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Abstract

This paper studies whether dynamic term structure models for US nominal bond yields should

enforce the zero lower bound by a quadratic policy rate or a shadow rate speci�cation. We address

the question by estimating quadratic term structure models (QTSMs) and shadow rate models with

at most four pricing factors using the sequential regression approach. Our �ndings suggest that the

two models largely provide the same in-sample �t, but loadings from ordinary and risk-adjusted

Campbell-Shiller regressions are generally best matched by the shadow rate models. We also �nd

that the shadow rate models perform better than the QTSMs when forecasting bond yields out of

sample.
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1 Introduction

Nominal bond yields have reached historically low levels during the recent �nancial crisis, with short

rates at or close to the zero lower bound (ZLB) in several countries. This development has highlighted

a well-known shortcoming of Gaussian a¢ ne term structure models (ATSMs) as they are unable to

ensure positive bond yields. One way to account for the ZLB is to abandon the a¢ ne speci�cation

of the policy rate and let this rate be quadratic in the pricing factors with appropriate restrictions.

Adopting this extension leads to the well-known class of quadratic term structure models (QTSMs)

studied in Ahn, Dittmar & Gallant (2002), Leippold & Wu (2002), Realdon (2006), among others.

Another way to enforce the ZLB is to restrict policy rates to be non-negative by the max-function

as done in the class of shadow rate models suggested by Black (1995). The two ways to account for

the ZLB imply di¤erent dynamics for bond yields but little is currently known about their relative

performance on US bond yields. That is, should dynamic term structure models (DTSMs) for US

bond yields enforce the ZLB by a quadratic policy rate or a shadow rate speci�cation?

The aim of this paper is to address this question by comparing the in- and out-of-sample per-

formance of QTSMs and shadow rate models. Our main focus is devoted to models with three la-

tent pricing factors for comparability with much of the existing literature, but models with two and

four factors are also studied when relevant.1 Following Dai & Singleton (2002), the performance of

DTSMs is commonly evaluated by their ability to match moments from ordinary and risk-adjusted

Campbell-Shiller regressions (the so-called LPY tests), as they capture key features of the physical

and risk-neutral distributions of bond yields and hence the implied term premia. However, none of

the ATSMs satisfying the LPY tests in Dai & Singleton (2002) enforce the ZLB, and it is therefore

unclear if DTSMs jointly can enforce the ZLB and match term premia.2 Special attention is therefore

devoted to the LPY tests when comparing the performance of QTSMs and shadow rate models.

We estimate all the DTSMs considered by the sequential regression (SR) approach of Andreasen

& Christensen (Forthcoming), where latent pricing factors and model parameters are obtained from

1Kim & Singleton (2012) compare the in-sample �t of QTSMs and shadow rate models with two pricing factors on
Japanese bond yields. Apart from the di¤erent data set, our work di¤ers from theirs by considering models with three
and four pricing factors and by comparing the models�performance when forecasting bond yields out of sample.

2Modelling term premia at the ZLB is highly relevant for monetary policy. For example, the recent bond purchases
by central banks are likely to a¤ect the economy by reducing term premia according to Gagnon, Raskin, Rernache &
Sack (2011) and Joyce, Lasaosa, ibrahim Stevens & Tong (2011), although Christensen & Rudebusch (2012) argue that
the e¤ect on term premia in the US may have been somewhat smaller than found in Gagnon et al. (2011).
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regressions. The SR approach applies to linear and non-linear models and gives consistent and as-

ymptotically normal estimates under weaker restrictions than typically imposed for likelihood-based

inference. For instance, the SR approach allows measurement errors in bond yields to display het-

eroskedasticity and correlation in both the cross-section and time series dimension. Building on the

work of Andreasen & Christensen (Forthcoming), we improve the �nite sample properties of the SR

approach along two dimension. First, a bias-adjustment is introduced when estimating the phys-

ical dynamics of the pricing factors. This extension allows us to explore how small-sample biases

a¤ect QTSMs and shadow rate models, which is an unaddressed issue in the literature. Second, a

residual-based bootstrap is suggested for the risk-neutral parameters as a re�nement to the asymp-

totic distribution in �nite samples.

Apart from these robust econometric properties the SR approach is also attractive from a �nance

perspective, because the QTSMs and shadow rate models considered only di¤er in their risk-neutral

distributions which may be estimated independently of their physical distributions in the SR ap-

proach. Hence, the ability of these models to match in-sample bond yields reported below hold for

any considered functional form of the market price of risk. Another advantage of the SR approach is

its computational simplicity, which allows us to estimate QTSMs and shadow rate models with four

pricing factors, whereas all existing work restrict focus to models with at most three factors.

The performance of DTSMs on US bond yields is typically studied using either a long sample

starting in the 1960s or a short sample from around 1990 and onwards. We �nd it informative to

include both samples because bond yields in the long sample attain very high and low values with

frequent changes in conditional volatility, whereas bond yields in the short sample are lower and

display fairly stable conditional volatility.3 Hence, if one believes that the US in the future is likely to

experience very high bond yields and frequent changes in volatility, the results from our long sample

is likely to be most informative on how to model the ZLB. On the other hand, if one believes that

such future bond yields are unlikely, the results from our short sample should probably be preferred.

We highlight the following results from our analysis on monthly US bond yields ending in December

2013. First, accounting for the ZLB by either a QTSM or shadow rate model gives largely the same in-

sample �t of US bond yields, with both models clearly outperforming the Gaussian ATSM. Second, the

3Rudebusch & Tao (2007) argue for the presence of a structural break in US bond yields during the middle or late
1980s. Accounting for this potential break may serve as a second motivation for considering our short sample.
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three- and four-factor QTSMs generally struggle to match loadings from ordinary Campbell-Shiller

regressions, whereas these moments are largely matched by the shadow rate models. The shadow

rate models are also more successful at reproducing the loadings from risk-adjusted Campbell-Shiller

regressions than the QTSMs, although the latter performs well in the long sample. Third, the fall

in conditional volatility of most bond yields when reaching the ZLB is nicely captured by the QTSM

and the shadow rate model, although both models struggle to generate the increase in volatility just

before reaching the ZLB. Fourth, in an extensive out-of-sample forecasting study from January 2005

to December 2013, we �nd that the shadow rate model generally performs better than the QTSM, and

that models accounting for the ZLB outperform the Gaussian ATSM. The shadow rate model is also

found to be more robust and less subject to over�tting than the QTSM, as the forecasts in the shadow

rate model generally improve when adding a fourth pricing factors whereas the opposite holds for the

QTSM. Somewhat surprising, starting the recursive estimation in 1961 instead of 1990 generally gives

more accurate forecasts of bond yields. Any �nite sample bias in the physical dynamics for the pricing

factors is unlikely to explain this �nding as the bias-adjustment is applied in both samples. Instead,

the better forecasts is most likely explained by the higher persistence in the pricing factors within the

long sample, which we expect improve forecasts given the strong performance of the random walk.

Finally, we also study a so-called hybrid model where the ZLB is enforced by a shadow rate that is an

unrestricted quadratic function of the pricing factors. This hybrid model �ts bond yields marginally

better in-sample but struggles to provide a better �t of conditional volatility in bond yields than

the other models considered. We also �nd that the hybrid model delivers less accurate forecasts of

medium- and particularly long-term bond yields compared to the QTSM and the shadow rate model.

Overall, our �ndings suggest that the best way to enforce the ZLB for US bond yields is to adopt

a shadow rate speci�cation with the shadow rate being a¢ ne in the pricing factors, as opposed to

letting the policy rate be a restricted quadratic function of the pricing factors.

The rest of the paper is organized as follows. Section 2 presents the DTSMs considered, and

we describe how these models are estimated by the SR approach in Section 3. In-sample results are

reported in Section 4 and the out-of-sample performance are presented in Section 5. We �nally consider

a hybrid version of the QTSM and the shadow rate model in Section 6 and study its performance.

Concluding comments are provided in Section 7.
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2 Dynamic term structure models

We start by describing the Gaussian ATSM which serves as our benchmark before presenting the QTSM

and the shadow rate model. The pricing factors in all these models are assumed to be Gaussian under

the risk-neutral and physical probability measures, implying that we adopt an a¢ ne speci�cation for

the market price of risk. We do not study the multivariate version of the model by Cox, Ingersoll &

Ross (1985) with independent pricing factors or its extension by Dai & Singleton (2000) with correlated

factors as in the Am (m) models. Although these models also account for the ZLB, we do not include

them in our analysis because they are generally unable to reproduce key moments of term premia,

whereas these moments are nicely matched by the Gaussian ATSM (see Dai & Singleton (2002)).4

2.1 The Gaussian ATSM

The discrete-time Gaussian ATSM is characterized by three equations. The �rst speci�es the one-

period risk-free interest rate rt to be a¢ ne in nx pricing factors xt, i.e.

rt = �+ �
0xt; (1)

where � is a scalar and � is an nx � 1 vector. This speci�cation is typically motivated by referring

to a Taylor rule, where the policy rate is determined by a desire to stabilize the in�ation and output

gap (see Ang & Piazzesi (2003), Hördahl, Tristani & Vestin (2006), Rudebusch & Wu (2008), among

others). The second equation describes the dynamics of the pricing factors under the risk-neutral

measure Q as a vector autoregressive (VAR) process, i.e.

xt+1 = ��+ (I��)xt +�"Qt+1; (2)

where "Qt+1 � NID (0; I). The mean level of the pricing factors is controlled by � of dimension

nx�1, while the persistence and the conditional volatility of the factors are determined by the nx�nx

matrices � and �, respectively. In the absence of arbitrage, the price in time period t of an j-period

zero-coupon bond is Pt;j = E
Q
t [exp f�rtgPt+1;j�1]. Given the assumptions in (1) and (2), bond prices

4 In addition, Kim & Singleton (2012) �nd that the in-sample �t of the QTSM and the shadow rate model clearly
outperforms the Am (m) model on Japanese bond yields.
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are exponentially a¢ ne in the factors, i.e.

Pt;j = exp
�
Aj +B

0
jxt
	

for j = 1; 2; :::;K, where the recursive formulae for Aj and Bj are easily derived.

The �nal equation speci�es the functional form for the market price of risk f (xt) with dimension

nx � 1. The relationship between the physical measure P and the Q measure is given by "Qt+1 =

"Pt+1 + f (xt), and the factor dynamics under P are therefore

xt+1 = ��+(I��)xt +�f (xt) +�"Pt+1

with "Pt+1 � NID (0; I). To obtain an a¢ ne process for the pricing factors under P, we let f (xt) =

��1 (f0 + f1xt), where f0 has dimension nx� 1 and f1 is an nx�nx matrix. This implies the following

P dynamics

xt+1 = ��+ f0+(I��+ f1)xt +�"Pt+1: (3)

To obtain stationary bond yields with �nite �rst and second unconditional moments, we require that

the process for xt is stationary, i.e. all eigenvalues of I��+ f1 are inside the unit circle.

The pricing factors are considered to be latent (i.e. unobserved) and a set of normalization re-

strictions are therefore needed to identify the model. We require i) � = 1, ii) � = 0, iii) � to be

diagonal, and iv) � to be triangular.5 This identi�cation scheme constrains the Q dynamics for the

pricing factors whereas the P dynamics are unrestricted. The latter is convenient when the model is

estimated by the SR approach, as explained in Section 3.

2.2 The QTSM

The discrete-time QTSM di¤ers from the Gaussian ATSM by letting the policy rate be quadratic in

the pricing factors, i.e.

rt = �+ �
0xt + x

0
t	xt; (4)

5There exist other normalization schemes, for instance the one recently suggested by Joslin, Singleton & Zhu (2011).
We prefer the considered normalization scheme because it is closely related to the one adopted for the QTSM.
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where 	 is a symmetric nx � nx matrix. This speci�cation may also be motivated from a Taylor

rule if it displays time-varying parameters as considered in Ang, Boivin, Dong & Loo-Kung (2011).

Following Kim & Singleton (2012), we adopt the decomposition 	 = ADA0, where A is an nx � nx

lower triangular matrix with ones on the diagonal and D is an nx � nx diagonal matrix. Introducing

quadratic terms in the policy rate is useful because they allow the model to enforce the ZLB. The non-

negativity conditions for bond yields are i) � � 1
4�

0	�1� and ii) 	 to be positive semi-de�nite (see

Realdon (2006)). This way of imposing the ZLB may be applied independently of the chosen dynamics

for the pricing factors, and a quadratic policy rule therefore serves as a mechanism to enforce the ZLB.

Given the policy rate in (4), it is convenient to adopt the same speci�cation for the pricing factors

as in (2), because it gives a closed-form solution for zero-coupon bond prices, i.e.

~Pt;j = exp
n
~Aj + ~B

0
jxt + x

0
t
~Cjxt

o

for j = 1; 2; :::;K, with the recursive formulae for ~Aj , ~Bj , and ~Cj derived in Realdon (2006). Hence,

the quadratic terms in (4) imply that all bond yields yt;j � �1
j log

~Pt;j are quadratic in the pricing

factors and bond yields therefore display heteroskedasticity.

For comparability with the Gaussian ATSM, we maintain the a¢ ne speci�cation for the market

price of risk, meaning that the P dynamics for the pricing factors in the QTSM are given by (3). As

in the Gaussian ATSM, not all parameters are identi�ed in the QTSM with latent pricing factors. We

therefore follow Ahn et al. (2002) and impose the restrictions: i)	 is symmetric with diagonal elements

equal to one, ii) � � 0, iii) � = 0, iv) � is diagonal, and v) � is triangular.6 This normalization

scheme implies unrestricted P dynamics for the pricing factors and that the ZLB may be enforced by

letting � = 0, provided 	 is positive semi-de�nite.

2.3 The shadow rate model

The ZLB may alternatively be enforced in DTSMs by introducing a shadow interest rate s (xt) as

suggested by Black (1995).7 This shadow rate is unconstrained by the ZLB and may therefore attain

negative values. Absent transaction and storage costs for money, Black (1995) observes that the nomi-

6As an illustration, the normalization restrictions on 	 imply that the diagonal elements of D are D11 = 1, D22 =
1�D11A

2
21, and D33 = 1�A231 �

�
1�A221

�
A232 in a model with three pricing factors.

7The idea of considering a shadow rate is also brie�y mentioned in Rogers (1995).
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nal interest rate cannot be negative because investors may always decide to hold cash. In other words,

the nominal interest rate has an option element. This argument leads to the following speci�cation

rt = max (0; s (xt)) ;

where the policy rate rt is the non-negative part of the shadow rate. As with the quadratic policy

rule, the concept of a shadow rate serves as a mechanism to enforce the ZLB and may be applied

independently of the functional form for s (xt) and the considered factor dynamics.

For comparability with the Gaussian ATSM, we let the shadow rate be a¢ ne in the pricing factors,

i.e.

s (xt) = �+ �
0xt;

but other speci�cations may also be considered as illustrated in Section 6. For the same reason, we

also restrict focus to a¢ ne processes for the pricing factors under the Q and P measures as given in

(2) and (3), but other speci�cations could be considered. Finally, the identi�cation conditions for the

shadow rate model are identical to those for the Gaussian ATSM in Section 2.1.

Shadow rate models do not attain closed-form expressions for bond prices, except for one-factor

models with a Gaussian or a square-root process driving s (xt) as shown by Gorovoi & Linetsky

(2004). Given that one-factor models typically are considered too stylized, numerical approximations

are therefore required when studying multi-factor shadow rate models. We apply the second-order

approximation advocated by Priebsch (2013), which delivers a reasonably fast and highly accurate

approximation to bond yields when s (xt) is Gaussian under the Q measure.8

3 The estimation procedure

One way to estimate non-linear DTSMs with latent pricing factors as implied by QTSMs and shadow

rate models is to approximate the unknown likelihood function by sequential Monte Carlo methods

(see Doucet, de Freitas & Gordon (2001) and Rossi (2010)). This procedure is very time consuming

for multi-factor DTSMs and therefore rarely attempted. A computational more feasible alternative is

8Other approximation methods used in the literature include i) lattices (Ichiue & Ueno (2007)), ii) �nite-di¤erence
methods (Kim & Singleton (2012)), iii) Monte Carlo integration (Bauer & Rudebusch (2014)), iv) an option pricing
approximation (Krippner (2012), Christensen & Rudebusch (2014)), and v) ignoring Jensen�s inequality term to solve a
Gaussian model by a truncated normal distribution (Ichiue & Ueno (2013)).
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to use a non-linear extension of the Kalman �lter and a quasi-maximum likelihood (QML) approach,

but its asymptotic properties are generally unknown.9 We overcome these di¢ culties by using the SR

approach, which is faster to implement than the QML approach as shown by Andreasen & Christensen

(Forthcoming) and has known asymptotic properties.

We next present the SR approach and describe how the latent pricing factors and model parameters

are estimated. In doing so, we extend the SR approach with a bias-adjustment when estimating the

physical dynamics of the pricing factors and a residual-based bootstrap for the risk-neutral coe¢ cients.

3.1 The SR approach: The model class

The SR approach may be applied to DTSMs where bond yields are potentially non-linear functions of

latent pricing factors and measured with errors vt;j , i.e.

yt;j = gj (xt;�1) + vt;j ; (5)

where the subscript j index the maturity of bond yields. For any time period t, we require the

measurement errors fvt;jgKj=1 to have zero mean and a �nite and positive de�nite co-variance matrix.

Apart from the technical regularity conditions in Andreasen & Christensen (Forthcoming), no further

assumptions are imposed on vt;j , which may display heteroskedasticity and correlation in both the

cross-section and time series dimension.

The functional relationship between the pricing factors and bond yields in (5) is parameterized

by �1 �
�
�011 �012

�0
containing the risk-neutral parameters. Elements in �11 may only be de-

termined from the measurement equations in (5), whereas �12 may be obtained from (5) and the

factor dynamics under the P measure. For the Gaussian ATSM, the g-function is linear in the pric-

ing factors, i.e. gATSMj

�
xt;�

ATSM
1

�
� �1

j

�
Aj +B

0
jxt

�
, and we have �ATSM11 �

�
� diag(�)0

�0
with �ATSM12 �

�
vech (�)0

�0
. The QTSM induces a slightly more complicated expression for

bond yields because gQTSMj

�
xt;�

QTSM
1

�
� �1

j

�
~Aj + ~B

0
jxt + x

0
t
~Cjxt

�
, and for this model �QTSM11 �

9Recent applications of the procedure in DTSMs enforcing the ZLB may be found in Ichiue & Ueno (2007), Kim &
Singleton (2012), Ichiue & Ueno (2013), Bauer & Rudebusch (2014), and Christensen & Rudebusch (2014). For certain
ATSMs without the ZLB restriction, the �ndings by Duan & Simonato (1999) and De Jong (2000) suggest that the bias
in a QML approach based on the extended Kalman �lter may be small. We refer to Andreasen (2013) for a discussion
of the asymptotic properties related to a QML approach when estimating non-linear state space models.

9



� �
�ATSM1

�0
�0 vech (A)0

�0
with �QTSM12 = �ATSM12 . In the shadow rate model, gSHj

�
xt;�

SH
1

�
is an

unknown non-linear mapping from the pricing factors to bond yields with �SH1 = �ATSM1 .

The SR approach allows the pricing factors under the P measure to evolve according to a �rst-

order Markov process of the form xt+1 = h
�
xt; �

P
t+1;�11;�2

�
. The h-function may depend on �11

and �2 �
�
�022 �012

�0
, where �22 must be determined from the factor dynamics. All the DTSMs

considered have a linear and unrestricted transition function which we represent by

xt+1 = h0 + hxxt +�"
P
t+1; (6)

where h0 � ��+ f0, hx � I��+ f1, and "Pt+1 � NID (0; I). Hence, given the parametrization of

the h-function in (6), we have �22 �
�
h00 vec (hx)

0
�0
for all the models considered.

The subsequent sections describe how the latent pricing factors fxtgTt=1 and the model parameters

(�1;�2) are estimated in the SR approach using a three-step procedure.

3.2 The SR approach: Step 1

The latent pricing factors are estimated by running the cross-section regressions

x̂t (�1) = arg min
xt2Xt

Qt =
1

2ny;t

ny;tX
j=1

(yt;j � gj (xt;�1))2 (7)

for t = 1; 2; :::; T , where ny;t refers to the number of bond yields in time period t. The estimated

factors are denoted fx̂2;t (�1)gTt=1 because they are computed for a given �1. These regressions have a

closed-form solution for the Gaussian ATSM as gATSMj is linear in xt. For the QTSM and the shadow

rate model, the regressions in (7) are non-linear and solved using the Levenberg-Marquardt optimizer

with the pricing factors from the previous time period x̂t�1 (�1) serving as ideal starting values for

t = 2; 3; :::; T .10 Although these non-linear regressions converge within a few iterations, some care is

needed for the QTSM not to end up in a local optimum. This is illustrated in Figure 1 where we plot

the objective functions at four selected dates when �ltering out the the pricing factors. To facilitate

10The main input for Levenberg-Marquardt optimizer is the jacobian @g (xt;�1) =@x0t which is available in closed form
for the QTSM. For the shadow rate model, the jacobian is obtained by numerical di¤erentiation using a �rst-order
approximation as in Ichiue & Ueno (2013) but the second-order approximation by Priebsch (2013) is otherwise applied
in the optimizer. Using the second-order approximation to also compute the jacobian in the optimizer gives identical
results but is somewhat slower than the adopted procedure.
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the plotting, we focus on a one-factor QTSM but analogue results apply with multiple factors. When

only one bond yield is used (the thin black line), the regressions are not identi�ed as there are two

solutions with exactly the same �t. Identi�cation is obtained by including more observations and with

25 bond yields (the wide black line) the negative solution is clearly only a local optimum.

The model parameters �1 are obtained by pooling all squared residuals from (7) and minimizing

their sum with respect to �1, i.e.

�̂
step1
1 = arg min

�12�1
Qstep11:T =

1

2N

TX
t=1

ny;tX
j=1

(yt;j � gj (x̂t (�1) ;�1))2 ; (8)

where N �
PT
t=1 ny;t. Given standard regularity conditions, Andreasen & Christensen (Forthcoming)

show consistency and asymptotic normality of �̂
step1
1 , i.e.

p
N
�
�̂
step1
1 � �o1

�
d�! N

�
0;
�
A�1o

��1
B�1o

�
A�1o

��1�
; (9)

where "o" denotes the true value. These asymptotic properties are derived by letting the number of

bond yields in each time period ny;t tend to in�nity, implying N ! 1. The expected value of the

average Hessian matrix A�1o may be estimated consistently by

Â�1 =
1

N

TP
t=1

ny;tP
j=1

�
	̂�1
t;j

��
	̂�1
t;j

�0
;

where

	�1
t;j (�1) �

@x̂0t (�1)

@�1

@gj (x̂t (�1) ;�1)

@xt (�1)
+
@gj (x̂t (�1) ;�1)

@�1

and 	̂�1
t;j � 	�1

t;j

�
�̂
step1
1

�
. The average of the score function B�1o is estimated using an extension of

the Newey-West estimator that is robust to heteroskedasticity in the time dimension, cross-section

correlation, and autocorrelation in vt;j . That is,

B̂�1 =
1

N

TP
t=1

ny;tP
j=1

�
�̂2t

�
	̂�1
t;j

��
	̂�1
t;j

�0

+
wTP

kT=�wT
kT 6=0

wDP
kD=�wD
kD 6=0

�
1� jkT j

1 + wT

��
1� jkDj

1 + wD

��
	̂�1
t;j

��
	̂�1
t+kT ;j+kD

�0
v̂t;j v̂t+kT ;j+kD

9>=>; ;
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where

�̂2t =
1

ny;t � nx2

ny;tX
j=1

v̂2t;j for t = 1; 2; :::; T

and v̂t;j = yt;j � gj
�
x̂t; �̂

step1
1

�
. Here, wD is the bandwidth for bond yields in the cross-section

dimension when ordered by duration (i.e. maturity) and wT is the corresponding bandwidth for the

time series dimension.

3.3 The SR approach: Step 2

We estimate �2 in (6) using fx̂tgTt=1 and moment conditions accounting for the uncertainty futg
T
t=1 in

the estimated pricing factors, i.e. x̂t = xot+ut where x
o
t denotes the true factor value. As in Andreasen

& Christensen (Forthcoming), we modify the standard moment conditions for VAR models to account

for uncertainty in fx̂tgTt=1 and consider

qT (�2) �
1

T � 1
T�1P
t=1

qt (�2) = 0; (10)

where

qt (�2) �

266666664

ŵt+1

vec (ŵt+1x̂
0
t � Cov (ut+1;ut) + hxV ar (ut))

vech

0B@ ŵt+1ŵ
0
t+1 � V ar (ŵt+1)� V ar (ut)� hxV ar (ut)h0x
+Cov (ut+1;ut)h

0
x + hxCov (ut;ut+1)

1CA

377777775
and ŵt+1 � �"̂Pt+1 � x̂t+1 � h0 � hxx̂t. Note that "̂Pt+1 refers to the residuals using the true values of

h0 and hx but the estimated pricing factors x̂t. Consistent estimators of V ar (ut), Cov (ut+1;ut), and

Cov (ut;ut+1) are provided in Andreasen & Christensen (Forthcoming) using output from the �rst

estimation step, and �2 can therefore be estimated consistently by generalized methods of moments

when the number of time periods T tends to in�nity. All models considered in the present paper

have unrestricted P dynamics, and the moment conditions in (10) may then be solved in closed form.

The solution is obtained by correcting all second moments for estimation uncertainty in fx̂tgTt=1 and

12



running the regression

�
ĥstep2x ĥstep20

�
=

�
T�1P
t=1

�
x̂t+1x̂

0
t � dCov (ut+1;ut) x̂t+1

��
(11)

�

0B@T�1P
t=1

264 x̂tx̂0t � dV ar (ut) x̂t

x̂0t 1

375
1CA
�1

;

and by letting

dV ar (ŵt+1)step2 =
1

T � 1� nx � 1
T�1P
t=1
( b̂wt+1 � b̂wt+1�0 (12)

� 1

T � 1
T�1P
t=1

�dV ar (ut) + ĥxdV ar (ut) ĥ0x�
+

1

T � 1
T�1P
t=1

�dCov (ut+1;ut) ĥ0x + ĥxdCov (ut;ut+1)� ;
with �̂step2 obtained from a Cholesky decomposition of dV ar (ŵt+1)step2. When T tends to in�nity,
Andreasen & Christensen (Forthcoming) show that the asymptotic distribution of �2 is

p
T
�
�step22 � �o2

�
d�! N

 
0;

�
R�2o S

�1
o

�
R�2o

�0��1!
(13)

when using the optimal weighting matrix. Here, R�2o �
@qT (�

o
2)
0

@�2
and So�

1P
�=�1

E
�
qt (�

o
2)qt�� (�

o
2)
0�.

We estimate R�2o using numerical di¤erentiation and So by the Newey-West estimator.

3.3.1 The SR approach: Bias-adjusting step 2

For persistent processes it is well-known that the standard moment conditions for estimating VAR

models (extended in (10) to account for generated regressors) give biased estimates of ĥx in �nite

samples where the eigenvalues of ĥx have a downward bias (see for instance Yamamoto & Kunitomo

(1984)). Bauer, Rudebusch & Wu (2012) show that this bias may be substantial for Gaussian ATSMs

and have sizeable e¤ects on model-implied term premium. A popular method to reduce this bias is to

apply a bootstrap procedure. The bias is then estimated by �hx � ĥx, where �hx denotes the average

of ĥx in the bootstrap, and the bias-adjusted estimate is then given by ĥ
adj
x = ĥx �

�
�hx � ĥx

�
. We

cannot directly apply the standard bootstrap for VAR models in our setting due to the presence of
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generated regressors, and we therefore generalize it in Appendix A to account for this feature and

hence make it applicable for the SR approach.

Given the persistent nature of the pricing factors in DTSMs, the bias-adjusted estimate ĥadjx

is unfortunately often pushed into the non-stationary region. To induce stationarity, Kilian (1998)

therefore suggests to down-scale the bias-adjustment until all eigenvalues of ĥadjx are inside the unit

circle. That is, consider �i+1 = �i � 0:01 with �1 = 1 and iterate on

ĥadj;Bx (�) = ĥx � � �
�
�hx � ĥx

�
(14)

until all eigenvalues of ĥadj;Bx (�i) are inside the unit circle. This is a simple method to induce sta-

tionarity and also the one adopted in Bauer et al. (2012). It should be noted, however, that the

size of the recursive reduction in �i is not derived from any optimality conditions or a data-driven

selection criteria. Moreover, the largest eigenvalue of ĥadj;Bx (�i) may be made arbitrarily close to one

by changing the grid for �i appropriately.

Although Killian�s method to induce stationarity may have minor e¤ects on conditional moments

in VAR models, as used for impulse response functions in Kilian (1998) and term premia in Bauer et al.

(2012), it has substantial e¤ects on any unconditional moments. To realize this, suppose we consider

a sequence of grids for �i constructed such that the length of the largest eigenvalue of ĥ
adj;B
x (�i)

converges to one. This implies that the process for xt converges to a non-stationary VAR model with

in�nite unconditional second moments. In other words, Killian�s method implies that unconditional

moments in the VAR model depend on an arbitrary grid for �i and are in this way not uniquely

determined.

As a supplement to Killian�s method, we therefore suggest a data-driven procedure to determine

�. Our method is based on the observation that the standard estimator of the unconditional variance

in xi;t, i.e. �2i;Data = 1= (T � 1)
PT
t=1 (xi;t � �xi)

2 with �xi = 1=T
PT
t=1 xi;t, is unbiased when xt is

Gaussian. We therefore suggest to determine � in (14) by minimizing the distance between �2i;Data and

the variance of xi;t in the VAR model across all variables, i.e. for i = 1; 2; :::; nx. The latter estimate

is computed for a given value of � and is therefore denoted �2i;V AR (�). More formally, we let

�̂ = arg min
�2[�lower;1]

Pnx
i=1

 
�2i;V AR (�)� �̂2i;Data

�̂2i;Data

!2
: (15)
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Monte Carlo evidence in Table 1 suggests that down-scaling the bias and the initial estimate of hx

gives slightly lower bias than only down-scaling the estimated bias when � is determined using (15).

The better performance is related to �̂, which tends to be larger when also down-scaling ĥx, implying

that more of the bias-adjustment is preserved. For instance, when using the estimated factor dynamics

from the Gaussian ATSM in the long sample and T = 250 in our Monte Carlo study, the average of �̂

across all draws is 0:9921 when down-scaling the bias and ĥx, whereas the average of �̂ falls to 0:6950

when only down-scaling the bias. Hence, we prefer the adjustment

ĥadj;�x (�) = � �
�
ĥx �

�
�hx � ĥx

��
(16)

and determine � using (15). As expected, the Monte Carlo study in Table 1 also shows that the

data-driven methods to determine � give smaller bias in the unconditional standard deviations of

xt compared to Killian�s method. Another advantage of considering (16) is that it always ensures

stationarity of VAR models, contrary to the speci�cation in (14). Our method to induce stationarity

is summarized in Appendix B, which also describes how to account for measurement errors in xt as

implied by the SR approach. Unless stated otherwise, we use the bias-adjustment in (16) throughout

the paper.

< Table 1 about here >

3.4 The SR approach: Step 3

The elements in � appear in �12 which are estimated in both the �rst and second estimation step.

Andreasen & Christensen (Forthcoming) suggest a linear combination of the two estimators, i.e.

�̂
step3
12 = ��̂

step1
12 + (I��) �̂step212 ;

where � is determined to minimize the variance of �̂
step3
12 and hence the e¢ ciency loss from sequential

identi�cation. We generally �nd that �̂step1 is estimated very inaccurately compared to �̂step2, mean-

ing that the time series estimate �̂step2 cannot be improved by adding cross-section information from

�̂step1, i.e. � � 0.11 Hence, the adopted estimate of � after the �rst two steps is simply �̂step2.
11Similar �ndings are reported in the Monte Carlo study for a Gaussian ATSM and a QTSM in Andreasen & Christensen

(Forthcoming).
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Based on the more accurate estimate of �, it is natural to re-estimate �11 when conditioned on

�̂step2. That is,

�̂
step3
11 = arg min

�112�11
Qstep31:T =

1

2N

TX
t=1

ny;tX
j=1

�
yt;j � gj

�
x̂t

�
�11; �̂

step2
�
;�11; �̂

step2
��2

: (17)

Andreasen & Christensen (Forthcoming) show consistency and asymptotic normality of �̂
step3
11 with

dV ar ��̂step311

�
=
V̂step3
�11

�
�̂step2

�
N

+ K̂dV ar ��̂step2� K̂0: (18)

The �rst term V̂step3
�11

�
�̂step2

�
=N is given by (9) when used on the subset of �1 corresponding to �11.

The second term in (18) corrects for estimation uncertainty in �̂step2 withK �@�̂step311 (�) =@vech (�)0.

We estimate K as suggested in Andreasen & Christensen (Forthcoming) and refer to their paper for

further details. Given the estimated pricing factors
n
x̂t

�
�step311 ; �̂step2

�oT
t=1

from (17), we �nally

update our estimates of �2 using (11) and (12).

3.5 The SR approach: A residual-based bootstrap for step 3

Although the asymptotic distribution of �̂
step3
11 performs well in �nite samples with just 15 to 25 bond

yields according to Andreasen & Christensen (Forthcoming), one may nevertheless be hesitant to use

it for inference given the small number of observations in the cross-section dimension. To address this

potential concern, we next describe another approximation to the distribution of �̂
step3
11 by means of a

bootstrap. To present the bootstrap, recall that the SR approach considers the non-linear regression

in (5), which we re-write in stacked form as

Yj = Gj (xt:T ;�1) + vj ; (19)

where

Yj �

266666664

y1;j

y2;j

:::

yT;j

377777775
; Gj (xt:T ;�1) �

266666664

gj (x1;�1)

gj (x2;�1)

:::

gj (xT ;�1)

377777775
; vj �

266666664

v1;j

v2;j

:::

vT;j

377777775
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for j = 1; 2; :::;K. Given that �1 and fxtgTt=1 are parameters in the �rst and third step of the SR

approach, we can therefore apply the well-known residual-based bootstrap for a multivariate regression

model in a cross-section setting. The restriction � = 0 implies that it is su¢ cient to bootstrap the

third step of the SR approach for inference on �11.12 The steps are:

Step A: Run the SR approach on fYjgKj=1 and obtain �̂
step3
1 and

n
x̂step3t

oT
t=1
. The �tted observations

at maturity j are denoted Ŷj � Gj

�
x̂step3t:T ; �̂

step3
1

�
and the estimated residuals are v̂j = Yj�Ŷj ,

where we re-center v̂t;j along the cross-section dimension to ensure
PK
j=1 v̂t;j=K = 0 for all t.

Let b = 1:

Step B: Fit a pooled stationary autoregressive AR(p) model to v̂j . The estimated model is denoted

v̂j =
Pp
i=1 �̂iv̂j�i + �̂j , where �̂i is a scalar for i = 1; 2; :::; p.

Step C: Construct the bootstrap sample Y�;(b)
j = Ŷj + v̂

�;(b)
j using v̂�;(b)j =

Pp
i=1 �̂iv̂

�;(b)
j�i + �̂

�;(b)
j for

j = 1; 2; :::;K, where �̂�;(b)j is obtained by resampling with replacement from f�̂jgKj=1.

Step D: Condition on �̂
step3;(b)
12 = �̂

step2;(b)
12 , use

n
Y
�;(b)
j

oK
j=1

in the third step of the SR approach to

obtain �̂
step3;(b)
11 and

n
x̂
step3;(b)
t

oT
t=1
.

Step E: If b < B, then b = b+ 1 and go to step C.

Although the residual-based bootstrap is well-known, it is useful to highlight a few details speci�c

to the SR approach. First, in the absence of an intercept in (19), it is necessary to re-center the

residuals in Step A to ensure they have zero mean and hence that the bootstrap samples in Step C are

from a model correctly speci�ed for the conditional mean. Second, we follow Bühlmann (1997) and use

an AR(p) model to account for cross-correlation in the residuals when ordered by maturity.13 Third,

by resampling the entire vector of �̂j in Step C, the variance and co-variance structure in the residuals

is preserved (see MacKinnon (2009)), meaning that the bootstrap accounts for time-variation in the

variances of vt;j and auto-correlation in vt;j . Fourth, by drawing from �̂
step2;(b)
12 in Step D we condition

on the distribution of �̂
step2
12 and incorporate this source of uncertainty in the bootstrap. The draws

12See our technical appendix for how to bootstrap the �rst and third step of the SR approach when � 6= 0:
13See Bühlmann (1997) for guidance on how to determine the lag length p in the AR(p) model. The cross-correlation

may alternatively be captured using the moving block bootstrap for the residuals. However, unreported simulation results
suggest that the AR(p) model is better at capturing the cross-section correlation and hence outperforms the moving block
bootstrap in this context.
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for �̂
step2;(b)
12 may be obtained from the bootstrap in Step 2 of the SR approach or from the asymptotic

distribution of �̂
step2
12 in (13).

Finally, when estimating the AR(p) model in Step B, Appendix C shows that OLS is biased

in �nite samples due to estimation error in the latent factors. It is, however, straightforward to

correct for this bias by running a preliminary bootstrap with B1 < B draws, where we in Step D

use OLS to estimate the AR(p) model
n
�̂
(b)

j;OLS

op
j=1

on the residuals in the bootstrap sample, i.e. on

v̂
�;(b)
j = Y

�;(b)
j �Gj

�
x̂
step3;(b)
1:T ; �̂

step3;(b)
11

�
for j = 1; 2; :::;K. The bias-adjusted estimates are then give

by �̂i = 2�̂i;OLS � ��i for i = 1; 2; :::; p, where ��i = 1
B1

PB1
b=1 �̂

(b)

i;OLS and �̂i;OLS denotes the initial OLS

estimate in Step B.14

We brie�y explore the �nite sample properties of the bootstrap in a Monte Carlo study, using a

one-factor Gaussian ATSM to reduce the computational burden (see Appendix D for the remaining

details of the Monte Carlo study). Our results in Table 2 may be summarized as follows. The

asymptotic distribution of �11 �
�
� �11

�
serves as a useful approximation in �nite samples with

standard errors and rejection probabilities in the ball park of the desired values. We emphasize that

these results hold even when measurement errors are auto-correlated (Case II), display time-varying

heteroskedasticity (Case III), are cross-sectionally correlated (Case IV), or when the three features

are combined (Case V). The bootstrap generally provides an re�nement to asymptotic inference, as

bootstrapped standard errors and rejection probabilities in most cases outperform those from the

asymptotic distribution. The largest improvement appears with cross-correlation in the measurement

errors (i.e. Case IV and V), where the bootstrap corrects the positive bias in the asymptotic standard

errors which otherwise generate too low rejection probabilities. The satisfying performance of the

bootstrap in these two cases is closely related to the estimated AR(1) model for cross-correlation,

where the bias-adjustment returns nearly unbiased estimates of �1 = 0:40 with �̂
Case IV

1 = 0:395 and

�̂
Case V

1 = 0:396 using just 100 draws in the preliminary bootstrap. The corresponding averages of

the unadjusted OLS estimates in the Monte Carlo study are �̂
Case IV

1;OLS = 0:336 and �̂
Case V

1;OLS = 0:335,

respectively.

14Although less likely, if the bias-adjusted estimates in the AR(p) model violate the stationarity requirement, it may

be imposed using the same principle as in Section 3.3.1, that is by down-scaling
n
�̂i

op
i=1

by a constant � which we

determine by minimizing the distance between the unconditional variance in the AR(p) model and 1
N�Tnx2

TP
t=1

ny;tP
j=1

v̂2t;j .
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< Table 2 about here >

4 Empirical results: In-sample performance

This section estimates the Gaussian ATSM, the QTSM, and the shadow rate model. Section 4.1

presents the data, and we discuss our estimates of models with three pricing factors in Section 4.2.

The two subsequent sections explore how well the models match various moments not included in the

estimation.

4.1 Data

We use end-of-month nominal bond yields in the US from June 1961 to December 2013 as provided

by Gürkaynak, Sack & Wright (2007). The SR approach is constructed for a setting where many

observables are available each time period, and we therefore include more bond yields than typically

used in the literature when taking DTSMs to the data. Simulation results for the SR approach by

Andreasen & Christensen (Forthcoming) suggest that about 15 bond yields are su¢ cient and that

any e¢ ciency loss of the SR approach compared to Maximum Likelihood may be small with 25 bond

yields. Given our interest in the 10-year term structure, we include bond yields in the 0.5 to 3.0 year

maturity range at maturities three months apart, whereas bond yields in the remaining segment of the

10-year term structure are included at maturities six months apart.15 In total, we thus have 25 points

on the yield curve in each time period. Due to a lack of long-term Treasury notes before September

1971, bonds yields in the 7 to 10 year maturity range are not available before this date. We address

this problem by explicitly accounting for missing observations in the SR approach.

As mentioned above, we test the performance of the DTSMs considered on a long and a short

sample. The long sample is from June 1961 to December 2013 (T = 631), whereas the short sample

starts in January 1990 and ends in December 2013 (T = 288).

4.2 Model estimates

A preliminary estimation of the three-factor models suggests that they are badly identi�ed in the SR

approach given the standard normalization restrictions listed above. To realize this for the Gaussian

15These bond yields are computed using the estimated parametric form for the yield curves in Gürkaynak et al. (2007).
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ATSM, recall that bond yields are given by yt;j = �1
j

�
Aj +B

0
jxt

�
for j = 1; 2; :::;K. The well-known

solution to the Gaussian ATSM with our normalization is

Aj = ��+Aj�1 +
1

2
B0j�1��

0Bj�1 t ��+Aj�1; (20)

because ��0 is very small, and

B0j = �10 +B0j�1 (I��) : (21)

Eq. (21) shows that all eigenvalues of�must be distinct to estimate the latent factors by the regression

�lter. Moreover, given that � is badly identi�ed from the cross-section dimension of bond yields due

to (20), the ordering of the factors is therefore also badly identi�ed.16 That is, we obtain nearly

identical values for the objective functions in the �rst and third step of the SR approach by changing

the order of the eigenvalues in �. To eliminate this identi�cation issue we therefore require that all

eigenvalues of � are strictly increasing.17 A similar lack of identi�cation is observed for the QTSM and

the shadow rate model, and we therefore also require that the eigenvalues of � are strictly increasing

in these models.

The estimation results for the three-factor models in the long sample are reported in Table 3.

The Gaussian ATSM displays the usual properties with stationary and highly persistent factors under

the Q and P measures as all diagonal elements of �̂ are positive and the largest eigenvalue of ĥx is

0:9914. Similar properties hold for the pricing factors in the QTSM, where 	̂ enforces the ZLB by

having eigenvalues of 0:0000, 0:0134, and 2:9866. The requirement of non-negative eigenvalues in 	̂ is

equivalent to imposing Â221 � 1 and Â231+
�
1� Â221

�
Â232 � 1, implying that the absolute value of Â12

and Â31 cannot exceed one. The presence of a zero eigenvalue means that we are at the boundary (as

Â231 +
�
1� Â221

�
Â232 � 1), and the asymptotic distribution of �̂

step3
11 is therefore unlikely to perform

well in this case. The provided bootstrapped con�dence intervals should be more reliable, although we

acknowledge that the bootstrap may also be inaccurate in this particular case, because the bootstrap

method is known to be inconsistent when parameters are at the boundary of their domain (see Andrews

(2000)). Subject to this quali�cation, we �nd that the 95% con�dence intervals in Table 3 for Â23 and

16A similar �nding is reported in Ait-Sahalia & Kimmel (2010) using likelihood inference.
17This empirical observation is related to Hamilton & Wu (2012), showing that eigenvalues under the Q measure must

be decreasing in Gaussian ATSMs with observed factors to ensure identi�cation.
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elements in �̂ are fairly wide and often asymmetric, whereas the interval for elements in �̂ are much

tighter and almost symmetric.

The estimates in the shadow rate model are very similar to those in the Gaussian ATSM, and

in both models are the asymptotical standard errors close to those from the bootstrap (provided in

squared parenthesis in Table 3). Despite the strong similarities between the two models we do observe

some di¤erences in the estimates, particularly for hx. To quantify these di¤erences, the Gaussian

ATSM implies that the unconditional correlation between the �rst and second pricing factors is 0:21

and �0:88 between the second and third pricing factors. The corresponding correlations in the shadow

rate model are 0:36 and �0:96, respectively, and hence somewhat larger in absolute terms.

< Table 3 about here >

Table 4 reveals that the pricing factors for all models in the short sample are slightly less persistent

than in the long sample when measured by the largest eigenvalue of ĥx. In the QTSM, the estimates of

	 imply eigenvalues of 0:0014, 0:0287, and 2:9699, meaning that the short rate is primarily controlled

by one pricing factor as in the long sample, given our normalization with � = 0. We also see that ĥx

and �̂ for the Gaussian ATSM di¤er substantially from the corresponding estimates in the shadow

rate model. Hence, our results suggests that one should be cautious of directly using parameters from

the Gaussian ATSM in the shadow rate model to explore the implications of the ZLB.

< Table 4 about here >

4.3 Goodness of in-sample �t

This section studies the in-sample �t of the three models. We start by focusing on the objective

functions from the �rst step, which for convenience are reported as ~Qstep11:T � 100
q
2�Qstep11:T so they

denote standard deviations of all residuals in the sample. The top part of Table 5 to the left shows

that ~Qstep11:T = 2:90 for the Gaussian ATSM, meaning that average pricing errors in this model is 2.90

basis points. Accounting for the ZLB by the shadow rate model improves the �t with ~Qstep11:T = 2:74. A

further improvement is seen for the QTSM which marginally provides the best �t in the long sample

with ~Qstep11:T = 2:70. This is in line with our expectations, given that the three-factor QTSM has �ve

additional parameters compared to the Gaussian ATSM and the shadow rate model.
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For the short sample starting in 1990, Table 5 also shows that all three-factor models provide a

better �t to bond yields. The shadow rate model with ~Qstep11:T = 1:69 clearly outperforms the Gaussian

ATSM having ~Qstep11:T = 1:81, and the best in-sample �t is once again obtained by the QTSM where

~Qstep11:T = 1:61.

The right part of Table 5 reports the scaled objective functions from the third step in the SR

approach, i.e. ~Qstep31:T � 100
q
2�Qstep31:T , where � is estimated from the time series dimension instead

of the cross-section dimension as in the �rst step. For all models and in both samples, ~Qstep31:T is only

marginally larger than ~Qstep11:T , meaning that the in-sample �t of bond yields is almost una¤ected by

the alternative estimator of �. It is therefore reasonable to believe that the dependence on the P

dynamics through � is minimal in our case, and that results in the third step of the SR approach

largely remain robust to the chosen functional form of f (xt). Unreported results show that the in-

sample �t is also robust to omitting the bias-adjustment of �2, partly because � is badly identi�ed

from the cross-section dimension of bond yields, and partly because the bias-adjustment in �̂step2 is

small.

< Table 5 about here >

A more careful inspection of the in-sample �t for the long sample is provided in Figure 2, where the

�rst chart shows recursively computed objective functions for all three-factor models, i.e.
n
~Qstep31:t

oT
t=1
.

We �nd that the �t of all models deteriorates during the 1970s and improves afterwards. To study

the performance of these models in greater detail when bond yields are close to the ZLB, the sec-

ond chart in Figure 2 displays the recursively computed objective functions from January 2005 and

onwards. The Gaussian ATSM delivers the best �t going into the �nancial crisis in 2008, but its

performance deteriorates steadily compared to the shadow rate model and the QTSM after December

2008, where the policy rate hits the ZLB.18 The corresponding plot in Figure 3 shows the same pattern

for the Gaussian ATSM when the sample starts in 1990.19 This �nding indicates that the three-factor

Gaussian ATSM struggles to match bond yields close to the ZLB.

18The Federal Open Market Committee has since December 2008 set a target range of 0 to 0:25% for the e¤ective
Federal Funds Rate.
19For US data from 1985 to 2012, Christensen & Rudebusch (2013) also �nd that a shadow rate model with three pricing

factors outperforms the three-factor Gaussian ATSM when measured by in-sample �t. Christensen & Rudebusch (2013)
consider non-canonical models with factor loadings restricted to mimic the Nelson-Siegel speci�cation as in Christensen,
Diebold & Rudebusch (2011), whereas our models are fully �exible.
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Another way to explore the in-sample �t of bond yields is provided in the third chart of Figure

2 and 3, showing the standard deviation of the residuals by maturity, i.e. �j = 100
q

1
T

PT
t=1 v

2
t;j for

j = 1; 2; :::;K. For both samples, all three-factor models deliver relative low standard errors between

2 and 3 basis points, but we also see minor spikes in the pricing errors at the short and long end of the

yield curve with �0:25y = 7 and �10y = 4 basis points in the long sample. The corresponding �gures

in the short sample are �0:25y = 4 and �10y = 3 basis points.

< Figures 2 and 3 about here >

An obvious way to improve the in-sample �t of these models is to include a fourth pricing factor.20

The bottom part of Table 5 shows that including a fourth pricing factor roughly improves the in-sample

�t by more than 50% for all models across both samples. Adrian, Crump & Moench (2013) also provide

evidence for more than three pricing factors in the Gaussian ATSM, and our results suggest that the

same applies for the QTSM and the shadow rate model. Importantly, with four pricing factors the

shadow rate model now marginally outperforms the QTSM in the two samples and hence provides the

best in-sample �t. We consider this a somewhat surprising �nding, given that the QTSM with four

pricing factors has nine additional parameters compared to the four-factor shadow rate model. The

last charts in the second row of Figure 2 and 3 show that the better in-sample performance mainly

is due to a closer �t of short- and long-term bond yields, where the standard deviation of all pricing

errors now are within 2 basis points. In other words, a fourth pricing factor helps to match the short

and long end of the yield curve in all models.

Based on these �ndings we conclude that accounting for the ZLB by either QTSMs or shadow

rate models clearly gives a better in-sample �t of US bond yields compared to the Gaussian ATSM.

With three pricing factors, the QTSM marginally provides the best in-sample �t, whereas the shadow

rate model marginally outperforms the QTSM with four pricing factors. We therefore conclude that

the two mechanisms to enforce the ZLB largely provide the same in-sample �t of US bond yields.

However, the shadow rate speci�cation is more parsimonious than the quadratic policy function and

could therefore be preferred for this reason.

20The estimated model parameters for these four-factor models are available on request.
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4.4 Matching key moments for bond yields

We next test the models� ability to match moments not directly included in the estimation. The

�rst set of moments we consider are the unconditional means and standard deviations of bond yields.

Following Campbell & Shiller (1991), we also run the ordinary Campbell-Shiller regressions

yt+1;j�1 � yt;j = �j +
�j
j � 1 (yt;j � rt) + ut;j ; (22)

where ut;j � IID (0; V ar (ut;j)).21 We then explore if the DTSMs can reproduce the empirical pattern

in
�
�j
	K
j=2

and hence capture key moments of the P dynamics for bond yields, also known as the LPY(i)

test. Following Dai & Singleton (2002), a risk-adjusted version of the Campbell-Shiller regressions in

(22) is given by

yt+1;j�1 � yt;j � (ct+1;j�1 � ct;j�1) +
1

j � 1�t;j�1 = �
Q
j +

�Qj
j � 1 (yt;j � rt) + u

Q
t;j ;

where uQt;j � IID
�
0; V ar

�
uQt;j

��
, ct;j � yt;j � 1

j

Pj�1
i=0 Et [rt+i] is the spot term premium, and �t;j �

ft;j � Et [rt+j ] is the forward term premium with ft;j � � log (Pt;j+1=Pt;j).22 If the Q dynamics are

correctly speci�ed by the DTSMs (equivalently to a well-speci�ed term premia and P dynamics), then

�Qj = 1 for j = 2; 3; :::;K. The ability of DTSMs to match these moments is the LPY(ii) test and

studies whether the models can capture key moments of the Q dynamics for bond yields.

The ability of the three-factor models to match these four sets of unconditional moments in the

long sample is examined in Figure 4. To explore the impact of the bias-adjustment in �2, charts to the

left report the model-implied moments using the unadjusted estimates of �2, whereas the adjustment

is imposed in charts to the right. The �rst row in Figure 4 shows that all models underestimate the

average level of the yield curve when �2 is not bias-adjusted, whereas these moments are perfectly

matched when correcting for the bias in �2. The unconditional standard deviations of bond yields are

also matched by the Gaussian ATSM and the shadow rate model, but not by the QTSM. We further

21 In practice, we run the regressions yt+m;j�m � yt;j = �j + �j m
j�m (yt;j � yt;m) + ut;j with m = 6, i.e. the regressions

are done for biannual excess returns. We compute these regressions on empirical bond yields and on simulated data from
each of the models to obtain the model-implied regression loadings.
22As for (22), in practice we run the regressions yt+m;j�m � yt;j � (ct+m;j�m � ct;j�m) + m

j�m�t;j�m = �Qj +

�Qj
m

j�m (yt;j � yt;m) + u
Q
t;j with m = 6, i.e. the regressions are done for biannual risk-adjusted excess returns. We

compute these regressions using empirical bond yields and model-implied estimates of term premia obtained at fx̂tgTt=1.
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observe that only the Gaussian ATSM and the shadow rate model reproduce the downward sloping

pattern in
�
�j
	K
j=2
, whereas the estimated QTSM cannot match this aspect of bond yields and hence

pass the LPY(i) test. We acknowledge that the empirical loadings in the ordinary Campbell-Shiller

regressions are likely to display some instability across subsamples (see Rudebusch & Tao (2007)),

and the models are therefore not expected to match these loadings perfectly but only to capture

their overall pattern. The LPY(ii) test does not su¤er from the same instability issues as the desired

regression loadings of one for �Qj must hold in all subsamples, making the LPY(ii) test potentially

more informative. Figure 4 shows that the QTSM is successful at satisfying the LPY(ii) test, whereas

the two other models imply slightly larger deviations of �Qj from one.

< Figure 4 about here >

Figure 5 explores how well the three models match the same set of moments for the short sample

starting in 1990. Due to the bias-adjustment in �2, all models match the average level of the yield and

pass the LPY(i) test. The unconditional standard deviations of bond yields are slightly underestimated

in the Gaussian ATSM and the shadow rate model, whereas these moments are matched by the QTSM.

The last row in Figure 5 suggests that the Gaussian ATSM and the shadow rate model are able to

pass the LPY(ii) with �Qj close to one, whereas the QTSM shows clear deviations from one.

< Figure 5 about here >

We next examine if models with four pricing factors are more successful at matching the moments

considered. To conserve space, focus is here devoted to moments from models estimated with the bias-

adjustment in �2. For the long sample in Figure 6, we see marginal improvements for the Gaussian

ATSM and the shadow rate model in matching LPY(i) and LPY(ii), whereas the performance of the

QTSM is largely una¤ected. Figure 7 shows that the fourth pricing factor has also minor e¤ects in

the short sample, as this additional factor only helps the Gaussian ATSM and the shadow rate model

to match the unconditional standard deviations of bond yields.

< Figure 6 and 7 about here >

These �ndings lead us to the following conclusions. First, the three and four factor QTSMs

generally struggle to match loadings from the ordinary Campbell-Shiller regressions, whereas these
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moments are largely matched by the shadow rate models. Second, the shadow rate models are also

more successful at passing the LPY(ii) test than the QTSMs, although the latter performs well in the

long sample. From a methodological perspective, we document that bias-adjusting �2 has a signi�cant

impact on unconditional moments of bond yields, and our results therefore supplement those of Bauer

et al. (2012) focusing on conditional moments and term premia.

4.5 Matching conditional volatilities in bond yields

The QTSM allows for heteroskedasticity in bond yields through the quadratic terms in the policy rate,

and the model may therefore generate time-variation in the conditional volatility of bond yields close to

the ZLB and when this bound is not binding. The shadow rate model also introduces heteroskedasticity

in bond yields, but only when the policy rate is close to zero and its variation is compressed by the

ZLB. Hence, the two mechanisms to enforce the ZLB imply di¤erent implications for volatility of bond

yields, and this section therefore studies how well the QTSM and the shadow rate model with three

pricing factors match these moments.23

We use two measures of conditional volatility in the data. The �rst is the rolling standard deviation

of bond yields (denoted �Rollingt;j ) computed from daily observations with a six month lookback.24 As

a supplement to these non-parametric estimates we also provide the conditional volatility from a

GARCH(1,1) model when applied to changes in monthly bond yields (denoted �GARCHt;j ). Figure 8

shows these estimates at four selected maturities and the model-implied volatilities in the long sample.

Overall, the two measures of volatility in the data are fairly similar, although �Rollingt;j is more noisy

than �GARCHt;j . The QTSM captures most of the gradual increase in volatility during the 1960s and

1970s but does not match the elevated levels in the early 1980s. A similar �nding is reported in Ahn

et al. (2002). The gradual fall in volatility from the end of 2008 when the policy rate approaches the

ZLB is also largely matched by the QTSM. However, the model is unable to reproduce the increase in

volatility for the 0.5-, 2-, and 5-year bond yield just before approaching the ZLB, as emphasized by

the second part of Figure 8 focusing on volatility after 2005. The shadow rate model predicts constant

volatility when the policy rate is far from zero, and the model is therefore unable to capture the overall

23The model-implied estimates of conditional volatility in bond yields in the corresponding four-factor models are
nearly identical to those from the three-factor models and therefore not reported.
24These daily bond yields are computed using the estimated parametric form for the yield curves in Gürkaynak et al.

(2007).
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changes in volatility before 2008. Volatility becomes time-varying when the policy rate approaches

the ZLB and the shadow rate model is here able to reproduce the lower volatility level.

< Figure 8 about here >

For the short sample starting in 1990, the QTSM is generally less successful in matching volatility

according to Figure 9. To see why, observe that volatility in the QTSM is closely related to the level

factor and hence the short rate. As shown in Figure 8, this relationship is able to explain much of

the variation in volatility from the 1960s to the 1980s but less successful after 1990. For the shadow

rate model, the constant volatility before 2008 performs well given the stable volatility regime, and

the model matches the fall in volatility after 2008 when policy rates are constrained by the ZLB.

< Figure 9 about here >

To summarize the relative performance of two models, we regress volatility in the data on a constant

and the model-implied volatility. Table 6 con�rms our impression from above that the QTSM provides

the best �t in the long sample but not in the short sample where the shadow rate model dominates.

The low R2 in these regressions also suggests that both models generally struggle to capture the

conditional volatility of bond yields. This may indicate that a more �exible functional form for the

policy rate is required in models with Gaussian pricing factors or that the dynamics of the pricing

factors should display heteroskedasticity, for instance induced by stochastic volatility. We return to

this issue in Section 6 where the �rst extension is considered.

< Table 6 about here >

5 Empirical results: performance out-of-sample

This section studies the models�ability to predict future bond yields from January 2005 to December

2013. This forecasting sample is particularly challenging as it contains bond yields i) far from zero, ii)

when hitting the ZLB, and iii) a prolonged period at the lower bound. We focus on models with three

and four pricing factors as above, but two-factor models are also considered because parsimonious

models often perform well out of sample. The forecasting study is carried out by recursively re-
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estimating all nine models every month to forecasts bond yields up to 12 months ahead. We do so

when starting the sample in 1961 and in 1990.25

Figure 10 reports the root mean squared prediction errors (RMSPE) by maturity when the estima-

tion is started in 1961. Columns in Figure 10 refer to the number of pricing factors and rows denote

the forecast horizon of 1, 3, 6, and 12 months, respectively. Starting with the two-factor models, the

QTSM clearly outperforms the Gaussian ATSM at the 1- and 3-month forecast horizons for all matu-

rities, whereas the two models display roughly similar performance when forecasting 6 and 12 months

ahead. The two-factor shadow rate model delivers even better forecasts for short- and medium-term

bond yields at the 3, 6, and 12 month horizons but struggles when predicting long-term bond yields.

Turning to three-factor models, the QTSM and the shadow rate model have very similar forecasting

abilities and dominate the Gaussian ATSM for nearly all maturities and forecast horizons. Importantly,

the forecasts from the shadow rate model generally improve when including a fourth pricing factor,

whereas the opposite applies for the QTSM. This suggests that the parsimonious mechanism in shadow

rate model to enforce the ZLB is more robust and less subject to over�tting than the quadratic

speci�cation. A careful inspection of Figure 10 reveals that the three-factor QTSM and the three- and

four-factor shadow rate models outperform the random walk for short-term bond yields at all forecast

horizons.

< Figure 10 about here >

The forecasting results when the estimation is started in 1990 are provided in Figure 11. The

overall results are very similar to those obtained in Figure 10 and we therefore only highlight the

following. First, the two-factor shadow rate model generally bene�ts from the shorter estimation

window as its RMSPEs are lower than the two other models or very close to the best performing

model. Second, the QTSM and the shadow rate model with three pricing factors display roughly

similar performance. Third, forecasts again generally improve in the shadow rate model when adding

a fourth factor whereas the opposite holds for the QTSM. Finally, regardless of the considered number

of pricing factors, the QTSM and the shadow rate model outperform the Gaussian ATSM at nearly

25Given that the last 12 months of data are reserved for evaluating the �nal forecasts, each of the nine models
is estimated 96 times on both data sets. Such an extensive forecasting study is very demanding to carry out with
conventional estimation methods but easily done in our case due to the computational simplicity of the SR approach.
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all maturities and forecast horizons.26

< Figure 11 about here >

In addition to providing more accurate forecasts than the Gaussian ATSM, the QTSM and the

shadow rate model also ensure sensible forecasts as predicted bond yields stay non-negative. The

same cannot be guaranteed in the Gaussian ATSM as we illustrate in Figure 12 for the long sample

by showing forecasts for the 0.5-year bond yield on two occasions. The �rst is the end of December

2008, when the policy rate reached the ZLB. Predicted bond yields in the three-factor Gaussian ATSM

barely stay positive at the considered forecast horizons but not in the four-factor version, where the

0.5-year bond yield is predicted to turn negative after 5 months, i.e. after the end of May 2009. The

second row of Figure 12 for the end of May 2010 shows that negative forecasts in the Gaussian ATSM

occur with two, three, and four pricing factors and even when the policy rate has been at the ZLB for

several years. The shortcoming of the Gaussian ATSM is even more severe when considering density

forecasts, as a substantial part of its predictive distribution is in the negative domain as shown in

Figure 13. Note also that probabilities above 50% in this �gure denote negative mean forecasts, which

happens frequently when the estimation is started in 1961 but less often when started in 1990.

< Figure 12 about here >

< Figure 13 about here >

We summarize the forecasting performance of the three models in Table 7 by reporting the average

RMSPEs for all bond yields (i.e. the entire yield curve) at various horizons. To facilitate the reading

of this table we adopt two color coding schemes. The �rst uses bold to indicate the model with the

lowest RMSPEs when conditioning on the number of pricing factors and the starting point for the

estimation. The shadow rate model has 16 bold �gures, the QTSM has 8, and the Gaussian ATSM

has none. Based on this �nding and the results in Figure 10 and 11 we conclude that the shadow rate

model generally performs best out of sample and that both models accounting for the ZLB do better

than the Gaussian ATSM.
26Christensen & Rudebusch (2013) also �nd that a shadow rate model with three pricing factors outperforms the

three-factor Gaussian ATSM when forecasting US bond yields out of sample.
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Our second color coding scheme in Table 7 applies blue to the model with the lowest RMSPEs when

comparing its forecasts across the starting point for the estimation, i.e. when comparing individual

elements in part A and B of Table 7. We surprisingly �nd that starting the estimation in 1961 generally

gives the most accurate forecasts, as part A of Table 7 has 25 blue �gures whereas part B only has

11. That is, the best forecasts are in general obtained by using a long sample for the estimation,

particularly for the shadow rate model. Any �nite sample bias in the estimated P dynamics is unlikely

to explain this �nding as we bias-adjust �̂2 regardless of the starting point for the sample. Instead,

the better forecasting performance from using a long sample is likely to be driven by two features.

First, the pricing factors and hence bond yields are more persistent in the long sample compared to

the short sample (see Section 4.2) and this is likely to improve forecasts, given the strong performance

of the random walk. Second, bond yields in the 1960s were fairly low compared to their average level,

meaning that the long sample includes bond yields closer to the levels seen after 2008 than a sample

starting in 1990.

< Table 7 about here >

6 A hybrid model

The quadratic terms in the QTSM serve a dual purpose as they enforce the ZLB and generate time-

varying conditional volatility in bond yields. Our results in Section 4.2 suggests that the estimates of	

are constrained by the non-negativity condition requiring 	 to be positive semi-de�nite. Hence, there

is a trade-o¤ within the QTSM between enforcing the ZLB and matching the conditional volatility

of bond yields. This section explores the potential bene�t of eliminating this trade-o¤ by considering

an extended shadow rate model, where the shadow rate is an unrestricted quadratic function of the

pricing factors. This type of model was �rst considered by Kim & Singleton (2012) with two pricing

factors and extended below to include a third factor. Given that this extended shadow rate model

merges the QTSM and the shadow rate model considered above, we refer to it as the hybrid model.

This section is structured as follows. We present the hybrid model in Section 6.1 and discuss the

estimated parameters and in-sample �t in Section 6.2. The ability of the hybrid model to match the

LPY tests and conditional volatility is examined in Section 6.3. We �nally study the ability of the

hybrid model to forecast bond yields out of sample in Section 6.4.
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6.1 The hybrid model

As in the shadow rate model in Section 2.3, we let r (xt) = max (0; s (xt)) but s (xt) is now quadratic

in the pricing factors, i.e.

s (xt) = �+ �
0xt + x

0
t	xt;

where 	 = ADA0 as in the QTSM. The non-negativity of the policy rate in the hybrid model is

enforced by the shadow rate mechanism and no restrictions are therefore imposed on 	. This gives

the model greater �exibility in matching the level and conditional volatility of bond yields than any

of the models considered previously. As in the QTSM and the shadow rate model, we assume a¢ ne

processes for the pricing factors under the Q and P measures, i.e. (2) and (3) are imposed. The

identi�cation conditions for the hybrid model are therefore identical to those for the QTSM in Section

2.2.

In the absence of arbitrage, the price in time period t of an j-period zero-coupon bond is

PHybridt;j = EQt

"
exp

(
�
j�1X
i=0

r (xt+i)

)#

for j = 1; 2; :::;K. Currently, no closed form solution is available for PHybridt;j which therefore must

be solved numerically. We use the Monte Carlo (MC) method with anti-thetic sampling as in Bauer

& Rudebusch (2014) to improve e¢ ciency, i.e. we use negatively correlated draws of
Pj�1
i=0 rt+i when

approximating PHybridt;j . To further increase the e¢ ciency of the MC method, we also introduce anti-

control sampling. That is, we �rst compute the MC estimate of bond prices in the hybrid model using

only anti-thetic sampling but also the MC estimate of bond prices in a version of the QTSM with no

restrictions on � and 	, denoted P̂QTSMt;j . The latter is useful because bond prices are known in closed

form in the QTSM, and the MC error in our �rst estimate of PHybridt;j may then be estimated from

P̂QTSMt;j � PQTSMt;j to obtain an even more accurate approximation. The details of our MC procedure

are described in Appendix E.

6.2 Model estimates and in-sample �t

Bond yields in the hybrid model are approximated using just 500 draws in the MC method. The top

left chart in Figure 14 shows that this approximation is very accurate as the largest RMSE is just 0:77

31



basis points when evaluating bond yields at fx̂tgTt=1 for the estimated parameters in the long sample.

Without anti-control sampling, the largest RMSE increases to 4.63 basis points as shown in the top

right chart of Figure 14, documenting the bene�t of using anti-control sampling. The bottom row

of Figure 14 shows that our MC approximation is even more accurate in the short sample, with the

largest RMSE being only 0.07 basis points.

The estimation results for the hybrid model are provided in Table 8.27 Without the ZLB restriction

on 	, the estimated elements in A now exceed one, although most predominantly in the long sam-

ple. This implies that 	 is inde�nite with eigenvalues of f�2:403;�0:028; 5:431g in the long sample,

meaning that the short rate is controlled by two pricing factors instead of one in the QTSM. In the

short sample, 	 is also inde�nite with eigenvalues of f�0:153;�0:010; 3:163g. The positive eigenvalue

is here substantially larger than the two negative eigenvalues, implying that the policy rate mainly is

controlled by one pricing factor as in the QTSM within the short sample. We also note that many of

the standard errors are fairly wide for the hybrid model in the short sample, indicating that it may

be hard to accurately estimate this �exible model when starting the sample in 1990.28

The hybrid model nests the QTSM which delivers the best in-sample �t with three pricing factor

models as shown in Section 4.3. Hence, the hybrid model should at least �t bond yields as well as the

QTSM. Indeed, in the long sample the objective functions are ~Qstep11:T = 2:677 and ~Qstep31:T = 2:709 for

the hybrid model, which is a marginal improvement compared to the QTSM having ~Qstep11:T = 2:704

and ~Qstep31:T = 2:719. For the short sample, the hybrid model implies ~Qstep11:T = 1:600 and ~Qstep31:T = 1:618,

which again is a marginal improvement compared to the QTSM where ~Qstep11:T = 1:614 and ~Qstep31:T =

1:632.

A more careful inspection of the in-sample �t is provided in Figure 15, where charts in the �rst

column show the recursively computed objective functions from January 2005 and onwards. In the

long sample, the hybrid model clearly outperforms the two other models from the end of 2008 where

the short rate approaches the ZLB. A somewhat smaller improvement is found in the short sample,

which seems consistent with our �nding that relaxing the constraint on 	 has only minor e¤ects on

27The estimation of the hybrid model is computationally demanding even with just 500 draws in the MC approximation
to bond yields. Furthermore, the objective function in the �rst step of the SR approach has several local optima. We
address these challenges by using the CMA-ES optimizer of Hansen, Müller & Koumoutsakos (2003), capable of optimizing
multi-model objective functions and implemented with multiprocessing in FORTRAN on a computer cluster to make the
estimation feasible. The estimation is carried out with multiple starting values and with 60 CPUs per optimization.
28This �nding also explains why we have not attempted to estimate a hybrid model with four pricing factors.
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A in this case. Another way to draw the same conclusion is to look at �̂t, showing the in-sample �t of

the entire yield curve in a given time period. This measure of in-sample �t is provided in the second

column of Figure 15 and shows that the hybrid model in general provides a better �t of the yield curve

from the end of 2008 than any of the two other models.

< Figure 15 about here >

Thus, relaxing the constrains on 	 and enforcing the ZLB by a shadow rate speci�cation provides

only a small improvement in the in-sample �t compared to the QTSM and the shadow rate model with

three pricing factors. Although somewhat disappointing from the perspective of the hybrid model,

this �nding is encouraging for the QTSM, because it means that the model does not lose much in

terms of in-sample �t by enforcing the ZLB through restrictions on 	.

6.3 The LPY tests and conditional volatility

Figure 16 shows that the hybrid model preserves the ability of the QTSM to match the mean level

and the unconditional volatility of bond yields in the two samples. As for the LPY tests, the hybrid

model also behaves very much like the QTSM, i.e. it struggles to match LPY(i) but not LPY(ii) in

the long sample, whereas the opposite holds in the short sample.

< Figure 16 about here >

The ability of the hybrid model to match conditional volatility in bond yields is summarized in

Table 9 where we run the volatility regressions from Section 4.5. In the long sample, we see a small

improvement for the 0.5- and 2-year bond yield as the R2 increases from 0:33 and 0:38 in the QTSM

to 0:40 and 0:43 in the hybrid model, respectively, when using the GARCH measure of volatility in

the data. This is highlighted by the blue �gures in Table 9. For bond yields at the 5- and 10-year

maturity, we do not �nd an improvement compared to the QTSM. In the short sample, we somewhat

surprisingly do not �nd that the hybrid model provides a better �t of volatility than the QTSM and

the shadow rate model. Unreported results show that volatility in the hybrid model and the QTSM

are very similar and closely liked to the short rate, which is less successful at predicting volatility after

1990 as argued in Section 4.5.

< Table 9 about here >
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6.4 Performance out-of-sample

We �nally explore the forecasting performance of the hybrid model in Figure 17, where columns

index the starting point for the estimation and rows refer to the forecast horizon. When starting

the estimation in 1961 (charts to the left), forecasts in the hybrid model are very similarly to those

in the shadow rate model and the QTSM for bond yields within the 0.5- to 7-year maturity range.

Beyond the 7-year maturity, the performance of the hybrid model gradually deteriorates, particularly

at the 1 and 3 months forecast horizons. We see the same pattern when starting the estimation in

1990 (charts to the right), except the deteriorating performance of the hybrid model starts already

from the 3-year maturity. Hence, the hybrid model delivers less accurate forecasts of medium- and

particularly long-term bond yields compared to the QTSM and the shadow rate model. To understand

this �nding, recall that the hybrid model only di¤ers from the QTSM by having a more �exible Q

dynamics. This makes over�tting of the policy rate more like in the hybrid model and its e¤ects

are gradually propagated through the yield curve by the no-arbitrage pricing, thereby generating less

accurate forecasts of medium- and long-term bond yields.

< Figure 17 about here >

7 Conclusion

This paper studies the performance of QTSMs and shadow rate models on post-war US bond yields.

Accounting for the ZLB by either a QTSM or shadow rate model gives largely the same in-sample �t

of US bond yields, with both models clearly outperforming the Gaussian ATSM. The three and four

factor QTSMs generally struggle to match loadings from ordinary and risk-adjusted Campbell-Shiller

regressions, whereas these moments are better matched by the shadow rate models. In an out-of-

sample forecasting study from January 2005 to December 2013, we �nd that the shadow rate model

generally outperforms the QTSM, and that models accounting for the ZLB do better than the Gaussian

ATSM. The shadow rate model is also found to be more robust and less subject to over�tting than

the QTSM, as forecasts in the shadow rate model generally improve when including a fourth pricing

factor whereas the opposite holds in the QTSM. Importantly, the QTSM and the shadow rate model

ensure sensible forecasts as predicted bond yields stay non-negative, whereas they easily turn negative
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in the Gaussian ATSM.

In an attempt to improve the performance of the QTSM, we also study an extended shadow rate

model where the policy rate is an unrestricted quadratic function of the pricing factors. This hybrid

model �ts bond yields marginally better in-sample than the other models but is outperformed by the

QTSM and the shadow rate model when forecasting bond yields out of sample. The hybrid model

also struggles to provide a better �t of conditional volatility compared to the QTSM, at least when

these models are estimated solely on bond yields. It is likely that the ability of these models to match

conditional volatility of bond yields could be improved by also including this time series in the esti-

mation, as done for instance in Monfort, Pegoraro, Renne & Roussellet (2014). This extension would

be straightforward for the QTSM but not for the hybrid model due to the absence of a closed-form

solution for bond yields. Another way to improve the �t of conditional volatility in bond yields would

be to maintain the a¢ ne speci�cation for the shadow rate and instead introduce heteroskedasticity

in the dynamics of the pricing factors. Given the strong performance of the a¢ ne shadow rate, this

extension seems particularly promissing and deserves attention in future research.
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A Step 2 in the SR approach: A bootstrap bias-adjustment

The standard bootstrap for a VAR model without measurement errors in the pricing factors generates
the sampling distribution for moments involving x̂t and b̂wt+1 in (11) and (12). The variability in the
remaining moments in (11) and (12) related to the measurement errors is accounted for by resam-

pling with replace from
ndV ar (ut)oT

t=1
,
ndCov (ut+1;ut)oT�1

t=1
, and

ndCov (ut;ut+1)oT�1
t=1

. The suggested

bootstrap for a VAR model with measurement errors in the pricing factors is therefore:

Step A: Use (11) and (12) to obtain �̂2. Compute the residuals, i.e. b̂wt+1 = x̂t+1 � ĥ0 � ĥxx̂t for
t = 1; 2; :::; T � 1. Let b = 1:

Step B: Resample with replacement from
n b̂wt+1oT�1

t=1
to generate a bootstrap sample of length T �1

using
x�t+1 = ĥ0 + ĥxx

�
t +

b̂w�t+1 for t = 1; 2; :::; T � 1: (23)

where b̂w�t+1 denote draws from n b̂wt+1oT�1
t=1

.

Step C: Generate
ndV ar (ut)�oT

t=1
,
ndCov (ut+1;ut)�oT�1

t=1
, and

ndCov (ut;ut+1)�oT�1
t=1

by resampling

with replacement from
ndV ar (ut)oT

t=1
,
ndCov (ut+1;ut)oT�1

t=1
, and

ndCov (ut;ut+1)oT�1
t=1

.

Step D: Use the draws from Step B and C in (11) and (12) to obtain ĥ(b)0 , ĥ
(b)
x , and �̂(b):

Step E: If b < B, then b = b+ 1 and go to step B.

The bootstrap bias-adjusted estimate of hx is then given by

ĥadjx = ĥx �
�
�hx � ĥx

�
= 2ĥx � �hx; (24)

where �hx � 1
B

PB
b=1 ĥ

(b)
x . The bias-adjusted estimates of h0 and � are obtained as in Engsted &

Pedersen (2012). That is, we obtain an unbiased estimate of h0 by letting

ĥadj0 =
�
I� ĥadjx

�
Ê [x̂t] ;

where Ê [x̂t] � 1=T
PT
t=1 x̂t remains an unbiased estimator of the sample mean even with measurement

errors in xt. This is because E [ut] = 0, given a su¢ ciently large cross-section panel of bond yields as
required in the SR approach. I.e. this property follows from consistency of the regression-�lter when
the cross-section dimension tends to in�nity. Finally, the bias-adjusted estimate of �̂adj is computed
using b̂wadjt+1 = x̂t+1 � ĥadj0 � ĥadjx x̂t for t = 1; 2; :::; T � 1 (25)
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and a direct modi�cation of (12), i.e.

dV ar (wt+1)adj =
1

T � 1� nx � 1
T�1P
t=1

b̂wadjt+1 � b̂wadjt+1�0 (26)

� 1

T � 1
T�1P
t=1

�dV ar (ut) + ĥadjx dV ar (ut)�ĥadjx �0�
+

1

T � 1
T�1P
t=1

�dCov (ut+1;ut)�ĥadjx �0
+ ĥadjx

dCov (ut;ut+1)� ;
where we have imposed the standard degree of freedom adjustment. Hence, �̂adj is then obtained
from a Cholesky decomposition of dV ar (wt+1)adj .
B Inducing stationarity in VAR models: A data-driven method

This section presents a data-driven method to determine � by minimizing the distance between the
unconditional variances of the factors in the sample and the unconditional variances implied by the
VAR model. To compute the variances in the bias-adjusted VAR model, we consider

ĥadjx (�) = � �
�
ĥx �

�
�hx � ĥx

��
and

ĥadj0 (�) =
�
I� ĥadjx (�)

�
Ê [x̂t] :

For given values of ĥadjx (�) and ĥadj0 (�), we may then compute the residuals as

b̂wadjt+1 (�) = x̂t+1 � ĥadj0 (�)� ĥadjx (�) x̂t for t = 1; 2; :::; T � 1;

and estimate the variance of the innovations by

dV ar (wt+1 (�))adj =
1

T � 1� nx � 1
T�1P
t=1

b̂wadjt+1 (�)� b̂wadjt+1 (�)�0
� 1

T � 1
T�1P
t=1

�dV ar (ut) + ĥadjx (�)dV ar (ut)�ĥadjx (�)
�0�

+
1

T � 1
T�1P
t=1

�dCov (ut+1;ut)�ĥadjx (�)
�0
+ ĥadjx (�)dCov (ut;ut+1)� :

Hence, the unconditional variance in the VAR model is given by

vec (Vxt (�)) =
�
Im2 � ĥadjx (�)
 ĥadjx (�)

��1
vec

�dV ar (wt+1 (�))adj� ;
where the diagonal of Vxt (�) gives the factor variance in the VAR model, denoted �2i;V AR (�) for
i = 1; 2; :::; nx.

To compute the model-independent unconditional variances of the factors as implied by fx̂tgTt=1,
the unconditional mean of the i�th pricing factor is estimated by Ê [x̂i;t] = 1=T

PT
t=1 x̂i;t. We also
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have

1

T � 1
TP
t=1

�
x̂i;t � Ê [x̂i]

�2
=

1

T � 1
TP
t=1

�
xoi;t + ui;t � Ê [x̂i]

�2
=

1

T � 1
TP
t=1

�
xoi;t � Ê [x̂i]

�2
+

1

T � 1
TP
t=1
u2i;t + 2

1

T � 1
TP
t=1

�
xoi;t � Ê [x̂i]

�
ui;t

=
1

T � 1
TP
t=1

�
xoi;t � Ê [x̂i]

�2
+

1

T � 1
TP
t=1
V ar (ui;t) + 2

1

T � 1
TP
t=1

�
xoi;t � Ê [x̂i]

�
ui;t

for i = 1; 2; :::; nx, where the last line follows by considering u2i;t as a point estimate of V ar (ui;t).
A similar argument is used when computing standard errors robust to heteroskedasticity. Clearly,
1

T�1
PT
t=1

�
xoi;t � Ê [x̂i]

�2 p�! V ar
�
xoi;t

�
as T �!1. We also have for T �!1, that

1

T � 1
TP
t=1

�
xoi;t � Ê [x̂i]

�
ui;t

p�! E
��
xoi;t � E

�
xoi;t
��
ui;t
�
= E

�
xoi;tui;t

�
;

as E [ui;t] = 0 for i = 1; 2; :::; nx. We next recall that the measurement errors in the factors ui;t
are a function of the measurement errors in the yields, denoted vt. Moreover, vt is by assumption
uncorrelated with the innovations to the factors "t at all leads and lags, which drives the evolution of

the factors. Hence, E
h
xoi;tui;t

i
= 0, at least up to a �rst-order approximation. Thus,

1

T � 1
TP
t=1

�
x̂i;t � E

�
xoi;t
��2 p�! V ar

�
xoi;t
�
+ E [V ar (ui;t)] :

This implies that the unconditional variance of the i�th pricing factor from the sample may be estimated
by

�̂2i;Data =
1

T � 1
TP
t=1

�
x̂i;t � Ê [x̂i]

�2
� 1

T

TP
t=1
V ar (ui;t) :

We then suggest to let the scaling parameter � be given by

�̂ = arg min
�2[�lower;1]

Pnx
i=1

 
�2i;V AR (�)� �̂2i;Data

�̂2i;Data

!2
(27)

where �lower > 0. The constraint on the domain of � is imposed because at � = 0, we have
ĥadjx (� = 0) = 0 and ĥadj0 (� = 0) = Ê [x̂t], meaning that the two estimators of the unconditional
variances in (27) nearly coincides as they only di¤er by 1

T

PT
t=1 V ar (ui;t).

C Bias in OLS for the cross-sectional AR model in the bootstrap

We consider an AR(1) model for simplicity, but similar arguments extend directly to the AR(p) model.
That is, we consider vt;j = �1vt;j�1 + �t;j for j = 2; 3; :::;K and t = 1; 2; :::; T . The variable vt;j is
unobserved and replaced by the �tted residuals, i.e. v̂t;k = �1v̂t;j�1+ �̂t;j . Here, v̂t;j � yt;j�gj (x̂t;�o1)�
ct, where ct is the re-centering constant ensuring

PK
j=1 v̂t;j=K = 0 for all t. Further, let v̂t;j � vt;j+uvt;j
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where uvt;j denotes the estimation error in vt;j . Hence,

uvt;j � v̂t;j � vt;j
= yt;j � gj (x̂t;�o1)� ct � (yt;j � gj (xot ;�o1))
= gj (x

o
t ;�

o
1)� gj (x̂t;�o1)� ct:

Moreover, we have also have

�̂t;j = v̂t;j � �1v̂t;j�1
= vt;j + u

v
t;j � �1

�
vt;j�1 + u

v
t;j�1

�
= �t;j + u

v
t;k � �1uvt;j�1:

Analyzing the moment condition for the OLS estimator, we get

E

24 TX
t=1

KX
j=2

v̂t;j�1v̂t;j

35 = �1E

24 TX
t=1

KX
j=2

v̂t;j�1v̂t;j�1

35+ E
24 TX
t=1

KX
j=2

v̂t;j�1�̂t;j

35
= �1E

24 TX
t=1

KX
j=2

v̂t;j�1v̂t;j�1

35+ E
24 TX
t=1

KX
j=2

v̂t;j�1
�
�t;j + u

v
t;j � �1uvt;j�1

�35
= �1E

24 TX
t=1

KX
j=2

v̂t;j�1v̂t;j�1

35+ E
24 TX
t=1

KX
j=2

v̂t;j�1
�
uvt;j � �1uvt;j�1

�35
because E [v̂t;j�1�t;j ] = 0. But E

h
v̂t;j�1

�
uvt;j � �1uvt;j�1

�i
6= 0 and this generates a bias in the OLS

estimator of �1.

D Details for Monte Carlo study in Section 3.5

The data generating process for the Monte Carlo study is a one-factor Gaussian ATSM where we let
� = 0:008, �11 = 0:01, �11 = 5:5 � 10�4, h0 = �0:0002, and hx = 0:96. This calibration ensures
that the one-factor model roughly matches the level and variability of the US yield curve from 1990
to 2013.

We consider a general speci�cation for measurement errors in bond yields to accommodate various
deviations from the standard assumption of independent and identical errors. More precisely, we
assume that bond yields are generated as follows

yt = A+Bxt +
p
Rv (t)ut

ut = �ut�1 +
zu;t;

xt+1 = h0 + hxxt +�11"
P
t+1

where � =diag (�Time) is an ny � ny diagonal matrix with �Time along the diagonal and 
 is a
lower triangular ny � ny matrix where 
 (i; j) = �1

ji�jj for j � i. That is, �Time controls the
degree of autocorrelation in the measurement errors and �1 determines the degree of cross-sectional
dependence using two AR(1) models. Here, zu;t � NID (0; I). We also allow for heteroskedasticity
in the measurement errors along the time series dimension by letting the conditional variance evolve
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according to
nt = (1� �Rv)Rv + �RvRv (t� 1) + �Rvzt

Rv (t) =

�
0:052 for nt < 0:052

nt else

where zt � NID (0; 1) and independent of zu;t. This speci�cation allows for persistence in the con-
ditional variance through �Rv and ensures that the conditional standard deviation is at least 5 basis
points. The chosen speci�cation has measurement errors with a standard deviation of 10 basis points,
i.e. Rv = 0:102, and we let �Rv = Rv=2.

To apply the SR approach for this one-factor model, we let �11 �
�
� �11

�0
, �12 �

�
�11

�
, and

�22 �
�
h0 hx

�
. All the risk-neutral parameters are estimated in step 1 using (8), and �2 is obtained

in step 2 using the bias-adjustment described in Section 3.3.1. In step 3, we let � = 0 and re-estimate
�11 using (17).

E The hybrid model: Monte Carlo approximation to bond yields

For a given state vector xt, the Monte Carlo (MC) approximation to bond prices is P̂t;j = 1
M

PM
s=1 P

s
t;j

where

P st;j �
1

2

 
exp

(
�
j�1X
i=0

r
�
xst+i

�)
+ exp

(
�
j�1X
i=0

r
�
~xst+i

�)!
:

Here,
n�
xst+i

	j�1
i=1

oM
s=1

are generated using the IID draws
n�
"st+i

	j�1
i=1

oM
s=1

under the Q measure,

while
n�
~xst+i

	j�1
i=1

oM
s=1
are constructed using

n�
�"st+i

	j�1
i=1

oM
s=1

to induce negative correlation across

the draws, i.e. anti-thetic sampling. Hence, we let M = S=2 to obtain S draws. To implement anti-
control sampling, we also compute the MC approximation to bond yields in a version of the QTSM
with no restrictions on � and 	, denoted P̂QTSMt;j . That is, P̂QTSMt;j = 1

M

PM
s=1 P

QTSM;s
t;j where

PQTSM;st;j � 1

2
exp

(
�
j�1X
i=0

�
�+ �0xst+i +

�
xst+i

�0
	xst+i

�)

+
1

2
exp

(
�
j�1X
i=0

�
�+ �0~xst+i +

�
~xst+i

�0
	~xst+i

�)
:

The MC error in this version of the QTSM is eQTSMt;j = PQTSMt;j � P̂QTSMt;j , where PQTSMt;j denotes the
exact solution. The adjusted MC estimate of bond prices in the hybrid model is then

P̂Hybridt;j (bt;j) = P̂t;j + bt;j

�
PQTSMt;j � P̂QTSMt;j

�
;

where the scaling parameter bt;j is state and maturity dependent. As shown in Chapter 16 of Munk
(2011), we may alternatively adjust each draw of PHybrid;st;j , i.e.

PHybrid;st;j (bt;j) = P
s
t;j + bt;j

�
PQTSMt;j � PQTSM;st;j

�
:
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The scaling parameter bt;j is set to minimize the variance of P
Hybrid;s
t;j . That is

min
bt;j

V ar
�
PHybrid;st;j (bt;j)

�
= V ar

�
P st;j
�
+ b2t;jV ar

�
PQTSM;st;j

�
� 2bt;jCov

�
P st;j ; P

QTSM;s
t;j

�
;

implying

b�t;j =
Cov

�
P st;j ; P

QTSM;s
t;j

�
V ar

�
PQTSM;st;j

� = �
�
P st;j ; P

QTSM;s
t;j

�vuuut V ar
�
P st;j

�
V ar

�
PQTSM;st;j

� ;
where �

�
P st;j ; P

QTSM;s
t;j

�
is the correlation coe¢ cient. Evaluating V ar

�
PHybrid;st;j

�
at b�t;j gives

V ar
�
P st;j

��
1� �

�
P st;j ; P

QTSM;s
t;j

�2�
, meaning that the variance of V ar

�
PHybrid;st;j

�
is reduced if

�
�
P st;j ; P

QTSM;s
t;j

�
6= 0 . Ideally, �

�
P st;j ; P

QTSM;s
t;j

�
t �1, which implies V ar

�
PHybrid;st;j

�
t 0. The

values of V ar
�
PQTSM;st;j

�
, V ar

�
P st;j

�
, and �

�
P st;j ; P

QTSM;s
t;j

�
are unknown but easily estimated by

simple averages from the simulated paths.
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Table 1: Monte Carlo study: Bias-adjustment in VAR models
The Monte Carlo study is implemented without measurement errors in the pricing factors and with M = 5:000
draws, where each bootstrap adjustment is computed with B = 5:000 bootstrap replications. The data
generating processes (DGP) are the estimated VAR models for the pricing factors under physical measure in
the Gaussian ATSM reported in Table 3 and 4. The notation Bias(h0) indicates the total absolute bias for h0
and similarly for the other rows. When computing the total absolut bias in the unconditional standard
deviation in the pricing factors, denoted Bias(f�xig

nx
i=1), only the stationary draws are used. Bold �gures

indicate the lowest bias among the two data-driven methods.

OLS Standard Killian�s Data-driven methods:
bootstrap method ĥadj;Bx (�) ĥadj;�x (�)

DGP: ATSM from 1961-2013
T = 250 Bias(h0) 0:0004 0:0002 0:0002 0:0003 0:0003

Bias(hx) 0:1563 0:0547 0:0642 0:0850 0:0747
Bias(�� 100) 0:0012 0:0006 0:0006 0:0007 0:0007
Bias

�
f�xig

nx
i=1

�
0:0015 0:0017 0:0278 0:0010 0:0008

Pct of nonstationary draws 0:48 30:98 0:48 0:48 0:00

T = 500 Bias(h0) 0:0002 0:0001 0:0001 0:0001 0:0001
Bias(hx) 0:0676 0:0115 0:0152 0:0234 0:0190
Bias(�� 100) 0:0005 0:0002 0:0003 0:0003 0:0003
Bias

�
f�xig

nx
i=1

�
0:0008 0:0021 0:0249 0:0023 0:0017

Pct of nonstationary draws 0:14 20:16 0:14 0:14 0:00

DGP: ATSM from 1990-2013
T = 250 Bias(h0) 0:0086 0:0027 0:0032 0:0043 0:0031

Bias(hx) 3:7685 1:2012 1:4260 1:8965 1:2938
Bias(�� 100) 0:0129 0:0045 0:0062 0:0077 0:0068
Bias

�
f�xig

nx
i=1

�
0:0092 0:0280 0:2913 0:0211 0:0196

Pct of nonstationary draws 0:22 25:78 0:22 0:22 0:00

T = 500 Bias(h0) 0:0035 0:0006 0:0006 0:0007 0:0006
Bias(hx) 1:5484 0:2233 0:2394 0:2949 0:2334
Bias(�� 100) 0:0037 0:0017 0:0018 0:0019 0:0019
Bias

�
f�xig

nx
i=1

�
0:0050 0:0193 0:0853 0:0192 0:0187

Pct of nonstationary draws 0:00 5:28 0:00 0:00 0:00
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Table 2: Monte Carlo study: Bootstrapping the third step of the SR approach
The Monte Carlo study is carried out for T = 250 and ny = 25 using the same maturities as selected in
Section 4.1 for our empirical analysis. We use M = 5; 000 replications and B = 1; 000 in the bootstrap. The
asymptotical standard errors are computed using (18) with wT = 10 when �Time = 0:6 and wD = 5 when
�Cross = 0:4, otherwise wT = 0 and wD = 0. Standard resampling is used, unless �1 = 0:4, where we let p = 1
and estimate �1 using a preliminary bootstrap with 100 draws. Bold �gures indicate the best method for
computing standard errors and rejection probabilities.

Reject probabilities
Standard errors (�10�4) at the 5% level
True Asymp Boot Asymp Boot� Boot��

Case I: IID errors � 0:777 0:775 0:781 6:02 5:80 5:32
�11 0:618 0:610 0:583 4:74 6:80 6:44

Case II: autocorrelated errors � 0:920 1:005 0:925 3:90 5:12 4:78
(�Time = 0:6) �11 1:398 1:673 1:320 2:22 6:96 6:38

Case III: autocorrelated � 1:094 1:246 1:098 3:04 5:12 4:46
and heteroskedastic errors �11 2:061 2:437 1:934 2:12 7:22 6:38
(�Time = 0:6; �Rv = 0:98)

Case IV: cross-correlated errors � 0:824 1:502 0:835 0:12 5:28 5:18
(�1 = 0:4) �11 0:938 1:346 0:909 0:96 6:30 6:72

Case V: autocorrelated, � 1:444 2:044 1:488 1:20 4:84 4:86
heteroskedastic, and �11 3:205 3:511 3:100 3:68 6:06 7:16
cross-correlated errors
(�Time = 0:6; �Rv = 0:98,
�1 = 0:4)

For the rejection probabilities, i) Asym denotes the standard asymptotical t-test
��� �̂11��o11
SE(�̂11)asym

��� � 1:96, ii)
Boot� refers to the modi�ed asymptotical t-test

��� �̂11��o11
SE(�̂11)Boot

��� � 1:96 with bootstrapped standard error, and iii)
Boot�� denotes the t-test z�0:025 �

�̂11��o11
SE(�̂11)asym

� z�0:975 where z�p is the bootstrapped p-percentile.

46



Table 3: Estimation results for three-factor models: sample from 1961-2013
Asymptotical robust standard errors for elements in �̂

step3

11 are computed using (18) with wD = 5 and
wT = 10. For the Gaussian ATSM and the shadow rate model, bootstrapped standard errors using 1,000

draws for �̂
step3

11 are shown in brackets. For the QTSM, 95 percent con�dence intervals are provided for

elements in �̂
step3

11 , computed using the 2.5 and 97.5 percentiles of �̂
step3

11 in the bootstrap. All bootstraps use a
bias-adjusted AR(1) model (based on 100 draws) to account for cross-correlation and use draws for �̂2 from its
asymptotic distribution to make the bootstrap inference for �̂11 comparable to the asymptotic inference. For

elements in �̂
step3

2 , robust standard errors are computed using (13) with S obtained by the Newey-West
estimator for a bandwidth of 5.

ATSM QTSM Shadow rate
Estimate SE Estimate CI95% or SE Estimate SE

� 0:0124 0:0016
[0:0003]

- - 0:0153 0:0037
[0:0071]

A12 - - 0:9886 [0:9524; 1:0000] - -
A13 - - 0:9915 [0:9651; 1:0000] - -
A23 - - 0:8642 [0:5654; 1:0398] - -
�11 0:0022 0:0005

[0:0001]
0:0011 [0:0002; 0:0016] 0:0013 0:0005

[0:0004]

�22 0:0355 0:0027
[0:0007]

0:0405 [0:0366; 0:0484] 0:0427 0:0040
[0:0054]

�33 0:0685 0:0063
[0:0016]

0:0806 [0:0499; 0:0878] 0:0666 0:0069
[0:0072]

�1 - - 0:0231 [0:0000; 0:2929] - -
�2 - - 0:0035 [0:0001; 0:1265] - -
�3 - - 0:1122 [0:0000; 0:1535] - -
h0 (1; 1) �1:03� 10�4 6:57� 10�5 �0:0017 9:30� 10�4 �1:67� 10�4 8:60� 10�5
h0 (2; 1) 3:83� 10�4 1:92� 10�4 �0:0093 0:0046 9:15� 10�4 3:65� 10�4
h0 (3; 1) �4:69� 10�4 2:09� 10�5 0:0155 0:0046 �0:0010 3:87� 10�4
hx (1; 1) 0:9847 0:0077 0:9733 0:0079 0:9822 0:0077
hx (1; 2) 0:0252 0:0084 0:0082 0:0056 0:0216 0:0081
hx (1; 3) 0:0186 0:0121 0:0041 0:0100 0:0188 0:0104
hx (2; 1) 0:0489 0:0223 0:0677 0:0234 0:0906 0:0329
hx (2; 2) 0:9668 0:0420 1:0310 0:0314 1:0097 0:0620
hx (2; 3) 0:0611 0:0546 0:1115 0:0438 0:0866 0:0714
hx (3; 1) �0:0557 0:0236 �0:0754 0:0243 �0:1004 0:0345
hx (3; 2) �0:0151 0:0376 �0:0649 0:0334 �0:0637 0:0578
hx (3; 3) 0:8685 0:0488 0:8295 0:0431 0:8452 0:0661
�11 3:56� 10�4 2:37� 10�5 0:0023 1:63� 10�4 3:30� 10�4 2:14� 10�5
�21 �6:22� 10�4 9:83� 10�5 �0:0030 7:86� 10�4 �6:49� 10�4 1:37� 10�4
�22 0:0011 7:31� 10�5 0:0101 6:94� 10�4 0:0018 1:07� 10�4
�31 3:95� 10�4 8:88� 10�5 0:0015 7:70� 10�4 4:54� 10�4 1:30� 10�4
�32 �0:0010 5:60� 10�5 �0:0101 7:78� 10�4 �0:0017 9:40� 10�5
�33 4:31� 10�4 5:45� 10�5 0:0029 2:26� 10�4 4:40� 10�4 5:52� 10�5
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Table 4: Estimation results for three-factor models: sample from 1990-2013
Asymptotical robust standard errors for elements in �̂

step3

11 are computed using (18) with wD = 5 and
wT = 10. For the Gaussian ATSM and the shadow rate model, bootstrapped standard errors using 1,000

draws for �̂
step3

11 are shown in brackets. For the QTSM, 95 percent con�dence intervals are provided for

elements in �̂
step3

11 , computed using the 2.5 and 97.5 percentiles of �̂
step3

11 in the bootstrap. All bootstraps use a
bias-adjusted AR(1) model (based on 100 draws) to account for cross-correlation and use draws for �̂2 from its
asymptotic distribution to make the bootstrap inference for �̂11 comparable to the asymptotic inference. For

elements in �̂
step3

2 , robust standard errors are computed using (13) with S obtained by the Newey-West
estimator for a bandwidth of 5.

ATSM QTSM Shadow rate
Estimate SE Estimate CI95% or SE Estimate SE

� 0:0093 0:0007
[0:0003]

- - 0:0099 0:0008
[0:0004]

A12 - - 0:9725 [0:9491; 0:9998] - -
A13 - - 0:9861 [0:9681; 0:9983] - -
A23 - - 0:6846 [0:5691; 1:1857] - -
�11 0:0043 0:0004

[0:0002]
0:0028 [0:0021; 0:0032] 0:0035 0:0004

[0:0002]

�22 0:0487 0:0020
[0:0035]

0:0459 [0:0424; 0:0541] 0:0475 0:0024
[0:0035]

�33 0:0518 0:0033
[0:0045]

0:0724 [0:0589; 0:0768] 0:0558 0:0050
[0:0039]

�1 - - 0:0040 [0:0000; 0:0504] - -
�2 - - 0:0028 [0:0000; 0:1080] - -
�3 - - 0:0977 [0:0000; 0:1079] - -
h0 (1; 1) �2:81� 10�4 1:50� 10�4 �2:23� 10�4 0:0012 �3:32� 10�4 1:72� 10�4
h0 (2; 1) 0:0078 0:0040 �0:0135 0:0073 0:0037 0:0018
h0 (3; 1) �0:0079 0:0040 0:0181 0:0073 �0:0039 0:0018
hx (1; 1) 0:9530 0:0242 0:9427 0:0248 0:9474 0:0265
hx (1; 2) �0:0216 0:0272 �0:0095 0:0107 �0:0230 0:0259
hx (1; 3) �0:0237 0:0290 �0:0218 0:0197 �0:0285 0:0306
hx (2; 1) 1:2792 0:6300 0:2415 0:0994 0:5884 0:2723
hx (2; 2) 2:4472 0:8675 1:1202 0:0663 1:5625 0:3283
hx (2; 3) 1:5652 0:9067 0:2371 0:0989 0:6813 0:3676
hx (3; 1) �1:3025 0:6166 �0:2611 0:0989 �0:6150 0:2589
hx (3; 2) �1:5152 0:8566 �0:1584 0:0696 �0:6272 0:3189
hx (3; 3) �0:6356 0:8946 0:7070 0:0943 0:2476 0:3556
�11 3:92� 10�4 4:58� 10�5 0:0028 0:0003 3:73� 10�4 4:12� 10�5
�21 �0:0049 0:0020 �0:0033 0:0024 �0:0018 7:01� 10�4
�22 0:0108 0:0007 0:0169 0:0014 0:0042 2:67� 10�4
�31 0:0046 0:0019 0:0007 0:0023 0:0014 6:74� 10�4
�32 �0:0108 0:0007 �0:0170 0:0015 �0:0042 2:72� 10�4
�33 1:66� 10�5 1:56� 10�5 0:0023 0:0003 1:69� 10�4 1:57� 10�5
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Table 5: In-sample �t: The objective functions
This table reports 100

q
2�Qstep11:T and 100

q
2�Qstep31:T from the �rst and third step in the SR approach.

Figures in bold highlight the best in-sample �t for a given estimation step.

Step 1 Step 3
ATSM QTSM Shadow rate ATSM QTSM Shadow rate

Three pricing factors
Sample: 1961-2013 2:895 2:702 2:735 2:896 2:718 2:786
Sample: 1990-2013 1:808 1:613 1:692 1:829 1:630 1:754

Four pricing factors
Sample: 1961-2013 1:057 1:030 1:013 1:058 1:034 1:025
Sample: 1990-2013 0:801 0:766 0:749 0:807 0:772 0:763

Table 6: Conditional volatility of bond yields
This table reports the slope and R2 of regressing volatility in the data on a constant and model-implied
volatility. In the left part of the table, conditional volatility in the data is obtained using a rolling standard
deviation of daily bond yields in the past six months, denoted �Rollingt . In the right part of the table,
conditional volatility in the data is obtained by a GARCH(1,1) model for changes in monthly bond yields,
denoted �GARCHt . The model-implied conditional volatilities one-month ahead in time period t are computed
from a local linearization of bond yields at x̂t�1. Bold �gures indicate the preferred model for a given measure
of volatility and for a given sample.

Data: �Rollingt Data: �GARCHt

QTSM Shadow rate QTSM Shadow rate
Slope R2 Slope R2 Slope R2 Slope R2

Sample: 1961-2013
0.5-year bond yield 1:42 0:28 1:21 0:07 1:26 0:33 0:92 0:06
2-year bond yield 1:25 0:30 1:19 0:09 1:21 0:38 1:00 0:09
5-year bond yield 0:96 0:24 0:95 0:07 0:85 0:34 0:72 0:07
10-year bond yield 0:75 0:14 0:59 0:02 0:51 0:24 0:37 0:02

Sample: 1990-2013
0.5-year bond yield 0:45 0:09 2:69 0:17 0:21 0:06 1:47 0:16
2-year bond yield 0:49 0:15 1:99 0:24 0:30 0:17 1:49 0:41
5-year bond yield 0:34 0:09 1:47 0:18 0:18 0:11 0:98 0:35
10-year bond yield 0:02 0:00 0:44 0:01 �0:04 0:01 0:18 0:01
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Table 7: Average forecasting results
The �gure reports the average root mean squared prediction errors (RMSPEs) across all bond yields in the
forecasting study from January 2005 to December 2013. The RMSPEs are generated from models estimated
recursively from 1961 or 1990 to the month prior to the forecast. The forecasted bond yields in the shadow
rate models are computed by Monte Carlo integration using 10.000 draws. For a given number of pricing
factors and a given starting point for the model estimation, bold �gures indicate the model with the lowest
RMSPEs. Figures marked by blue denote the lowest RMSPEs for a given model when comparing part A and
B of the table.

Part A: Model estimation from 1961 Part B: Model estimation from 1990
Forecasting horizon Forecasting horizon

1 mth 3 mths 6 mths 12 mths 1 mth 3 mths 6 mths 12 mths
Random walk 25:87 49:66 72:54 94:76 25:87 49:66 72:54 94:76

2-factor models
ATSM 41:50 59:97 78:40 104:92 41:04 62:83 87:41 128:27
QTSM 27:92 51:78 76:81 106:47 27:61 55:41 86:43 122:09
Shadow rate 39:27 55:68 76:01 99:98 27:17 52:74 81:12 119:98

3-factor models
ATSM 40:51 60:86 80:48 108:02 40:50 62:83 88:79 133:05
QTSM 26:62 53:00 79:46 110:32 26:49 53:49 83:02 123:55
Shadow rate 26:70 52:33 78:09 109:41 27:30 54:32 84:48 126:35

4-factor models
ATSM 40:20 59:71 77:85 104:32 41:33 64:73 90:10 128:61
QTSM 27:50 56:01 89:04 131:55 27:10 55:59 85:30 124:66
Shadow rate 26:32 50:73 74:65 102:61 30:26 51:37 76:08 110:10
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Table 8: Estimation results for three-factor hybrid model
Robust standard errors for elements in �̂

step3

11 are computed using (18) with wD = 5 and wT = 10. For

elements in �̂
step3

2 , robust standard errors are computed using (13) with S obtained by the Newey-West
estimator for a bandwidth of 5. The standard errors in the short sample from 1990-2013 are approximated by
�xing �2 to zero and treating this parameter as known.

Data: 1961-2013 Data: 1990-2013
Estimate SE Estimate SE

� 1:50� 10�4 0:0002 1:68� 10�4 0:0007
A12 2:5659 0:0123 1:0836 0:0037
A13 2:9113 0:0126 1:1422 0:0123
A23 1:1520 0:0083 1:2615 0:0309
�11 0:0011 0:0004 0:0028 0:0005
�22 0:0419 0:0032 0:0442 0:0027
�33 0:0816 0:0091 0:0787 0:0029
�1 0:0664 0:0157 0:0918 0:0369
�2 0:0369 0:0158 0:0000 �
�3 0:0034 0:0127 0:0119 0:0040
h0 (1; 1) 1:62� 10�4 0:0002 �0:0123 0:0106
h0 (2; 1) �0:0021 0:0015 �0:2793 0:1840
h0 (3; 1) 0:0032 0:0017 0:4608 0:3247
hx (1; 1) 0:9761 0:0077 1:0404 0:1624
hx (1; 2) 0:0056 0:0033 0:0420 0:0552
hx (1; 3) 0:0032 0:0050 �0:0320 0:0243
hx (2; 1) 0:0854 0:0304 �4:2888 2:9977
hx (2; 2) 1:0129 0:0334 0:1167 0:9035
hx (2; 3) 0:0751 0:0434 0:5871 0:3443
hx (3; 1) �0:0867 0:0311 7:0391 5:1560
hx (3; 2) �0:0430 0:0391 1:4376 1:5053
hx (3; 3) 0:8759 0:0502 0:0227 0:5547
�11 0:0013 0:0001 0:0031 0:0008
�21 �0:0022 0:0006 �0:0127 0:0223
�22 0:0091 0:0006 0:0154 0:0258
�31 6:38� 10�4 0:0007 0:0169 0:0373
�32 �0:0093 0:0009 �0:0233 0:0507
�33 0:0033 0:0004 0:0130 0:0032
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Table 9: The hybrid model: Conditional volatility of bond yields
This table reports the slope and R2 of regressing volatility in the data on a constant and model-implied
volatility. Conditional volatility in the data is either obtained using a rolling standard deviation of daily bond
yields in the past six months, denoted �Rollingt , or a GARCH(1,1) model for changes in monthly bond yields,
denoted �GARCHt . The model-implied conditional volatilities one-month ahead in time period t are computed
from a local linearization of bond yields at x̂t�1. Figures marked by blue indicate that the R2 for the hybrid
model is larger than the R2 for both the QTSM and the shadow rate model in Table 6.

Sample: 1961-2013 Sample: 1990-2013
Data: �Rollingt Data: �GARCHt Data: �Rollingt Data: �GARCHt

Slope R2 Slope R2 Slope R2 Slope R2

0.5-year bond yield 1:14 0:32 1:04 0:40 0:38 0:08 0:18 0:06
2-year bond yield 1:23 0:32 1:21 0:43 0:58 0:15 0:35 0:16
5-year bond yield 1:04 0:24 0:93 0:34 0:41 0:10 0:21 0:11
10-year bond yield 0:80 0:09 0:55 0:16 0:02 0:00 �0:05 0:01
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Figure 1: The QTSM: Non-linear �ltering
The objective function for �ltering out xt in a QTSM with one pricing factor. The risk-neutral parameters are
�1 = 0:0790, �11 = 0:0072; and �11 = 0:0066, which are the optimal values in the short sample.
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Figure 2: Sample from 1961-2013: In-sample �t for three- and four-factor models
Charts in the �rst column report 100

q
2�Qstep31:T . Charts in the second column report 100

q
2�Qstep32005:T and

the �nal column reports �j for j=1,2,...,K estimated using residuals from 1961-2013.
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Figure 3: Sample from 1990-2013: In-sample �t for three- and four-factor models
Charts in the �rst column report 100

q
2�Qstep31:T . Charts in the second column report 100

q
2�Qstep32005:T and

the �nal column reports �k estimated using residuals from 1990-2013.
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Figure 4: Sample from 1961-2013: Unconditional moments in three-factor models
All model-based moments are obtained from simulated time series of 100,000 observations. Empirical moments
are computed from September 1971 to December 2013 to avoid missing observations for long bond yields.
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Figure 5: Sample from 1990-2013: Unconditional moments in three-factor models
All model-based moments are obtained from simulated time series of 100,000 observations. Empirical moments
are computed from January 1990 to December 2013.
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Figure 6: Sample from 1961-2013: Unconditional moments in four-factor models
All model-based moments are obtained from simulated time series of 100,000 observations.
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Figure 7: Sample from 1990-2013: Unconditional moments in four-factor models
All model-based moments are obtained from simulated time series of 100,000 observations.
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Figure 8: Sample from 1961-2013: Conditional volatilities for bond yields
Black lines denote the rolling standard deviation of bond yields computed from daily observations with a six
month lookback. Green lines refer to the conditional volatilities from a GARCH(1,1) model applied to changes
in monthly bond yields. Blue lines with squares and black lines with stars denote the one step ahead
conditional volatilities in the QTSM and the shadow rate model, respectively, where the volatility in time
period t is computed from a local linearization of bond yields at x̂t�1.
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Figure 9: Sample from 1990-2013: Conditional volatilities for bond yields
Black lines denote the rolling standard deviation of bond yields computed from daily observations with a six
month lookback. Green lines refer to the conditional volatilities from a GARCH(1,1) model applied to changes
in monthly bond yields. Blue lines with squares and black lines with stars denote the one step ahead
conditional volatilities in the QTSM and the shadow rate model, respectively, where the volatility in time
period t is computed from a local linearization of bond yields at x̂t�1.
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Figure 10: Forecasting results by maturity: model estimation starting in 1961
This �gure reports the root mean squared prediction errors (RMSPEs) for out-of-sample forecasts from
January 2005 to December 2013. The RMSPEs are generated from models estimated recursively from 1961 to
the month prior to the forecast. The forecasted bond yields in the shadow rate models are computed by Monte
Carlo integration using 10.000 draws.
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Figure 11: Forecasting results by maturity: model estimation starting in 1990
This �gure reports the root mean squared prediction errors (RMSPEs) for out-of-sample forecasts from
January 2005 to December 2013. The RMSPEs are generated from models estimated recursively from 1990 to
the month prior to the forecast. The forecasted bond yields in the shadow rate models are computed by Monte
Carlo integration using 10.000 draws.
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Figure 12: Forecasting illustration for the 0.5-year bond yield
The forecasts are generated from models estimated recursively from 1961 to the month prior to the forecast.
The forecasted bond yields in the shadow rate models are computed by Monte Carlo integration using 10.000
draws.
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Figure 13: ATSM: Fraction of forecast the distribution below zero
The charts report the fraction of the forecast distribution for the 0.5-year bond yield which are below zero. All
forecast distributions are computed using recursively estimated parameters starting in 1961 or 1990.
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Figure 14: The hybrid model: Accuracy of the MC approximation to bond yields
These charts report the pricing errors when evaluating bond yields at fx̂tgTt=1 for the estimated parameters in
the long and short sample using 500 draws in the MC method. The true solution is approximated by the MC
method using 100,000 draws and anti-thetic sampling.
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Figure 15: The hybrid model: In-sample �t
Charts in the �rst column report 100

q
2�Qstep32005:T . Charts in the second column plots the estimated values of

�t, measuring the in-sample �t of the yield curve at a given point in time.
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Figure 16: The hybrid model: Unconditional moments
All model-based moments are obtained from simulated time series of 100,000 observations.
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Figure 17: The hybrid model: Forecasting results by maturity
This �gure reports the root mean squared prediction errors (RMSPEs) for out-of-sample forecasts from
January 2005 to December 2013. The RMSPEs are generated from models estimated recursively from 1961 in
the �rst column or from 1990 in the second column up to the month prior to the forecast. The forecasted bond
yields in the shadow rate model and the hybrid model are computed by Monte Carlo integration using 10.000
draws.
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