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Abstract

This paper discusses identification problems in the fractionally cointegrated system of Jo-
hansen (2008) and Johansen and Nielsen (2012). It is shown that several equivalent re-
parametrizations of the model associated with different fractional integration and cointegra-
tion parameters may exist for any choice of the lag-length when the true cointegration rank is
known. The properties of these multiple non-identified models are studied and a necessary and
sufficient condition for the identification of the fractional parameters of the system is provided.
The condition is named F(d). This is a generalization of the well-known I(1) condition to
the fractional case. Imposing a proper restriction on the fractional integration parameter, d,
is sufficient to guarantee identification of all model parameters and the validity of the F(d)
condition. The paper also illustrates the indeterminacy between the cointegration rank and the
lag-length. It is also proved that the model with rank zero and k lags may be an equivalent re-
parametrization of the model with full rank and k−1 lags. This precludes the possibility to test
for the cointegration rank unless a proper restriction on the fractional integration parameter is
imposed.
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1 Introduction

The past decade has witnessed an increasing interest in the statistical definition and evaluation

of the concept of fractional cointegration, as a generalization of the idea of cointegration to pro-

cesses with fractional degrees of integration. In the context of long-memory processes, fractional

cointegration allows linear combinations of I(d) processes to be I(d − b), with d, b ∈ R+ with

0 < b ≤ d. More specifically, the concept of fractional cointegration implies the existence of

common stochastic trends integrated of order d, with short-period departures from the long-run

equilibrium integrated of order d−b. The coefficient b is the degree of fractional reduction obtained

by the linear combination of I(d) variables, namely the cointegration gap.

Notable methodological works in the field of fractional cointegration are Robinson and Mar-

inucci (2003) and Christensen and Nielsen (2006) that develop regression-based semi-parametric

methods to evaluate whether two fractional stochastic processes share common trends. Analo-

gously, Hualde and Velasco (2008) propose to check for the absence of cointegration by comparing

the estimates of the cointegration vector obtained with OLS and those obtained with a GLS type

of estimator. Breitung and Hassler (2002) propose a multivariate score test statistic to determine

the cointegration rank that is obtained by solving a generalized eigenvalue problem of the type

proposed by Johansen (1988). Alternatively, Robinson and Yajima (2002) and Nielsen and Shi-

motsu (2007) suggest a testing procedure to evaluate the cointegration rank of the multivariate

coherence matrix of two, or more, fractionally differenced series. Chen and Hurvich (2003, 2006)

estimate cointegrated spaces and subspaces by the eigenvectors corresponding to the r smallest

eigenvalues of an averaged periodogram matrix of tapered and differenced observations.

Despite the effort spent in defining testing procedures for the presence of fractional cointe-

gration, for a long time the literature in this area lacked a fully parametric multivariate model

explicitly characterizing the joint behaviour of fractionally cointegrated processes. Interestingly,

Granger (1986, p.222) already introduced the idea of common trends between I(d) processes, but

the subsequent theoretical works, see among many others Johansen (1988), have mostly been ded-

icated to cases with integer orders of integration. Only recently, Johansen (2008) and Johansen

and Nielsen (2012) have proposed the FCVARd,b model, an extension of the well-known VECM to

fractional processes, which is a tool for a direct modeling and testing of fractional cointegration.

Johansen (2008) studies the properties of the model while  Lasak (2010) suggests a profile likeli-

hood approach to estimate the parameters and to test the hypothesis of absence of cointegration

relations in the Granger (1986) model under the assumption that d = 1. Recently, Johansen and

Nielsen (2012) have extended the estimation method of  Lasak (2010) to the FCVARd,b model, de-

riving the asymptotic properties of the profile maximum likelihood estimator when 0 ≤ d−b < 1/2

and b 6= 1/2. Other contributions in the parametric framework for fractional cointegration are in

Avarucci and Velasco (2009), Franchi (2010) and  Lasak and Velasco (2015).

This paper shows that the FCVARd,b model is not globally identified when the number of lags,

k, is unknown. For a given number of lags, several sub-models with the same conditional densities

but different values of the parameters may exist. Hence the parameters of the FCVARd,b model
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cannot be uniquely identified. The multiplicity of not-identified sub-models can be determined for

any FCVARd,b model with k lags. An analogous identification problem, for the FIVARb model is

discussed in Tschernig et al. (2013a,b). This paper provides a detailed illustration of the identifi-

cation problem in the FCVARd,b framework. It is proved that the I(1) condition in the VECM of

Johansen (1988) can be generalized to the fractional context. In analogy with the I(1) condition

for integer orders of integration, this condition is named F(d), and it is a necessary and sufficient

condition for the identification of the parameters of the system. If the F(d) condition is not satis-

fied, the FCVARd,b parameters, including fractional and co-fractional parameters, d and b, cannot

be uniquely determined.

This paper studies the problems of identification in the FCVARd,b model along the following

lines. First, Proposition 2.2 extends the results in Theorem 3 of Johansen and Nielsen (2012), high-

lighting the close relationship between the lag structure and the lack of identification, and deriving

a necessary and sufficient condition for identification associated to any lag-length. Proposition 2.2

also highlights the consequence of the indeterminacy of the lag-length on the fractional parameters

d and b, showing that the lack of identification is specific to a subset of all the possible choices of

the number of lags. Second, the paper shows the consequence of the lack of identification on the

likelihood function, both asymptotically and in finite samples. Differently from the standard case,

where the integration orders are fixed to integer values, the estimation of the FCVARd,b involves

the maximization of the profile log-likelihood with respect to d and b, but the latter is affected

by the indeterminacy generated by the over-specification of the lag-length. As expected, the lack

of mathematical identification generates multiple absolute maxima in the profile log-likelihood

function associated to different values of d and b when the number of lags is over-specified, thus

confirming the statement in Proposition 2.2. Moreover, an interesting clue emerges from the fi-

nite sample analysis. Indeed, in finite samples, the profile log-likelihood function displays multiple

maxima also when the identification is theoretically guaranteed. Moreover, a further identification

issue, that emerges when the cointegration rank is unknown, is discussed. It is proved that there

is a potentially large number of parameter sets associated with different choices of lag-length and

cointegration rank for which the conditional density of the FCVARd,b model is the same. This

problem has practical consequences when testing for the nullity of the cointegration rank and the

true lag-length is unknown. For example, it can be shown that, under certain restrictions, the

FCVARd,b with full rank and k lags is equivalent to the FCVARd,b with rank 0 and k + 1 lags.

This last finding precludes the possibility to test for the absence of cointegration when the true

number of lags is unknown based on the unrestricted FCVARd,b model. Finally, we prove that

the FCVARd,b is identified for any lag k > 1, both in the known and unknown rank cases, if the

fractional parameter d is restricted to be equal to the true fractional order, such that the F(d)

condition is satisfied by construction. Building on this result, we show that to solve the identi-

fication problem it is sufficient to restrict the parameter set of d to belong to the sub-interval of

R
+ that includes the true fractional order, d0, but excludes other values of d < d0 associated to

equivalent models. The information about the true fractional order can be obtained by the exact

local Whittle estimator of Shimotsu and Phillips (2005).
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This paper is organized as follows. Section 2 discusses the identification problem from a theoret-

ical point of view. Section 3 discusses the consequences of the lack of identification on the inference

on the parameters of the FCVARd,b model both asymptotically and in finite samples. Section 4

discusses the problems when the cointegration rank and the lag-length are both unknown. Section

5 concludes the paper.

2 The Identification Problem

This section provides a discussion of the identification problem related to the FCVARd,b model

Hk : ∆dXt = αβ′∆d−bLbXt +
k

∑

i=1

Γi∆
dLibXt + εt εt ∼ iidN(0,Ω), (1)

where Xt is a p-dimensional vector, α and β are p×r matrices, and r defines the cointegration rank.

Ω is the positive definite covariance matrix of the errors, and Γj , j = 1, . . . , k, are p × p matrices

loading the short-run dynamics. The operator Lb := 1−∆b is the so called fractional lag operator,

which, as noted by Johansen (2008), is necessary for characterizing the solutions of the system and

obtaining the Granger representation for fractionally cointegrated processes. Following Definition

1 in Johansen and Nielsen (2012, p.2672), if Xt follows (1), then Xt is a fractional process of order

d, denoted as F(d), and co-fractional of order d− b. The symbol Hk defines the model with k lags

and θ = vec(d, b, α, β,Γ1, ...,Γk,Ω) is the parameter vector. The parameter space of model Hk is

ΘHk
= {α ∈ R

p×r0 , β ∈ R
p×r0 ,Γj ∈ R

p×p, j = 1, . . . , k, d ∈ R
+, b ∈ R

+, d ≥ b > 0,Ω > 0},

where r0 is the true cointegration rank and it is assumed known.1

Similarly to Johansen (2010), the concept of identification and equivalence between two models

is formally introduced by the following definition.

Definition 2.1 Let {P = Pθ, θ ∈ Θ} be a family of probability measures, that is, a statistical

model. We say that a parameter function g(θ) is identified if g(θ1) 6= g(θ2) implies that Pθ1 6= Pθ2.

On the other hand, if Pθ1 = Pθ2 and g(θ1) 6= g(θ2), the parameter function g(θ) is not identified.

In this case, the statistical models Pθ1 and Pθ2 are equivalent.

It can be shown that the parameters of the FCVARd,b model in (1) are not identified, i.e.

several equivalent sub-models associated with different values θ, can be found.

Example 1: An illustration of the identification problem is provided by the following example.

Consider the FCVARd,b model with one lag,

H1 : ∆dXt = αβ′∆d−bLbXt + Γ1∆
dLbXt + εt, (2)

1The results of this Section are obtained under the maintained assumption that the true cointegration rank is
known and such that 0 < r0 < p. An extension to the case of unknown rank and number of lags is presented in
Section 4.
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which can be written as

{

∆d
[

Ip + αβ′ − Γ1

]

+ ∆d−b
[

−αβ′
]

+ ∆d+bΓ1

}

Xt = εt.

First, examine the restriction, H(0)
1 : Γ0

1 = 0. Under H(0)
1 , the model in equation (2) can be

rewritten as
{

∆d0 [Ip + αβ′] + ∆d0−b0 [−αβ′]
}

Xt = εt.

Second, consider instead the restriction H(1)
1 : Ip + αβ′ − Γ1

1 = 0. It follows that

{

∆d1−b1
[

−αβ′
]

+ ∆d1+b1 [Ip + αβ′]
}

Xt = εt.

Given that the condition αβ′∆d0−b0 = αβ′∆d1−b1 must hold in both sub-models,2 hence model (2)

under H(0)
1 is equivalent to the model (2) under H(1)

1 if and only if

[Ip + αβ
′

]∆d0 = [Ip + αβ
′

]∆d1+b1 .

This leads to the system of two equations in d0, b0, d1 and b1







d0 − b0 = d1 − b1

d0 = d1 + b1
(3)

which has a unique solution when d1 = d0 − b0/2 and b1 = b0/2. Since the restrictions H(0)
1 and

H(1)
1 lead to equivalent descriptions of the data, it follows that the fractional order of Xt implied

by both models must be the same. However, in H(0)
1 the fractional order is represented by the

parameter d0, i.e. Xt ∼ F(d0) since ∆d0Xt ∼ F(0), while in H(1)
1 the fractional order is given by

the sum d1 +b1, i.e. Xt ∼ F(d1 +b1). The identification condition defined in 2.1 is clearly violated,

as the conditional densities of H(0)
1 and H(1)

1 are such that

p
H

(0)
1

(X1, ..., XT , θ0|X0, X−1, . . .) = p
H

(1)
1

(X1, ..., XT , θ1|X0, X−1, . . .), (4)

where θ0 = vec(d0, b0, α, β,Ω) and θ1 = vec(d1, b1, α, β,Γ
1
1,Ω) with Γ1

1 = Ip + αβ′.

Example 1 can be extended to a generic lag-length k0 ≥ 0. Consider the model Hk0

Hk0 : ∆d0Xt = α0β
′
0∆

d0−b0Lb0Xt +

k0
∑

i=1

Γ0
i∆

d0Lib0Xt + εt εt ∼ N(0,Ω0), (5)

with k0 ≥ 0 lags, and |α′
0,⊥Γ0β0,⊥| 6= 0 with Γ0 = Ip −

∑k0
i=1 Γ0

i . When a model Hk with k > k0 is

considered, then Hk0 is associated with the set of restrictions H(0)
k : Γk0+1 = Γk0+2 = ... = Γk = 0

imposed on Hk. However, there may be several alternative restrictions on Γk0+1,Γk0+2, ...,Γk

2Note that this paper does not discuss the identification of the matrices α and β. As noted in Johansen (1995a,
p.177), the product αβ′ is identified but not the matrices α and β because if there was an r×r matrix ξ, the product
αβ′ would be equal to αξβ

′
ξ where αξ = αξ and βξ = β(ξ′)−1.
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leading to an equivalent sub-model as the one obtained under H(0)
k .

The following Proposition states the necessary and sufficient condition, called the F(d) condi-

tion, for identification of the parameters of the model Hk.

Proposition 2.2 Consider a FCVARd,b model with k lags,

i) Given k > k0 ≥ 0, the F(d) condition, defined as |α′
⊥Γβ⊥| 6= 0 with Γ = Ip −

∑k
i=1 Γi, is

a necessary and sufficient condition for the identification of the set of parameters of Hk in

equation (5).

ii) Given k0 and k, with k ≥ k0, the number of equivalent sub-models that can be obtained from

Hk is m = ⌊ k+1
k0+1⌋, where ⌊x⌋ denotes the greatest integer less or equal to x.

iii) For any k ≥ k0, all the equivalent sub-models are found for parameter values dj = d0− j
j+1b0

and bj = b0/(j + 1) for j = 0, 1, ...,m− 1.

Proof in Appendix A.1.

Proposition 2.2 has several important consequences that are worth being discussed in detail.

First of all, the F(d) condition only holds for the sub-model of Hk for which d = d0 and b = b0, i.e.

for the sub-model of Hk corresponding to the restriction H(0)
k : Γk0+1 = Γk0+2 = ... = Γk = 0. In the

Example 1, the F(d) condition is only verified for H(0)
1 , while for H(1)

1 we have that |α′
⊥Γ1β⊥| = 0,

since Γ1 = Ip − (Ip + αβ′) = −αβ′. Note that the assumption |α′
0,⊥Γ0β0,⊥| 6= 0 imposed on model

(5) guarantees that it is not possible to find restrictions on Hk0 for which two or more sub-models

are equivalent. In this sense Proposition 2.2 generalizes Theorem 3 in Johansen and Nielsen (2012).

Indeed, while in Johansen and Nielsen (2012) the F(d) condition is only imposed on the Hk0 model

with k = k0 by assumption, Proposition 2.2.i) shows that a necessary and sufficient condition for

the identification of the parameters of any Hk model, with k > k0, is the validity of the F(d)

condition. This has important consequences in practical applications when the true number of lags

is unknown and it is potentially over-specified.3

When d = b = 1, then the FCVARd,b model reduces to the usual V ECM model and the F(d)

condition reduces to the I(1) condition that excludes solutions of the V ECM that are integrated

of order 2 or higher, see for example the discussion in Johansen (2009). Indeed, the F(d) condition

has analogies in the classical I(1) and I(2) context and it can be better understood by looking at

the I(2) cointegration model as discussed in Johansen (1995b). The model is

∆2Xt = Γ∆Xt−1 + ΠXt−2 +
k−2
∑

i=1

Ψi∆
2Xt−i + ǫt. (6)

which can be found by imposing proper restrictions on the Πi matrices of the the unrestricted

V AR(k) on Xt, Xt =
∑k

i=1 ΠiXt−i + ǫt. Depending on the restrictions imposed on the matrices

Π, Γ and Ψ1, ...,Ψk−2, model (6) allows for three types of statistical models: I(0), I(1) and I(2).

3When the number of lags is under-specified there is no identification problem, but the model is misspecified and
the results in Johansen and Nielsen (2012) do not hold.
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If Π has full rank, then Xt ∼ I(0), see Theorem 1 in Johansen (1995b). If Π = α′β and the matrix

α′
⊥Γβ⊥ has full rank, it follows from Theorem 2 in Johansen (1995b) that Xt ∼ I(1). If instead

the matrix α′
⊥Γβ⊥ is of reduced rank, then Xt contains both I(2) and I(1) common trends, whose

number depends on the rank of Π and α′
⊥Γβ⊥. This means that the condition on the rank of

α′
⊥Γβ⊥ determines two distinct models, which in turn may imply alternative explanations of the

relationships between economic series. Similarly, a model for multiple (or polynomial) fractional

cointegration can be obtained by proper restrictions of the unrestricted V ARd,b model, see Johansen

(2008, p.667), as

∆dXt = ∆d−2b(αβ′LbXt − Γ∆bLbXt) +
k

∑

i=1

Ψi∆
dLibXt + ǫt. (7)

Depending on the rank of α′
⊥Γβ⊥ it is possible to find cointegration relations of order I(d− b)

and I(d − 2b). Setting d = 2 and b = 1 we obtain model (6) with I(2) and I(1) trends. It

is important to stress that the condition |α′
0,⊥Γ0β0,⊥| 6= 0 imposed on model (5) excludes the

possibility that the FCVARd,b model with k0 lags can be re-written as model (7), thus ruling out

polynomial fractional cointegration.4 Consider model H(1)
1 in Example 1 again, where |α′

⊥Γβ⊥| = 0.

After simple algebraical manipulations, model H(1)
1 can be formulated as

∆d2Xt = ∆d2−2b1(αβ′Lb1Xt − Γ1∆b1Lb1Xt) + ǫt (8)

where d2 = d1+b1 and Γ1 = −αβ′. This example illustrates the close link between the possibility of

polynomial fractional cointegration and the indeterminacy of lag-length and FCVARd,b parameters

as illustrated in Proposition 2.2. In particular, imposing the F(d) condition on the FCVARd,b model

does not only guarantee that the parameters d, b and Γ1, ...,Γk are correctly identified, but also

rules out cases of polynomial fractional cointegration.

In addition, Proposition 2.2.ii) characterizes the number of equivalent sub-models of Hk for a

given k0, showing that their multiplicity depends on k and k0. Analogously to the example above,

this means that models with polynomial fractional cointegration up to order m = ⌊ k+1
k0+1⌋ can be

obtained from the FCVARd,b model for some combinations of k and k0. Table 1 summarizes the

number of equivalent sub-models for different values of k0 and k. Interestingly, as a consequence

of Proposition 2.2.ii), there are cases in which k > k0 does not necessarily imply a lack of iden-

tification. For example, when k = 2 and k0 = 1 there are no sets of restrictions on H2 leading

to a sub-model equivalent to the one obtained under the restriction d = d0, b = b0, Γ1 = Γ0
1 and

Γ2 = 0. Hence, in this case, the multiplicity, m, of equivalent sub-models is 1. When k0 is small

there are several equivalent sub-models for small choices of k. As k0 increases, multiple equivalent

sub-models are only found for large values of k. For example, when k0 = 5, then two equivalent

sub-models can only be found for suitable restrictions of the H11 model. Moreover, Proposition

2.2.iii) shows that each sub-model of Hk equivalent to Hk0 with |α′
⊥Γβ⊥| = 0 has values of d and

b that are fractions of d0 and b0. Interestingly, when k is very large compared to k0, the (m−1)-th

4The model of Franchi (2010) extends the FCVARd,b model to a flexible form of polynomial fractional cointegra-
tion. An investigation of the identification conditions in Franchi (2010)’s model is left to future research.
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k0 ↓ k → 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 – 1 1 2 2 3 3 4 4 5 5 6 6
2 – – 1 1 1 2 2 2 3 3 3 4 4
3 – – – 1 1 1 1 2 2 2 2 3 3
4 – – – – 1 1 1 1 1 2 2 2 2
5 – – – – – 1 1 1 1 1 1 2 2

Table 1: Table reports the number of equivalent models (m) for different combinations of k and k0. When
k0 > k the Hk is under-specified.

sub-model is associated with dm−1 ≈ d0 − b0 and bm−1 ≈ 0, i.e. located closely to the boundary of

the parameter space. Compared to the classic VECM, the parameters d and b must be estimated

in the FCVARd,b model. However, the lack of identification precludes the possibility of uniquely

determining the fractional parameters if k is over-specified. Therefore, the next section discusses

the consequences of the lack of identification on the estimation of the FCVARd,b parameters when

the true number of lags is unknown.

3 Identification and Inference

This section illustrates, by means of numerical examples, the problems in the estimation of the

parameters of the FCVARd,b that are induced by the lack of identification outlined in Section 2.

In particular, information on the fractional order of Xt, F(d), can be used to correctly identify the

fractional parameters d and b when model Hk is estimated on the data.

As shown in Johansen and Nielsen (2012), the parameters of the FCVARd,b can be estimated

following a profile likelihood approach. Indeed, the estimates of the fractional parameters, d̂ and

b̂, are obtained by maximizing the profile log-likelihood

ψ̂ = arg max
ψ

ℓT (ψ), (9)

where ψ = (d, b)′ and

ℓT (ψ) = − log |S00(ψ)| −
r

∑

i=1

log(1 − λi(ψ)). (10)

The quantities λ(ψ) and S00(ψ) are obtained from the residuals, Rit(ψ) for i = 0, 1, of the reduced

rank regression of ∆dXt on ∆dLjbXt and ∆d−bLbXt on ∆dLjbXt for j = 1, .., k, respectively. The

product moment matrices Sij(ψ) for i, j = 0, 1 are Sij(ψ) = T−1
∑T

t=1Rit(ψ)R′
jt(ψ) and λi(ψ) for

i = 1, . . . , p are the solutions, sorted in decreasing order, of the generalized eigenvalue problem

|λ(ψ)S11(ψ) − S10(ψ)S−1
00 (ψ)S01(ψ)| = 0. (11)

Given d̂ and b̂, the estimates α̂, β̂, Γ̂j , j = 1, . . . , k, and Ω̂ are found by reduced rank regression

as in Johansen (1988). Although the the statistical model (5) is defined for all 0 < b0 ≤ d0, the
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asymptotic properties of the ML estimator are derived in Johansen and Nielsen (2012) when the

true values satisfy 0 ≤ d0− b0 < 1/2 and b0 6= 1/2, for which β′0Xt is (asymptotically) a stationary

process. Therefore, the following analysis is carried out for combinations of d0 and b0, which satisfy

such constraint.

The values of ψ that maximize ℓT (ψ) must be found numerically. The consequences of the

lack of identification of the FCVARd,b model on the expected profile log-likelihood when k > k0

are therefore explored by means of Monte Carlo simulations. Since the asymptotic value of ℓT (ψ)

is not available in closed-form as a function of the model parameters, the asymptotic behavior of

ℓT (ψ) is approximated averaging, over M simulations, the value of ℓT (ψ) computed for different

values of ψ and a large T . This provides a precise numerical approximation of the expected profile

log-likelihood, E[ℓT (ψ)]. Therefore, M = 100 simulated paths are generated from model (5) with

T = 50, 000 observations and p = 2. The fractional parameters of the system are d0 = 0.8 and

b0 = d0. The assumption b0 = d0 simplifies the readability of the results without loss of generality,

since the plots display E[ℓT (d)] as a function of d in a two dimensional Cartesian system. The

cointegration vector is β0 = [1,−1]′, the vector of adjustment coefficients is α0 = [0.5,−0.5]′,

and the matrices Γ0
i , i = 1, ..., k0, for different values of k0 are chosen such that the roots of the

characteristic polynomial are outside the fractional circle, see Johansen (2008). The average profile

log-likelihood, ℓ̄T (d), and the average of the function f(d) = |α̂′
⊥(d)Γ̂(d)β̂⊥(d)| are computed with

respect to a grid of alternative values for d = [dmin, . . . , dmax]. The average of f(d) over the M

simulations is a an estimate of the value of the F(d) condition for different values of d. Hence

F̄(d) = 1
M

∑M
i=1 fi(d) for d = [dmin, . . . , dmax] is plotted together with ℓ̄T (d).5

Figure 1 reports the values of ℓ̄T (d) and F̄(d) when k = 1 lags are chosen but k0 = 0. It

clearly emerges that the two global maxima of ℓ̄T (d) are associated to the pair of values d = 0.4

and d = 0.8, but when d = 0.4 the F̄(d) line is equal to zero. Similarly, as reported in Figure

B.1 in Appendix B, the expected log-likelihood function has three humps around d = 0.8, d = 0.4

and d = 0.2667 = d0/3 when k = 2 and k0 = 0. As in the previous case, when d = 0.4 and

d = 0.2667, the line with F̄(d) is approximately equal to zero. Consistently with the theoretical

results presented in Section 2, the F̄(d) line is far from zero in d = 0.8 also in this case.

Figure 2 reports the contour plot of the expected profile log-likelihood function in the 2-

dimensional space of (d, b) ∈ R
2, with d ≥ b. The plot clearly highlights the presence of two

equivalent peaks located inside the isolines with level -14.1928 that, as expected, are associated

with the vectors ψ0 = [0.8, 0.8]′ and ψ1 = [0.4, 0.4]′. Notably, the function l̄(ψ) quickly decreases

at the extremes of the parameter space, i.e. when d > d0 and b > b0 or when d < d0 − b0/2 and

b < b0/2. Instead, the function remains rather high and flat in the interval b0/2 < b ≤ d < d0.

This may induce further identification problems in finite samples as discussed in Section 3.1.

A slightly more complex evidence arises when k0 > 0. Figures 3 and B.2 report ℓ̄T (d) and

F̄(d) when k0 = 1 while k = 2 and k = 3 are chosen. When k = 2, the ℓ̄T (d) function is globally

5Due to space constraints, the results of the Monte Carlo simulations cannot be shown for many combinations of
parameter values. The results for different combinations of the parameters confirm the evidence reported here and
they are available upon request from the authors. The values of dmin and dmax on the x-axis of the graphs change
to improve the clarity of the plots.
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Figure 1: Figure reports simulated values of l̄(d) and F̄(d) for different values of d ∈ [0.2, 1.2] on the x-axis.
The observations from the DGP are generated with k0 = 0 lags and model Hk with k = 1 lags is estimated.
The parameters of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′.
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Figure 2: Figure reports the contour plot of the values (rescaled by a 10000) of the function l̄(ψ) for
different combinations of d ∈ [0.2, 1.2] (x-axis) and b ∈ [0.2, 1.2] (y-axis). The observations from the DGP
are generated with k0 = 0 lags and model Hk with k = 1 lag is estimated. The parameters of the DGP are
d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′. The empty area is associated to values of b > d for which the
log-likelihood is not defined.

maximized in the region around d = 0.8, thus supporting the theoretical results outlined above,

i.e. when k = 2 and k0 = 1 there is no lack of identification. However, another interesting
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evidence emerges. The l̄T (d) function is flat and high in the region around d = 0.5, possibly

inducing identification problems in finite samples. This issue will be further discussed in Section

3.1. When k = 3 we expect m = 4
2 = 2 equivalent sub-models associated with d = d0 = 0.8 and

d = d0/2 = 0.4. Indeed, by looking at Figure B.2 in Appendix B it emerges that the line ℓ̄T (d) has

two global maxima around the values of d = 0.4 and d = 0.8. As expected, in the region around

d = 0.4 the F̄(d) line is close to zero. .
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Expected profile
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Figure 3: Figure reports simulated values of l̄(d) and F̄(d) for different values of d ∈ [0.4, 1] on the x-axis.
The observations from the DGP are generated with k0 = 1 lags and model Hk with k = 2 lags is estimated.
The parameters of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′, and Γ1 =

[

0.3 −0.2
0.4 −0.5

]

.

3.1 Identification in Finite Samples

In Section 2, the mathematical identification of the FCVARd,b has been discussed theoretically.

The purpose of this Section is to shed light on the consequences of the lack of mathematical

identification in finite samples. From the analysis above, we know that for some k > k0, the

expected profile log-likelihood displays multiple equivalent maxima associated with fractions of d0.

This section focuses on the consequences of the lack of identification when the sample size, T , is

finite.

Figure 4 reports the finite sample profile log-likelihood function, ℓT (d), against a fine grid

of values of d. Each plot reports the function ℓT (d) obtained by fitting model H1 on a distinct

simulated path of length T = 1000, generated under model H0. The plot clearly highlights the

consequences of the lack of identification in finite samples. In Panel a), the global maximum of

ℓT (d) is found around d = 0.4, while in Panel b) it is around 0.8. As expected in Panel a), the f(d)

line is near 0 when d = 0.4, while it is far from zero in Panel b) when d = 0.8. As it emerges from

the plots in Figure 3, the generalized lag structure of the FCVARd,b model also induces poor finite
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Figure 4: Figure reports the values of the profile log-likelihood l(d) and F(d) for different values of d ∈
[0.35, 0.9] (x-axis) for two different simulated paths with T = 1000 of the FCVARd,d when k0 = 0 and model
H1 is estimated. The parameters of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′.

sample identification, namely weak identification, for any k > k0. As in Figure 4, Figure 5 reports

the finite sample profile log-likelihood function relative to the estimation of the H2 model on two

simulated paths of H1 with T = 1000. In Panel a), the global maximum is in a neighborhood

of d = 0.4, and the function f(d) is close to zero in d = 0.4. Hence, the estimated matrices Γ̂1

and Γ̂2 are such that |α′
⊥Γβ⊥| = 0. On the other hand, with another simulated path, the global

maximum is found around d = 0.8, where the function f(d) is far from zero, Panel b). As it

emerges from this example, for any choice of k > k0 there is the risk of obtaining estimates of the

fractional parameters, d and b, that are far from the true ones. Tschernig et al. (2013a) discuss an

analogous identification problem in the FIVARb model. The FIVARb extends the FIVAR model

allowing the autoregressive structure to depend on the fractional lag operator, hence inducing more

flexibility in the short-run term. The FIVARb model is defined as

∆(L, d)Yt =
l

∑

i=1

ΦiL
i
b∆(L, d)Yt + ǫt (12)

where Yt is p-dimensional vector of detrended processes and ∆(L, d) = diag(∆d1 ,∆d2 , ...,∆dp)

allows for different integration orders between the elements of Yt. Similarly to the FCVARd,b

model, when b = 0 the matrices Γi are not identified, so that b must be larger than 0 also in the

FIVARb model. Tschernig et al. (2013a) shows that another identification problem arises when

the eigenvalues of the characteristic polynomial in the Lb operator, Φ(Lb) = Ip −
∑k

i=1 ΦiL
i
b, are

either close to 0 or to 1. Similarly to the FCVARd,b, the lack of identification leads to an high and

flat log-likelihood function for a wide range of combinations of d and b. However, in the FCVARd,b

model, the F(d) condition provides a necessary and sufficient condition for the identification. It

is therefore crucial to develop a robust estimation procedure that guarantees that the estimated
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Figure 5: Figure reports the values of the profile log-likelihood l(d) and F(d) for different values of d ∈
[0.35, 0.9] (x-axis) for two different simulated paths with T = 1000 of the FCVARd,d when k0 = 1 and model
H2 is estimated in the data. The parameters of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′,

and Γ1 =
[

0.3 −0.2
0.4 −0.5

]

.

FCVARd,b parameters are correctly identified and satisfy the F(d) condition also when the lag-

length is potentially overspecified.

3.2 Constrained Likelihood

In the previous sections, we have proved that the FCVARd,b model suffers from identification

problems when k is over-specified. In particular, a number of equivalent parametrization associated

to fractions of the true d0 and b0 can be found for several choices of k > k0. On the other hand,

the fractional parameter d is equivalent to the true fractional order of the process Xt only in

d = d0. As illustrated above, this identification problem has clear consequences from a statistical

point of view since an unique ML estimator of d and b cannot be determined, since the profile

log-likelihood function does not have an unique maximum around d0 and b0. We therefore propose

a new approach that is based on the idea of transforming the unrestricted maximum likelihood

problem, whose properties have been studied in Johansen and Nielsen (2012) only for the case

k = k0, into a constrained maximum likelihood problem by imposing a very mild restriction on the

parameter space of d. In particular, we suggest that d̂ and b̂ must be the solutions of the following

constrained maximum likelihood problem

ψ̂ = arg max
ψ

ℓT (ψ), (13)

s.t. d ≥ δmin

where ℓT (ψ) is defined in (10) and δmin determines the lower bound on the parameter d. Restricting

the parameter space of d is supported by the following lemma, which is a direct derivation of

Proposition 2.2.
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Lemma 3.1 Let Θ̃Hk
= {d = d0, b ∈ [0, d0], α ∈ R

p×r, β ∈ R
p×r,Γj ∈ R

p×p, j = 1, . . . , k; Ω > 0}
be the restricted parameter space of model ΘHk

with d = d0 ∈ R
+, then the statistical model

P = {Pθ : θ ∈ Θ̃Hk
} is identified, i.e. Pθ1 = Pθ2 implies θ1 = θ2 for all θ1, θ2 ∈ Θ̃Hk

, and

|α′
⊥Γβ⊥| 6= 0 ∀θ ∈ Θ̃Hk

.

Proof in Appendix A.2.

It follows from Lemma 3.1 that once the parameter d is fixed to d0, then all the FCVARd,b

parameters are uniquely identified for any lag k > k0. Under the constraint d = d0, the profile log-

likelihood function ℓT (ψ) only varies with respect to b and it has an unique maximum around b0.

Interestingly, Lemma 3.1 provides theoretical support to the procedure, adopted in Bollerslev et al.

(2013) and Caporin et al. (2013), of estimating the FCVARd,b model by restricting the fractional

parameter d to a constant value and by maximizing the profile log-likelihood function with respect

to b only. Figure 6 reports the value of the sliced profile log-likelihood with respect to different

values of b, when the parameter d is kept fixed to the true value d0 = 1. It clearly emerges that,

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

×104

-5.72

-5.71

-5.7

-5.69

-5.68
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Figure 6: Figure reports the values of the expected profile log-likelihood, l̄(ψ), for different values
of b ∈ [0.1, 1.2] (x-axis) when d = d0 = 1. The sample size is T = 20000 and k0 = 0, while
Hk with k = 1, 2, 3, 4 is estimated. The parameters of the DGP are d0 = b0 = 1, β0 = [1,−1]′,
α0 = [−0.5, 0.5]′.

irrespectively of the choice of k > k0, the profile log-likelihood function is uniquely maximized

around b0. This is a direct consequence of Lemma 3.1. Figure B.3 in the Appendix confirms this

result also when b0 < d0. As expected the value of the sliced profile log-likelihood at the optimum

is the highest for the model with k = 4 lags in both figures, since the model H4 nests all the

other models with k < 4. However, the profile log-likelihood function becomes very flat when k

increases. This is due to the efficiency loss caused by the inclusion in the model Hk of matrices

of parameters, Γj , j > k0, that should be theoretically excluded. This may generate a problem of
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weak identification analogous to the one discussed in Section 3.1.

Since there exists an unique maximum of the profile log-likelihood function when d is restricted

to d0, then the asymptotic properties found in Johansen and Nielsen (2012) would still hold.

However, since d0 is unknown in practice, we rely on a constrained optimization method which

sets to zero the probability of selecting a maximum outside a given interval for the parameter

d. This means that the lower bound δmin must be determined such that the optimization of the

profile log-likelihood is performed in an area which contains only one maximum. In the following,

we illustrate a simple and direct way to select δmin in a data-driven fashion. In principle, any semi-

parametric estimator of the fractional order of the series, e.g. the exact local Whittle estimator of

Shimotsu and Phillips (2005), could be adopted to determine the fractional order of the system and

a value for δmin could be easily determined by setting a lower bound based on the point estimate.

Unfortunately, a multivariate version of the exact local Whittle in which all the processes share

the same degree of fractional integration is not yet available in the literature. Indeed, under

the assumption of fractional cointegration the multivariate log-likelihood of the model cannot

be determined due to the singularity of the coherence matrix at the origin, see the discussion in

Nielsen and Shimotsu (2007) among others. Similarly to Nielsen and Shimotsu (2007), we therefore

recommend to obtain a semi-parametric estimate of d as

d̃ =
1

p

p
∑

i=1

d̃i (14)

where d̃i is the univariate exact local Whittle estimate of the parameter d on the i-th series. The

exact local Whittle is defined as

d̃i = arg min
d∈D

R(di, Xt,i) i = 1, ..., p (15)

with

R(di, Xt,i) =
1

m

m
∑

j=1

log
(

λ−2di
j

)

+ log





1

m

m
∑

j=1

I∆diXt,i
(λj)



 , (16)

where I∆diXt,i
(λj) is the periodogram of the fractional difference of the series Xt,i evaluated at the

Fourier frequency λj , where the number of frequencies used in the estimation is m and D is the

admissible set of values of d.6 Under Assumptions 1-5 of Shimotsu and Phillips (2005), d̃i is a

consistent estimator of d and asymptotically Gaussian with

√
m(d̃i − d0)

d→ N

(

0,
1

4

)

. (17)

6Shimotsu and Phillips (2005) define D in terms of an upper and lower bound for the parameter di, where the
length of the interval is smaller or equal to 9

2
. This defines a very large interval of possible values of d, such that we

can assume that the true d0 always belongs to D without loss of generality.
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where the asymptotic variance does not depend on any nuisance parameter and the rate of con-

vergence depends on m. Therefore, once d̃ is estimated, then δmin can be determined as

δmin = d̃− γ · S.E.(d̃) (18)

where S.E.(d̃) is the standard-error of the estimator d̃, and γ a positive constant. Following the

results of Shimotsu and Phillips (2005), setting γ = 2 would roughly correspond to a choice of

δmin associated to the lower bound of a 97.5% confidence interval around the preliminary estimate

d̃. Alternatively, you could simply restrict the parameter d in the FCVARd,b model to the point

estimate d̃, obtained with the exact local Whittle estimator. However, next paragraph shows that

imposing the lower bound constraint in (13) is sufficient to solve the identification problem with a

very mild restriction on the parameter space.

3.2.1 Monte Carlo simulations

In this paragraph, we discuss the results of a number of Monte Carlo simulations to support the

need for the approach based on the constrained log-likelihood outlined in (13) as opposed to the

unconstrained one when the number of lags is unknown. Figure 7 reports the contour plot of

the Monte Carlo estimates of the parameters d and b when a sample of T = 2500 observations is

generated by the following bivariate FCVARd,b model

∆d0Xt = α0β
′
0∆

d0−b0Lb0Xt + εt t = 1, . . . , T (19)

where d0 = 1 and b0 = 0.8. For each generated sample, the model H2 is estimated on the

data. According to Proposition 2.2, three equivalent models can be found associated to different

combinations of d and b, i.e. ψ0 = [1, 0.8], ψ1 = [0.6, 0.4] and ψ2 = [0.47, 0.27]. From Panel a)

of Figure 7 it clearly emerges that maximizing the constrained log-likelihood function (13) solves

the identification problem discussed above. Indeed, almost the entire probability mass of ψ̂, based

on M = 1000 Monte Carlo estimates, is concentrated around ψ0. Only in a very limited number

of cases the estimates are located around [0.8,0.5], and this could be attributed to the variability

of the estimates in finite samples. Instead, when the optimal parameters d and b are found by

maximizing the unrestricted likelihood function, see Panel b), a large portion of the probability

mass is located away from ψ0 = [1, 0.8]. In particular, when the profile log-likelihood function is

not constrained, the bivariate distribution of ψ̂ is clearly multi-modal, as a consequence of the lack

of identification as outlined in Proposition 2.2. For comparison, Figure 8 reports the distribution

of ψ̂ when the number of lags is correctly specified, i.e. k = 0. Not surprisingly, the distribution of

ψ̂ is well centered around ψ0, and the estimates are more efficient than those obtained with k > 0

since fewer FCVARd,b parameters must be estimated under correct lag specification. However, k0

is unknown in practice and typically needs to be determined by a general-to-specific sequence of

LR tests. In Section 4.2 we discuss the nesting structure of the FCVARd,b model under unknown

cointegration rank and lag-length and the optimal sequence of LR tests when the parameter space

of d is properly restricted.
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Figure 7: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d (x-axis)
and b (y-axis) when a sample of T = 2500 observations is generated by a FCVARd,b model with k0 = 0,
d0 = 1, b0 = 0.8 and the cointegration vectors given by β0 = [1,−1]′ and α0 = [−0.5, 0.5]′. Model H2 is
estimated on the data. Panel a) is relative to the estimates based on the constrained log-likelihood (13)
where γ = 2 and m = T 0.6. Panel b) reports the contour plot for the unrestricted estimates.
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Figure 8: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d (x-axis)
and b (y-axis) when a sample of T = 2500 observations is generated by a FCVARd,b model with k0 = 0,
d0 = 1, b0 = 0.8 and the cointegration vectors given by β0 = [1,−1]′ and α0 = [−0.5, 0.5]′. Model H0 is
estimated on the data.

Figures B.4-B.8 in Appendix B highlight the robustness of the constrained likelihood approach

for different sample sizes and different combinations of k0 and k. When T increases, the estimates

based on the unconstrained likelihood still display the identification problem, while the constrained

estimates are all centered around d0 and b0, see Figure B.4. When T = 1000, most of the probability

mass is again concentrated around d0 and b0 although it is more dispersed, see Figures B.5 and

B.6. Finally, the results do not qualitatively change when data are generated under H1 with
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Γ1 =
[

0.3 −0.2
−0.4 0.5

]

and model H3 is estimated, see Figure B.7. As expected, the estimates based on

the unconstrained likelihood are clearly bimodal, since two equivalent sub-models of H3 can be

found associated to k0 = 1, see Table 1. Instead, the estimates based on the constrained likelihood

are again unimodal and centered around the true values of d and b. Finally, the quality of the

constrained estimates slightly deteriorates when d0 − b0 ≈ 0.5, see Figure B.8. In this case, the

slow convergence rate makes the profile log-likelihood function extremely flat, although the sample

size is moderately large, thus generating more dispersed estimates of ψ. However, compared to the

unrestricted estimates which are found everywhere in the interval 0.3 < b < d < 1, the constrained

estimates are much more often concentrated in the region around d0 and b0.

4 Unknown cointegration rank

In this section, we extend the previous results to the case in which the cointegration rank and the

lag-length are both unknown. This is the relevant case in empirical applications, when testing for

the presence of a cointegration relationship between two (or more) fractional processes but there

is no preliminary information on the optimal choice of k. The unrestricted FCVARd,b model is

formulated as:

Hr,k : ∆dXt = Π∆d−bLbXt +
k

∑

i=1

Γi∆
dLibXt + εt, (20)

where 0 ≤ r ≤ p is the rank of the p× p matrix Π. The parameter space of model Hr,k is

ΘHr,k
= {α ∈ R

p×r, β ∈ R
p×r,Γj ∈ R

p×p, j = 1, . . . , k, d ∈ R
+, b ∈ R

+, d ≥ b > 0,Ω > 0}.

Compared to the parameter space of Hk in Section 2, the set ΘHr,k
also contains the cointegration

rank, r, among the unknown parameters. For this reason, model Hr,k exhibits further identification

issues than those illustrated in Section 2.

Example 2: Consider the model with k = 1 lags and rank 0 ≤ r ≤ p, given by

Hr,1 : ∆dXt = Π∆d−bLbXt + Γ1∆
dLbXt + εt,

where the set of parameters is θ = vec(d, b,Π,Γ1).

Examine now the following two sub-models of Hr,1. First, model Hp,0 is

Hp,0 : ∆d̃Xt = Π̃∆d̃−b̃L
b̃
Xt + εt,

with θ̃ = vec(d̃, b̃, Π̃) is the set of parameters. Second, model H0,1 is

H0,1 : ∆d∗Xt = Γ∗
1∆

d∗Lb∗Xt + εt.
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where θ∗ = vec(d∗, b∗,Γ∗
1) is the set of parameters.7 Both Hp,0 and H0,1 can be written as

[

∆d̃−b̃(−Π̃) + ∆d̃(Ip + Π̃)
]

Xt = εt, (21)

and
[

∆d∗(I − Γ∗
1) + ∆d∗+b∗(Γ∗

1)
]

Xt = εt. (22)

Imposing the restrictions d̃ = d∗ + b∗, b̃ = b∗ and −Π̃ = Ip − Γ∗
1 on model Hp,0 in (21), it results

that Hp,0 and H0,1 are equivalent. Indeed, the probability densities are

pHp,0(X1, . . . , XT ; θ̃|X0, X−1 . . .) = pH0,1(X1, . . . , XT ; θ∗|X0, X−1, . . .), (23)

when θ̃ = vec(d∗ + b∗, b∗,Γ∗
1 − Ip, 0) and θ∗ = vec(d∗, b∗, 0,Γ∗

1).

However, the sub-model H0,1 is not always a re-parametrization of Hp,0. Indeed, applying the

restrictions d∗ = d̃− b̃, b∗ = b̃ and Γ∗
1 = Ip + Π̃ on model H0,1 in (22), it follows that

pHp,0(X1, . . . , XT ; θ̃|X0, X−1, . . .) = pH0,1(X1, . . . , XT ; θ∗|X0, X−1, . . .), (24)

where θ̃ = vec(d̃, b̃, Π̃, 0) and θ∗ = vec(d̃ − b̃, b̃, 0, Ip + Π̃). However, the equality (24) holds if and

only if d̃− b̃ ≥ b̃ > 0, i.e. d̃ ≥ 2b̃. This implies that H0,1 = Hp,0 ∩
{

d̃ ≥ 2b̃
}

. Hence, H0,1 ⊆ Hp,0.

The next proposition extends this example for any combination of k and r.

Proposition 4.1 Consider an unrestricted FCVARd,b model

Hr,k : ∆dXt = Π∆d−bLbXt +
k

∑

j=1

Γj∆
d−bLbXt + εt (25)

where 0 ≤ r ≤ p is the rank of the matrix Π and k is the number of lags. Consider the following sub-

models of Hr,k: Hp,k−1 with parameter set θ̃ = vec(d̃, b̃, Π̃, Γ̃1, ..., Γ̃k−1, Ω̃), and H0,k with parameter

set θ∗ = vec(d∗, b∗,Γ∗
1, ...,Γ

∗
k,Ω

∗).

i) For any k > 0, model H0,k is equivalent to Hp,k−1 if the condition d̃ ≥ 2b̃ imposed on model

Hp,k−1 is satisfied. Hence H0,k=Hp,k−1 ∩
{

d̃ ≥ 2b̃
}

.

7Note that to maintain the notation as light as possible and avoid the double subscript for the parameters, we
use θ̃ and θ∗, instead of θp,0 and θ1,0, to indicate the parameter sets of Hp,0 and H0,1 respectively.
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ii) The nesting structure of the FCVARd,b model is represented by the following scheme:

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ · · · ⊂ H0,k

∩ ∩ ∩ ∩
H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ · · · ⊂ H1,k

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩
Hp,0 ⊂ Hp,1 ⊂ Hp,2 ⊂ · · · ⊂ Hp,k

with

H0,1 ⊆ Hp,0

H0,2 ⊆ Hp,1

...

...

H0,k ⊆ Hp,k−1

Proof in Appendix A.3.

It follows from Proposition 4.1i) that model H0,k can always be re-parametrized as model

Hp,k−1. On the other hand, model Hp,k−1 can be formulated as H0,k only when the condition

d̃ ≥ 2b̃ on model Hp,k−1 holds. This leads to the peculiar nesting structure displayed in Proposition

4.1.ii). Notably the interpretation of the two models Hp,k−1 and H0,k is slightly different, although

they are equivalent descriptions of the data. In model Hp,k−1, the the process Xt has p non-

common stochastic trends fractional order d̃− b̃. Instead, in model H0,k, then the process Xt has

p non-common stochastic trends fractional order d∗.

The following Corollary shows that indeterminacy between cointegration rank and lag-length

is not limited to Hp,k−1 and H0,k, but it can be extended to any cointegration rank 0 < s < p.

Corollary 4.2 For any k > 0, model Hs,k−1 with 0 < s < p and d̃ ≥ 2b̃ is equivalent to H0,k , if

and only if the matrix Γ∗ = Ip −
∑k

j=1 Γ∗
j in model H0,k has rank equal to s.

Proof in Appendix A.4.

In other words, if the matrix Γ∗ = Ip −
∑k

j=1 Γ∗
j in H0,k has reduced rank of order 0 < s < p,

the models Hs,k−1 and H0,k are equivalent under d̃ ≥ 2b̃ in Hs,k−1. This means that H0,k ⊆ Hs,k−1

for any 0 < s ≤ p, if rank(Γ) = s.

4.1 Univariate model

A similar identification problem, due to indeterminacy between d, b and k, arises also in the

univariate FAR(k) model studied in Johansen and Nielsen (2010)

∆dYt = π∆d−bLbYt +
k

∑

i=1

γi∆
dLibYt + εt,

where Yt is an univariate process and π is a scalar. Following the same procedure of the proof of

Proposition 4.1, it follows that H0,k = H1,k−1 ∩
{

d̃ ≥ 2b̃
}

, where H0,k defines here the FAR model

with π = 0 and k lags, while H1,k−1 defines the FAR model with π 6= 0 and k − 1 lags. Therefore,
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the FAR(k) model has the following circular nesting structure:

H0,0 ⊂ H0,1 ⊂ H0,2 ⊂ · · · ⊂ H0,k

∩ ∩ ∩ ∩
H1,0 ⊂ H1,1 ⊂ H1,2 ⊂ · · · ⊂ H1,k

with

H0,1 ⊆ H1,0

H0,2 ⊆ H1,1

...

...

H0,k ⊆ H1,k−1

In Johansen and Nielsen (2010), the theoretical results are obtained under the maintained assump-

tion that the true number of lags k0 is known.

4.2 Model selection under unknown rank and lag-length

The peculiar nesting structure of the FCVARd,b obviously impacts on the joint selection of the

number of lags and the cointegration rank. Indeed, the likelihood ratio statistic for cointegration

rank r, denoted as LRr,k := −2 logLR(Hr,k|Hp,k), see Johansen and Nielsen (2012, p.2698), is

given by

−2 logLR(Hr,k|Hp,k) = T (ℓ
(r,k)
T (d̂r,k, b̂r,k) − ℓ

(p,k)
T (d̂p,k, b̂p,k)), (26)

where ℓ
(r,k)
T is the profile log-likelihood of the FCVARd,b model with rank r and k lags. Analo-

gously, d̂r,k and b̂r,k are the arguments that maximize ℓ
(r,k)
T . The asymptotic properties of the LRr,k

test, under the maintained assumption of correct specification of the lag-length, i.e. k = k0, are

provided in Johansen and Nielsen (2012). Unfortunately, the values of the profile log-likelihoods

ℓ
(0,k)
T (d̂0,k, b̂0,k) and ℓ

(p,k−1)
T (d̂p,k−1, b̂p,k−1) are equal when d̃ ≥ 2b̃ in model Hp,k−1, and the number

of the parameters of the model Hp,k−1 is the same as in H0,k. Hence, the equality of ℓ
(0,k)
T (d̂0,k, b̂0,k)

and ℓ
(p,k−1)
T (d̂p,k−1, b̂p,k−1) influences the general-to-specific sequence of tests for the joint selection

of the cointegration rank and the lag-length. Indeed, assuming that the general-to-specific pro-

cedure for the optimal lag selection terminates in Hp,k−1, then it would be impossible to know

whether the optimal model is Hp,k−1 or H0,k if the estimates d̂p,k−1 and b̂p,k−1 are such that

d̂p,k−1 ≥ 2b̂p,k−1.

Therefore, a problem of joint selection of k and r > 0 arises in the FCVARd,b when the

cointegration rank is unknown and potentially equal to 0 or p. Moreover, under H0,k with k > 0,

the parameter b is defined but it does not have the usual interpretation as cointegration gap. A

test for the null hypothesis that r = 0 has been proposed by  Lasak (2010) and extended in  Lasak

and Velasco (2015) to allow for multiple degrees of fractional cointegration.  Lasak (2010) derives

the asymptotic distribution of the maximum eigenvalue and trace tests for the null hypothesis of

absence of cointegration relation in the Granger (1986) system

Hk : ∆dXt = αβ′∆d−bLbXt +
k

∑

i=1

Γi∆
dXt−i + εt εt ∼ iidN(0,Ω), (27)

under the assumption that d = 1. It should be noted that in the FVECM model of Granger
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(1986), the problem of identification discussed above does not arise since the operator Lb does

not enter in the short-run terms. Indeed, under r = 0, the parameter b is not defined, implying

that H0,k and Hp,k−1 are distinct models in the FVECM framework. In other words, the problem

of joint indeterminacy between cointegration rank and number of lags does not affect model (27).

However, as noted by Johansen (2008), it is not possible to obtain a Granger representation theorem

for fractionally cointegrated processes under the FVECM representation.  Lasak and Velasco (2015)

guarantee a Granger representation theorem also under short-run dynamics by assuming that the

pre-whitened series X∗
t = A(L)Xt follows a FVECM with k = 0.8 Alternatively, a solution to the

indeterminacy in the FCVARd,b framework is to rely on a preliminary estimate of the cointegration

rank based on a frequency domain procedure, following for example the testing procedure of Nielsen

and Shimotsu (2007). Instead, in the section below, we show that it is sufficient to impose a

constraint the fractional parameter d to solve in the problem of indeterminacy of cointegration

rank and lag-length.

4.2.1 Model selection with an identification restriction

Unfortunately, a solution to the joint indeterminacy of cointegration rank and lag-length is not

available within the unrestricted FCVARd,b framework. However, a simple solution to the identifi-

cation problem caused by the indeterminacy of cointegration rank and lag-length can be achieved

by a suitable restriction of the parameter space of d. Consider the model with unknown rank and

unknown lag structure. The model can be expressed by the parameter set Θr,k = {d0 ∈ R
+, b ∈

(0, d0],Γj ∈ R
p×p, j = 1, . . . , k, α ∈ R

p×r, β ∈ R
p×r,Ω > 0} where 0 ≤ r ≤ p and k ≥ 0 are

unknown. The following lemma holds

Lemma 4.3 Let Θ̃Hr,k
= {d = d0, b ∈ [0, d0], α ∈ R

p×r, β ∈ R
p×r,Γj ∈ R

p×p, j = 1, . . . , k; Ω > 0}
be the restricted parameter space of model ΘHr,k

with d = d0 ∈ R
+ for 0 ≤ r ≤ p and k ≥ 0, then

the nesting structure for the statistical models P = {Pθ : θ ∈ Θr,k}r=0,...,p
k=0,1,... can be written as

H0,0 ⊂ H0,1 ⊂ · · · ⊂ H0,k

∩ ∩ ∩
H1,0 ⊂ H1,1 ⊂ · · · ⊂ H1,k

...
...

...

∩ ∩ ∩
Hp,0 ⊂ Hp,1 ⊂ · · · ⊂ Hp,k

Proof in Appendix A.5.

When d = d0 is fixed, Lemma 4.3 proves that the FCVARd,b has a nesting structure that does

not exhibit the problem outlined above, since Hp,k−1 and H0,k are two distinct models. Analogously

to the discussion in Section 3.2, we suggest that the estimates of dr,k and br,k, for any 0 ≤ r ≤ p

and k ≥ 0, must be the solutions of the following constrained maximum likelihood problem

8Only when k = 0, the FVECM and the FCVARd,b model are equivalent, meaning that in this case also the
FVECM model allows for a Granger representation.
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ψ̂r,k = arg max
ψ

ℓ
(r,k)
T (ψr,k), (28)

s.t. dr,k ≥ δmin

where the lower bound on the parameter dr,k, δmin, can be determined by a preliminary estimate

of the fractional order of the process. Therefore, under the constraint dr,k ≥ δmin, we can test

Hp,k against Hp,k−1, without the risk of having an equivalent parametrization in H0,k under the

null hypothesis. In particular, the general-to-specific sequence of LR tests consists of iterating the

tests LRp,k−1 := −2 logLR(Hp,k−1|Hp,k) over k with fixed p (full rank) until the null hypothesis is

rejected in k∗. Subsequently, the cointegration rank, i.e. the rank of the matrix Π in model (20),

can be determined by a sequence of LR tests, LRr,k∗ , as in (26), over r ∈ [0, p] with k fixed to k∗.

It is important to stress that δmin does not depend on r and k so that it can be determined before

the general-to-specific sequence of LR tests for the determination of lag-length and cointegration

rank.

5 Conclusion

This paper discussed in detail some identification problems that affect the FCVARd,b model of Jo-

hansen (2008). The main finding is that the fractional parameters of the system cannot be uniquely

determined when the lag structure is over-specified. In particular, the multiplicity of equivalent

sub-models is provided in closed form given k and k0. It is also shown that a necessary and suf-

ficient condition for the identification is that the F(d) condition, i.e. |α′
⊥Γβ⊥| 6= 0, is fulfilled. A

simulation study highlights the practical problem of multiple humps in the expected profile log-

likelihood function as a consequence of the identification problem and the over-specification of the

lag structure. Furthermore, the simulations reveal a problem of weak identification, characterized

by the presence of local and global maxima of the profile likelihood function in finite samples. We

also prove that it is sufficient to restrict d to d0 to solve the identification problem. However, since

d0 is unknown, we impose a lower-bound restriction on d, where the lower bound is determined

on the basis of a preliminary semiparametric estimate of d0. This imposes the mildest restriction

on the parameter space of the FCVARd,b model. The Monte Carlo simulations show that the esti-

mates of the model parameters are unimodal and centered around the true values in most cases. It

is also proved that model H0,k is equivalent to model Hp,k−1 under certain conditions on d and b.

Unfortunately, the F(d) condition does not provide any information for the identification in this

case, but it is again sufficient to impose a suitable lower bound restriction on the parameter space

of d to solve this identification problem and retrieve a nesting structure of FCVARd,b model that

allows testing for the unknown lag-length and cointegration rank in the standard general-to-specific

fashion.
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A Proofs

A.1 Proof of Proposition 2.2

Let us define the model Hk0 under k0 ≥ 0 as

k0
∑

i=−1

Ψi,0∆
d0+ib0Xt = εt, (29)

and the model Hk with k > k0 as
k

∑

i=−1

Ψi∆
d+ibXt = εt. (30)

It is possible to show, that, for a given k0, m sub-models equivalent to the model in (29) can

be obtained imposing suitable restrictions on the matrices Ψi i = −1, ..., k of the model Hk. The

equivalent sub-models, H(j)
k , j = 0, 1, . . . ,m− 1, are found for

Ψ−1 = Ψ−1,0 corresponding to d− b = d0 − b0 (31)

Ψ(ℓ+1)(j+1)−1 = Ψℓ,0 corresponding to d+ [(ℓ+ 1)(j + 1) − 1]b = d0 + ℓb0,

for ℓ = 0, . . . , k0 j = 0, 1, . . . ,m− 1

Ψs = 0 for s 6= (ℓ+ 1)(j + 1) − 1,

and ℓ = 0, . . . , k0 j = 0, 1, . . . ,m− 1.

The matrices Ψ−1,0 = −α0β
′
0 and Ψ−1 = −αβ load the terms ∆d0−b0Xt and ∆d−bXt respec-

tively. This implies that d0 − b0 = d− b in all equivalent sub-models. For a given j > 0, a system

of k0 +2 equations (31) in d and b is derived from the restrictions on the matrices Ψi. The solution

of this system is found for b = b0/(j + 1) and d = d0 − j
j+1b0. All sub-models H(j)

k , j = 1, . . . , k

are such that Ψ−1 = −αβ′ = −α0β
′

0 = Ψ−1,0 and Ψ0 = 0, This implies that αβ′ + Γ = Ψ0 = 0.

It follows that the sub-models for j = 1, ..., k are such that |α′
⊥Γβ⊥| = 0. Only for j = 0, the

condition |α′
⊥Γβ⊥| 6= 0 is satisfied.

For a given k > k0, the number of restrictions to be imposed on Ψi that satisfies the system in

(31) is ⌊ k+1
k0+1⌋. Hence, the number of equivalent sub-models is m = ⌊ k+1

k0+1⌋.
�

A.2 Proof of Lemma 3.1

Consider two models H1
k and H2

k defined in Θ̃Hk
, given by

k
∑

j=−1

∆d0+jb1Ψ1
jXt = εt and

k
∑

j=−1

∆d0+jb2Ψ2
jXt = εt

with d0 ≥ b1 > 0 and d0 ≥ b2 > 0. We want to prove that H1
k and H2

k are equal if only if b1 = b2

and Ψ1
j = Ψ2

j , j = 1, . . . , k and Ω1 = Ω2.
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Given that Pθ is Gaussian for all θ ∈ Θ̃Hk
we should check that the characteristic polynomials

Πi(z) =

k
∑

j=−1

(1 − z)d0+jbiΨi
j , i = 1, 2

are equal. They are equal if

(1 − z)d0+jb1 = (1 − z)d0+jb2 ⇐⇒ (1 − z)b1 = (1 − z)b2 ⇐⇒ b1 = b2, ∀j = −1, . . . , k

and

Ψ1
j = Ψ2

j , ∀j = −1, . . . , k

Finally, the variance of the innovations are Ω1 = Ω2 by construction since the error terms ǫt is the

same in H1
k and H2

k. Therefore, the statistical model P = {Pθ : θ ∈ Θ̃Hk
} is identified.

A.3 Proof of Proposition 4.1

The unrestricted FCVARd,b model is given by

Hr,k : ∆dXt = Π∆d−bLbXt +

k
∑

j=1

Γj∆
d−bLbXt + εt, (32)

where 0 ≤ r ≤ p is the rank of the matrix Π and k is the number of lags. The model in equation

(25) can be written as
k

∑

i=−1

Ψj∆
d+ibXt = εt,

where Ψ−1 = −Π, Ψ0 = Ip + Π −∑k
i=1 Γi and Ψk = −(1)k+1Γk.

Now consider the following sets of restrictions on model (25):

Hp,k−1 : Π is a p× p matrix and Γk = 0

H0,k : Π=0.

The model Hp,k−1 can be written in compact form as:

k−1
∑

i=−1

Ψ̃i∆
d̃+ib̃Xt = εt (33)

where Ψ̃−1 = Π̃, Ψ̃0 = Ip + Π̃ − ∑k−1
i=1 Γ̃i and Ψ̃k−1 = (−1)kΓ̃k−1. The matrices Π̃ and Ψ̃i,

i = −1, ..., k − 1 define the model under the restriction Hp,k−1.

Similarly, the model H0,k can be written as:

k
∑

i=0

Ψ∗
i∆

d∗+ib∗Xt = εt, (34)
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with Ψ∗
−1 = 0, Ψ∗

0 = Ip + 0−∑k
i=1 Γ∗

i and Ψ∗
k = (−1)k+1Γ∗

k. The matrices Ψ∗
i , i = −1, ..., k, define

the model under the restriction H0,k.

Imposing the following set of restrictions on the matrices Ψ̃i and Ψ∗
i :































Ψ̃−1 = Ψ∗
0

Ψ̃0 = Ψ∗
1

...

Ψ̃k−1 = Ψ∗
k,

(35)

it follows that the two models Hp,k−1 and H0,k are equivalent when the system































d̃− b̃ = d∗

d̃ = d∗ + b∗

...

d̃+ (k − 1)b̃ = d∗ + kb∗

(36)

has an unique solution. Suppose that the system (36) is solved for d̃ and b̃. The unique solution

in this case is d̃ = d∗ + b∗ and b̃ = b∗, which satisfies the condition d̃ ≥ b̃ > 0. Now suppose that

the system (36) is solved for d∗ and b∗. The unique solution in this case is d∗ = d̃− b̃ and b∗ = b̃,

which satisfies the condition d∗ ≥ b∗ > 0 if and only if d̃ ≥ 2b̃. Therefore, if d̃ ≥ 2b̃ it follows that

H0,k ≡ Hp,k−1. Hence, H0,k ⊂ Hp,k−1. �

A.4 Proof of Corollary 4.2

Using a procedure similar to that adopted in the proof of Proposition 4.1, it is straightforward

to show that, when d̃ ≥ 2b̃, the model Hs,k−1 with 0 < s < p and model H0,k are equivalent if

Γ∗ = Ip−
∑k

i=1 Γ∗
i = Ψ∗

0 is a matrix with rank s in model (34) and the restriction r = s is imposed

on model (33), so that Π̃ = αβ′ where α and β are p× s matrices. �

A.5 Proof of Lemma 4.3

Consider the models Hp,k−1 and H0,k for k = 0, 1, . . . in equations (33)-(34) and impose the

constraint d = d0. Then,

Hp,k−1 :
k−1
∑

i=−1

Ψ̃i∆
d0+ib̃ = εt

H0,k :
k

∑

i=0

Ψ∗
i∆

d0+ib∗Xt = εt.

It follows that Hp,k−1 ∩ H0,k = ∅ because there is no solution to the system of equations 36 when

d = d0 is fixed. Therefore, the nesting structure in 4.3 follows. �
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Figure B.1: Figure reports simulated values of l̄(d) and F̄(d) for different values of d ∈ [0.2, 1.2] (x-axis).
The observations from the DGP are generated with k0 = 0 lags and model Hk with k = 2 lags is estimated.
The parameters of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′.
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Figure B.2: Figure reports simulated values of l̄(d) and F̄(d) for different values of d ∈ [0.3, 0.8] (x-axis).
The observations from the DGP are generated with k0 = 1 lags and model Hk with k = 3 lags is estimated.
The parameters of the DGP are d0 = b0 = 0.8, β0 = [1,−1]′, α0 = [−0.5, 0.5]′,and Γ1 =

[

0.3 −0.2
0.4 −0.5

]

.
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Figure B.3: Figure reports the values of the expected profile likelihood, l̄(ψ), for different values
of b ∈ [0.1, 1.1] (x-axis) when d = d0 = 1. The sample size is T = 20000 and k0 = 0, while Hk

with k = 1, 2, 3, 4 is estimated. The parameters of the DGP are d0 = 1 and b0 = 0.8, β0 = [1,−1]′,
α0 = [−0.5, 0.5]′.
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Figure B.4: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d (x-axis)
and b (y-axis) when a sample of T = 10000 observations is generated by a bivariate FCVARd,b model with
k0 = 0, d0 = 1, b0 = 0.8 and the cointegration vectors given by β0 = [1,−1]′ and α0 = [−0.5, 0.5]′. Model
H2 is estimated on the data. Panel a) is relative to the estimates based on the constrained log-likelihood
(13) where γ = 2 and m = T 0.6. Panel b) reports the contour plot for the unrestricted estimates.
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Figure B.5: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d (x-axis)
and b (y-axis) when a sample of T = 1000 observations is generated by a bivariate FCVARd,b model with
k0 = 0, d0 = 1, b0 = 0.8 and the cointegration vectors given by β0 = [1,−1]′ and α0 = [−0.5, 0.5]′. Model
H1 is estimated on the data. Panel a) is relative to the estimates based on the constrained log-likelihood
(13) where γ = 2 and m = T 0.6. Panel b) reports the contour plot for the unrestricted estimates.
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Figure B.6: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d (x-axis)
and b (y-axis) when a sample of T = 1000 observations is generated by a bivariate FCVARd,b model with
k0 = 0, d0 = 1, b0 = 0.8 and the cointegration vectors given by β0 = [1,−1]′ and α0 = [−0.5, 0.5]′. Model
H2 is estimated on the data. Panel a) is relative to the estimates based on the constrained log-likelihood
(13) where γ = 2 and m = T 0.6. Panel b) reports the contour plot for the unrestricted estimates.
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Figure B.7: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d
(x-axis) and b (y-axis) when a sample of T = 2500 observations is generated by a bivariate FCVARd,b

model with k0 = 1, d0 = 1, b0 = 0.8 and the cointegration vectors given by β0 = [1,−1]′, α0 = [−0.5, 0.5]′

and Γ1 =
[

0.3 −0.2
−0.4 0.5

]

. Model H3 is estimated on the data. Panel a) is relative to the estimates based on

the constrained log-likelihood (13) where γ = 2 and m = T 0.6. Panel b) reports the contour plot for the
unrestricted estimates.
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Figure B.8: Figure reports the contour plot of M = 1000 Monte Carlo estimates of the parameters d (x-axis)
and b (y-axis) when a sample of T = 2500 observations is generated by a bivariate FCVARd,b model with
k0 = 0, d0 = 1, b0 = 0.6 and the cointegration vectors given by β0 = [1,−1]′ and α0 = [−0.5, 0.5]′. Model
H2 is estimated on the data. Panel a) is relative to the estimates based on the constrained log-likelihood
(13) where γ = 2 and m = T 0.6. Panel b) reports the contour plot for the unrestricted estimates.
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