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Abstract. The Lee and Carter (1992) model assumes that the de-
terministic and stochastic time series dynamics loads with identical weights
when describing the development of age specific mortality rates. Effectively
this means that the main characteristics of the model simplifies to a random
walk model with age specific drift components. But restricting the adjustment
mechanism of the stochastic and linear trend components to be identical may
be a too strong simplification. In fact, the presence of a stochastic trend com-
ponent may itself result from a bias induced by properly fitting the linear trend
that characterizes mortality data. We find empirical evidence that this feature
of the Lee-Carter model overly restricts the system dynamics and we suggest to
separate the deterministic and stochastic time series components at the benefit
of improved fit and forecasting performance. In fact, we find that the classical
Lee-Carter model will otherwise over estimate the reduction of mortality for
the younger age groups and will under estimate the reduction of mortality for
the older age groups. In practice, our recommendation means that the Lee-
Carter model instead of a one-factor model should be formulated as a two (or
several)-factor model where one factor is deterministic and the other factors
are stochastic. This feature generalizes to the range of models that extend the
Lee-Carter model in various directions.

Keywords: Mortality modelling, factor models, principal components, stochastic
and deterministic trends.
JEL-Classifications: C2, C23, J1, J11.

1. Introduction
One of the most commonly used models to forecast age-specific mortality rates is
based on the Lee and Carter (1992) model. The model has attracted a lot of atten-
tion and has become a benchmark for mortality modelling and life table predictions
although the model has also been subject to criticism. Even though the model was
mainly intended to describe the statistical variation in all-cause mortality in the
United States and similar developed countries, the model is now widely used to pre-
dict all-cause and cause specific mortality for a large range of developed and less
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developed countries around the world, see e.g. Lee (2000), Booth et al. (2002),
Renshaw and Haberman (2003, 2010), Girosi and King (2006) amongst many others.
The basic Lee-Carter model is rather simple. It describes the age specific (log)

mortality in terms of age-specific intercepts and a single time factor (known as the
mortality index) with age-specific loadings. In most applications the mortality index
is modelled as a random walk with drift which is a fundamental assumption when
using the model for projections into the future. The model parameters, i.e. the
age-specific intercepts and loadings and the time factor, can be estimated rather
easily by use of singular value decomposition of the matrix of historical mortality
rates over age-groups and time. It is well documented that over long histories of
time log (all cause) mortality has evolved linearly which is clearly the most dominant
dynamic feature of the data. The assumption that the time-factor of the Lee-Carter
model is governed by a random walk with drift will clearly capture this feature,
but because the model is a one factor model it also means that the loadings of the
time trend (or drift) as well as any stochastic components will be the same even
though the order of the linear trend will dominate the stochastic trend. This may
appear to be an inappropriate restriction of the model dynamics. In fact, because an
empirical regularity of log mortality measured over time is a dominant linear trend,
the recommendation of Lee and Carter to extract a single factor via singular value
decomposition effectively implies that the linear time trend will determine that factor
and thus the model simplifies to a random walk with age specific drift terms and with
a covariance structure that potentially is biased. The common practice of modelling
the mortality time index as a random walk with drift can be the result of modelling
the time index as a single factor whereby the stochastic component will be biased to
have a unit root. A similar reasoning can also be found in Girosi and King (2007).
In this paper we argue that an improved model fit can be gained by separating the

deterministic and stochastic dynamics of the model and by allowing different loadings
depending upon the source of the dynamics. Still, the model encompasses the basic
Lee-Carter model as a special case. We argue that a two (or several) factor model with
one deterministic factor and the other factor(s) being stochastic is preferable when in
fact the mortality series exhibit a strong linear trend. For a number of countries we
demonstrate empirically that the improved fit can be significant and that the loadings
of the deterministic and stochastic factors are indeed rather different. We find that
the classical Lee-Carter model will tend to over estimate the reduction of mortality
for the younger age groups and will under estimate the reduction of mortality for
the older age groups. Generally, the transient dynamics of the log mortality will be
rather different than the long run trend and hence will have implications in particular
for short and medium term forecasts.
Even though the analysis of the present paper uses the classical Lee-Carter model

as the benchmark model our results generalize to the range of models with strongly
negatively trending mortality that extends the Lee-Carter model such as Lee and
Miller (2001), Booth et al. (2002), Renshaw and Haberman (2003, 2010) and Plat
(2009).
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The plan of the paper is the following. In section 2 some features of the clas-
sical Lee-Carter model are presented and in section 3 we suggest a modification of
the model that facilitates separation of the deterministic and stochastic dynamics.
Subsequently, empirical illustrations to gender specific (all cause) mortality data for
U.S., Japan, and France are provided to demonstrate the advances of the modified
model.

2. The classical Lee-Carter model
Assume that we have observed age-specific death rates mxt for a set of calendar years
t = t1, t2, ..., tn and ages x = x1, x2, ..., xm. Subsequently, we will refer to mxt as the
age-specific mortality rates which are assumed to be constant within each interval
of age and time, but is allowed to vary from one interval to the next. The classical
Lee-Carter (CLC) model assumes a log bi-linear model for mortality rates along the
age dimension in terms of the parameters αx and βx, and along the time dimension
by the time factor kt :

lnmxt = αx + βxkt + εxt (1)

The parameters αx represent age-specific constants describing the general pattern
of mortality averaged over time. kt, known as the mortality index, summarizes the
development in the level of mortality over time and thus will capture the general time
trend of the death rates. The parameters βx measure the loadings to the particular
age groups when the mortality index changes. The error term εxt has mean zero and
variance σ2ε and reflects the age-specific historical fluctuations not captured by the
model. Often εxt is assumed to be normally distributed. Notice that a total of m×n
observations mxt are available for estimation and the model thus needs 2m + n + 1
parameters to be estimated, i.e. αx, βx, kt and σ2ε . As seen, the one-factor model (1)
is a special case of a principal components model with r = 1 principal component.
The model parameters are not identified, but a simple identification scheme can

be chosen. It is common to impose the constraints
∑

t kt = 0 and
∑

x βx = 1 whereby
it follows that

α̂x = lnmx = n−1
∑
t

lnmxt (2)

that is, the empirical average over time of the age profile for age group x.
Subsequently, β̂x and k̂t can be calculated by singular-value decomposition (SVD)

of the m× n matrix of demeaned log mortality rates M =
{

lnmxt − lnmx

}
subject

to the chosen identification scheme. For M = ULV ′ the estimate of βx is given by
the first column of U corresponding to the largest singular value and scaled to have
unit variance. kt is subsequently calculated as kt = β′M t, where M t is the row mean
of M.
After estimation of the model parameters and extraction of the mortality index

k̂t, the next step is to model a process for k̂t which can be used to generate h-steps
ahead forecasts E(kt+h|t) that serve as input to the forecasts E(lnmx,t+h|t). Typically
the model for k̂t is based on an ARIMA time series specification and in most cases it
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is found appropriate to model k̂t as a random walk with drift, e.g. ∆k̂t = µ + vt. A
consequence of this is that the n log mortality rates each cointegrate pairwisely and
are driven by the same stochastic trend, see Lazar and Denuit (2009). For a given
sample, the level of the mobility index can be described as

kt = k1 + µ(t− 1) +
t∑

j=2

vj, for t = 2, ...., n (3)

where the drift parameter µ can be estimated as

µ̂ =
1

n− 1
(k̂n − k̂1) (4)

From these assumptions, the mortality index is seen to be governed by a linear trend
as well as a stochastic trend (random walk) component,

∑t
j=2 vj. By mean-adjusting

the trend, log mortality can thus be discribed as

lnmxt = αx + βxµ(t− t) + βx

{
t∑

j=2

vj +
µ

2
(n− 1) + k1

}
+ εxt (5)

where t = n−1
∑

t t = 1
2
(n+1) and the identifying restrictions imply that 1

n

∑n
t=1(
∑t

j=2 vj)+
µ
2
(n − 1) + k1 = 0. Hence the random walk with drift assumption means that log
mortality for each age group is affected through identical loadings βx associated with
the linear trend term and the (level corrected) stochastic trend component.

3. Separating deterministic and stochastic dynamics of the
Lee-Carter model

In terms of long range forecasting it is clear that the drift (or trend) component of
the mortality index will dominate the stochastic trend component so the fact that the
loadings are restricted to be the same for the two components will have little impact
for the long horizon point forecasts. However, a more flexible specification of the
CLC model seems natural in light of the foregoing discussion. Consider a modified
Lee-Carter model which allows the loadings of the deterministic and the stochastic
trend to be different, that is

lnmxt = α̃x + γ̃x(t− t) + β̃xk̃t + ε̃xt (6)

where k̃t is a time series process which typically will be modelled as a random walk
without drift or as a stationary process, e.g. an AR(p) process. We will denote this
model specification the detrended Lee-Carter (DLC) model. Notice, that if γ̃x = β̃x
then the CLC model (1) with a random walk plus trend specification of kt and the
DLC model (6) will coincide. However, to the extent that the loadings are different
it is expected that the DLC will be superior in terms of model fit as well as in terms
of forecasting due to the increased flexibility of the model. Also, the (stochastic)
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time series properties of k̃t may be rather different from those of kt unless the CLC
model is the right specification. In fact, if the model (6) with γ̃x 6= β̃x is the correct
model specification, then it is likely that estimation of the stochastic component of kt
based on the model (1) will be biased due to the presence of a linear trend component
that will dominate kt overall. Furthermore, if the Lee-Carter model (1) is estimated
and the true model is (6) with γ̃x 6= β̃x then the covariance structure is obviously
distorted and will depend upon the estimate βx leading to a biased two-stage Lee-
Carter estimator, see also Girosi and King (2007). The cost of the more flexible DLC
model specification is that m additional parameters need to be estimated but this is
necessary to avoid the bias that the Lee-Carter model would otherwise imply when
γ̃x 6= β̃x.
The estimation of the modified model can be conducted by prior detrending and

an identification scheme along the lines of the classical Lee-Carter model can be easily
conducted. If we impose the identifying restrictions of Lee and Carter,

∑
t k̃t = 0 and∑

x β̃x = 1 it is seen that ̂̃αx = α̂x = n−1
∑
t

lnmxt (7)

In fact, both α̃x and γ̃x can be straightforwardly estimated by least squares detrending
via the regression

lnmxt = α̃x + γ̃x(t− t) + ωt (8)

and subsequently extracting β̃x and k̃t by singular value decomposition of the matrix
of detrended mortality rates M

∗
=
{

lnmxt − ̂̃αx − ̂̃γx(t− t)} . It is well known that
even when ωt has a unit root the least squares estimate ̂̃γx will be consistent.

4. Empirical illustration
In this section we compare some of the empirical features of the CLC and DLC
models. The mortality series considered are all-cause mortality rates for men and
women for France, Japan, and the USA. The sample period is 1950-2010. The source
of the data is The Human Mortality Database1.
Figure 1 displays the log mortality for selected age groups, x = (0, 1, 50, 60, 80, 90).

Notice that the scale of the graphs is different due to the various age groups being
differently exposed to death. As seen, all series exhibit a strong decline in mortality
over time that is almost linear but clearly with a different slope depending upon the
age group considered. In Figure 2 the different trend slopes as a function of age group
x is shown for the six mortality series. The trend coeffi cient ̂̃γx is estimated from the
detrending regression (8). Despite the different shape across countries and genders
the graph also demonstrate the general similarity across age groups.

1Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute
for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de
(data downloaded September 9, 2014).
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To compare the trend estimates from the DLC and CLC models figure 3 displays
a cross plot of the trend estimates. To facilitate the comparison the trend slope of
the CLC is calculated as the estimate βxµ where µ is estimated as in (4) and βx is
estimated from the CLC singular value decomposition. The two estimates are rather
similar as one would expect since the dominant feature of the mortality series is the
steadily declining trend. The estimates mainly differ for middle aged and people in
their 20s but otherwise are almost identical.

Figures 1-5 about here

The fact that the trend slope estimates generally are similar for the two models
is an indication that the one-factor CLC model is driven by the linear trend which
potentially may bias the stochastic part of the mortality index kt. To examine this
further, the CLC and DLC estimates βx and β̃x are compared in Figure 4. In Figure
5 kt of the CLC model corrected for the trend, kt − k1 − µ̂(t − 1), is compared
with k̃t estimated from the DLC model (6). By construction, the shape of the βx
curves for the CLC is driven by the trend slope. As seen, the separation of the
dynamics underlying the DLC model gives a very different picture. If the CLC model
was correctly specified, then the curves for the CLC and DLC would be identical,
but obviously this is far from being the case. Discrepancies are seen to be present
especially for the younger ages, but a general pattern is that the constraints imposed
by the CLC relative to the detrended model leads to over estimating the reduction of
mortality for children and young people and under estimate the decrease of mortality
for older age groups.
Turning to the dynamics of the (detrended) mortality indices, the shape seems

to be rather similar and indeed exhibits a fairly high degree of persistence. Notwith-
standing, visual inspection of Figure 5 indicates that the CLC detrended kt series
has larger persistence than the DLC k̃t series. This is also confirmed by estimating
the AR(1) parameter of each of the two trend terms. Table 1 shows that the AR
parameter and hence the persistence of the trend series is always smaller for the DLC
model compared with the CLC model. The sample size is not big enough to reject a
unit root in either series, but after all the estimates indicate that the CLC estimate
of the stochastic component is biased towards persistency.
To compare the model fit of the various model specifications Table 2 displays

the (pseudo) coeffi cient of determination R2 for a range of models. The results are
reported for men and women as well as for the total death rates. The coeffi cient of
determination is calculated across all time periods and age groups, that is

R2 =

∑
x

∑
t v̂
2
xt∑

x

∑
t(logmxt − logmx)

2
(9)

where v̂2xt is the squared estimation error from the relevant model specification. The
numerator is the total sum of squares of log mortality in deviations from the mean.
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Tables 1-2 about here

The first three columns report R2 for the CLC, DLC and the detrending regres-
sion (8). It is remarkable that the linear trend model alone accounts for 90-95 pct
of the total variation in the data. The CLC model contributes with additionally 2-4
percentage points in explanatory power. Notwithstanding, by separarting the deter-
ministic and stochastic trend components as done in the DLC model additionally 2-3
percentage points can be gained in terms of fit.
Since the fit is already very high due to the presence of a trend, we also calculated

an alternative measure of fit where log mortality was measured in deviations from the
deterministic trend fitted by either the CLC or DLC model, i.e. the numerator in (9)
used detrended log mortality series. The fourth column of Table 2 shows the fit of the
CLC measured in deviations from the mean and trend, and the last column displays
the fit for the DLC model. The improved fit of the DLC model, after correcting for
the linear trend, is remarkable. For most cases the fit of the DLC model is more
than 50% larger than for the CLC model, and for Japan (total) and France (total)
the fit is even larger.These results stress the importance of treating deterministic
and stochastic components differently when modelling mortality data that is strongly
trending.

5. Conclusion
Many age-specific log mortality series exhibit a very strong negative time trend. We
demonstrate that the dynamic model features of the Lee-Carter mortality model are
distorted by the presence of a deterministic trend component. However, within the
Lee-Carter class of models a simple solution exists where essentially the detrended
rather than the demeaned mortality data is used in the analysis. We are not claiming
that this is the right modelling approach for all purposes, but it shows that separation
of the deterministic and stochastic components is generally important and may lead to
improved fit for mortality model building and hence will potentially lead to improved
forecasting performance.
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6. Tables and Figures

Table 1. AR(1) parameter estimates for kt corrected
for mean (CLC) and for k̃t (DLC).
Country Gender CLC DLC
USA female 0.993 0.919
USA male 1.015 0.968
JPN female 0.968 0.925
JPN male 0.973 0.898
FRA female 0.993 0.915
FRA male 1.011 0.988

Table 2. The coeffi cient of determination R2 for CLC and DLC. The
estimates are made for log mortality measured in deviations from the mean
and in deviations from mean and trend. The column "Det" reports
the fit in a detrending regression with a constant and trend.
Country Gender CLC DLC Det CLC DLC

De-meaned logmxt De-trended logmxt

USA female 0.966 0.976 0.949 0.337 0.520
USA male 0.951 0.970 0.915 0.421 0.646
USA total 0.965 0.975 0.946 0.349 0.541
JPN female 0.970 0.994 0.925 0.594 0.925
JPA male 0.975 0.988 0.949 0.502 0.767
JPN total 0.974 0.991 0.940 0.564 0.857
FRA female 0.965 0.980 0.955 0.235 0.552
FRA male 0.941 0.971 0.901 0.402 0.705
FRA total 0.956 0.978 0.932 0.355 0.681
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Figure 1: Log (all cause) mortality, men and women, for selected age groups
x=(0,1,50,60,80,90), for France, Japan, and USA.
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Figure 4: The estimate of βx for the CLC model (red) and β̃x for the DLC model
(blue).
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Figure 5: The estimate of the mortality index kt of the CLC model corrected for the
trend, kt − k1 − µ̂(t− 1), (red) and k̃t estimated from the DLC model (blue).



Research Papers 
2013 

 
 

 

 

 

 

2014-26:  Markku Lanne, Jani Luoto and Henri Nyberg: Is the Quantity Theory of Money 
Useful in Forecasting U.S. Inflation? 

2014-27: Massimiliano Caporin, Eduardo Rossi and Paolo Santucci de Magistris: 
Volatility jumps and their economic determinants 

2014-28: Tom Engsted: Fama on bubbles 

2014-29: Massimiliano Caporin, Eduardo Rossi and Paolo Santucci de Magistris: Chasing 
volatility - A persistent multiplicative error model with jumps 

2014-30: Michael Creel and Dennis Kristensen: ABC of SV: Limited Information 
Likelihood Inference in Stochastic Volatility Jump-Diffusion Models 

2014-31: Peter Christoffersen, Asger Lunde and Kasper V. Olesen: Factor Structure in 
Commodity Futures Return and Volatility 

2014-32: Ulrich Hounyo: The wild tapered block bootstrap 

2014-33: Massimiliano Caporin, Luca Corazzini and Michele Costola: Measuring the 
Behavioral Component of Financial Fluctuations: An Analysis Based on the 
S&P 500 

2014-34: Morten Ørregaard Nielsen: Asymptotics for the conditional-sum-of-squares 
estimator in multivariate fractional time series models 

2014-35: Ulrich Hounyo: Bootstrapping integrated covariance matrix estimators in 
noisy jump-diffusion models with non-synchronous trading 

2014-36: Mehmet Caner and Anders Bredahl Kock: Asymptotically Honest Confidence 
Regions for High Dimensional 

 

2014-37:  Gustavo Fruet Dias and George Kapetanios: Forecasting Medium and Large 
Datasets with Vector Autoregressive Moving Average (VARMA) Models 

 

2014-38: Søren Johansen: Times Series: Cointegration  

2014-39: Søren Johansen and Bent Nielsen: Outlier detection algorithms for least 
squares time series regression 

 

2014-40: Søren Johansen and Lukasz Gatarek: Optimal hedging with the cointegrated 
vector autoregressive model 

 

2014-41: Laurent Callot and Johannes Tang Kristensen: Vector Autoregressions with 
Parsimoniously Time Varying Parameters and an Application to Monetary 
Policy 

 

2014-42: Laurent A. F. Callot, Anders B. Kock and Marcelo C. Medeiros: Estimation and 
Forecasting of Large Realized Covariance Matrices and Portfolio Choice 

 

2014-43: Paolo Santucci de Magistris and Federico Carlini: On the identification of 
fractionally cointegrated VAR models with the F(d) condition 

 

2014-44: Laurent Callot, Niels Haldrup and Malene Kallestrup Lamb: Deterministic and 
stochastic trends in the Lee-Carter mortality model 

 

 


