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Abstract
We address the problem of selecting the common factors that are relevant for forecasting
macroeconomic variables. In economic forecasting using diffusion indexes the factors are
ordered, according to their importance, in terms of relative variability, and are the same for
each variable to predict, i.e. the process of selecting the factors is not supervised by the predic-
tand. We propose a simple and operational supervised method, based on selecting the factors
on the basis of their significance in the regression of the predictand on the predictors. Given
a potentially large number of predictors, we consider linear transformations obtained by prin-
cipal components analysis. The orthogonality of the components implies that the standard
t-statistics for the inclusion of a particular component are independent, and thus applying a se-
lection procedure that takes into account the multiplicity of the hypotheses tests is both correct
and computationally feasible. We focus on three main multiple testing procedures: Holm’s
sequential method, controlling the family wise error rate, the Benjamini-Hochberg method,
controlling the false discovery rate, and a procedure for incorporating prior information on
the ordering of the components, based on weighting the p-values according to the eigenval-
ues associated to the components. We compare the empirical performances of these methods
with the classical diffusion index (DI) approach proposed by Stock and Watson, conducting a
pseudo-real time forecasting exercise, assessing the predictions of 8 macroeconomic variables
using factors extracted from an U.S. dataset consisting of 121 quarterly time series. The over-
all conclusion is that nature is tricky, but essentially benign: the information that is relevant for
prediction is effectively condensed by the first few factors. However, variable selection, lead-
ing to exclude some of the low order principal components, can lead to a sizable improvement
in forecasting in specific cases. Only in one instance, real personal income, we were able to
detect a significant contribution from high order components.
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1 Introduction
The focus of much recent theoretical and applied econometric research has concentrated on the
ability to predict key macroeconomic variables, such as output and inflation, using a large number
of potential predictors, with little or no a priori guidance over their relevance. This theme, which
developed contextually to the statistical and machine learning literature on data mining and discov-
ery, has received a very distinctive solution, hinging upon the idea that the wealth of information
on macroeconomic variables can be distilled by a limited number of common factors.

The common factors capture the comovements among the economic variables and can be con-
sistently estimated by principal components analysis (PCA), as in the static factorial approach
proposed by Stock and Watson (2002a), or by dynamic principal components analysis, using fre-
quency domain methods, as proposed by Forni et al. (2005). Quoting from Stock and Watson
(2006), the availability of a factor structure and of closed form inferences has turned the high
dimensionality of the information set from a curse to a blessing.

Once the factors are extracted, they can be used for forecasting the variables of interest, by aug-
menting an observation driven model, such as an autoregression, by the estimated factors. This ap-
proach, known as the diffusion index (DI), or factor augmented autoregressive (FAR), forecasting
methodology, has become mainstream, owing its success to the ability to incorporate information
carried by a large number of potential predictors in a simple and parsimonious way. Applied eco-
nomic forecasting has shown that the consideration of the factors as potential predictors has proved
successful in macroeconomic forecasting using large datasets; it would be impossible to provide a
list of references that could be representative of the research carried out in this field. The reviews
in Stock and Watson (2006), Breitung and Eickmeier (2006) and Stock and Watson (2010), as well
as Ng (2013), provide ample coverage of the main issues.

As it is well known, the principal components, arising from the spectral decomposition of the
sample covariance matrix of the predictors, are ranked according to the size of the corresponding
eigenvalue. The current forecasting practice selects the first components according to an infor-
mation criterion, such as Bai and Ng (2002) and Onatski (2010), and uses them as explanatory
variable in the forecasting model en lieu of the original predictors. A potential limitation of this
procedure is that the selection of factors is blind on the predictive ability of the principal com-
ponents, as no consideration is given to their relationship with the predictand by the information
criteria commonly used.

The lack of supervision of the principal components in regression has been the matter of an old
debate, which is echoed in Cox (1968), Joliffe (1982), Hadi and Ling (1998) and Cook (2007),
among others. There are essentially two opposite views: the argument of the critics is that there
is no logical reason why the predictand should not be related to the least important principal com-
ponents, and secondly that different predictands, such as output and inflation, cannot depend on
the same r principal components. The counter argument, using Mosteller and Tukey quotation of
Einstein (Mosteller and Tukey (1977), pp. 397–398), is that “nature is tricky, but not downright
mean”: the first principal components capture the underlying common dimensions of the econ-
omy. If this was the case, the leading principal components, those corresponding to the largest
eigenvalues, should carry the essential information for predicting economic variables.
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The selection of the factors that are relevant for the prediction of macroeconomic variables has
attracted a lot of interest and several solutions have been proposed in the literature for supervising
the factors, taking into account their ability to predict a specific dependent variable. Bai and Ng
(2008) propose distilling the factors, referred to as “targeted predictors”, by performing a PCA on a
subset of the original predictors, that are selected according to the strength of the relationship with
the variable to be predicted in a marginal regression framework. This is an instance of the method
of supervised PCA Bair et al. (2006), aiming at finding linear combinations of the predictors that
have high correlation with the outcome. Bai and Ng (2009) considered bootstrap aggregation of
the predictions arising from a FAR framework, that retains only the significant factors. A compre-
hensive review of variable selection in predictive regression is Ng (2013).

The research question addressed by this paper is whether many predictors can be replaced by a
reduced number of principal components selected according to the strength of the relationship with
the predictand, and whether components beyond the firsts carry useful information for improving
the predictive ability. We propose a simple and operational supervised method based on selecting
the factors on the basis of their significance in the regression of the predictand on the predictors.
Given a potentially large number of predictors, we consider linear transformations obtained by
principal components analysis. The orthogonality of the components implies that the standard
t statistics for the inclusion of a particular component in the multiple regression framework are
independent, and thus applying a multiple testing procedure to select the components that are
significant at a particular level is both correct and computationally feasible.

The selection of the principal components can be seen as a decision problem involving multiple-
testing, where a single null hypothesis claims that a specific component ought to be excluded from
the model. There are several multiple testing procedures available that focus on controlling some
type of error rate, namely the familywise error rate, such as the Bonferroni and Holm (1979) proce-
dure, or the false discovery rate, which is the expected proportion of wrong rejections. Among the
procedures controlling for the false discovery rate, we focus on the Benjamini-Hochberg procedure
(see Benjamini and Hochberg (1995)) and on a weighted procedure that allows to incorporate prior
information about the ordering of the components; see Genovese et al. (2006).

In summary, our methodology has three steps:

1. Orthogonalise the original N predictors by computing the N standardised PCs.

2. Select r principal components on the basis of their correlation with the predictand, taking
into account the multiplicity of the testing problem and controlling for the error rate of the
selection procedure.

3. Use the selected components in a factor augmented autoregressive predictive regression.

Our method can be nested within the shrinkage representation for forecasting using orthogonal
predictors proposed by Stock and Watson (2012b) and has analogies with the idea of targeted pre-
dictors, although the object of the selection are the principal components, rather than the original
predictors: this has the advantage of not having to consider the correlation of the tests statistics for
the inclusion of the predictors.
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We validate our procedure using a dataset consisting of 121 quarterly U.S. macroeconomic
time series observed from 1959-I to 2011-II. A pseudo real-time rolling forecast experiment is
conducted to compare the performance of our selection method to that of a benchmark autoregres-
sive predictor, with order selected by an information criterion, and to the standard DI forecasts
based on the first five components.

The paper is structured as follows. In section 2 we provide a brief review of the diffusion
index methodology. Section 3 considers the issue of estimating supervised factors and reviews the
main solutions available in the literature. In section 4 we present principal components regression
as a shrinkage methods and discuss the issues posed by the selection of the components and the
consequences in terms of forecasting accuracy. Section 5 exposes our supervised method using a
multiple testing approach to the selection of the principal components in the FAR predictor.

2 Forecasting using principal components
Let Xt = (X1t, . . . , XNt)

′ denote an N × 1 vector of predictors observed at times t = 1, . . . T , and
let y(h)t+h denote the predictand, where h > 0 is the forecast lead, and y denotes a transformation of
the original variable Y , which depends on its order of integration.

The Diffusion Index (DI) forecasting methodology, originally proposed by Stock and Watson
(2002), provides a simple and parsimonious way of incorporating a highly dimensional information
set; it is based on the assumption that the predictors have an approximate factor structure, such that
the unobserved factors can be estimated consistently by principal component analysis (PCA). The
factor model is formulated as follows:

Xt = ΛFt + ξt, (1)

where Ft = (F1t, . . . , Frt) with r < N are the unobserved common factors, Λ is the n× r matrix
of factor loadings and ξt is the idiosyncratic disturbance not explained by the factors.

Letting S = T−1
∑

tXtX
′
t and denoting the spectral decomposition of the covariance matrix by

S = V D2V ′, where V = (v1, . . . , vN) is the (N ×N) matrix of eigenvectors, V ′V = V V ′ = IN ,
and D = diag(d1, . . . , dN) is the matrix containing the square root of the ordered eigenvalues,
d1 ≥ d2 ≥ · · · ≥ dN , as in Stock and Watson (2002a), the common factors Ft are estimated by the
first r standardised principal components

F̂t = D−1/2r V ′rXt, (2)

where Dr = diag(d1, . . . , dr) and Vr = (v1, . . . , vr).
We assume that we are interested in predicting a variable yt (which may as well be included in

the set Xt) at the at horizon h > 0, by using all the information contained in Xt. For instance, if
we are interested in forecasting quarterly industrial production, denoted Yt, h quarters ahead, we
set y(h)t+h = 400(lnYt − lnYt−1), which assumes that ln yt is difference stationary. In predicting
y
(h)
t+h we also the estimated common factors and the lags of yt = (lnYt − lnYt−1), according to
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factor augmented autoregressive (FAR) model:

y
(h)
t+h = µ+

p∑
j=1

φ
(h)
j yt−j+1 +

r∑
k=1

β
(h)
k F̂kt + εt+h, (3)

where εt+h is the forecasting error with variance σ2.
The DI forecasts are obtained according to a two step procedure: in the first step r factors are

extracted from the set of predictors by performing a PCA and selecting the number of common
factors according to information criteria proposed by Bai and Ng (2002), such as

ICp1(r) = lnV (r) + r

(
N + T

NT

)
ln

(
NT

N + T

)
,

ICp2(r) = lnV (r) + r

(
N + T

NT

)
ln min{N, T},

where V (r) = 1
NT

∑T
t=1(Xt − Λ̂rF̂t)

′(Xt − Λ̂rF̂t), Λ̂ = VrD
1/2
r . Bai and Ng (2002) show that

the value of r that minimizes ICp1(r) or ICp1(r) is a consistent estimator, for N, T → ∞, of the
number of common factors. In the second step, the estimated factors are used as predictors in (3).
As shown in Bai and Ng (2006), we can treat F̂t as observed regressors.

Since the factors are selected according to an information criterion that operates on the eigen-
structure of Xt, then the method is unsupervised. The selection methodology assumes that the
factors are ordered according to the size of the corresponding eigenvalue. However, there is no
reason why a predictand should not depend on a higher order component or different predictand,
such as output and inflation, should depend on the same factors.

3 Approaches to the supervision of the factors
Several proposals have been made for supervising the factors, so that the selected factors carry
information that is useful for predicting the specific variable under consideration. In this section
we sketch a brief survey of the literature, ignoring the shrinkage and model averaging approaches
that are applied directly to the observable predictors, rather than the principal components. For an
account of these approaches, see De Mol et al. (2008), Bai and Ng (2008) and Stock and Watson
(2006).

In the supervised PC method proposed by Bair et al. (2006) a subset of predictors is first selected
on the basis of their correlation with the response variable; more specifically all the predictors for
which the estimated regression coefficients are larger than a threshold c are considered∣∣∣∣∣√T

∑
tXity

(h)
t+h∑

tX
2
it

∣∣∣∣∣ > c, i = 1, 2, . . . , N,

and a principal component analysis is performed on the selected predictors to extract the factors
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to be used for prediction. The method clearly depends on the threshold c, which is estimated by
cross-validation.

Bai and Ng (2008) construct supervised principal components, that they name targeted predic-
tors, by pre-selecting a subset of predictors with predictive power for a specific predictand, and
conducting a PCA on those. They explore hard thresholding rules constructed on the t-statistics
of the regression of y(h)y+h on a single predictor Xit (after controlling for a set of predetermined
variables, such as the lags of the dependent variables), say t∗i , selecting those variables for which
|t∗i | > c, c alternatively being equal to 1.28, 1.65 and 2.58. Their selection rule does not consider
the issue of multiple testing. In page 306 they state however that application of Holm’s procedure
(see section 5) did not lead to different results. Other soft thresholding methods are considered,
such as the lasso, least angle regression, and the elastic net are considered and compared. The pa-
per concludes that targeting the predictors to the economic variable to be predicted, they consider
inflation in particular, leads to a gain in forecasting accuracy.

Bai and Ng (2009) proposed componentwise and block-wise boosting algorithms for isolating
the predictors in FAR models that are most helpful in predicting a variable of interest. The algo-
rithms do not rely on the ordering of the variables (and in the componentwise case do not rely on
the ordering of their lags). Starting from the null model including only a constant, the algorithms
perform incremental forward stagewise fitting of the mean square prediction error, by a sequence
of Newton-Raphson iterations that iteratively improve the fit. At each step, a single explanatory
variable (e.g. a PC), or a block consisting of a regressor and its lags, is fitted by ordinary least
squares regression, and selected according to the reduction in the residual sum of squares. The se-
lected variable contributes to the current predictor with a coefficient which is shrunk towards zero
by a fraction known as the learning rate. The algorithm is iterated until a stopping rule is found.
Bai and Ng (2009) propose an information criterion for selecting the number of boosting iterations
that takes into account the estimation error in the estimation of the factors, which is O(N−1).

Inoue and Kilian (2008) present an application of bootstrap aggregation (bagging) of predictors
of U.S. inflation usingN = 30 variables. Among the predictors, they consider selecting by pretest-
ing the PCs among the first K, where K ranges from 1 to 8. Several critical values for selection
pretest are considered. Stock and Watson (2012b) and Kim and Swanson (2014) also consider
averaging the FAR predictors obtained from independent bootstrap samples with factors selected
according to the rule that their (robust) t-statistic must be larger than 1.96 in modulus.

Fuentes et al. (2014) propose the use of sparse partial least squares to select a small subset
of supervised factors, extending to a dynamic setting the static methodology of Chun and Keleş
(2010). The candidate factors arise from the spectral decomposition of the matrix T−1X̃ ′yy′X̃ ,
where y has generic element y(h)t+h and X is a matrix with rows composed of the elements of X ′t,
augmented by the lags of the predictand. The loadings are shrunk towards zero by a LASSO type
penalty, aiming at the extraction of sparse supervised components.

Finally, an important class of supervision methods is based on inverse regression. Let (y,X)
denote the observable predictand and predictors and let f(y,X) denote their joint density. DI
forecasting starts from the factorization f(y,X) = f(y|X)f(X), assuming a factor structure for
X . Obviously, the factors are unsupervised, as only the marginal distribution f(X) is consid-
ered. A different approach to the supervision of the factors deals with the factorization f(y,X) =
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f(X|y)f(y), using the first conditional density for obtaining a reduced set of predictors incorpo-
rating information concerning y, achieving a substantial dimensionality reduction. The reduced
set is then used in the prediction of y, according to a maintained model for f(y|X). One such
methodology is sliced inverse regression (SIR, Li (1991)): the range of y is partitioned into slices,
within which the centroids of the X’s are computed; a singular value decomposition of the matrix
of centroids is performed to obtain a few effective dimension-reduction directions. The method
of principal fitted components (PFC) analysis, proposed by Cook (2007) and Cook and Forzani
(2008), is based on inverse regression of X on y to obtain a dimension reduction that preserves the
information that is relevant for predicting y; in Cook (2007) the conditional mean E(X|Y = y)
is estimated by projecting the X’s on polinomial terms in y and a principal component analysis is
conducted on the conditional mean estimates to obtain the PCFs.

4 Principal components regression and components selection
as shrinkage methods

Our approach is a particular case of the generalised shrinkage model considered in Stock and
Watson (2012b). In the sequel we will assume that the forecasting model does not contain lags of
the predictand and that the DI predictor results exclusively from principal component regression.
In particular, the data are generated as

y
(h)
t+h = x′tδ + εt+h,

where εt+h has mean zero and Var(εt+h) = σ2. We also assume that T observations are available
for yt+h, t = 1, . . . , T ), and focus on the predictor

ŷ
(h)
t+h|t =

N∑
i=1

ψiβ̂iF̂it, (4)

where F̂t = D−1/2Λ′Xt, denotes the N × 1 vector containing the standardised PC scores F̂it, i =
1, . . . , N , such that 1

T

∑
t F̂tF̂

′
t = I , ordered according to the eigenvalues of the matrix S. More-

over, β̂i = 1
T

∑
t Fityt+h, is the least squares estimator of the regression coefficient of y on the i-th

PC, and ψi is the indicator for the inclusion of the i-th PC. The decision whether to include it or
not depends on the strength of the relationship with the predictand and will be discussed shortly.

As F̂it = x′tvi/di, where d2i is the i-th eigenvalue of S and vi is the corresponding eigenvector,

S = V D2V ′, V = [v1, . . . , vi, . . . , vN ], D = diag(d1, . . . , dN),
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the predictor (4) can be written ŷ(h)t+h|t = x′tδ̂, for

δ̂ =
N∑
i=1

vi
di
β̂i,

The lack of supervision of the ordering of the components, see cautionary note 2 in Hadi and
Ling (1998), can be evidenced by a plot of d2i , the i-th eigenvalue, versus the increase of the
regression residual sum of squares arising from the deletion of the i-th component, measured by

T β̂2
i = T−1

(∑
t F̂ity

(h)
t+h

)2
.

The mean square error (MSE) of the above predictor, treating the factors as observed variables,
is

MSE(ŷ
(h)
t+h|t) = [B(ŷ

(h)
t+h|t)]

2 + Var(ŷ(h)t+h|t),

where the bias and the variance are given respectively by

B(ŷ
(h)
t+h|t) =

N∑
i=1

(1− ψi)F̂itdiv′iδ, Var(ŷ(h)t+h|t) = σ2

(
1 +

1

T

∑
i

ψiF̂
2
it

)
.

These simple expressions underlie the usual bias-variance trade-off: removing one factor from the
set of predictors (i.e. setting ψi = 0) reduces the variance, but increases the bias. The bias term
features the singular value di, which implies that the bias increase is potentially larger if cœteris
paribus a component with high di is removed. The bias resulting from the omission of a particular
PC further depends on v′iδ; this term depends on the population relationship between y and the x’s
and on the loadings of the i-th PC1. The main message, conveyed by the above expression for the
MSE is that omitting a PC loading heavily on important variables ((v′iδ)

2 is large) will have more
impact if the PC corresponds to a large eigenvalue. Note also that Var(ŷt+h|t) depends solely on σ2

and the Mahalanobis squared distance of xT from 0 in the x space, x′T (
∑

tXtX
′
t)
−1 xT =

∑
i F̂

2
it;

recalling that F̂it = x′Tvi/di, the variance will be inflated by the presence of components with small
di and for which the inner product x′Tvi is large. The broad conclusion arising from this analysis
is that discarding the first PCs is not in general a good idea, and the ordering of the components
should be taken seriously. We see this simple result as a possible explanation for the failure of
alternative shrinkage methods to outperform the DI approach documented in Stock and Watson
(2012b).

In principle, we could determine the optimal set of indicators {ψi, i = 1, . . . , N}, which min-
imises the above MSE of prediction, e.g. parameterising

ψi = ψi(β̂i; γ, c) =
1

1 + exp[−γ(|β̂i| − ci)]
,

1Omitting a component loading on x variables with no effect on the predictand makes a zero contribution to the
bias.
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where e.g. ci = c/di for an unknown positive constant c, and thinking about replacing δ and σ by
some estimate, perhaps iteratively. Stock and Watson (2012b) estimate ci = c by cross-validation
and set γ → ∞. Hwang and Nettleton (2003) propose a general approach to the problem. We do
not pursue this here and consider strategies such that ψi is the indicator function that the p-value
of the significance test for the i-th regression coefficient is below a given threshold.

Before exposing our methodology, it is perhaps useful to remark that PCR conducted using
only the first r principal components, chosen according to an information criterion, poses ψi =
I(i ≤ r). Another popular regularisation method, ridge regression, yields the predictor (4) where
the shrinkage factor ψi vary with i: letting ρ ≥ 0 denote the penalty parameter in the criterion
S(ρ, δ) =

∑
t(yt+h − x′tδ)2 + ρδ′δ, then

ψi =
d2i

d2i + ρ
.

See Hastie et al. (2009) for a general reference and discussion.

5 The selection of the common factors as a multiple testing
problem

Consider the set of null hypotheses H0i : βi = 0, i = 1, . . . , N , in the predictive regression model,
y
(h)
t+h =

∑N
i=1 βiF̂it+εt, and let pi denote the two-sided p-value, based on the t-statistic ti associated

to the i- th principal components regression coefficient,

ti =
√
T
β̂i
σ̂
. (5)

An issue is posed by the estimation of the regression standard error σ by σ̂ in the denominator. The
usual estimator, the square root of

σ̂2 =
RSS

T −N
, RSS =

∑
t

y
(h)2
t+h − T

∑
i

β̂2
i ,

is either infeasible, if N ≥ T , or severely downward biased due to the overfitting when N is large.
We address the issue of estimating σ in subsection 5.1.

The testing strategy based on the ti statistics is multivariate, i.e. it treats all the remaining
variables as nuisance parameters, when testing for the significance of a particular effect. An alter-
native strategy, that avoids estimation of σ, is componentwise, being based on the marginal linear
regression t∗i statistics,

t∗i =

√
T (T − 1)

RSSi
β̂i, RSSi =

∑
t

y
(h)2
t+h − T β̂

2
i .
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The two t-statistics are related by

ti = t∗i

√
RSSi/(T − 1)

RSS/(T −N)
,

i.e. the univariate t∗i is multiplied by the root mean square ratio. The componentwise approach
is fairly popular in genomics and in hyper-dimensional contexts such that N > T . It has been
adopted by Bai and Ng (2008) for estimating the targeted predictors.

For T large, the null distribution of the statistic is ti ∼ N(0, 1), and the p-value is computed as
pi = 2(1 − Φ(|ti|)). Here, in fact, the alternative is two-sided, that is H1i : βi 6= 0, i = 1, . . . N .
Let us consider the re-ordering of the components according to the nonincreasing values of |ti|,
and let us denote by F̂(i),t the (i)-th component in the new ordering. The corresponding ordered
p-values will be denoted by

p(1) ≤ p(2) ≤ · · · ≤ p(i) ≤ · · · ≤ p(K).

The inclusion of a the i-th PC is based on a multiple testing procedure, which provides a decision
rule aiming at controlling overall error rates when performing simultaneous hypotheses tests. The
procedures can be distinguished according to the error that is controlled. For this purpose, consider
the following confusion matrix:

Decision
Actual Accept Reject Total

H0i : βi = 0 TN FP N0

H1i : βi 6= 0 FN TP N1

Total A R N

R = FP + TP is the total number of hypotheses rejected; FP is the number of false rejections
(Type I errors(, i.e. of falsely rejected hypothesis. There are N0 true nulls and N1 false nulls. TN
in the number of correctly accepted true nulls, etc. FN is the number of false positive decisions,
i.e. type II errors and TP (true positives) is the number of correct rejections.

The per comparison error rate (PCER) approach controls for the expected number of true H0i

rejected over N , the total number of tests,

PCER =
E(FP )

N
.

It amounts to ignoring the multiplicity problem altogether, and uses the critical value correspond-
ing to a preselected significance level α, and thus rejects all hypotheses for which pi < α. This
guarantees that α is an upper bound for PCER, as when N0 = N (all null hypotheses are true)
E(FP ) = αN .

The problem with this approach is that the probability of a false rejection increases rapidly with
N ; in particular, if N0 = N , P (R ≥ 1) = 1 − (1 − α)N . This has led to developing multiple
testing strategies requiring that the probability of one or more false rejections does not exceed
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a given level. Definining the family wise error rate (FWER) as the probability of rejecting any
true H0i, FWER = P (FP ≥ 1), the aim is defining decision rules guaranteeing FWER ≤ α.
The simplest procedure controlling the FWER is the Bonferroni rule, rejecting all H0i for which
pi <

α
N

. However, the power of this rule is typically very low, when N > N0 is large.
A more powerful method for controlling the FWER at level α is due to Holm (1979). Holm’s

method is a step-down procedure rejecting the (i)-th null hypothesis H0,(i) if

p(j) ≤
α

N − j + 1
, j = 1, 2, . . . , i.

Note that p(1) ≤ α/N and p(N) ≤ α, so that at the initial step we apply Bonferroni’s rule, while
at the final step we get the PCER approach. Thus, if p(1) > α/N , all nulls are accepted and the
procedure stops. Else, we reject H0,(1) and test the remaining hypotheses at level α/(N − 1). In
such case, we accept all H0,(i), (i) > 1 if p(2) > α/(N − 1), else we reject H0,(2) and test the
remaining hypotheses at level α/(N − 2), in which case we iterate the procedure, until all the
remaining hypotheses are accepted.

Procedures that control for the FWER have unduly conservative when N is very large, despite
the improvements offered by step-down procedures such as Holm’s. A less conservative approach
is offered by procedures that control for the false discovery rate (FDR), which is the expected
proportion of falsely rejected nulls:

FDR = E
(
FP

R

)
.

The main procedure is due to Benjamini and Hochberg (BH, Benjamini and Hochberg (1995)).
Let α denote a control rate in the range (0,1). A decision rule that has FDR = αN0/N ≤ α rejects
all Ho,(i), i = 1, . . . , r, for which

p(i) ≤ α
i

N
, i = 1, . . . , r, p(r+1) > α

r + 1

N
.

In high dimensional settings BH has been proved to achieve a better balance between multiplicity
control and power. Another advantage is that whenN = N0 BH controls also the FWER at level α.
Adaptive variants and refinements are available in the literature that address the issue of correlation
in the tests statistics. See Efron (2010) for a review.

As stated in in the introduction, if we can think that nature is benign and that the ordering of
the factors carries important information, then the selection should incorporate information on the
factor structure. This can be achieved by weighting the p-values, pi, according to the index i of the
factor. A procedure that allows for p-value weighting and achieves control over the FDR is due to
Genovese et al. (2006), and it works as follows:

1. Assign weights wi > 0 to each H0i so that w̄ = N−1
∑

iwi = 1.

2. Compute qi = pi/wi, i = 1, . . . , N .

10



3. Apply the BH procedure at level α to qi.

A natural choice for the weights in our context is setting wi = d2i ; as a matter of fact, if the
predictors are standardised, then S is a correlation matrix with eigenvalues 0 ≤ d2i ≤ N , and
N−1

∑
i d

2
i = 1.

5.1 Estimation of σ
Fan et al. (2012) propose a refitted cross-validatory (RCV) estimator of the error variance which is
consistent when the number of factors grows at a faster rate than the number of observations. The
procedure has two stages: the sample is split into two independent subsamples. In the first stage
variable selection is carried out on the two subsamples by a consistent pretest selection procedure,
based on the marginal t statistics t∗i , i = 1, . . . , N , yielding two sets of selected variables, denoted
M1 and M2. In the second stage, the two models are estimated on the other subsample (i.e. M1

is estimated on the second and M2 on the first subsample), yielding two estimates, s21 and s22, of
the error variance. The RCV estimator is the average of the two. Refitting aims at eliminating the
influence of variable that have been spuriously selected in the first stage.

5.2 Controlling for the lags of the dependent variable
So far we have considered the regression of a predictand on the principal components. If lags of the
predictand have to be incorporated, as in the FAR approach, the above variable selection procedures
are applied to the regression of the residuals of the regression of y(h)t+h on {yt, yt−1, . . . , yt−p} on
the principal components computed on the set {X̃it, i = 1, . . . , N}, where X̃it is the residual of
the regression of Xit on {yt, yt−1, . . . , yt−p}.

6 Empirical Analysis

6.1 Data and methods
The dataset used in empirical analysis is derived from that employed by Stock and Watson (2012a),
and consists of 211 U.S. macroeconomic time series, available at the quarterly observation fre-
quency from 1959-I to 2011-II. Of the 211 series, 121 were considered for our empirical analysis2.
The series are all transformed to induce stationarity by taking first or second differences, loga-
rithms or first or second differences of logarithms. The series are grouped into 12 categories; for a
complete list of variables and their transformation see the Appendix A.

We consider a transformation yt of the original variable Yt, depending on the order of inte-
gration. Real activity variables are typically integrated of order 1, denoted Yt ∼ I(1); defining

2As in Stock and Watson (2012b), we exclude series at high aggregate level. We decided to exclude also series
starting after 1959 or ending before 2011. As a result, our dataset can be considered as an update of that used in Stock
and Watson (2012b), which ended in 2009:II.
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yt = ∆ lnYt, the predictand is

y
(h)
t+h = 400× ∆h lnYt+h

h
, ∆h lnYt+h = lnYt+h − lnYt,

the h-period growth at an annual rate. For nominal price and wage series we assume Yt ∼ I(2),
and, in accordance to Stock and Watson (2002b), the series to be predicted is

y
(h)
t+h = 400×

(
∆h lnYt+h

h
−∆1 lnYt

)
.

The predictors are represented by the 121 standardized principal components obtained from
the spectral decomposition of the covariance matrix of the original indicators. A heat map of the
squared factor loadings for the 121 quarterly series is provided by figure 1. The vertical axis is
the series categories reported in A; in the horizontal axis the order of the principal component.
The plot evidences that the first factor loads principally on the growth rates of the the indicators of
real activity; the second has rather sparse loadings on both real and nominal variables, whereas the
third loads eminently on price and wage inflation rates.

The forecasts are obtained using a pseudo real-time forecasting procedure3. The data from
1960:II to 1984:IV are used as a training sample. A PCA on the N standardized indicators is con-
ducted to extract the factors, represented by the standardized principal components. The PCA are
selected and the estimated regression coefficients are used at time 1984:IV to forecast ŷ(h)T+h, h = 1,
2, and 4 quarters ahead. Then, the estimation sample is updated by one quarterly observations and
downdated by removing the initial one, so that the second set of observations ranges from from
1960:III to 1985:I, and so forth. For each rolling window, consisting of T = 100 observations, a
PCA is conducted to extract theN components, variable selection is performed and the predictor is
formed. The process continues until the end of the sample is reached. In our case the last available
data is 2010:II when h = 4. The experiment delivers around 100 forecasts for each forecasting
method, that can be compared with the observed values.

The predictors that are compared are:

• The pure autoregressive (AR) predictor

ŷ
(h)
t+h = φ̂

(h)
1 yt + · · ·+ φ̂(h)

p yt−p,

where the order is selected according to the Schwarz Information criterion (SIC) and the AR
coefficients are estimated by ordinary least squares.

• The dynamic factor model predictor (DFM5)

ŷ
(h)
t+h = β̂

(h)
1 F̂1t + · · ·+ β̂(h)

r F̂rt,

3As reported in D’Agostino and Giannone (2012), the exercise is pseudo real-time because we use the last vintage
of data (for this dataset the last vintage is November 2011) and we do not consider the release available at the time of
forecasting.
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where F̂it, i = 1, . . . , r, are the first r = 5 principal components. This number is selected by
the Bai and Ng (2002) criteria and coincides with the factor model benchmark proposed in
Stock and Watson (2012b). When lags of the predictand are included, as in (4), the order p
is that selected for the previous case (AR predictor).

• The supervised factor predictor

ŷ
(h)
t+h = β̂

(h)
1 F̂(1)t + · · ·+ β̂(h)

r F̂(r)t,

with r factors, ranked according to their p-values, selected according to

– Holm’s multiple comparison procedure, controlling the FWER at the 5% level;

– The Benjamini-Hochberg procedure, controlling the FDR at the 10% level4;

– The Genovese et al. (2006) procedure with p-values weighted according to the corre-
sponding eigenvalue.

If the lags of the predictand are considered, as in the FAR approach, then the factors are
selected from the principal components computed on the residuals of the projection of the
original predictors on the linear space spanned by the first p lags of the dependent variable.

We consider two implementations of the variable selection procedure, the first based on the
marginal t∗i statistics and the second based on the ti statistics computed using the Fan et al.
(2012) estimator of the regression error variance.

The performance of the different methods is evaluated using the mean square forecast error (MSFE),
defined as follows: let T0 be the first point in time for out of sample evaluation and T1 be the last
point in time for which we compute the MSFE for h = 1, 2, and 4

MSFE =
1

T1 − T0

T1∑
τ=T0

(
ŷ
(h)
τ+h − yτ+h

)2
.

The results are presented in terms of mean square error (MSFE) relative to the AR (SIC) benchmark

Rj =
MSFEj(h)

MSFEAR(h)

where j ∈ {DFM5,Holm,BH,GRW}. A value below one indicates that the specified method is
superior to the AR (SIC) forecast.

6.2 Empirical Results
The rolling forecast experiment was conducted for the following series:

4This is the target value most often considered in applications; see Efron (2010). Controlling the FDR at the 5%
level leads to very similar results.
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• Industrial Production Index (IPI)

• Total employment: Non farm Payroll (NPE)

• Unemployment Rate (UR)

• Housing Starts (HS)

• Consumer Price Index (CPI)

• Treasury Bill 10-years (TB)

• Real Personal Income (RPI)

• Gross National Product (GNP).

Tables 1 - 4 report the relative MSFEs for the five alternative forecasting models under consid-
eration. In particular, Table 1 refers to the case when lags of the predictand are not considered
for forecasting using DI and the selection of the PCs is based on the p-values computed on the
marginal t∗i statistics; Table 2 refers to the case when p lags are considered and the selection is
based on the marginal t∗i statistics. Tables 3 and 4 deal with the selection based on the ti statistics
with σ estimated according to the RCV method by Fan et al. (2012): in 3 no lags of the predictands
were considered, whereas in 4 they were.

There are several conclusions that can be drawn from the empirical evidence summarised in the
tables. The first broad consideration is that forecasting methods based on factor models provide
accurate forecasts and improve over the AR benchmark in the majority of the cases across all
horizons, when the lags of the dependent variable are not considered (which is the case considered
in Tables 1 and 3).

The second general conclusion is that pre-selection of the components by the multiple testing
procedures considered leads to several improvements in forecasting accuracy (when no lags of the
predictand are considered). The three procedures show the best performances for 52% of the cases
across horizons/variables combinations in tables 1 and 3, whereas DFM5 and AR(SIC) have the
best performances only for 21% and 27% of the occurrences, respectively.

Thirdly, when the lags of the target variables are considered in the forecasting model, the pre-
dictors based on the factors, regardless of their selection, are more systematically outperformed by
the benchmark AR predictor. The combined evidence of Tables 2 and 4 is that the AR predictor
is ranked best in 58% of the cases. The last finding has already been reported and investigated
in previous studies, among which we mention D’Agostino and Giannone (2012) and Stock and
Watson (2002a). A possible explanation is that factor models have the ability to capture efficiently
not only the information that is common to other cross-sectional variables, but also the specific
dynamic features of each variable to predict. Also, after conditioning for the role of lagged values,
the factors computed on the residual variation contribute more to the variability of the forecasts,
leading to an increase in the MSFE.

The series for which the multiple testing procedures outperform the DFM5 predictor are Total
employment: Non farm Payroll (NPE), Housing Starts (HS), Treasury Bill 10-years (TB), Real
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Personal Income (RPI). For NPE, HS, TB and RPI they produce the minimum MSFEe across all
horizons (panels A, B and C of table 1), with the exception of TB at horizon h = 1, for which
the AR predictor ranks best. Finally, DFM5 is ranked best for UR, achieving a 20% reduction in
the MSFE over the AR predictor and a 4% reduction over the multiple testing procedures, across
all horizons. For the other variables the results are less sharp and depend basically on the forecast
horizon. In Table 1 for IPX and GNP we observe a slight improvement of 4% of DFM5 and 15%
of BH over AR only for h = 1, whereas for h = 2 and h = 4 both multiple testing procedures and
DFM5 do not outperform the benchmark.

The choice of the reference test statistics (marginal t∗i or multiple regression ti, with RCV
estimation of σ) does not seem to affect the results of the multiple testing procedures. The previous
results are confirmed examining Table 2. We observe a further improvement only for GNP, where
now the best performing predictor is GRW, achieving a 24% MSFE reduction with respect to the
benchmark, also for h = 2 (Panel B) where the gain in forecasting accuracy amounts to about
10%.

Among the multiple testing procedures, weighting the p-values according to the eigenvalues
does not lead to an improvement, with a few exceptions. Holm’s sequential procedure clearly out-
performs the other predictors in terms of MSFE in 27% of the cases when no lags of the dependent
variable are in use, whereas BH and GRW are ranked best in 19% and 6% of the cases, respec-
tively. This result seems to depend exclusively by the conservative nature of the Holm method,
compared to the procedures controlling the FDR.

6.3 Assessment of real time performance
Following D’Agostino and Giannone (2012), we evaluate how the forecasting performance of the
predictors evolved over time. In figure 2 we plot the time series pattern of the MSFEs of the DFM5
predictor (black solid line) and the predictor resulting from Holm’s selection of the factors (blue
dashed line), relative to the AR benchmark (red line). We consider only 3 series, namely NPE,
TB and RPI, for which the Holm’s selection provided sizable improvements. The relative MSFEs
were smoothed over time with a centered moving window spanning 2 years. The shaded areas are
the NBER recessions.

Interestingly, the factor based methods perform best during the great recession, and present
no substantial gain during the great moderation. This empirical findings is consistent with the
literature, as during the recession the comovements among economic variables are more prominent
and thus the factors become more useful for forecasting. The selection of the factor leads to greater
MSFE reductions in the last five years of the sample, including the great recession.

Further insight into the assessment of the performance of Holm’s factor selection method can
be gauged from the consideration of which factors are selected by the procedure. Figure 3 is a plot
versus time of the index number of the selected factors arising as a by-product of the rolling fore-
cast experiment. In the case of NPE (first row), the first principal components is always selected,
and is the only relevant factors for forecasting one-step-ahead. The second and third factors enter
the selection at horizons h = 2 and h = 4, with the second factor being switched off during the
recession and the third propping up during the great recession. Hence, it may be concluded that
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Table 1: Relative Mean Square Forecast Errors of 5 alternative predictors at horizons h = 1, 2, and
h = 4. The selection of the factors is based on the marginal t∗i statistics and prediction occurs by
principal component regression on the selected factors with no lags of the predictand.

IPX NPE UR HS CPI TB RPI GNP

Panel A: Rolling, h = 1

AR(SIC) 13.164 0.760 0.039 0.005 6.290 0.172 12.181 5.573

DFM5 0.960 0.910 0.693 0.943 0.959 1.207 0.898 0.942

Holm 1.158 0.771 0.728 0.914 1.014 1.079 0.828 0.900

BH 1.173 0.777 0.728 0.896 1.028 1.083 0.897 0.848

GRW 1.155 0.771 0.728 0.917 1.022 1.089 0.884 0.876

Panel B: Rolling, h = 2

AR(SIC) 16.129 1.103 0.041 0.003 2.068 0.121 5.816 4.084

DFM5 1.026 1.013 0.680 1.126 0.873 1.246 0.854 1.126

Holm 1.102 0.876 0.757 0.995 0.917 0.985 0.769 1.000

BH 1.102 0.873 0.754 1.041 0.949 1.064 0.774 1.000

GRW 1.102 0.876 0.759 0.995 0.917 0.985 0.763 1.000

Panel C: Rolling, h = 4

AR(SIC) 16.184 1.694 0.049 0.002 0.553 0.080 3.635 3.595

DFM5 1.124 1.072 0.713 1.084 0.869 1.198 0.801 1.112

Holm 1.047 0.879 0.759 0.979 0.928 0.974 0.681 1.008

BH 1.025 0.916 0.735 0.990 0.859 0.963 0.684 1.028

GRW 1.039 0.917 0.766 0.979 0.954 0.974 0.682 1.005

NOTE: Numerical entries are mean square forecast errors (MSFEs). Forecasts are quarterly, for the period 1985:IV - 2010:II for a total of

103 out of sample forecasts. Entries in the first row, corresponding to the AR(SIC) benchmark model, are actual MSFEs, while all other

entries are relative MSFEs, such that an entry below one indicates that the specified method is superior to the AR(BIC) forecast.
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Table 2: Relative Mean Square Forecast Errors of 5 alternative predictors at horizons h = 1, 2, and
h = 4. The selection of the factors is based on the marginal t∗i statistics and prediction occurs by
the principal component regression on the selected factors including p lags of the predictand.

IPX NPE UR HS CPI TB RPI GNP

Panel A: Rolling, h = 1

AR(SIC) 13.164 0.760 0.039 0.005 6.290 0.172 12.181 5.573

DFM5 1.195 1.119 0.954 0.939 1.036 1.189 0.996 0.968

Holm 1.005 0.968 0.912 0.894 1.090 1.123 0.969 0.846

BH 0.987 0.968 0.912 0.873 1.093 1.115 0.937 0.836

GRW 1.004 0.971 0.912 0.880 1.075 1.095 0.971 0.847

Panel B: Rolling, h = 2

AR(SIC) 16.129 1.103 0.041 0.003 2.068 0.121 5.816 4.084

DFM5 1.230 1.215 1.158 0.984 0.987 1.046 0.875 1.067

Holm 1.166 1.204 1.064 0.923 1.035 1.033 0.851 1.021

BH 1.161 1.204 1.064 0.932 1.048 1.031 0.871 1.023

GRW 1.168 1.205 1.064 0.939 1.029 1.024 0.846 1.020

Panel C: Rolling, h = 4

AR(SIC) 16.184 1.694 0.049 0.002 0.553 0.080 3.635 3.595

DFM5 1.084 1.194 1.103 1.033 0.935 1.055 0.962 1.101

Holm 1.063 1.189 1.094 1.007 0.970 1.048 0.912 1.037

BH 1.064 1.185 1.093 1.009 0.959 1.054 0.928 1.040

GRW 1.077 1.189 1.094 1.009 0.972 1.051 0.919 1.037
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Table 3: Relative Mean Square Forecast Errors of 5 alternative predictors at horizons h = 1, 2,
and h = 4. The selection of the factors is based on the ti statistics with RCV estimation of σ
and prediction occurs by principal component regression on the selected factors and no lags of the
predictand.

IPX NPE UR HS CPI TB RPI GNP

Panel A: Rolling, h = 1

AR(SIC) 13.164 0.760 0.039 0.005 6.290 0.172 12.181 5.573

DFM5 0.960 0.910 0.693 0.943 0.959 1.207 0.898 0.942

Holm 1.185 0.744 0.721 0.901 1.040 1.114 0.828 0.816

BH 1.090 0.737 0.749 0.892 1.036 1.181 0.966 0.804

GRW 1.120 0.728 0.750 0.833 1.051 1.206 0.988 0.786

Panel B: Rolling, h = 2

AR(SIC) 16.129 1.103 0.041 0.003 2.068 0.121 5.816 4.084

DFM5 1.026 1.013 0.680 1.126 0.873 1.246 0.854 1.126

Holm 1.123 0.889 0.734 1.065 0.917 1.098 0.769 0.919

BH 1.126 0.930 0.778 1.023 0.985 1.178 0.813 0.926

GRW 1.082 0.889 0.796 1.010 0.989 1.149 0.785 0.926

Panel C: Rolling, h = 4

AR(SIC) 16.184 1.694 0.049 0.002 0.553 0.080 3.635 3.595

DFM5 1.124 1.072 0.713 1.084 0.869 1.198 0.801 1.112

Holm 0.960 1.032 0.675 0.988 0.896 0.975 0.686 1.145

BH 0.971 1.003 0.694 0.963 0.882 1.026 0.681 1.066

GRW 0.974 0.993 0.702 0.963 0.885 1.047 0.678 1.066
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Table 4: Relative Mean Square Forecast Errors of 5 alternative predictors at horizons h = 1, 2,
and h = 4. The selection of the factors is based on the ti statistics with RCV estimation of σ and
prediction occurs by principal component regression on the selected factors including p lags of the
predictand.

IPX NPE UR HS CPI TB and RPI GNP

Panel A: Rolling, h = 1

AR(SIC) 13.164 0.760 0.039 0.005 6.290 0.172 12.181 5.573

DFM5 1.195 1.119 0.954 0.939 1.036 1.189 0.996 0.968

Holm 1.149 0.957 0.921 0.944 1.099 1.192 0.961 0.922

BH 1.173 0.963 0.861 0.924 1.063 1.338 1.018 0.821

GRW 1.169 0.967 0.876 0.942 1.070 1.301 1.075 0.821

Panel B: Rolling, h = 2

AR(SIC) 16.129 1.103 0.041 0.003 2.068 0.121 5.816 4.084

DFM5 1.230 1.215 1.158 0.984 0.987 1.046 0.875 1.067

Holm 1.206 1.184 1.062 0.951 1.045 1.059 0.874 1.013

BH 1.236 1.170 1.068 1.012 1.018 1.074 0.863 1.019

GRW 1.232 1.172 1.070 0.965 1.021 1.075 0.872 1.019

Panel C: Rolling, h = 4

AR(SIC) 16.184 1.694 0.049 0.002 0.553 0.080 3.635 3.595

DFM5 1.084 1.194 1.103 1.033 0.935 1.055 0.962 1.101

Holm 1.070 1.178 1.091 1.000 0.959 1.034 0.915 1.054

BH 1.073 1.175 1.094 1.014 0.979 1.029 0.942 1.052

GRW 1.073 1.174 1.096 1.016 0.994 1.028 0.933 1.054
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nature is benign in this case as the information that is essential for forecasting is well represented
in the first three factors.

Nature is less benign in the TB case (second row panels). No factors is selected at the beginning
and most noticeably at the end of the sample period. High order components are selected and the
intermediate ones receive zero weight. Nature is even more bizarre for the RPI variable (bottom
panels); the number of selected factors never exceeds the four, but order of selected factors is
surprising. For predicting one-step-ahead the Holm’s procedure, more or less regularly, selects
the 16-th, 18-th and 24-th factors. This selection could never be contemplated in a classic factors
model.

7 Conclusions
The paper has proposed a method for supervising the diffusion index methodology, originally
proposed by Stock and Watson (2002a), which is based on the simple idea of selecting the relevant
factors using a multiple testing procedure, achieving control over either the family wise error rate
or the false discovery rate. Prior information about the order of the components may be introduced
by weighting the p-values of the test statistics for variable exclusion with weights proportional to
the eigenvalues.

Can we conclude that nature is tricky, but essentially benign? The answer is a qualified yes.
The information that is needed for forecasting the eight macroeconomic variables considered in
the paper is effectively condensed by the first few factors. However, variable selection, leading
to exclude some of the low order principal components, can lead to a sizable improvement in
forecasting in specific cases. Only in one instance, real personal income, we were able to detect a
significant contribution from high order components.
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A List of the time series used in the empirical illustration
This Appendix reports the time series in the dataset used in the application, the transformation
type, the observations frequency (M= monthly and Q = quarterly) and the group to which they
belong.

Letting Zt denote the raw series, the following transformations are adopted:

Xt =



Zt if Tcode=1
∆Zt if Tcode=2
∆2Zt if Tcode=3
ln(Zt) if Tcode=4
∆ lnZt if Tcode=5
∆2 lnZt if Tcode=6

Table 5: List of the predictors.

N Short Description Long Description Tcode Frequency Category

NIPA

1 Disp-Income Real Disposable Personal Income 5 Q 1
2 FixedInv Real Private Fixed Investment 5 Q 1
3 Gov.Spending Real Government Consumption Expenditures & Gross Investment 5 Q 1
4 GDP Real Gross Domestic Product 5 Q 1
5 Investment Real Gross Private Domestic Investment 5 Q 1
6 Consumption Real Personal Consumption Expenditures 5 Q 1
7 Inv:Equip&Software Real Nonresidential Investment: Equipment & Software 5 Q 1
8 Exports Real Exports of Goods & Services 5 Q 1
9 Gov Receipts Government Current Receipts (Nominal) 5 Q 1
10 Gov:Fed Real Federal Consumption Expenditures & Gross Investment 5 Q 1
11 Imports Real Imports of Goods & Services 5 Q 1
12 Cons:Dur Real Personal Consumption Expenditures: Durable Goods 5 Q 1
13 Cons:Svc Real Personal Consumption Expenditures: Services 5 Q 1
14 Cons:NonDur Real Personal Consumption Expenditures: Nondurable Goods 5 Q 1
15 FixInv:NonRes Real Private Nonresidential Fixed Investment 5 Q 1
16 FixedInv:Res Real Private Residential Fixed Investment 5 Q 1
17 Gov:State&Local Real State & Local Cons. Exp. & Gross Investment 5 Q 1
18 Inv:Inventories Real Change in Private Inventories 5 Q 1
19 Inv:Inventories Ch. Inv/GDP 1 Q 1
20 Output:Bus Business Sector: Output 5 Q 1
21 Ouput:NFB Nonfarm Business Sector: Output 5 Q 1

Industrial Production

22 IP: Dur gds materials Industrial Production: Durable Materials 5 M 2
23 IP: Nondur gds materials Industrial Production: nondurable Materials 5 M 2
24 Capu Man. Capu Man. (Fred post 1972, Older series before 1972) 1 M 2
25 IP: Dur Cons. Goods Industrial Production: Durable Consumer Goods 5 M 2
26 IP: Auto IP: Automotive products 5 M 2
27 IP:NonDur Cons God Industrial Production: Nondurable Consumer Goods 5 M 2
28 IP: Bus Equip Industrial Production: Business Equipment 5 M 2
29 IP: Energy Prds IP: Consumer Energy Products 5 M 2

Employment and Unemployment

30 Emp: Gov(Fed) Federal 5 M 3
31 Emp: Gov (State) State government 5 M 3
32 Emp: Gov (Local) Local government 5 M 3
33 Emp: DurGoods All Employees: Durable Goods Manufacturing 5 M 3
34 Emp: Const All Employees: Construction 5 M 3
35 Emp: Edu&Health All Employees: Education & Health Services 5 M 3
36 Emp: Finance All Employees: Financial Activities 5 M 3
37 Emp: Infor All Employees: Information Services 5 M 3
38 Emp:Leisure All Employees: Leisure & Hospitality 5 M 3
39 Emp: Mining/NatRes All Employees: Natural Resources & Mining 5 M 3
40 Emp: Bus Serv All Employees: Professional & Bus. Services 5 M 3
41 Emp:OtherSvcs All Employees: Other Services 5 M 3
42 Emp:Trade&Trans All Employees: Trade, Transp. & Utilities 5 M 3
43 Emp:Retail All Employees: Retail Trade 5 M 3
44 Emp:Wholesal All Employees: Wholesale Trade 5 M 3

- Continued on next page -
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Table 5 – continued from previous page

45 Urate: Age16-19 Unemployment Rate - 16-19 yrs 2 M 3
46 Urate:Age>20 Men Unemployment Rate - 20 yrs. & over, Men 2 M 3
47 Urate: Age>20 Women Unemployment Rate - 20 yrs. & over, Women 2 M 3
48 U: Dur<5wks Number Unemployed for Less than 5 Weeks 5 M 3
49 U:Dur5-14wks Number Unemployed for 5-14 Weeks 5 M 3
50 U:dur>15-26wks Civilians Unemployed for 15-26 Weeks 5 M 3
51 U: Dur>27wks Number Unemployed for 27 Weeks & over 5 M 3
52 Emp:SlackWk Employment Level - Part-Time, All Industries 5 M 3
53 AWH Man Average Weekly Hours: Mfg 1 M 3
54 AWH Overtime Average Weekly Hours: Overtime: Mfg 2 M 3
55 Emp:nfb Nonfarm Business Sector: Employment 5 Q 3

Housing Starts

56 Hstarts:MW Housing Starts in Midwest Census Region 5 M 4
57 Hstarts:NE Housing Starts in Northeast Census Region 5 M 4
58 Hstarts:S Housing Starts in South Census Region 5 M 4
59 Hstarts:W Housing Starts in West Census Region 5 M 4

Inventories, Orders and Sales

60 Orders (DurMfg) Mfrs’ new orders durable goods industries (bil. chain 2000 $) 5 M 5
61 Orders(Cons. Goods. Mfrs’ new orders, consumer goods and materials (mil. 1982 $) 5 M 5
62 UnfOrders(DurGds) Mfrs’ unfilled orders durable goods indus. (bil. chain 2000 $) 5 M 5
63 VendPerf Index of supplier deliveries – vendor performance (pct.) 1 M 5
64 Orders(NonDefCap) Mfrs’ new orders, nondefense capital goods (mil. 1982 $) 5 M 5
65 MT Invent Manufacturing and trade inventories (bil. Chain 2005 $) 5 M 5
66 Ret. Sale Sales of retail stores (mil. Chain 2000 $) 5 M 5

Prices

67 Price:Oil PPI: Crude Petroleum 5 M 6
68 PPI:FinGds Producer Price Index: Finished Goods 6 M 6
69 PPI:FinConsGds(Food) Producer Price Index: Finished Consumer Foods 6 M 6
70 PPI:FinConsGds Producer Price Index: Finished Consumer Goods 6 M 6
71 PPI:IndCom Producer Price Index: Industrial Commodities 6 M 6
72 PPI:IntMat Producer Price Index: Interm. Materials: Supplies & Comp. 6 M 6
73 PCED MotorVec Motor vehicles and parts 6 Q 6
74 PCED DurHousehold Furnishings and durable household equipment 6 Q 6
75 PCED Recreation Recreational goods and vehicles 6 Q 6
76 PCED OthDurGds Other durable goods 6 Q 6
77 PCED Food Bev Food and beverages purchased for off-premises cons. 6 Q 6
78 PCED Clothing Clothing and footwear 6 Q 6
79 PCED Gas Enrgy Gasoline and other energy goods 6 Q 6
80 PCED OthNDurGds Other nondurable goods 6 Q 6
81 PCED Housing-Utilities Housing and utilities 6 Q 6
82 PCED HealthCare Health care 6 Q 6
83 PCED TransSvg Transportation services 6 Q 6
84 PCED RecServices Recreation services 6 Q 6
85 PCED FoodServ Acc. Food services and accommodations 6 Q 6
86 PCED FIRE Financial services and insurance 6 Q 6
87 GDP Defl Gross Domestic Product: Chain-type Price Index 6 Q 6
88 GPDI Defl Gross Private Domestic Investment: Chain-type Price Index 6 Q 6
89 BusSec Defl Business Sector: Implicit Price Deflator 6 Q 6

Earnings and Productivity

90 CPH:NFB Nonfarm Business Sector: Real Compensation Per Hour 5 Q 7
91 CPH:Bus Business Sector: Real Compensation Per Hour 5 Q 7
92 OPH:nfb Nonfarm Business Sector: Output Per Hour of All Persons 5 Q 7
93 ULC:NFB Nonfarm Business Sector: Unit Labor Cost 5 Q 7
94 UNLPay:nfb Nonfarm Business Sector: Unit Nonlabor Payments 5 Q 7

Interest Rates

95 FedFunds Effective Federal Funds Rate 2 M 8
96 TB-3Mth 3-Month Treasury Bill: Sec. Market Rate 2 M 8
97 AAA GS10 AAA-GS10 Spread 1 M 8
98 BAA GS10 BAA-GS10 Spread 1 M 8
99 tb6m tb3m tb6m-tb3m 1 M 8

100 GS1 tb3m GS1 Tb3m 1 M 8
101 GS10 tb3m GS10 Tb3m 1 M 8

Money and Credit

102 C&Lloand Commercial and Ind. Loans at All Comm. Banks 5 M 9
103 ConsLoans Consumer Loans at All Comm. Banks 5 M 9
104 NonBorRes Non-Borr. Reserves of Dep. Inst. Auction Credit 5 M 9
105 NonRevCredit Total Nonrevolving Credit Outstanding 5 M 9
106 LoansRealEst Real Estate Loans at All Comm. Banks 5 M 9
107 TotRes Total Reserves, Adj. for Chgs in Reserve Reqs. 5 M 9
108 ConsuCred Total Consumer Credit Outstanding 5 M 9

- Continued on next page -
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Table 5 – continued from previous page

Stock Prices, Wealth and Household Balance Sheet

109 S&P 500 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE 5 M 10
110 DJIA COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5 M 10
111 HHW:W Total Net Worth 5 Q 10
112 HHW:TA RE TTABSHNO-REANSHNO 5 Q 10
113 HHW:RE Real Estate - Assets - Households and Nonprofit Orgs 5 Q 10
114 HHW:Fin Total Financial Assets - Assets - Households and Non Profits 5 Q 10
115 HHW:Liab Total Liabilities - Households and Nonprofits 5 Q 10

Echange Rates

116 Ex rate: major FRB Nominal Major Currencies Dollar Index 5 M 11
117 Ex rate: Switz FOREIGN EXCHANGE RATE: SWITZERLAND 5 M 11
118 Ex rate: Japan FOREIGN EXCHANGE RATE: JAPAN 5 M 11
119 Ex rate: UK FOREIGN EXCHANGE RATE: UNITED KINGDOM 5 M 11
120 EX rate: Canada FOREIGN EXCHANGE RATE: CANADA 5 M 11

Other

121 Cons. Expectations Consumer expectations NSA 1 M 12

29



Research Papers 
2013 

 
 

 

 

 

 

2014-28: Tom Engsted: Fama on bubbles 

2014-29: Massimiliano Caporin, Eduardo Rossi and Paolo Santucci de Magistris: Chasing 
volatility - A persistent multiplicative error model with jumps 

2014-30: Michael Creel and Dennis Kristensen: ABC of SV: Limited Information 
Likelihood Inference in Stochastic Volatility Jump-Diffusion Models 

2014-31: Peter Christoffersen, Asger Lunde and Kasper V. Olesen: Factor Structure in 
Commodity Futures Return and Volatility 

2014-32: Ulrich Hounyo: The wild tapered block bootstrap 

2014-33: Massimiliano Caporin, Luca Corazzini and Michele Costola: Measuring the 
Behavioral Component of Financial Fluctuations: An Analysis Based on the 
S&P 500 

2014-34: Morten Ørregaard Nielsen: Asymptotics for the conditional-sum-of-squares 
estimator in multivariate fractional time series models 

2014-35: Ulrich Hounyo: Bootstrapping integrated covariance matrix estimators in 
noisy jump-diffusion models with non-synchronous trading 

2014-36: Mehmet Caner and Anders Bredahl Kock: Asymptotically Honest Confidence 
Regions for High Dimensional 

 

2014-37:  Gustavo Fruet Dias and George Kapetanios: Forecasting Medium and Large 
Datasets with Vector Autoregressive Moving Average (VARMA) Models 

 

2014-38: Søren Johansen: Times Series: Cointegration  

2014-39: Søren Johansen and Bent Nielsen: Outlier detection algorithms for least 
squares time series regression 

 

2014-40: Søren Johansen and Lukasz Gatarek: Optimal hedging with the cointegrated 
vector autoregressive model 

 

2014-41: Laurent Callot and Johannes Tang Kristensen: Vector Autoregressions with 
Parsimoniously Time Varying Parameters and an Application to Monetary 
Policy 

 

2014-42: Laurent A. F. Callot, Anders B. Kock and Marcelo C. Medeiros: Estimation and 
Forecasting of Large Realized Covariance Matrices and Portfolio Choice 

 

2014-43: Paolo Santucci de Magistris and Federico Carlini: On the identification of 
fractionally cointegrated VAR models with the F(d) condition 

 

2014-44: Laurent Callot, Niels Haldrup and Malene Kallestrup Lamb: Deterministic and 
stochastic trends in the Lee-Carter mortality model 

 

2014-45: Nektarios Aslanidis, Charlotte Christiansen, Neophytos Lambertides and 
Christos S. Savva: Idiosyncratic Volatility Puzzle: Infl‡uence of Macro-Finance 
Factors 

 

2014-46: Alessandro Giovannelli and Tommaso Proietti: On the Selection of Common 
Factors for Macroeconomic Forecasting 

 

 


