectively, are both statistically significant at the usual

5% significance level. On the other hand, the portfolios sorted by βs and βc both have lower

return spreads, and the t-statistics for the differences are also insignificant. The relative

beta sorts, designed to eliminate the variation in the standard beta from each of the two

jump betas, further underscore that the discontinuous and overnight betas are more closely

related to cross-sectional differences in the returns than the standard beta.

6 Predictive portfolio sorts

The portfolio sorts discussed in the previous section pertain to returns and betas estimated

over the same holding period. While this represents the essence of the risk-return relationship

implied by the theoretical framework in Section 2, these results are not of much practical

value if the betas can not be used to predict future returns. In this section, we therefore

extend the previous contemporaneous portfolio sorts to a predictive setting. We begin by

discussing the results from simple single-sorted portfolios as in the previous section, followed

by the results for various double-sorted portfolios that explicitly control for other explanatory

variables.

6.1 Single-sorted portfolio returns

Table 6 summarizes the results from our predictive single-sorts. In parallel to the sorts

discussed in the previous section, at the end of each month, we estimate the different betas

based on the past twelve months returns. We then sort the stocks according to each of the

different betas and record the returns for the following month. In addition to the resulting

pre-formation beta estimates and the predictive ex-post excess returns for each of the equally-

weighted quintile portfolios, we also report the risk-adjusted excess returns, as measured by

the intercept from a time-series regression of the monthly portfolio returns on the four Fama-

French-Carhart factors, together with the ex-post betas for the different portfolios based on

the beta estimates for the 12 months proceeding the pre-formation period.

Comparing the ex-post betas with the pre-formation beta estimates, the High-Low quin-

tile spreads are naturally dampened somewhat relative to the ex-ante measures. However,

consistent with the slowly decaying autocorrelations for the betas shown in Figure 2, the

High-Low spreads remain quite sizeable for all of the four individual beta sorts in Panels

A-D. The spreads in the ex-post relative betas for the βd − βs and βn − βs sorts reported

and Siddique (2000), which tend to manifest more strongly in smaller stocks.
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in Panels E and F, respectively, are, not surprisingly, reduced more than the spreads in the

ex-post betas for the individual beta sorts, but the spreads remain non-trivial.

This persistence in the betas translate into similar predictive return-beta relations to

the ones documented for the contemporaneous return in the previous section. Specifically,

we continue to see a monotone relationship between the future portfolio returns and the

past betas. Directly in line with the previous contemporaneous portfolio sorts, the relations

are stronger and more statistically significant for the rough betas than for the standard

and continuous betas. In particular, focusing on the risk-adjusted FFC4 alphas, the t-

statistics for the High-Low quintile portfolios based on the βs and βc sorts equal 1.76 and

1.44, respectively, compared to 2.04 and 2.74 for the βd and βn predictive sorts, while the

t-statistics for the relative βd−βs and βn−βs sorts equal 2.29 and 3.05, respectively.35 Thus,

not only do the results suggest that the discontinuous and overnight betas are better able to

predict the cross-sectional variation in the future returns than the continuous and standard

betas, these relations between the rough betas and the future returns cannot be explained by

the size, book-to-market ratio, and momentum effects captured by the Fama-French-Carhart

factors.

6.2 Double-sorted portfolio returns

Our single portfolio sorts reveal that stocks with high discontinuous and overnight betas

tend to have high returns. The converse is true as well, and the differences are greater than

the differences for stocks sorted by their continuous and standard betas. Yet, as discussed

in Section 4.3, the cross-sectional variation in the discontinuous and overnight betas is also

related to other firm characteristics and explanatory variables that are typically shown to

help predict the cross-sectional variation in stock returns. Examination of double-sorted

portfolios provides a simple approach to help disentangle these effects.

For each explanatory variable and each month in the sample, we sort all stocks into five

quintiles according to a particular control variable. Within each quintile, we then sort stocks

into five additional quintiles according to one of the four different beta measures. Finally,

we average the returns on the five beta portfolios across the five different control variable

portfolios to produce beta portfolios with large cross-portfolio variations in their betas, but

little variation in the control variable.

35Our use of the lagged betas for the predictive portfolio sorts in Table 6 implicitly assumes that the
true betas follow a random walk. It is possible that stronger predictive results could be obtained by the
use of more sophisticated, possibly firm specific, time series models for forecasting the betas. We will not
pursue that any further here. We did, however, experiment with use of recursively estimated simple AR(1)
forecasting models, resulting in t-statistics for the FFC4 alphas for the two relative betas of 1.97 and 3.09,
respectively. Further details of these additional results are available upon request.
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Panels A–D in Table 7 display these double-sorting results for each of the different betas.

In Panels C and D for the discontinuous and overnight betas, higher βd and βn are always

associated with higher portfolio returns. For βd in particular, the spread in the returns

between the High- and Low-quintile portfolios ranges from 0.48% (MOM) to 1.05% (RKT),

while the spreads in the FFC4 alphas range from 0.26% (MOM) to 0.73% (REV and RKT).

Similarly, for the βn portfolio sorts the spreads range from 0.65% (MOM) to 1.21% (RKT),

while the spreads in the FFC4 alphas range from 0.43% (MOM) to 0.91% (RKT). Most

of these alphas are not only statistically significant at the usual 5% level, but they also

translate into economically meaningful differences, ranging from 0.26% × 12 = 3.1% to

1.21% × 12 = 14.5% per year. Comparison of the results across different betas in the

four different panels for a given control variable also reveals that the High-Low portfolio

return differences are generally the greatest for the βd and βn based double-sorts, further

corroborating the idea that systematic jump risk is priced higher than continuous market

price risk.

7 Firm-level cross-sectional pricing regressions

The portfolio sorts discussed so far impose no model assumptions. However, they ignore

potentially important cross-sectional firm-level information by aggregating the stocks into

quintile portfolios. Also, even though the double-sorted portfolios do control for other ex-

planatory variables, they only control for one variable at a time. Hence, we turn next to a

standard Fama and MacBeth (1973) type cross-sectional approach based on firm-level data

for estimating the risk premiums associated with the different betas, while simultaneously

controlling for multiple explanatory variables.

For ease of notation, let the unit time interval be a month. The cross-sectional pricing

regression for each of the months t = 1, 2, . . . , T , and all of the stocks i = 1, 2, . . . , Nt

available for a particular month t in the sample, may then be expressed as,

r
(i)
t,t+1 = γ0,t + γcβ,tβ

(c,i)
t + γdβ,tβ

(d,i)
t + γnβ,tβ

(n,i)
t +

p∑
j=1

γj,tZ
(i)
j,t + ε

(i)
t,t+1, (10)

where r
(i)
t,t+1 denotes the excess return for stock i from month t to month t + 1, and the

explanatory variables Z
(i)
j,t and the betas β

(c,i)
t , β

(d,i)
t , and β

(n,i)
t are measured at the end of

month t.36 For comparison, we also estimate similar regressions by replacing the three betas

36Following common practice in the literature (e.g., Ang et al., 2006a, among many others), in an effort
to reduce the effect of extreme observations or outliers, we Winsorize the independent variables at their 0.5%
and 99.5% levels. The results from the non-Winsorized regressions, available upon request, are very similar
to the results reported here.
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by the standard CAPM beta β
(s,i)
t . Based on these cross-sectional regression results, we then

estimate the risk premiums associated with the different betas and explanatory variables as

the time-series means of the T = 204 individual monthly gamma estimates. Specifically, for

k = s, c, d, n and j = 1, . . . , p,

γ̂kβ =
1

T

T∑
t=1

γ̂kβ,t, and γ̂j =
1

T

T∑
t=1

γ̂j,t. (11)

The average risk premium estimates, with robust t-statistics in parentheses, are reported

in Table 8 for a range of different combinations of explanatory variables. Panel A gives

the results from simple univariate regressions involving a single beta measure or a single

explanatory variable. Consistent with the standard CAPM, all the beta risk premiums are

estimated to be positive. The premium associated with βc is the highest of the four, and

that of βn is the lowest, although the t-statistic associated with βn is actually the highest

and the t-statistic with βc the lowest. Many of the previously documented CAPM-related

anomalies appear fairly weak in the present sample of relatively large liquid stocks. Still, the

significant positive premiums for ILLIQ and RKT do corroborate the empirical findings in

Amihud (2002) and Amaya et al. (2013), respectively. The negative estimates for ME, CSK,

and RSK are also in line with the empirical evidence reported in Fama and French (1992),

Harvey and Siddique (2000), and Amaya et al. (2013), among many others. Meanwhile, the

positive albeit statistically weak premium for IVOL is counter to the idiosyncratic volatility

puzzle first highlighted by Ang et al. (2006b). However, as previously documented in the

literature, the idiosyncratic volatility puzzle is primarily driven by small firms (Fu, 2009),

firms that are dominated by retail investors (Han and Kumar, 2013), and lottery-like firms

(Bali et al., 2011).37 By contrast, our sample of S&P 500 constituents consists entirely of

relatively large firms.

Turning to the multiple regression results in Panel B, Regression I shows that the stan-

dard beta βs becomes insignificant when controlling for all the other explanatory variables.

Similarly, the risk premium for βc in Regression II is also insignificant, suggesting that the

explanatory power of the continuous beta is effectively subsumed by the other explanatory

variables. The t-statistic for the discontinuous beta βd in Regression III, however, is largely

unchanged from the results in the simple regression in Panel A. For the overnight beta βn

the t-statistic for Regression IV is even higher than in the simple regression in Panel A.

Regressions V – XIII show the results from simultaneously including the continuous,

discontinuous, and overnight betas, controlling for ME, BM, MOM and each of the other

37For a recent discussion of the idiosyncratic volatility puzzle see also Stambaugh et al. (2014), who find
that the IVOL effect is most pronounced and negative for portfolios comprised of overvalued stocks, but
actually positive for portfolios of undervalued stocks.
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explanatory variables in turn. The high correlations across the different beta estimates,

previously discussed in Table 2, invariably render lower slope coefficients and t-statistics

than in Regressions II – IV. Nonetheless, the estimated risk premiums associated with βd

and βn remain close to significant across all the specifications when judged by their one-sided

t-statistics at the usual 5% level. The t-statistics for βc, on the other hand, are practically

zero for all specifications, suggesting that the premium for systematic continuous market

risk is fully absorbed by the premiums for the two rough betas and the other explanatory

variables.

The estimated premiums for βd and βn risks are also remarkably robust across the dif-

ferent specifications, with typical values of around 0.3% for each of the rough betas. Indeed,

the t-statistic for testing that the two premiums are the same after controlling for all the

other explanatory variables equals just 0.26. Hence, in Regression XIV, we report the results

including the three betas and all control variables, explicitly restricting the premiums for

βd and βn risks to be the same. The estimated common rough beta risk premium equals

0.31% with a t-statistic of 2.33. Given that the cross-sectional standard deviations of βd

and βn are equal to 1.14 and 1.20, respectively, a two-standard deviation change in each of

the two rough betas also translates into large and economically meaningful expected return

differences of about 2× 1.14× 0.33%× 12 = 9.03% and 2× 1.20× 0.33%× 12 = 9.50% per

year, respectively.

The last Regression XV further constrains all three βc, βd, and βn risks to have the

same premium. This results in a marginally significant t-statistic of 1.96 for the beta risk

premium. However, a standard F -test easily rejects the null hypothesis that the three risk

premiums are the same. By contrast, the assumption that the risk premiums for βd and

βn are the same and different from the premium for βc, as in Regression XIV, cannot be

rejected.

8 Robustness checks

To further help corroborate the robustness of our findings, we carry out a series of additional

tests and empirical investigations. To begin with, we investigate the sensitivity of our pri-

mary empirical findings to the choice of intraday sampling frequency, possible biases in the

estimation of the betas induced by non-synchronous trading effects, and errors-in-variables

problems in the cross-sectional regressions stemming from the estimation errors in the betas.

Next, we analyze how the cross-sectional regression results and the estimated risk premiums

for different betas are affected by the length of the sample period used in the estimation of

the betas and the holding period of the future returns. We then show how the rough betas
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also help reduce the conditional alphas and the spread in the conditional alphas sorted by

various characteristics compared to the alphas for a standard conditional CAPM. Finally,

we compare our main results to those obtained by excluding specific macroeconomic news

announcement days in the estimation of the betas.

8.1 Sampling frequency and beta estimation

The continuous-time framework of the empirical investigations and the consistency of the

βc and βd estimates hinge on increasingly finer sampled intraday returns. In practice, non-

synchronous trading and other market microstructure effects invariably limit the frequency

of the data available for estimation. To assess the sensitivity of the beta estimates to the

choice of sampling frequency, we compute betas for five different fixed sampling frequencies:

5-, 25-, 75-, 125- and 180-minute. These five sampling schemes, ranging from a total of 75

observations per day (5-minute) to only two observations per day (180-minute), span most of

the frequencies used in the literature for computing multivariate realized variation measures.

The extent of market microstructure frictions obviously varies across different stocks. Less

frequently traded stocks are likely more prone to estimation biases in their betas from too

frequent sampling than more liquid stocks. Thus, we also adopt a mixed-frequency strategy

in which we apply different sampling frequencies to different stocks. Specifically, at the end

of each month t, we sort all stocks into quintiles according to their ILLIQ measure. We

then use the ith highest of the five fixed sampling frequencies for stocks in the ith illiquidity

quintile; i.e., 5-minute frequency for stocks in the lowest ILLIQ quintile (the most liquid)

and 180-minute frequency for stocks in the highest ILLIQ quintile (the least liquid).

Figure 3 plots the sample means averaged across time and stocks for the resulting βc and

βd estimates as a function of the five different fixed sampling frequencies. The sample means

of the mixed-frequency beta estimates are shown as a flat dashed line in both panels. The

average βc estimates, reported in Panel A, increase quite substantially from the 5- to the 25-

minute sampling frequency, but appear to flatten at around 0.93 at the 75-minute sampling

frequency used in our empirical results reported so far. The average βd estimates reported

in Panel B, however, are remarkably stable across different sampling frequencies and close to

the average mixed-frequency value of 1.35. The specific choice of sampling frequency within

the range of values considered here appears largely irrelevant to the two discontinuous beta

estimates.

To further investigate the role of sampling frequency in our key empirical findings, Table

9 reports results of cross-sectional pricing regressions based on the different beta estimates.

Panel A gives the results obtained by varying the sampling frequency used in the estimation
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of βc, keeping the sampling frequency for the βd estimation fixed at 75 minutes. Panel B

reports the results for the different βd estimates, using the same 75-minute βc estimates. To

conserve space, we report only results corresponding to the full Regression XIV reported in

Panel B of Table 8 that restricts the premiums for the two rough betas to be the same.

None of the t-statistics for the continuous systematic risk premiums in Panel A are close

to significant. All of the t-statistics for the rough beta risk premiums, on the other hand,

are higher than two. The estimated risk premiums are also very similar across the different

regressions and close to the value of 0.31% for the benchmark Regression XIV in Table 8.

The regressions in Panel B for the different βd estimates tell a very similar story. The risk

premiums for the rough betas are always significant, while those for the continuous betas

are not. Overall, our key cross-sectional pricing results appear robust to choice of intraday

sampling frequency used in the estimation of the βc and βd risk measures.

8.2 Non-synchronous trading and beta estimation

The results in the previous section indicate that the estimated jump betas are very stable

across different sampling frequencies, while the continuous betas appear to be downward

biased for the highest sampling frequencies. This downward bias may in part be attributed

to non-synchronous trading effects. In order to more directly investigate this, following the

original ideas of Scholes and Williams (1977) and Dimson (1979), we calculate high-frequency

based lead and lag continuous betas as,

β̂
(c,i)
t,− =

n

n− 1

∑t−1
s=t−l

∑n
τ=2

[
(r

(i)
s:τ + r

(0)
s:τ−1)21{|r(i)s:τ+r

(0)
s:τ−1|≤k

(i+0)
s,τ } − (r

(i)
s:τ − r(0)

s:τ−1)21{|r(i)s:τ−r
(0)
s:τ−1|≤k

(i−0)
s,τ }

]
4
∑t−1

s=t−l
∑n

τ=1(r
(0)
s:τ )21{|r(0)s:τ |≤k

(0)
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,

and

β̂
(c,i)
t,+ =

n

n− 1
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∑n
τ=2

[
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(i)
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(0)
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(0)
s:τ )21{|r(0)s:τ |≤k

(0)
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,

where n denotes the number of high-frequency observations within a day used in the es-

timation; i.e., n = 5 for the 75-minute sampling underlying our main empirical results.

The theory behind the high-frequency betas implies that the lead and lag betas should be

asymptotically negligible and thus have no significant impact on the cross-sectional pricing.38

38It is not possible to similarly adjust the jump betas by including leads and lags in their calculation.
The lead-lag adjustment for the continuous betas rely on the notion that the “true” high-frequency returns
are approximately serially uncorrelated. However, the construction of the jump betas is based on higher
order powers of the high-frequency returns, and the squared returns, in particular, are clearly not serially
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To test for this, we repeat the one-month ahead predictive single sorts in Table 6, by

instead sorting the stocks according to their β̂
(c,i)
t,− and β̂

(c,i)
t,+ estimates. The monthly FFC4

alphas for the return differences between the resulting High and Low quintile portfolios equal

−0.07% with a t-statistic of −0.30 for the lagged continuous beta sorts, and 0.05% with a

t-statistic of 0.30 for the lead continuous beta sorts, thus corroborating the idea that neither

the lead nor the lagged continuous betas are priced in the cross-section.

To more directly assess whether microstructure biases, and non-synchronous trading

effects in particular, systematically affect the previously estimated continuous betas and the

pricing thereof, we also calculate an adjusted continuous beta by adding all three continuous

beta estimates, β̂
(c,i)
t,adj ≡ β̂

(c,i)
t + β̂

(c,i)
t,− + β̂

(c,i)
t,+ . Sorting by these adjusted continuous betas

produces an FFC4 alpha for the spread in the returns between the High and Low quintile

portfolios of 0.55%, with a t-statistic of 1.66, very close to the values reported in Table 6.39

Taken as a whole, the results discussed in the previous section together with the results

for the lead-lag beta adjustments discussed above, indicate that non-synchronous trading

effects and biases in the high-frequency betas are not of great concern.

8.3 Errors-in-variables in the cross-sectional pricing regressions

Another potential concern when testing linear factor pricing models relates to the errors-

in-variables problem arising from the first-stage estimation of the betas. In particular, as

formally shown by Shanken (1992), the first-stage estimation error generally results in an

increase in the asymptotic variance of the risk premia estimates from the second-stage cross-

sectional regressions. In our setting, however, the betas are estimated from high-frequency

data, resulting in lower measurement errors, and in turn less of an errors-in-variables problem,

than in traditional Fama-MacBeth type regressions that rely on betas estimated with lower

frequency data. At the same time, this also means that the standard adjustment procedures,

as in, e.g., Shanken (1992), are not applicable in the present context.40

Instead, we conduct a small-scale Monte Carlo experiment by appropriately perturbing

the high-frequency beta estimates. For β̂
(c,i)
t and β̂

(d,i)
t , we rely on the results in Todorov and

uncorrelated. Meanwhile, the “signature plots” for the jump betas in Panel B of Figure 3 discussed in
the previous section, show that the estimates of the jump betas are very robust to the choice of sampling
frequency, and as such much less prone to any systematic biases arising from non-synchronous trading effects.

39Adjusting the standard beta by similarly adding the lead and lag betas, results in an FFC4 alpha for
the High minus Low portfolio of 0.56% with a t-statistic of 1.76, both of which are almost the same as the
values for the unadjusted standard beta sort reported in Table 6.

40Formally accounting for the estimation errors in the high-frequency betas would require a new asymp-
totic framework in which both the time span of the data used for the cross-sectional regression-based estimates
of the risk premia and the sampling frequency used for the estimation of the betas go to infinity. We leave
this for future work.
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Bollerslev (2010) to generate replicates {β̂(c,i,rep)
t } and {β̂(d,i,rep)

t } from two independent nor-

mal distributions with means equal to the estimated β̂
(c,i)
t and β̂

(d,i)
t , respectively, and stan-

dard deviations equal to the corresponding theoretical asymptotic standard errors. For β̂
(n,i)
t ,

we rely on a bootstrap procedure to generate random samples of β̂
(n,i,rep)
t from the actual

sampling distribution. Given a random sample of the three betas (β̂
(c,i,rep)
t , β̂

(d,i,rep)
t , β̂

(n,i,rep)
t ),

we then estimate the key Fama-MacBeth Regression XIV in Table 8 based on the perturbed

beta estimates keeping all of the other controls the same. We repeat the simulations a total

of one-hundred times.

The resulting simulation-based estimates for the risk premia are in the range of -0.12 to

0.27 for βc with t-statistic between -0.24 and 0.87, and in the range of 0.20 to 0.38 with t-

statistic between 1.62 and 3.16 for βd and βn. The magnitudes of these simulated risk premia

and their t-statistics are all fairly close to the values for the actual regression reported in

Table 8, thus confirming that the errors-in-variables problem is not of major concern in the

present context, and that it does not materially affect the statistical nor economic significance

of the rough betas.

8.4 Beta estimation and return holding periods

All the cross-sectional pricing regressions in Tables 8 and 9 are based on betas estimated

from returns over the past year and a future one-month return holding period. These are

typical estimation and holding periods used to test for the significant pricing ability of

explanatory variables and risk factors. To assess the robustness of our results to different

lagged beta estimation periods (L) and longer future return horizons (H), Table 10 reports

results based on shorter 3- and 6-month beta estimates and longer 3-, 6- and 12-month

prediction horizons.41

Regressions I–V pertain to the standard beta. Although the regression coefficients asso-

ciated with the standard beta seem to increase with the forecast horizon, their t-statistics

are at most weakly significant. Regressions VI–X pertain to the continuous and rough betas.

The regressions show that the t-statistics associated with the two rough betas are always

significant, while the continuous systematic risk is not priced in the cross-section. In fact, if

anything, the results for the shorter estimation periods and longer return horizons are even

more significant than the results for the baseline Regression XIV in Panel B of Table 8 and

the typical choice of L = 12 and H = 1.

The significance of the results for the longer 3-, 6-, and 12-month return horizons also

41All of the cross-sectional regressions are estimated monthly. The robust t-statistics for the longer H =
3-, 6- and 12-month return horizons explicitly adjust for the resulting overlap in the return observations.
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highlights non-trivial persistence in the cross-sectional predictability. Converting the result-

ing estimates for the different return horizons to an annual level implies rough beta risk

premiums of 1.65% × 4 = 6.60%, 2.73% × 2 = 5.46%, and 4.07 × 1 = 4.07% per year, re-

spectively, compared to 0.31× 12 = 3.72% per year for the one-month future return horizon

implied by Regression XIV in Table 8.

It is also worth noting that while ME, REV, and RKT are each significant in one or more

of the regressions reported in Table 10, they are not systematically so. Short-term reversal

and realized kurtosis, in particular, both lose their significance for the longer 6- and 12-

month holding periods. The only variable that remains highly significant across all different

estimation periods and return predictability horizons is the rough beta risk premium.

8.5 Conditional alphas

As an additional robustness check, we investigate to what extent our separation of market

diffusive and jump price risks can reduce, if at all, the conditional alphas generated by the

standard conditional CAPM that treats all market price moves the same. To this end, we

define the conditional alpha for stock i from time t to t+ 1 in our generalized setting as,

α
(i)
t,t+1 ≡ r

(i)
t,t+1 − β

(c,i)
t γcβ,t − β

(d,i)
t γdβ,t − β

(n,i)
t γnβ,t. (12)

If market diffusive and jump price risks were the only systematic risks that were priced,

α
(i)
t,t+1 should be a martingale difference sequence; i.e., Et(α(i)

t,t+1) = 0. However, as formally

discussed in Section 2, other risk factors might be priced as well. As such, we are not

interested in testing the martingale hypothesis per se, but rather if the magnitude of the

generalized alphas are reduced relative to the standard conditional CAPM alphas that do

not differentiate between market diffusive and jump price moves.

The betas and the risk premia, and in turn the conditional alphas defined in equation (12)

are not directly observable. The betas, of course, may be accurately estimated from high-

frequency intraday data. The estimation of the conditional risk premia, however, are more

complicated. As discussed in Lewellen and Nagel (2006), conditionally unbiased estimates

of the risk premia generally suffice for the estimation of the mean of the conditional alphas,

as the errors in the risk premia estimates are “averaged out” in the time-series average

of the alpha estimates. This is easily accomplished for the standard conditional CAPM by

taking the difference between the excess return of the asset and the product of its conditional

market beta and the excess market return. This approach, however, does not extend to our

generalized setup, as the market diffusive and jump risks are latent components of the total

market return, and as such their risk premia are not associated with the returns on any

directly observable factors.
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Instead, mirroring the approach in Section 7, we estimate γcβ,t, γ
d
β,t and γnβ,t from cross-

sectional regressions of the excess returns on the high-frequency beta estimates. Further

motivated by the empirical findings in Section 7 and the benchmark Regression XIV in

Table 8, we restrict the premia for β
(d,i)
t and β

(n,i)
t to be the same, resulting in the following

generalized conditional alpha estimates,

α̂
(i)
t,t+1 = r

(i)
t,t+1 − β̂

(c,i)
t γ̂cβ,t − (β̂

(d,i)
t + β̂

(n,i)
t )γ̂dβ,t. (13)

Assuming that the size of the cross-section is large relative to the length of the time series, so

that the estimation error in recovering the risk premia has no first-order asymptotic effect,

standard errors for the time-series averages of the alphas α̂(i) = 1
T

∑T
t=1 α̂

(i)
t,t+1 are easily

constructed from the time series variance of the conditional alphas. Our estimation of the

conditional alphas for the standard conditional CAPM is carried out analogously.

Figure 4 displays the cross-sectional distributions of α̂(i) corresponding to the standard

conditional CAPM and the generalized conditional alphas in (13). As is evident from the

figure, the distribution of the generalized conditional alphas is more centered around zero

than the standard conditional CAPM alphas. Specifically, while the cross-sectional average of

the average conditional alphas equals 0.44% per month for the standard conditional CAPM,

the average drops to−0.03% per month when allowing for separate pricing of market diffusive

and jump price risks. Even though there is a similar drop in the values of the t-tests for

testing the hypothesis that the average conditional alphas are equal to zero, few of the

t-statistics for the individual stocks are actually significant at the usual 5% level.

In order to more clearly highlight the improvements afforded by treating diffusive and

jump risks differently, we therefore also consider two aggregate portfolios where the idiosyn-

cratic risk is reduced. Specifically, motivated by the results in Panel A of Table 8, which

show the cross-sectional dispersion in the returns to be most strongly related to ME and

ILLIQ, we calculate the conditional alphas associated with the ME and ILLIQ portfolio sorts.

For the ME sorted portfolios, in particular, the spread in the average conditional alphas be-

tween the High and Low quintile sorted portfolios is reduced from −1.40% for the standard

conditional CAPM to −0.99% for the generalized alphas, with a corresponding drop in the

t-statistics from −4.73 to −3.21. Thus, even though the size effect remains significant, part

of it can be accounted for by the separate pricing of market diffusive and jump price risks.

Similarly, for the ILLIQ sorted portfolios, the values of the conditional alphas for the High-

Low quintile sorted portfolio is reduced from 1.16% to 0.77%, with a corresponding drop in

the t-statistics from 3.68 to 2.09, again underscoring the improvements in the cross-sectional

pricing afforded by allowing for separate diffusive and jump risk premia.
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8.6 Betas and macroeconomic news announcements

An extensive literature has been devoted to studying the effects of macroeconomic news

announcements on asset prices. Andersen et al. (2007a), Lee (2012), Lahaye et al. (2011), in

particular, have all sought to relate jumps in high-frequency asset prices, with the significant

jumps identified through similar techniques to the ones used here, to regularly scheduled

macroeconomic news releases. Related to this, Savor and Wilson (2014) have also recently

argued that cross-sectional return patterns might be different on news announcement days.42

To investigate whether macroeconomic announcement days confound our beta estimates

and the significant cross-sectional relation between the two rough betas and expected stock

returns, we exclude three specific announcement days in our estimation of βc, βd, and βn,

including days on which the employment report (Employment) and the Producer Price Index

(PPI) are announced by the Bureau of Labor Statistics, and days when scheduled interest

rates are announced by the Federal Open Market Committee (FOMC). Employment and

PPI are both announced monthly at 8:30am before the stock market officially opens, while

FOMC is announced at 2:15pm every six weeks.43

Relying on the same test for significant intraday jumps used above, Figure 5 compares the

average jump intensity for the S&P 500 market portfolio for the three announcement days and

all other days in the sample (Non-Ann), as a function of the time-of-day. Not surprisingly,

the FOMC announcements at 2:15pm have the greatest intraday effect, increasing the jump

intensity from an average of about 1% per day on non-announcement days to 9% on FOMC

days.44 The employment report also makes a market jump more likely in the first few

minutes of trading, although not dramatically so. Of course, Employment and PPI are both

announced before the market officially opens, and thus might be expected to affect estimation

of the overnight betas the most.

Table 11 reports results of the full firm-level cross-sectional regressions excluding the

three different types of announcement days. Both the size and the statistical significance

of the risk premium estimates are very similar to those in Table 8, Panel B. In fact, the

estimated risk premium for the discontinuous and overnight betas in Regression X in Table

11 is identical within two decimal points to the estimate from Regression XIV in Table 8.

The predictive power and significant cross-sectional pricing ability of the two rough betas

do not appear to be solely driven by important macroeconomic news announcements.

42Patton and Verardo (2012) also document that standard realized betas calculated from high-frequency
intraday data tend to be higher on individual firms’ earnings announcement days.

43Andersen et al. (2003) provide a comprehensive list of U.S. macroeconomic news announcements and
their release times.

44Lucca and Moench (2014) have also recently documented large average pre-FOMC one-day equity
returns in anticipation of monetary policy decisions.
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9 Conclusion

Based on a general continuous-time representation for the return on the aggregate market

portfolio coupled with an economy-wide pricing kernel that separately prices market diffusive

and jump risks, we show how standard asset pricing theory naturally results in separate risk

premia for continuous, or smooth, market betas and discontinuous, or rough, market betas.

Importantly, our theoretical framework explicitly allows for other systematic risk factors to

enter the pricing kernel and possibly affect the cross-sectional pricing. Only if non-market

risks are not priced, and the premia for continuous and jump market risks are the same,

does the standard conditional CAPM hold.

Motivated by these theoretical results, we empirically investigate whether market diffu-

sive and jump risks are priced differently in the cross-section of expected stock returns. Our

empirical investigations rely on a unique high-frequency dataset for a large cross-section of

individual stocks together with new econometric techniques for separately estimating contin-

uous, discontinuous and overnight betas. We find that the discontinuous and overnight betas

are different from, and more cross-sectionally dispersed than, the continuous and standard

CAPM betas. When we sort individual stocks by the different betas, we find that stocks with

high discontinuous and overnight betas earn significantly higher risk-adjusted returns than

stocks with low discontinuous and overnight betas, while at best there is only a weak relation

between a stock’s return and its continuous beta. We also find the estimated risk premiums

for the discontinuous and overnight betas to be both statistically significant and indistin-

guishable from one another, and that this rough beta risk cannot be explained by a long list

of other firm characteristics and explanatory variables commonly employed in the literature.

By contrast, the estimated continuous beta risk premium is insignificant. Intuitively, market

jumps and overnight price changes more likely reflect true information surprises than do

continuous price moves, which may simply be attributed to random “noise” in the price for-

mation process. Hence, the two rough betas more accurately reflect the systematic market

price risks that are actually priced than do the continuous betas and the standard condi-

tional CAPM betas that do not differentiate between continuous and discontinuous market

price moves.
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Data Appendix

A.1 High-frequency data cleaning

We begin by removing entries that satisfy at least one criteria as follows: (i) a time stamp

outside the exchange open window between 9:30am and 4:00pm; (ii) a price less than or equal

to zero; (iii) a trade size less than or equal to zero; (iv) corrected trades, i.e., trades with

Correction Indicator, CORR, other than 0, 1, or 2; and (v) an abnormal sale condition, i.e.,

trades for which the Sale Condition, COND, has a letter code other than ‘@’, ‘*’, ‘E’, ‘F’,

‘@E’, ‘@F’, ‘*E’ and ‘*F’. We then assign a single value to each variable for each second within

the 9:30am–4:00pm time interval as follows. If one or multiple transactions have occurred in

that second, we calculate the sum of volumes, the sum of trades, and the volume-weighted

average price within that second. If no transaction has occurred in that second, we enter

zero for volume and trades. For the volume-weighted average price, we use the entry from

the nearest previous second, i.e., forward-filtering. If no transaction has occurred before

that second, we use the entry from the nearest subsequent second, i.e., backward-filtering.

Motivated by our analysis of the trading volume distribution across different exchanges over

time we purposely incorporate information from all exchanges covered by the TAQ database.

Further details are provided in the supplementary data appendix Bollerslev et al. (2014).

A.2 Additional explanatory variables

Our empirical investigations rely on the following explanatory variables and firm character-

istics.

• Size (ME): Following Fama and French (1993), a firm’s size is measured at the end of

June by its market value of equity – the product of the closing price and the number

of shares outstanding (in millions of dollars). Market equity is updated annually and

is used to explain returns over the subsequent 12 months. Following common practice,

we also transform the size variable by its natural logarithm to reduce skewness.

• Book-to-market ratio (BM): Following Fama and French (1992), the book-to-market

ratio in June of year t is computed as the ratio of the book value of common equity

in fiscal year t − 1 to the market value of equity (size) in December of year t − 1.45

BM for fiscal year t is used to explain returns from July of year t+ 1 through June of

year t+ 2. The time gap between BM and returns ensures that information on BM is

publicly available prior to the returns.

45Book common equity is defined as book value of stockholders’ equity, plus balance-sheet deferred taxes
and investment tax credit (if available), minus book value of preferred stock for fiscal year t− 1.
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• Momentum (MOM): Following Jegadeesh and Titman (1993), the momentum variable

at the end of month t is defined as the compound gross return from month t − 11

through month t− 1; i.e., skipping the short-term reversal month t.46

• Reversal (REV): Following Jegadeesh (1990) and Lehmann (1990), the short-term re-

versal variable at the end of month t is defined as the return over that same month

t.

• Idiosyncratic volatility (IVOL): Following Ang et al. (2006b), a firm’s idiosyncratic

volatility at the end of month t is computed as the standard deviation of the residuals

from the regression based on the daily return regression:

ri,d − rf,d = αi + βi(r0,d − rf,d) + γiSMBd + φiHMLd + εi,d,

where ri,d and r0,d are the daily returns of stock i and the market portfolio on day d,

respectively, and SMBd and HMLd denote the daily Fama and French (1993) size and

book-to-market factors.

• Coskewness (CSK): Following Harvey and Siddique (2000) and Ang et al. (2006a), the

coskewness of stock i at the end of month t is estimated using daily returns for month

t as:

ĈSKi,t =
1
N

∑
d(ri,d − r̄i)(r0,d − r̄0)2√

1
N

∑
d(ri,d − r̄i)2( 1

N

∑
d(r0,d − r̄0)2)

,

where N denotes the number of trading days in month t, ri,d and r0,d are the daily

returns of stock i and the market portfolio on day d, respectively, and r̄i and r̄0 denote

the corresponding average daily returns.

• Cokurtosis (CKT): Following Ang et al. (2006a), the cokurtosis of stock i at the end

of month t is estimated using the daily returns for month t as:

ĈKTi,t =
1
N

∑
d(ri,d − r̄i)(r0,d − r̄0)3√

1
N

∑
d(ri,d − r̄i)2( 1

N

∑
d(r0,d − r̄0)2)3/2

,

where variables are the same as for CSK.

46Jegadeesh (1990) shows that monthly returns on many individual stocks are significantly and negatively
serially correlated.
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• Realized skewness (RSK): Following Amaya et al. (2013), the realized skewness for

stock i on day d is constructed from high-frequency data as:

RSKi,d =

√
L
∑L

l=1 r
3
i,d,l

(
∑L

l=1 r
2
i,d,l)

3/2
,

where ri,d,l refers to the lth intraday return on day d for stock i, and L denotes the

number of intraday returns available on day d. Consistent with Amaya et al. (2013),

we use 5-minute returns from 9:45am to 4:00pm, so that for the full intraday time

period L = 75. The RSK for stock i at the end of month t is computed as the average

of the daily RSKi,d for that month.

• Realized kurtosis (RKT): Following Amaya et al. (2013), the realized kurtosis for stock

i on day d is computed as:

RKTi,d =
L
∑L

l=1 r
4
i,d,l

(
∑L

l=1 r
2
i,d,l)

2
,

where variables and estimation details are the same as for RSK.

• Maximum daily return (MAX): Following Bali et al. (2011), the MAX variable for stock

i and month t is defined as the largest total daily return observed over that month.

• Illiquidity (ILLIQ): Following Amihud (2002), the illiquidity for stock i at the end of

month t is measured as the average daily ratio of the absolute stock return to the dollar

trading volume from month t− 11 through month t:

ILLIQi,t =
1

N

∑
d

(
|ri,d|

volumei,d × pricei,d

)
,

where volumei,d is the daily trading volume, pricei,d is the daily price, and other vari-

ables are as defined before. We further transform the illiquidity measure by its natural

logarithm to reduce skewness.
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Table 1: Cross-sectional relation of βs, βc, βd, and βn
The table reports the estimated regression coefficients, robust t-statistics (in parentheses) and adjusted R2s from Fama-MacBeth
type regressions for explaining the cross-sectional variation in the standard βs as a function of the continuous beta βc, the
discontinuous beta βd, and the overnight beta βn. All of the betas are computed using 12-month returns.

Regression βc βd βn Adjusted-R2

I 1.03 0.76
(58.67)

II 0.79 0.62
(26.72)

III 0.51 0.46
(16.15)

IV 0.78 0.17 0.10 0.81
(29.64) (6.87) (7.10)
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Table 2: Sample correlations
The table displays time-series averages of monthly cross-sectional correlations. The sample consists of the 985 individual stocks
included in the S&P 500 index over 1993-2010. βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight
betas, respectively. ME denotes the logarithm of the market capitalization of the firms. BM denotes the ratio of the book value
of common equity to the market value of equity. MOM is the compound gross return from month t− 11 through month t− 1.
REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and CKT are the measures of coskewness and
cokurtosis, respectively. RSK and RKT denote the realized skewness and the realized kurtosis, respectively, computed from
high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ refers to the logarithm of the average
daily ratio of the absolute stock return to the dollar trading volume from month t− 11 through month t. The asterisks indicate
significance at the 5% (*) and 1% (**) levels, respectively.

βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

βs 1 0.88∗∗ 0.76∗∗ 0.63∗∗ −0.12∗∗ −0.15∗∗ 0.10∗∗ 0.01 0.46∗∗ 0.04∗ 0.38∗∗ −0.03∗∗ −0.07∗∗ 0.47∗∗ −0.04∗

βc 1 0.77∗∗ 0.60∗∗ −0.02 −0.17∗∗ 0.09∗∗ 0.01 0.43∗∗ 0.07∗∗ 0.26∗∗ −0.03∗∗ −0.15∗∗ 0.43∗∗ −0.08∗∗

βd 1 0.74∗∗ −0.27∗∗ −0.11∗∗ 0.08∗∗ 0.01 0.58∗∗ 0.01 0.06∗∗ −0.05∗∗ −0.02∗ 0.53∗∗ 0.15∗∗

βn 1 −0.22∗∗ −0.11∗∗ 0.03∗∗ 0.01 0.53∗∗ 0.01 −0.01 −0.04∗∗ −0.02 0.48∗∗ 0.13∗∗

ME 1 −0.15∗∗ −0.04∗∗ −0.03∗∗ −0.34∗∗ 0.04∗∗ 0.30∗∗ 0.00 −0.40∗∗ −0.28∗∗ −0.91∗∗

BM 1 −0.04 0.00 −0.08∗∗ −0.06∗∗ −0.07∗∗ 0.01 0.05∗∗ −0.07∗∗ 0.14∗∗

MOM 1 0.02∗ 0.00 −0.07∗∗ 0.06∗ −0.02 0.04∗∗ 0.00 0.05∗∗

REV 1 0.03∗ −0.01 −0.02∗∗ 0.37∗∗ 0.02∗∗ 0.30∗∗ −0.01∗

IVOL 1 0.00 −0.22∗∗ −0.04∗∗ 0.11∗∗ 0.81∗∗ 0.26∗∗

CSK 1 −0.03 0.02∗∗ −0.05∗∗ 0.03∗ −0.05∗∗

CKT 1 0.00 −0.16∗∗ −0.11∗∗ −0.27∗∗

RSK 1 0.04∗∗ 0.04∗∗ 0.00
RKT 1 0.07∗∗ 0.41∗∗

MAX 1 0.21∗∗

ILLIQ 1
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Table 3: Portfolio characteristics sorted by betas
The table displays time-series averages of equal-weighted characteristics of stocks sorted by the four different betas. The sample
consists of the 985 individual stocks included in the S&P 500 index over 1993-2010. βs, βc, βd, and βn are the standard,
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT are the measures of coskewness and cokurtosis, respectively. RSK and RKT denote the realized skewness and the realized
kurtosis computed from high-frequency data. MAX represents the maximum daily raw return over month t. ILLIQ refers to
the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t − 11 through
month t. Panel A displays the results sorted by βs, Panel B by βc, Panel C by βd, and Panel D by βn.

βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

Panel A: Sorted by βs

1(Low) 0.45 0.52 1.02 1.11 8.48 0.56 8.37 0.76 1.37 -0.10 1.51 0.03 5.31 3.54 -2.78
2 0.73 0.70 1.12 1.22 8.56 0.54 9.59 0.86 1.48 -0.10 2.04 0.04 5.42 4.03 -3.08
3 0.93 0.83 1.23 1.37 8.58 0.47 10.59 0.95 1.60 -0.10 2.31 0.03 5.39 4.52 -3.18
4 1.18 1.03 1.45 1.67 8.62 0.50 12.80 1.26 1.83 -0.09 2.48 0.02 5.26 5.33 -3.28
5(High) 1.83 1.58 2.08 2.43 8.43 0.43 13.84 1.48 2.57 -0.09 2.52 0.02 5.10 7.78 -3.40

Panel B: Sorted by βc

1(Low) 0.57 0.44 0.99 1.14 8.54 0.54 7.80 0.81 1.39 -0.11 1.73 0.03 5.54 3.68 -2.32
2 0.79 0.67 1.09 1.22 8.73 0.50 11.28 0.83 1.47 -0.11 2.12 0.03 5.40 4.07 -2.86
3 0.95 0.83 1.23 1.38 8.77 0.45 10.55 0.95 1.59 -0.10 2.31 0.03 5.31 4.53 -3.29
4 1.18 1.05 1.46 1.67 8.86 0.49 11.40 1.13 1.83 -0.10 2.45 0.03 5.13 5.29 -3.52
5(High) 1.80 1.65 2.15 2.45 8.63 0.41 12.60 1.44 2.54 -0.08 2.44 0.02 4.94 7.64 -3.57

Panel C: Sorted by βd

1(Low) 0.60 0.53 0.80 0.93 8.94 0.54 9.16 0.78 1.15 -0.10 1.96 0.04 5.46 3.14 -3.35
2 0.81 0.71 1.03 1.17 8.91 0.49 9.68 0.83 1.39 -0.10 2.22 0.04 5.32 3.90 -3.23
3 0.96 0.85 1.22 1.40 8.86 0.49 10.62 0.90 1.60 -0.10 2.28 0.03 5.22 4.54 -3.26
4 1.18 1.03 1.50 1.72 8.68 0.49 11.24 1.09 1.92 -0.09 2.32 0.03 5.16 5.51 -3.19
5(High) 1.73 1.51 2.37 2.63 8.14 0.37 13.33 1.56 2.77 -0.09 2.27 0.02 5.16 8.16 -2.82

Panel D: Sorted by βn

1(Low) 0.64 0.59 0.90 0.78 8.95 0.55 9.48 0.71 1.14 -0.10 2.06 0.04 5.38 3.11 -3.56
2 0.83 0.74 1.09 1.08 8.91 0.50 10.11 0.81 1.41 -0.10 2.24 0.04 5.30 3.93 -3.27
3 0.98 0.86 1.26 1.34 8.81 0.49 10.83 0.93 1.61 -0.10 2.27 0.03 5.26 4.58 -3.23
4 1.20 1.04 1.50 1.72 8.66 0.48 11.83 1.12 1.93 -0.10 2.32 0.02 5.18 5.56 -3.20
5(High) 1.65 1.42 2.17 2.95 8.20 0.35 14.51 1.60 2.75 -0.09 2.17 0.02 5.19 8.09 -2.97
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Table 4: Equal-weighted returns of contemporaneous single-sorted portfolios
The table reports equal-weighted average returns and betas for contemporaneous single-sorted portfolios. The sample consists
of the 985 individual stocks included in the S&P 500 index over 1993-2010. At the beginning of each month, stocks are sorted
into quintiles according to betas computed from the next 12-month returns. Each equal-weighted portfolio is held for 12 months.
The column labeled “Return” reports the average monthly excess return in the 12-month holding period for each portfolio.
The row labeled “High-Low” reports the difference in returns between portfolio 5 and portfolio 1, with Newey-West robust
t-statistics in parentheses. βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight betas, respectively.
Panel A displays the results sorted by βs, Panel B by βc, Panel C by βd, Panel D by βn, Panel E by βd − βs, and Panel F by
βn − βs.

Panel A: Sorted by βs

Decile βs βc βd βn Return

1(Low) 0.45 0.52 1.02 1.11 0.77
(3.66)

2 0.73 0.70 1.12 1.22 0.81
(3.14)

3 0.93 0.83 1.23 1.37 0.97
(3.21)

4 1.18 1.03 1.45 1.67 1.17
(3.18)

5(High) 1.83 1.58 2.08 2.43 2.39
(2.90)

High-Low 1.38 1.06 1.06 1.32 1.62
(1.85)

Panel B: Sorted by βc

Decile βs βc βd βn Return

1(Low) 0.57 0.44 0.99 1.14 0.80
(3.55)

2 0.79 0.67 1.09 1.22 0.82
(3.14)

3 0.95 0.83 1.23 1.38 0.91
(3.15)

4 1.18 1.05 1.46 1.67 1.20
(3.26)

5(High) 1.80 1.65 2.15 2.45 2.41
(2.92)

High-Low 1.23 1.21 1.16 1.31 1.61
(1.81)

Panel C: Sorted by βd

Decile βs βc βd βn Return

1(Low) 0.60 0.53 0.80 0.93 0.78
(3.80)

2 0.81 0.71 1.03 1.17 0.83
(3.21)

3 0.96 0.85 1.22 1.40 0.85
(2.99)

4 1.18 1.03 1.50 1.72 1.21
(3.31)

5(High) 1.73 1.51 2.37 2.63 2.48
(2.97)

High-Low 1.13 0.98 1.57 1.70 1.71
(2.63)

Panel D: Sorted by βn

Decile βs βc βd βn Return

1(Low) 0.64 0.59 0.90 0.78 0.75
(3.84)

2 0.83 0.74 1.09 1.08 0.83
(3.37)

3 0.98 0.86 1.26 1.34 0.96
(3.29)

4 1.20 1.04 1.50 1.72 1.22
(3.29)

5(High) 1.65 1.42 2.17 2.95 2.39
(2.91)

High-Low 1.01 0.83 1.27 2.17 1.64
(2.59)

Panel E: Sorted by βd − βs

Decile βs βc βd βn Return
1(Low) 1.17 0.96 1.22 1.43 0.97

(2.68)
2 0.96 0.87 1.13 1.30 0.94

(3.44)
3 0.95 0.84 1.20 1.37 1.08

(3.88)
4 1.02 0.87 1.36 1.55 1.25

(4.13)
5(High) 1.19 1.10 2.02 2.22 1.91

(3.56)
High-Low 0.02 0.14 0.80 0.79 0.94

(3.34)

Panel F: Sorted by βn − βs

Decile βs βc βd βn Return

1(Low) 1.16 1.03 1.29 1.06 0.98
(3.22)

2 0.93 0.84 1.17 1.13 1.17
(3.87)

3 0.97 0.86 1.24 1.33 1.17
(4.16)

4 1.07 0.91 1.38 1.62 1.29
(3.80)

5(High) 1.15 1.00 1.85 2.73 1.68
(3.01)

High-Low -0.01 -0.03 0.56 1.67 0.69
(3.18)
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Table 5: Value-weighted returns of contemporaneous single-sorted portfolios
The table reports value-weighted average returns and betas for contemporaneous single-sorted portfolios. The sample consists
of the 985 individual stocks included in the S&P 500 index over 1993-2010. At the beginning of each month, stocks are sorted
into quintiles according to betas computed from the next 12-month returns. Each value-weighted portfolio is held for 12 months.
The column labeled “Return” reports the average monthly excess return in the 12-month holding period for each portfolio.
The row labeled “High-Low” reports the difference in returns between portfolio 5 and portfolio 1, with Newey-West robust
t-statistics in parentheses. βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight betas, respectively.
Panel A displays the results sorted by βs, Panel B by βc, Panel C by βd, Panel D by βn, Panel E by βd − βs, and Panel F by
βn − βs.

Panel A: Sorted by βs

Decile βs βc βd βn Return

1(Low) 0.47 0.57 0.91 0.98 0.62
(3.75)

2 0.73 0.75 1.07 1.12 0.63
(2.62)

3 0.93 0.89 1.19 1.29 0.85
(3.10)

4 1.19 1.10 1.39 1.57 0.91
(2.68)

5(High) 1.74 1.55 1.85 2.18 1.71
(2.53)

High-Low 1.27 0.98 0.95 1.21 1.10
(1.59)

Panel B: Sorted by βc

Decile βs βc βd βn Return

1(Low) 0.53 0.46 0.87 0.99 0.72
(3.90)

2 0.72 0.67 1.00 1.07 0.65
(2.85)

3 0.88 0.83 1.13 1.22 0.68
(2.59)

4 1.13 1.05 1.34 1.50 0.88
(2.67)

5(High) 1.65 1.55 1.84 2.11 1.69
(2.57)

High-Low 1.12 1.09 0.97 1.12 0.98
(1.58)

Panel C: Sorted by βd

Decile βs βc βd βn Return

1(Low) 0.60 0.59 0.81 0.90 0.68
(3.68)

2 0.81 0.78 1.03 1.15 0.74
(3.02)

3 1.01 0.94 1.22 1.35 0.87
(2.98)

4 1.27 1.16 1.50 1.68 1.17
(2.94)

5(High) 1.74 1.59 2.21 2.41 2.23
(2.60)

High-Low 1.14 1.00 1.40 1.51 1.56
(2.41)

Panel D: Sorted by βn

Decile βs βc βd βn Return

1(Low) 0.63 0.64 0.91 0.78 0.65
(3.90)

2 0.84 0.81 1.09 1.07 0.80
(3.44)

3 1.01 0.95 1.24 1.34 1.01
(3.48)

4 1.25 1.14 1.46 1.71 1.13
(2.83)

5(High) 1.62 1.45 1.93 2.75 2.26
(2.43)

High-Low 0.99 0.81 1.02 1.97 1.60
(2.48)

Panel E: Sorted by βd − βs

Decile βs βc βd βn Return

1(Low) 1.18 1.05 1.19 1.37 0.94
(2.37)

2 0.95 0.90 1.15 1.27 0.96
(3.06)

3 0.95 0.87 1.22 1.36 1.03
(3.59)

4 1.01 0.90 1.39 1.52 1.23
(3.86)

5(High) 1.12 1.02 1.97 2.08 1.74
(2.99)

High-Low -0.06 -0.03 0.78 0.71 0.80
(2.43)

Panel F: Sorted by βn − βs

Decile βs βc βd βn Return

1(Low) 1.13 1.03 1.23 1.05 0.96
(3.09)

2 0.93 0.88 1.15 1.16 1.01
(3.71)

3 0.98 0.90 1.22 1.37 1.12
(3.60)

4 1.10 0.97 1.35 1.68 1.16
(2.60)

5(High) 1.15 1.06 1.65 2.66 1.46
(2.19)

High-Low 0.02 0.03 0.41 1.61 0.49
(2.52)
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Table 6: Average returns of predictive single-sorted portfolios
The table reports equal-weighted average returns and betas for predictive single-sorted portfolios. The sample consists of the
985 individual stocks included in the S&P 500 index over 1993-2010. At the end of each month, stocks are sorted into Quintiles
according to betas computed from previous 12-month returns. Each portfolio is held for one month. The column labeled
“Ex-Post” reports the ex-post betas compute from the subsequent 12-month returns. The column labeled “Return” reports
the average one-month ahead excess returns of each portfolio. The column labeled “FFC4 alpha” reports the corresponding
Fama-French-Carhart four-factor alpha for each portfolio. The row labeled “High-Low” reports the difference in returns between
portfolio 10 and portfolio 1, with Newey-West robust t-statistics in parentheses. βs, βc, βd, and βn are the standard, continuous,
discontinuous, and overnight betas, respectively. Panel A displays the results sorted by βs, Panel B by βc, Panel C by βd,
Panel D by βn, and Panel E by βs − βc.

Panel A: Sorted by βs

Ex-Post FFC4
Quintile βs βc βd βn βs Return alpha

1(Low) 0.45 0.52 1.02 1.11 0.60 0.76 0.32
(3.09) (2.07)

2.00 0.73 0.70 1.12 1.22 0.80 0.85 0.31
(2.74) (2.08)

3.00 0.93 0.83 1.23 1.37 0.95 1.00 0.38
(2.76) (2.95)

4.00 1.18 1.03 1.45 1.67 1.12 1.23 0.57
(2.86) (4.12)

5(High) 1.83 1.58 2.08 2.43 1.63 1.59 0.90
(2.29) (3.87)

High-Low 1.38 1.06 1.06 1.32 1.04 0.83 0.58
(1.40) (1.76)

Panel B: Sorted by βc

Ex-Post FFC4
Quintile βs βc βd βn βc Return alpha

1(Low) 0.57 0.44 0.99 1.14 0.57 0.79 0.33
(3.05) (2.20)

2 0.79 0.67 1.09 1.22 0.74 0.79 0.29
(2.55) (1.97)

3 0.95 0.83 1.23 1.38 0.84 0.97 0.35
(2.65) (2.59)

4 1.18 1.05 1.46 1.67 1.02 1.19 0.54
(2.80) (4.01)

5(High) 1.80 1.65 2.15 2.45 1.51 1.50 0.82
(2.18) (3.45)

High-Low 1.23 1.21 1.16 1.31 0.93 0.71 0.49
(1.22) (1.44)

Panel C: Sorted by βd

Ex-Post FFC4
Quintile βs βc βd βn βd Return alpha

1(Low) 0.60 0.53 0.80 0.93 0.93 0.72 0.30
(2.94) (2.20)

2 0.81 0.71 1.03 1.17 1.12 0.76 0.23
(2.37) (1.73)

3 0.96 0.85 1.22 1.40 1.24 0.95 0.36
(2.62) (2.77)

4 1.18 1.03 1.50 1.72 1.46 1.17 0.52
(2.72) (3.71)

5(High) 1.73 1.51 2.37 2.63 2.07 1.65 0.94
(2.39) (4.08)

High-Low 1.13 0.98 1.57 1.70 1.13 0.93 0.64
(1.55) (2.04)

Panel D: Sorted by βn

Ex-Post FFC4
Quintile βs βc βd βn βn Return alpha

1(Low) 0.64 0.59 0.90 0.78 1.02 0.64 0.21
(2.53) (1.52)

2 0.83 0.74 1.09 1.08 1.26 0.76 0.24
(2.45) (2.06)

3 0.98 0.86 1.26 1.34 1.45 0.96 0.35
(2.67) (2.69)

4 1.20 1.04 1.50 1.72 1.72 1.14 0.47
(2.61) (3.58)

5(High) 1.65 1.42 2.17 2.95 2.34 1.75 1.06
(2.60) (4.69)

High-Low 1.01 0.83 1.27 2.17 1.32 1.11 0.85
(1.93) (2.74)

Panel E: Sorted by βd − βs

Ex-Post FFC4
Quintile βs βc βd βn βd − βs Return alpha

1(Low) 1.17 0.96 1.22 1.43 0.20 0.99 0.47
(2.35) (3.18)

2 0.96 0.87 1.13 1.30 0.24 0.81 0.27
(2.41) (2.51)

3 0.95 0.84 1.20 1.37 0.27 0.93 0.38
(2.77) (3.61)

4 1.02 0.87 1.36 1.55 0.30 1.02 0.44
(2.87) (3.40)

5(High) 1.19 1.10 2.02 2.22 0.54 1.49 0.78
(2.91) (4.54)

High-Low 0.02 0.14 0.80 0.79 0.34 0.51 0.31
(1.85) (2.29)

Panel F: Sorted by βn − βs

Ex-Post FFC4
Quintile βs βc βd βn βn − βs Return alpha

1(Low) 1.16 0.98 1.29 1.06 0.31 0.68 0.15
(1.80) (0.82)

2 0.93 0.84 1.17 1.13 0.38 0.81 0.23
(2.40) (1.91)

3 0.97 0.86 1.24 1.33 0.47 1.01 0.43
(2.99) (3.74)

4 1.07 0.91 1.38 1.62 0.57 1.03 0.45
(2.67) (3.44)

5(High) 1.15 1.05 1.85 2.73 0.88 1.71 1.09
(3.18) (5.81)

High-Low -0.01 0.07 0.56 1.67 0.57 1.03 0.94
(3.09) (3.05)
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Table 7: Average returns of predictive double-sorted portfolios
The table reports equal-weighted average returns for predictive double-sorted portfolios. The sample consists of the 985
individual stocks included in the S&P 500 index over 1993-2010. For each month, all stocks in the sample are first sorted into
five quintiles on the basis of one control variable. Within each quintile, the stocks are then sorted into five quintiles according
to their betas. These five beta portfolios are then averaged across the five control variable portfolios to produce beta portfolios
with large cross-portfolio variation in their betas but little variation in the control variable. βs, βc, βd, and βn are the standard,
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT are the measures of coskewness and cokurtosis, respectively. RSK and RKT denote the realized skewness and realized
kurtosis computed from high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ refers to the
logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t− 11 through month
t. The first five rows in each panel report time-series averages of monthly excess returns for the beta quintile portfolios. The row
labeled “High-Low” reports the difference in the returns between portfolio 5 and portfolio 1. The row labeled “FFC4 alpha”
reports the average Fama-French-Carhart four-factor alphas. The corresponding Newey-West robust t-statistics are reported
in parentheses. Panels A, B, C, and D display the results for the portfolios first sorted by the control variables listed in the
columns and then by βs, βc, βd, and βn, respectively.

ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

Panel A: Final sort by βs

1 (Low) 0.74 0.72 0.92 0.73 0.89 0.85 0.72 0.69 0.59 0.87 0.77
2 0.93 0.88 0.96 0.97 1.02 0.82 0.81 0.81 0.86 0.93 0.86
3 0.95 1.00 1.11 0.97 1.04 0.96 1.00 0.98 0.95 0.93 0.98
4 1.20 1.18 1.13 1.27 1.19 1.20 1.14 1.32 1.23 1.22 1.17
5 (High) 1.61 1.58 1.24 1.52 1.30 1.61 1.75 1.50 1.67 1.48 1.63
High-Low 0.87 0.86 0.32 0.78 0.41 0.76 1.03 0.81 1.08 0.61 0.86

(1.54) (1.64) (1.47) (1.55) (1.01) (1.43) (1.91) (1.36) (1.84) (1.58) (1.57)
FFC4 alpha 0.63 0.57 0.08 0.52 0.22 0.46 0.70 0.52 0.77 0.42 0.60

(2.01) (1.87) (1.33) (1.33) (0.84) (1.50) (2.34) (1.56) (2.30) (1.72) (2.19)

Panel B: Final sort by βc

1 (Low) 0.76 0.74 0.93 0.81 0.88 0.81 0.80 0.77 0.75 0.90 0.80
2 0.90 0.86 0.96 0.93 0.96 0.88 0.81 0.87 0.87 0.87 0.78
3 0.90 0.98 0.97 0.91 1.02 0.93 0.95 0.94 0.88 1.00 0.97
4 1.10 1.14 1.19 1.10 1.11 1.06 1.06 1.19 1.19 1.04 1.06
5 (High) 1.57 1.45 1.23 1.56 1.30 1.59 1.65 1.49 1.60 1.46 1.64
High-Low 0.81 0.71 0.30 0.74 0.42 0.78 0.85 0.72 0.85 0.55 0.84

(1.46) (1.42) (1.61) (1.52) (1.08) (1.50) (1.67) (1.27) (1.51) (1.47) (1.53)
FFC4 alpha 0.60 0.42 0.13 0.51 0.25 0.51 0.55 0.49 0.57 0.37 0.60

(1.75) (1.35) (1.44) (1.66) (0.90) (1.55) (1.72) (1.45) (1.66) (1.50) (2.11)

Panel C: Final sort by βd

1 (Low) 0.74 0.70 0.82 0.72 0.82 0.73 0.71 0.74 0.70 0.74 0.73
2 0.88 0.76 0.90 0.81 0.79 0.81 0.85 0.78 0.78 0.74 0.87
3 0.96 0.92 0.97 0.90 1.12 0.96 0.88 0.90 0.92 1.06 0.93
4 1.19 1.17 1.15 1.12 1.17 1.07 1.11 1.18 1.12 1.26 1.13
5 (High) 1.47 1.62 1.30 1.73 1.33 1.68 1.70 1.66 1.75 1.46 1.56
High-Low 0.73 0.92 0.48 1.02 0.50 0.95 0.99 0.92 1.05 0.72 0.83

(1.32) (1.70) (1.95) (2.02) (1.36) (1.79) (1.87) (1.58) (1.84) (1.90) (1.78)
FFC4 alpha 0.51 0.60 0.26 0.73 0.28 0.65 0.66 0.61 0.73 0.48 0.56

(1.70) (2.10) (1.92) (2.59) (1.21) (2.29) (2.33) (1.95) (2.43) (2.12) (2.06)

Panel D: Final sort by βn

1 (Low) 0.69 0.64 0.79 0.66 0.72 0.62 0.63 0.63 0.64 0.66 0.68
2 0.78 0.74 0.86 0.75 0.93 0.83 0.82 0.81 0.79 0.86 0.82
3 0.95 0.90 1.05 0.95 0.99 0.91 0.95 0.93 0.87 0.99 0.94
4 1.18 1.13 1.12 1.13 1.20 1.18 1.15 1.12 1.12 1.20 1.05
5 (High) 1.63 1.75 1.44 1.78 1.40 1.70 1.70 1.75 1.85 1.53 1.75
High-Low 0.94 1.10 0.65 1.12 0.68 1.07 1.07 1.12 1.21 0.86 1.07

(1.83) (2.20) (2.11) (2.35) (1.99) (2.09) (2.13) (2.00) (2.24) (2.46) (2.04)
FFC4 alpha 0.76 0.83 0.43 0.86 0.50 0.80 0.78 0.85 0.91 0.66 0.85

(2.57) (2.96) (1.98) (3.01) (2.24) (2.68) (2.74) (2.81) (3.04) (3.01) (3.17)
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Table 8: Fama-MacBeth regressions
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from Fama-MacBeth cross-
sectional regressions for monthly stock returns. The sample consists of the 985 individual stocks included in the S&P 500 index
over 1993-2010. βs, βc, βd, and βn are the standard, continuous, discontinuous, and overnight betas, respectively. ME denotes
the logarithm of the market capitalization of firms. BM denotes the ratio of the book value of common equity to the market
value of equity. MOM is the compound gross return from month t−11 through month t−1. REV is the month t return. IVOL
is a measure of idiosyncratic volatility. CSK and CKT denote the measures of coskewness and cokurtosis, respectively. RSK
and RKT are the realized skewness and realized kurtosis, respectively, computed from high-frequency data. MAX represents
the maximum daily raw return for month t. ILLIQ refers to the logarithm of the average daily ratio of the absolute stock return
to the dollar trading volume from month t−11 through month t. Panel A reports the results of simple regressions with a single
explanatory variable. Panel B reports the results of multiple regressions with more than one explanatory variable.

Panel A: Simple regressions

βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

0.86 0.95 0.82 0.58 -0.37 -0.20 0.01 -0.01 0.23 -1.56 -0.25 -0.63 0.15 0.06 0.31
(1.94) (1.91) (1.99) (2.14) (-4.08) (-0.79) (0.82) (-0.74) (1.36) (-1.83) (-1.43) (-1.91) (1.94) (1.28) (3.33)

Panel B: Multiple regressions

Regression βs βc βd βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

I 0.71 -0.45 -0.28 0.01 -0.02 -0.19 0.77 -0.41 -0.18 -0.05 0.02 -0.05
(1.41) (-3.03) (-1.51) (1.31) (-2.06) (-1.73) (1.35) (-2.25) (-0.67) (-0.92) (0.69) (-0.43)

II 0.58 -0.47 -0.31 0.01 -0.02 -0.15 0.78 -0.18 -0.21 -0.05 0.03 -0.03
(1.46) (-3.03) (-1.66) (1.19) (-2.04) (-1.36) (1.39) (-1.27) (-0.78) (-1.00) (0.93) (-0.22)

III 0.55 -0.49 -0.33 0.01 -0.02 -0.17 0.97 -0.15 -0.18 -0.04 0.03 -0.10
(1.97) (-3.10) (-1.71) (1.27) (-2.07) (-1.62) (1.67) (-1.06) (-0.66) (-0.77) (0.80) (-0.73)

IV 0.43 -0.51 -0.32 0.01 -0.03 -0.17 0.86 -0.13 -0.12 -0.03 0.02 -0.11
(2.25) (-3.09) (-1.63) (1.45) (-2.16) (-1.56) (1.48) (-0.90) (-0.47) (-0.62) (0.50) (-0.81)

V -0.06 0.29 0.30 -0.37 -0.25 0.01
(-0.13) (1.68) (2.16) (-4.45) (-0.97) (1.15)

V -0.02 0.28 0.31 -0.38 -0.23 0.00 -0.02
(-0.04) (1.74) (2.22) (-4.59) (-1.19) (0.97) (-2.17)

VII -0.05 0.36 0.32 -0.38 -0.26 0.01 -0.10
(-0.12) (1.61) (2.11) (-4.96) (-1.03) (1.16) (-0.99)

VIII -0.07 0.33 0.29 -0.37 -0.28 0.01 -0.14
(-0.15) (1.72) (2.01) (-4.50) (-1.12) (1.15) (-0.26)

IX -0.01 0.30 0.28 -0.36 -0.28 0.01 -0.05
(-0.03) (1.76) (2.02) (-4.70) (-1.14) (1.12) (-0.36)

X -0.02 0.28 0.30 -0.37 -0.27 0.01 -0.57
(-0.04) (1.71) (2.05) (-4.49) (-1.04) (1.11) (-1.94)

XI -0.07 0.27 0.29 -0.40 -0.31 0.01 -0.05
(-0.15) (1.73) (2.00) (-4.69) (-1.28) (1.27) (-0.85)

XII -0.03 0.39 0.35 -0.38 -0.26 0.01 -0.05
(-0.07) (1.74) (2.47) (-4.86) (-1.02) (1.14) (-1.68)

XIII -0.06 0.29 0.28 -0.42 -0.24 0.01 -0.06
(-0.13) (1.76) (1.96) (-2.65) (-0.92) (1.34) (-0.48)

XIV 0.02 0.31 0.31 -0.47 -0.28 0.01 -0.02 -0.20 0.80 -0.13 -0.18 -0.04 0.03 -0.08
0.05 (2.33) (-3.17) (-1.48) (1.25) (-2.09) (-1.93) (1.44) (-0.91) (-0.69) (-0.80) (0.77) (-0.61)

XV 0.25 0.25 0.25 -0.45 -0.28 0.56 -0.02 -0.21 0.81 -0.17 -0.18 -0.02 0.02 -0.06
(1.96) (-2.95) (-1.46) (1.33) (-2.09) (-2.00) (1.41) (-1.26) (-0.66) (-0.39) (0.49) (-0.48)
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Table 9: Fama-MacBeth regressions with different beta estimation frequencies
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from monthly Fama-MacBeth
cross-sectional regressions simultaneously controlling for all explanatory variables, restricting the coefficients for βd and βn to
be the same. The sample consists of the 985 individual stocks included in the S&P 500 index over 1993-2010. βc, βd, and βn

refer to the continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization
of firms. BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross
return from month t− 11 through month t− 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK
and CKT denote the measures of coskewness and cokurtosis, respectively. RSK and RKT refer to the realized skewness and
realized kurtosis, respectively, computed from high-frequency data. MAX represents the maximum daily raw return for month
t. ILLIQ refers to the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month
t−11 through month t. Panel A reports the results for different βc estimates computed using the sampling frequencies listed in
the first column labeled “Frequency.” Panel B reports the results for different βd estimates based on the sampling frequencies
in the “Frequency” column.

Panel A: Different βc estimates

Frequency βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

5 min -0.36 0.34 -0.52 -0.30 0.01 -2.45 -0.21 0.86 -0.06 -0.15 -0.04 0.02 -0.16
(-0.87) (2.57) (-3.34) (-1.60) (1.37) (-2.13) (-1.96) (1.54) (-0.42) (-0.55) (-0.73) (0.69) (-1.21)

25 min -0.02 0.31 -0.51 -0.31 0.01 -2.39 -0.21 0.82 -0.08 -0.21 -0.03 0.03 -0.10
(-0.04) (2.35) (-3.37) (-1.66) (1.36) (-2.10) (-2.01) (1.50) (-0.61) (-0.79) (-0.69) (0.73) (-0.82)

75 min 0.02 0.31 -0.47 -0.28 0.01 -2.38 -0.20 0.80 -0.13 -0.18 -0.04 0.03 -0.08
(0.05) (2.33) (-3.17) (-1.48) (1.25) (-2.09) (-1.94) (1.44) (-0.91) (-0.69) (-0.80) (0.77) (-0.61)

125 min 0.12 0.27 -0.47 -0.30 0.01 -2.43 -0.21 0.82 -0.15 -0.17 -0.03 0.02 -0.08
(0.35) (2.10) (-3.10) (-1.58) (1.34) (-2.11) (-1.99) (1.46) (-1.05) (-0.65) (-0.59) (0.62) (-0.60)

180 min 0.05 0.29 -0.48 -0.31 0.01 -2.52 -0.20 0.88 -0.15 -0.17 -0.03 0.02 -0.10
(0.14) (2.22) (-3.17) (-1.62) (1.40) (-2.20) (-1.94) (1.59) (-1.11) (-0.62) (-0.64) (0.68) (-0.73)

mix 0.06 0.30 -0.42 -0.31 0.01 -2.49 -0.21 0.86 -0.09 -0.18 -0.03 0.02 -0.08
(0.17) (2.24) (-2.87) (-1.63) (1.42) (-2.18) (-1.96) (1.53) (-0.66) (-0.67) (-0.63) (0.61) (-0.58)

Panel B: Different βd estimates

Frequency βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

5 min 0.12 0.28 -0.48 -0.30 0.01 -2.39 -0.19 0.78 -0.11 -0.17 -0.04 0.03 -0.08
(0.32) (2.10) (-3.19) (-1.57) (1.28) (-2.10) (-1.80) (1.40) (-0.81) (-0.66) (-0.70) (0.76) (-0.61)

25 min 0.05 0.29 -0.48 -0.28 0.01 -2.45 -0.20 0.80 -0.12 -0.16 -0.04 0.03 -0.08
(0.15) (2.32) (-3.19) (-1.47) (1.30) (-2.14) (-1.88) (1.44) (-0.87) (-0.59) (-0.76) (0.80) (-0.61)

75 min 0.02 0.31 -0.47 -0.28 0.01 -2.38 -0.20 0.80 -0.13 -0.18 -0.04 0.03 -0.08
(0.05) (2.33) (-3.17) (-1.48) (1.25) (-2.09) (-1.94) (1.44) (-0.91) (-0.69) (-0.80) (0.77) (-0.61)

125 min 0.04 0.30 -0.47 -0.28 0.01 -2.44 -0.21 0.79 -0.14 -0.19 -0.04 0.03 -0.07
(0.10) (2.28) (-3.14) (-1.51) (1.24) (-2.15) (-2.02) (1.41) (-0.99) (-0.71) (-0.77) (0.85) (-0.58)

180 min 0.04 0.29 -0.47 -0.28 0.01 -2.47 -0.21 0.75 -0.13 -0.20 -0.04 0.03 -0.07
(0.12) (2.22) (-3.15) (-1.49) (1.25) (-2.16) (-2.01) (1.35) (-0.94) (-0.75) (-0.80) (0.88) (-0.59)

mix 0.08 0.28 -0.45 -0.28 0.01 -2.44 -0.20 0.77 -0.13 -0.18 -0.04 0.03 -0.07
(0.22) (2.20) (-3.07) (-1.50) (1.26) (-2.13) (-1.95) (1.37) (-0.93) (-0.70) (-0.72) (0.85) (-0.56)
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Table 10: Fama-MacBeth regressions with different beta estimation periods and return hold-
ing horizons
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from Fama-MacBeth cross-
sectional regressions for predicting the next H-month cumulative returns. The sample consists of the 985 individual stocks
included in the S&P 500 index over 1993-2010. The regressions simultaneously control for all explanatory variables, restricting
the coefficients for βd and βn to be the same. The betas are computed from the previous L-month high-frequency returns. βs,
βc, βd, and βn refer to the standard, continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm
of the market capitalization of firms. BM denotes the ratio of the book value of common equity to the market value of equity.
MOM is the compound gross return from month t− 11 through month t− 1. REV is the month t return. IVOL is a measure of
idiosyncratic volatility. CSK and CKT denote the measures of coskewness and cokurtosis, respectively. RSK and RKT refer to
the realized skewness and realized kurtosis, respectively, computed from high-frequency data. MAX represents the maximum
daily raw return for month t. ILLIQ refers to the logarithm of the average daily ratio of the absolute stock return to the dollar
trading volume from month t− 11 through month t.

Regression L H βs βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

I 3 1 0.45 -0.41 -0.34 0.00 -0.03 -0.09 0.88 -0.45 -0.18 -0.14 0.05 0.09
(1.63) (-2.32) (-1.66) (0.99) (-2.75) (-0.69) (1.40) (-3.04) (-0.63) (-2.24) (1.44) (0.59)

II 6 1 0.67 -0.38 -0.34 0.00 -0.03 -0.14 0.87 -0.53 -0.18 -0.12 0.06 0.10
(1.64) (-2.28) (-1.71) (0.96) (-2.81) (-1.17) (1.37) (-3.27) (-0.63) (-2.01) (1.55) (0.70)

III 12 3 2.05 -0.70 -0.73 0.02 -0.05 -0.16 2.04 -1.57 -0.37 -0.36 0.13 0.66
(1.63) (-1.45) (-1.64) (1.37) (-1.86) (-0.70) (1.46) (-3.11) (-0.67) (-2.77) (1.82) (1.38)

IV 12 6 4.25 -1.59 -1.53 0.03 0.00 0.36 3.28 -2.42 -0.96 -0.49 0.03 1.21
(1.48) (-1.39) (-1.74) (1.09) (-0.06) (0.87) (1.32) (-2.43) (-0.89) (-1.45) (0.29) (1.05)

V 12 12 9.57 -5.55 -3.76 0.05 0.09 0.72 3.73 -3.34 -1.35 -0.59 0.07 0.24
(1.42) (-1.95) (-1.73) (1.02) (0.96) (1.23) (0.79) (-1.77) (-0.73) (-0.67) (0.36) (0.10)

VI 3 1 -0.30 0.43 -0.41 -0.34 0.00 -0.03 -0.19 0.76 -0.23 -0.14 -0.14 0.05 0.07
(-1.10) (3.48) (-2.58) (-1.69) (0.94) (-2.78) (-1.68) (1.24) (-1.66) (-0.48) (-2.53) (1.49) (0.53)

VII 6 1 -0.45 0.55 -0.42 -0.34 0.00 -0.03 -0.21 0.85 -0.22 -0.16 -0.12 0.06 0.05
(-1.32) (4.15) (-2.63) (-1.70) (0.90) (-2.87) (-1.91) (1.37) (-1.61) (-0.56) (-2.26) (1.70) (0.39)

VIII 12 3 -1.66 1.65 -0.84 -0.72 0.01 -0.05 -0.32 2.50 -0.65 -0.39 -0.34 0.14 0.46
(-1.39) (3.94) (-1.86) (-1.60) (1.27) (-1.97) (-1.52) (1.86) (-2.12) (-0.74) (-2.85) (1.92) (1.11)

IX 12 6 -1.35 2.73 -1.73 -1.40 0.03 -0.01 0.02 4.01 -1.05 -1.02 -0.39 0.05 0.96
(-0.50) (3.45) (-1.67) (-1.59) (1.06) (-0.23) (0.06) (1.64) (-1.65) (-1.00) (-1.40) (0.50) (0.99)

X 12 12 3.82 4.07 -5.42 -3.15 0.05 0.08 -0.08 4.85 -1.65 -1.33 -0.18 0.08 0.35
(0.65) (3.28) (-2.04) (-1.59) (1.00) (0.89) (-0.11) (1.01) (-1.09) (-0.72) (-0.23) (0.39) (0.17)
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Table 11: Fama-MacBeth regressions excluding macroeconomic news announcement days
The table reports the estimated regression coefficients and robust t-statistics (in parentheses) from monthly Fama-MacBeth
cross-sectional regressions simultaneously controlling for all explanatory variables, restricting the coefficients for βd and βn

to be the same. The sample consists of the 985 individual stocks included in the S&P500 index over 1993-2010. The betas
are calculated excluding FOMC, Employment, and PPI announcement days in the estimation. βc, βd, and βn refer to the
continuous, discontinuous, and overnight betas, respectively. ME denotes the logarithm of the market capitalization of firms.
BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound gross return
from month t − 11 through month t − 1. REV is the month t return. IVOL is a measure of idiosyncratic volatility. CSK and
CKT denote the measures of coskewness and cokurtosis, respectively. RSK and RKT refer to the realized skewness and realized
kurtosis, respectively, computed from high-frequency data. MAX represents the maximum daily raw return for month t. ILLIQ
refers to the logarithm of the average daily ratio of the absolute stock return to the dollar trading volume from month t − 11
through month t.

Regression βc βd, βn ME BM MOM REV IVOL CSK CKT RSK RKT MAX ILLIQ

I -0.11 0.30 -0.37 -0.25 0.01
(-0.25) (2.32) (-4.40) (-0.93) (1.03)

II -0.09 0.30 -0.38 -0.23 0.00 -0.02
(-0.21) (2.28) (-4.51) (-1.13) (0.84) (-2.12)

III -0.07 0.33 -0.39 -0.26 0.00 -0.09
(-0.15) (2.31) (-5.04) (-1.00) (1.04) (-0.92)

IV -0.09 0.30 -0.38 -0.28 0.00 -0.23
(-0.21) (2.26) (-4.51) (-1.09) (1.02) (-0.43)

V -0.04 0.29 -0.37 -0.29 0.00 -0.04
(-0.10) (2.30) (-4.72) (-1.12) (0.99) (-0.31)

VI -0.08 0.29 -0.37 -0.26 0.00 -0.59
(-0.18) (2.30) (-4.43) (-0.98) (0.99) (-2.01)

VII -0.11 0.28 -0.41 -0.31 0.01 -0.06
(-0.25) (2.27) (-4.63) (-1.24) (1.16) (-0.89)

VIII -0.05 0.36 -0.39 -0.26 0.00 -0.05
(-0.12) (2.56) (-4.87) (-1.00) (1.02) (-1.61)

IX -0.11 0.28 -0.44 -0.23 0.01 -0.08
(-0.26) (2.29) (-2.74) (-0.87) (1.21) (-0.60)

X -0.01 0.31 -0.50 -0.29 0.00 -0.02 -0.22 0.81 -0.12 -0.17 -0.05 0.03 -0.10
(-0.04) (2.33) (-3.33) (-1.54) (1.14) (-2.16) (-2.05) (1.46) (-0.84) (-0.63) (-0.89) (0.95) (-0.77)

XI 0.24 -0.47 -0.28 0.01 -0.02 -0.22 0.81 -0.17 -0.17 -0.02 0.02 -0.08
(1.95) (-3.05) (-1.49) (1.27) (-2.13) (-2.08) (1.41) (-1.23) (-0.61) (-0.45) (0.66) (-0.62)
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(A) (B)

Figure 1: Distributions and autocorrelograms of betas
Panel A displays kernel density estimates of the unconditional distributions of the four different betas av-
eraged across firms and time. Panel B shows the monthly autocorrelograms for the four different betas
averaged across firms.
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(A) βs (B) βc

(C) βd (D) βn

Figure 2: Time series plots of betas
The figure displays the times series of betas for equally weighted beta-sorted quintile portfolios. Panel A
shows the results for the standard beta βs-sorted portfolios, Panel B the continuous beta βc-sorted portfolios,
Panel C the discontinuous beta βd-sorted portfolios, and Panel D the overnight beta βn-sorted portfolios.

46



(A) (B)

Figure 3: Signature plots for betas
Panel A shows the mean value of βc (solid line) averaged across stocks and time for different sampling
frequencies (labeled in minutes on the x-axis). The dashed line gives the mean value of the mixed-frequency
βc. Panel B plots the same averaged estimates for βd.

Figure 4: Average conditional alphas
The figure shows the cross-sectional distribution of the average conditional alphas based on the standard
beta (αs) and the continuous and two rough betas (αd).
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Figure 5: Jump intensity and macro announcement
The figure plots the average estimated jump intensity (probability) for the S&P 500 market portfolio across
regular trading hours on FOMC announcement days, Employment announcement days, PPI announcement
days, and all other days (Non-Ann).
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