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Abstract

This paper studies vector autoregressive models with parsimoniously time-varying parame-
ters. The parameters are assumed to follow parsimonious random walks, where parsimony
stems from the assumption that increments to the parameters have a non-zero probability of
being exactly equal to zero. We estimate the sparse and high-dimensional vector of changes
to the parameters with the Lasso and the adaptive Lasso.

The parsimonious random walk allows the parameters to be modelled non parametrically,
so that our model can accommodate constant parameters, an unknown number of structural
breaks, or parameters varying randomly. We characterize the finite sample properties of the
Lasso by deriving upper bounds on the estimation and prediction errors that are valid with
high probability, and provide asymptotic conditions under which these bounds tend to zero
with probability tending to one. We also provide conditions under which the adaptive Lasso is
able to achieve perfect model selection.

We investigate by simulations the properties of the Lasso and the adaptive Lasso in settings
where the parameters are stable, experience structural breaks, or follow a parsimonious
random walk. We use our model to investigate the monetary policy response to inflation and
business cycle fluctuations in the US by estimating a parsimoniously time varying parameter
Taylor rule. We document substantial changes in the policy response of the Fed in the 1970s
and 1980s, and since 2007, but also document the stability of this response in the rest of the
sample.

JEL codes: C01, C13, C32, E52.

Keywords: Parsimony, time varying parameters, VAR, structural break, Lasso.

1. Introduction

This paper proposes a parsimoniously time-varying vector autoregressive model (with
exogenous variables, VARX). The parameters of this model are assumed to follow a parsimo-
nious random walk, that is, a random walk with a positive probability that an increment is
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exactly equal to zero. The parsimonious random walk allows the time varying parameters to be
modelled non parametrically so that the parameters can follow a wide range of classical time
varying processes. We use the Lasso of Tibshirani (1996) to estimate the vector of increments
to the parameters which is sparse under the parsimonious random walk assumption, and is
high dimensional in the sense of being at least as large as the sample size. For a general review
of the Lasso in high-dimensional settings see Bühlmann and van de Geer (2011) and Belloni
and Chernozhukov (2011). We begin this introduction by contextualizing our model within
the literature on time varying parameter models, and then detail our contributions before
turning to the specifics of our model and estimation method.

There exists a substantial literature on time varying parameter models in every domain of
time series econometrics. Using a Bayesian approach, Koop and Korobilis (2013) estimate
large time varying-parameter VARs using forgetting factors to render the estimation of their
model computationally feasible, while Bitto and Frühwirth-Schnatter (2014) uses shrinkage
for the same purpose. Likelihood driven models such as state space models (Durbin and
Koopman, 2012), and more recently generalised autoregressive score models (Creal, Koopman,
and Lucas, 2013), are routinely used to allow the parameters to vary over time guided by the
data.

In the models discussed above the parameters do vary at every point in time; another
strand of literature investigates models with a finite number of changes in the parameters, or
a finite number of possible values the parameters may take over time. One example of such
models is regime switching models (see Hamilton (2008) for a review). These are typically
used in the empirical literature to model systems experiencing a succession of recessive and
expansive regimes, or any other finite number of regimes, with the probability of switching
between regimes being data dependent. Another example is the issue of structural breaks, i.e.
cases where the parameters experience a small and finite number of changes over time, for
instance in response to a policy change. The structural breaks literature is extensive, covering
a breadth of models and methods. From the perspective of this paper the most relevant part
is the treatment of linear regression models in e.g. Bai (1997) and Bai and Perron (1998), and
VAR models in e.g. Bai (2000) and Qu and Perron (2007). For a general review see Perron (2006).
The problem of structural breaks has also been addressed using shrinkage methods: In an
autoregressive setting Chan, Yau, and Zhang (2014) uses the group Lasso to estimate clusters
of parameters with identical values over time, and Qian and Su (2014) considers the problem
of estimating time series models with endogenous regressors and an unknown number of
breaks using the group fused Lasso.

Evidence of the importance of allowing for the parameters of a model to vary over time are
widespread in the literature. Of particular interest for our empirical application are Primiceri
(2005); Boivin and Giannoni (2006); Sims and Zha (2006) who document, using a wide range
of models and estimators, that the monetary policy response to inflation in the US changed in
the early 1980s. This evidence is controversial though, Sims and Zha (2006) reviews research
finding no evidence of instability in US monetary policy. We use our framework to investigate
this issue by estimating parsimoniously time varying Taylor rules (Taylor, 1993).

The main contribution of this paper is to propose an estimator for VARX models with
parsimoniously time-varying parameters. We detail below a few novel aspects of this paper.

i) In order to model the potential time variations of the parameters of the VARX in a flexible
way we propose the parsimonious random walk process. This process has two advantages.
First, by allowing the increments to be exactly equal to zero with some positive probability
it allows us to consider models with structural breaks or even constant parameters.
Second, by allowing the parameters to behave as a random walk it allows us to model
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the path of the parameter vector in a non parametric way. In this paper we assume the
probability αT for an increment to be different from zero to depend on the sample length
T , specifically αT = kαT −a , where kα and a are positive constants. In the case of a single
variable this leads to an expected number of non-zero increments E(s) = kαT 1−a .

ii) In a model similar to ours in structure, Harchaoui and Lévy-Leduc (2010) shows that
consistent estimation with the Lasso is not possible under standard assumptions. We
introduce the concept of asymptotic distinctness of the changes in the parameters,
specifically we assume that the distance between breaks increases at a rate O (T d ), 0 <
d ≤ 1. Under this assumption, we are able to prove consistency of the Lasso provided
conditions on d are satisfied.

iii) We establish finite sample upper bounds on the `1 norm of estimation error and the `2

norm of the prediction error of the Lasso, and show that they hold with high probability,
building on results from Kock and Callot (2015). We then turn to asymptotics and show
that the upper bounds tend to zero with probability tending to one under conditions
such that a ≥ 3/4 and d > 3/4.

iv) We establish conditions under which the adaptive Lasso (Zou, 2006) possesses the oracle
property, that is, the conditions under which the adaptive Lasso recovers the true model.
Specifically we establish a finite sample probability of perfect selection under conditions
on the size of the smallest non-zero parameter. We then derive conditions on a and d
under which the adaptive Lasso recovers the true model with probability tending to one.

v) To illustrate the relevance of our model we provide an application investigating the
monetary policy response to inflation in the US from 1954 to 2014. More specifically we
estimate a set of parsimoniously time-varying Taylor rules in which the Fed’s effective
fund rate depends on past inflation and output gap as well as its own lag. We find that the
response to inflation has been unstable in the 1970s and the 1980s but that, in the two
decades preceding and following this period, the policy response was stable. We also find
weaker evidence for a persistent change starting in 2007, coinciding with the period at
which the Fed fund rate reached its lower bound.

In the next section we formally introduce the model and our assumptions. Section 3
contains the finite sample and asymptotic theorems describing the behaviour of the Lasso.
The subsequent section is dedicated to investigating the properties of our estimator in Monte
Carlo experiments. Finally, we illustrate the practical relevance of the proposed model by
estimating several specifications of a parsimoniously time-varying parameter Taylor rule
for US monetary policy and document substantial instability in the response of the Fed to
inflation in the 1970s and 1980s, and since 2007.

2. Model

We consider a VARX(p) model with parsimoniously time-varying parameters including rx

exogenous variables X t , and p lags of the ry dependent variables Yt = [y1t , ..., yry t ]′. Since this
model will be estimated equation by equation, we restrict our focus to equation i , i = 1, ...,ry

yi t =β′
i t X t +

p∑
l=1

γ′i l t Yt−l +εi t

= ξ′i t Zt +εi t (1)
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where Zt = [X ′
t ,Y ′

t−1, . . . ,Y ′
t−p ]′ is of dimension r ×1, r = rx +pry , and ξi t = [β′

i t ,γ′i 1t , . . . ,γ′i pt ]′.
In order to lighten up the notation we drop the equation subscript i henceforth, yt should be
understood as being any element of Yt .

In order to establish finite sample bounds on the performance of the Lasso we make use
of concentration inequalities on averages of products of the elements of the model. These
inequalities are valid if the tails of the entries are sub-exponential, to ensure this we need to
make a series of independence and Gaussianity assumptions.

Assumption 1 (Covariates and innovations). Assume that:

i) εt ∼N (0,σ2
ε) is a sequence of i .i .d innovation terms, σ2

ε <∞.

ii) X t ∼N (0,Ω2
X ). For all k = 1, ...,rx , Var(Xkt ) =σ2

X k <∞.

iii) E(ε′X ) = 0.

The variances of the innovations εt and of the exogenous variables X tk could be assumed
to be heteroskedastic; for our purpose we only require that these variables are sequences
of independent Gaussian random variables with finite variances. We also require yt to be a
Gaussian random variable with finite variance. The linearity of the model and assumption
1 ensures Gaussianity, but we need an extra assumption on the dynamics of the model to
ensure that the variances remain finite.

Define the parameter matrices of the full VARX(p):Γl t = [γ1l t , ...,γry l t ]′ and Bt = [β1t , ...,βrx t ]′,
which are of dimensions ry × ry and ry × rx respectively. We write the VARX(p) in companion
form:

Yt = Bt X t +
p∑

l=1
Γl t Yt−l +εt

Yt = At Y′
t−1 +Σt

where Yt =
[

Yt ,Yt−1, ...,Yt−p+1

]′
and Σt =

[
εt +Bt X t ,0, ...,0

]′ are matrices of dimensions pry ×
ry , and At is the companion matrix:

At =


Γ1t · · · · · · Γpt

Iry · · · · · · 0
. . .

...
...

0 · · · Iry 0

 .

Now further define the ry×Try selection matrix J = [Iry ,0, ...,0], and letΦ j t = J
(∏ j−1

k=0 At−k

)
J ′.

A standard results for VAR models with time varying coefficients, see for example (Lütkepohl,
2007, section 17.2.1), gives the covariance matrix of Yt :

E(Yt Y ′
t ) =

∞∑
j=0
Φ j t E(Σt− j )Φ′

j t .

We can now state our assumption on the dynamics of the VAR ensuring that the variance
of Yt is finite.
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Assumption 2. (VAR dynamics) Let

Var
(
Yt

)= [
σ2

y1t , ...,σ2
yry t

]
= diag

 ∞∑
j=0
Φ j t E(Σt− j )Φ′

j t

 .

For some positive constant M <∞ and for all t = 1, ...,T and k = 1, ...,ry , we have σ2
yk t ≤ M.

We now turn our attention to the process driving the parameters. The structuring assump-
tions of this paper is that the change in the value of the parameter vector, ξt , for the r variables
of the model at time t , 1 ≤ t ≤ T is defined as the element-by-element product (noted ¯) of
two random variables ηt ∈Rr and ζtk = 0 or 1, k = 1, ...,r . If P (ζtk = 0) > 0, then the vector of
increments to the parameters (η1 ¯ζ1,η2 ¯ζ2, ...,ηT ¯ζT ) is sparse, and the sparsity of this
vector is controlled by P (ζtk = 0), whereas if P (ζtk = 0) = 0 then the parameters follow random
walks. When P (ζtk = 0) > 0 we refer to this process as a parsimonious random walk. For a low
probability of non-zero increments the parsimonious random walk can generate parameter
paths that are akin to those considered in the structural break literature, while for a higher
probability of non-zero increments the paths can be akin to regime switches or other paths
with a high degree of variation. The process is formally defined in assumption 3 below:

Assumption 3 (Parsimonious random walk). Assume that the parameters follow a parsimo-
nious random walk with ξ0 given.

ξt = ξt−1 +ζt ¯ηt .

ηt and ζt are vectors of length r with the following properties:

αT = kαT −a , 0 ≤ a ≤ 1, kα > 0

ζ j t =
1, w.p. αT

0, w.p. 1−αT
j ∈ 1, ...,r

ηt =N (0,Ωη)

E(η′tηu) = 0if t 6= u

E(η′tζu) = 0 ∀t ,u ∈ 1, ...,T

We assume that αT = kαT −a , which controls the sparsity of the vector of increments
thereby controlling the number (and rate of growth) of non-zero parameters which we seek to
estimate. The constant kα scales the probability αT and must be such that 0 ≤αT ≤ 1. If kα
satisfies this restriction for some T0, it will satisfy it for any T ≥ T0 since a ≥ 0. Consistency
requirements for the Lasso estimator will impose a tighter lower bound on a. It is important
to note that while assumption 3 puts no further restrictions on the path of the parsimonious
random walk, we do rule out paths that violate assumption 2, i.e. paths that cause the variance
of Yt to be unbounded.

Continuing to the task of setting up the estimation problem we start by noting that by
multiplying the diagonalized matrix of covariates Z D by a selection matrix W ,

Z D =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZT

 ,W =


Ir 0 · · · 0
Ir Ir · · · 0
...

...
. . .

...
Ir Ir · · · Ir

 , Z DW =


Z1 0 · 0
Z2 Z2 · 0
...

...
. . .

...
ZT ZT · · · ZT

 ,
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we are able to write our parsimoniously time-varying VARX model (1) as a simple regression
model

y = Z DW θ+ε

where the parameter vector θ′ = [ξ′0 + ζ′1 ¯ η′1,ζ′2 ¯ η′2, ...,ζ′T ¯ η′T ] has length r T , and y =
(y1, ..., yT )′, ε= (ε1, ...,εT )’. The matrix Z DW contains T observations for r T covariates con-
structed from the original r covariates. The first r elements of θ are the sum of the initial value
of the parsimonious random walk ξ0 and the first increment ζ1¯η1. The subsequent elements
of θ are the increments of the parsimonious random walk ζt ¯ηt , t > 1 so that by cumulating
the entries of θ we can recover the full path of the parameters.

The sparsity of the vector of increments from assumption 3 implies sparsity of the vector
of parameters θ. Let sT be the number of non-zero parameters, the expected number of
non-zero parameters is E(sT ) = r kααT T ∈O (T 1−a). The growth rate of the expected number
of non-zero parameters is entirely controlled by a, r being fixed. The specification of the
parsimonious random walk allows for great flexibility. For a < 1 we allow the number of
parameters, and thus the number of increments, to grow with the sample size. For a = 1 the
expected number of parameters is constant (equal to r kα) and thus covers the cases of stable
parameters, or of a fixed number of structural breaks. When estimating the model we estimate
a particular realization of the stochastic processes followed by the parameters where the
degree of sparsity of this realization is unknown. Results similar to ours would hold if we were
to assume the parameters are fixed quantities with an unknown (finite) number of breaks.

Since the parameter vector is sparse the estimation problem requires a sparse estimator;
we choose to use the Lasso to estimate θ, and we discuss the properties of the Lasso estimator
in this setting in the next section.

2.1. Notation

Before proceeding further we introduce some notation. Let
[
σ2

1, ...,σ2
r T

]
= diag(Var(Z DW ))

and σ2
T = max

(
σ2
ε ,max1≤k≤r T σ

2
k

)
where σ2

ε is the variance of ε and σ2
k is the variance of the

k th column in Z DW . Define the active set ST as the set of indices corresponding to non-

zero parameters in θ, ST =
{

j ∈ (1, ...,r T )|θ j 6= 0
}

, and its cardinality |ST | = sT . To simplify

notation, when it is unambiguous, we omit the subscript T . We note‖.‖`1 the `1 norm,‖.‖
the `2 norm, and ‖.‖∞ the maximum norm. The sign function is defined as sign(x) = −1 if
x < 0, sign(x) = 0 if x = 0, and sign(x) = 1 if x > 0. For a matrix A let φ(A) denote the smallest

eigenvalue of A and φ(A) the largest. Let f (T ) ∈Ω(g (T )) mean that there exists a constant
c > 0 such that f (T ) ≥ cg (T ) for T ≥ T0 for a certain T0 onwards, and f (T ) ∈ O (g (T )) mean
that there exists a constant c > 0 such that f (T ) ≤ cg (T ) for T ≥ T0 for a certain T0 onwards.
Similarly, letΩp (·) and Op (·) define their probabilistic counterparts.

3. Estimation

The Lasso estimator θ̂ minimizes the following convex objective function:

θ̂ = argminθ

(
1

T

∥∥∥y −Z DW θ
∥∥∥2 +2λT

∥∥θ∥∥
`1

)
. (2)

Because the objective function (2) is convex, finding the solution to (2) for a given value
of λT is an easy problem from a computational standpoint making the estimation of this
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model fast. Our model is high dimensional by construction, in the sense that the number
of parameters to estimate is at least as large as the sample size; the number of non-zero
parameters is of a smaller order than the sample size, however. To investigate the properties
of the Lasso in this model we start by deriving finite sample bounds for the estimation
and prediction errors before considering their asymptotic behaviour. We also derive results
regarding the Lasso’s variable selection properties, as well as conditions under which the
adaptive Lasso achieves perfect variable selection. Before doing so we introduce an extra
assumption.

This model has r T parameters and T observations so that when r > 1 its Gram matrix

ΨT = (W ′Z D′
)(Z D W )

T is singular. In this setting the ordinary least squares estimator is infeasible,
but Bickel, Ritov, and Tsybakov (2009) shows that the Lasso can have attractive properties
as long as a weaker condition on the Gram matrix, the restricted eigenvalue condition, is
satisfied. Consider the sample restricted eigenvalue:

κ2
T (ΨT ) = min

δ

δ′ΨTδ∥∥δS

∥∥2
: δ ∈Rr T \{0} ,

∥∥δS c
∥∥
`1

≤ 3
∥∥δS

∥∥
`1

, |S | ≤ s


The restricted eigenvalue condition, κ2

T (ΨT ) > 0, implies that square submatrices of size ≤ 2s
of the Gram matrix have positive eigenvalues. We must ensure that we are working with a
set of variables on which the restricted eigenvalue condition can be satisfied. This cannot be
the case when using the entire set of constructed variables Z DW since when r > 1 the last r
columns of Z DW , [0r , ...,0r , Z ′

T ]′, are by construction linearly dependent. So are all the sets of
r columns of the form [0r , ...,0r , Z ′

T0
, ..., Z ′

T ]′ where T0 > T − r +1, so we must always rule out
the possibility of a change in parameter values after time T − r +1.

In turns out that for the asymptotic analysis this is not sufficient. Harchaoui and Lévy-
Leduc (2010) consider the problem of estimating change points in a piecewise constant signal
observed with noise, a model similar in structure to ours, and show that in such a setting
the restricted eigenvalue is of the order T −1. This would also be the case in our setting were
we not to make further assumptions. It is not possible to consistently select break locations
unless we assume they are asymptotically distinct by which we mean that, while the number
of breaks can increase with the sample size, the distance between breaks must also increase.

In order to allow breaks to occur only at a restricted set of points in time, define the set of
time indices T ⊂ {1, . . . ,T } with cardinality

∣∣T ∣∣= mT . The selection matrix W can be written
as W = W̃T ⊗ Ir where W̃T is a T ×T matrix with ones on and below the diagonal. We then
define WT = W̃T T ⊗ Ir where W̃T T is a matrix containing the columns of W̃T corresponding
to indexes in T . In other words by using WT instead of W we only look for breaks at points in
time corresponding to the indexes in T . Having defined T we can correspondingly define a

new Gram matrixΨT T = W ′
T

Z D′
Z D WT

T , and the corresponding restricted eigenvalue κ2
T (ΨT T ).

In the following we provide a set of sufficient conditions under which we can control the rate
of decay of κ2

T (ΨT T ).

Assumption 4. Assume that:

i) The breaks are asymptotically distinct: Let the points in time where we check for breaks
be given by T = {t1, t2, . . . , tmT }. Then assume that the distance between two points is
ti+1 − ti = τi ≥ DT where DT = cT d for some positive constants c and d where d ∈ (0,1].

7



ii) Let Ži be the observations between two grid points ti and ti+1, i.e. Ž ′
i = [Zti+1, Zti+2, . . . , Zti+1 ].

Then φ(T −d Ž ′
i Ži ) > 0 with probability approaching one.

Assumption 4 i ) imposes that the distance between breaks is at least DT = cT d ; we can
always choose c so that DT = 1 thereby not imposing any restrictions on the location of the
breaks when estimating the model.

Lemma 1. Under assumptions 1, 3, and 4 we have κ2
T (ΨT T ) ∈Ωp (T d−1) for d ∈ (0,1].

Lemma 1 shows that if we assume the breaks are asymptotically distinct, the rate of decay
of κ2

T (ΨT T ) is a function of the distance between two breaks. We will use this property in
the asymptotic analysis of our estimators to establish under which conditions on d we can
achieve consistency, and perfect variable selection for the adaptive Lasso.

As assumption 4 merely provides sufficient conditions for κ2
T (ΨT T ) ∈Ωp (T d−1), we will

not work under this assumptions directly and instead make the following assumption.

Assumption 5 (Restricted eigenvalue condition). Assume that the index set T is constructed
such that:

i) κ2
T (ΨT T ) > 0.

ii) κ2
T (ΨT T ) ∈Ωp (T d−1) for some d ∈ (0,1].

If r = 1, assumption 5 i ) is (almost surely) satisfied by construction of Z DW . With r > 1
it is a data dependent issue whether assumption 5 i ) is satisfied as long as we rule out the
possibility of changes in the parameter value after time T − r +1. This restriction is explicitly
taken into account in the results below. To establish the finite sample results we do not impose
a minimal distance between the breaks, and assumption 5 ii) suffices for the asymptotic
analysis. For this reason and to simplify notations we omit the subscript T on the Gram
matrix and also write κ2

T := κ2
T (ΨT T ).

By penalizing every entry of θ, we penalize the initial value of the parsimonious random
walks, ξk0 (k = 1, . . . ,r ) together with the initial increments ηk1ζk1. In doing so we make it
possible for the initial value of the parsimonious random walk to be set to zero by the Lasso
and therefore, if all further increments are also set to zero, to exclude altogether an irrelevant
variable. Alternatively it is possible not to penalize ξ0 +η1 ¯ ζ1 in which case, if all further
increments are set to zero by the Lasso, the value of the parsimonious random walk at any
point in time is equal to the OLS estimator of y = ZΞ+ε. This also implies that the estimate
of the initial value is not biased towards zero. Choosing either alternative has a negligible
influence on the results below since it only involves the penalization (or lack thereof) of a
single parameter.

3.1. The Lasso
We can now state our first theorem on the estimation and prediction errors of the Lasso.

Theorem 1. For λT =
√

8ln(1+T )5 ln(1+r )2 ln(r (T−r+1))σ4
T

T and some constant A > 0, under assump-

tions 1, 2, 3, and 5, and on the set BT with probability at least equal to 1−πB
T we have the

following inequalities:

1

T

∥∥∥Z DW (θ̂−θ)
∥∥∥2 ≤ 16sλ2

T

κ2
T

,∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλT

κ2
T

, (3)
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with πB
T = 2(1+T )−1/A +2(r (T − r +1))1−ln(1+T ).

The bounds given in theorem 1 hold on a set that has probability at least 1−πB
T for a

given value of λT . These bounds are valid for any value of the penalty parameter as long as∥∥∥T −1ε′Z DW
∥∥∥∞ ≤λT /2 is satisfied, that is, if we are on BT ; holding everything else constant

the probability of BT decreases with λT .
The dependence on λT highlights the trade-off between selecting a larger value of λT to

increase the probability of
∥∥∥T −1ε′Z DW

∥∥∥∞ ≤λT /2 to be satisfied, and selecting a lower value

to reduce the upper bounds of the estimation and prediction errors. The bounds depend
linearly on the size of the active set so that more break points imply larger upper bounds.
They also depend indirectly on the variance of ηt ¯ζt through σ2

T which enters the expression
of λT .

If we assume that the smallest non-zero increment is larger than the estimation error,
we can show that no relevant variables are rejected, or equivalently, no break point goes

undetected. Let θmin = min j∈S

{
|θ j |

}
be the smallest non-zero parameter.

Corollary 1. If θmin >
∥∥∥θ̂−θ∥∥∥

`1
then Ŝ

⋂
S =S .

The Lasso cannot surely distinguish between parameters that are smaller than the esti-
mation error and parameters that are truly zero. There is a risk of misclassification for small
non-zero parameters. Similar results are used in the literature to claim that the Lasso possess
the oracle property. This result is stated as a corollary as it requires an extra condition to be
met relative to theorem 1. We stress that even when the Lasso does not possess the oracle
property, the properties of the Lasso in terms of overall estimation error of the path of the
parameters are still valid. If the condition on θmin is violated, the Lasso cannot surely detect
the precise location of every change point in the parsimonious random walk but can still
approximate it well.

We now turn to an asymptotic setting to show consistency of our estimator and, impor-
tantly, to get a sense of the number of changes in the parsimonious random walks that our
estimator can handle in the form of a bound on the rate of growth of s. Theorem 2 below
provides an asymptotic counterpart to theorem 1.

Theorem 2. Let a and d be scalars with a,d ≤ 1, 1−a +d ≤ 1, and 3
2 −a −d < 0.Then under

assumptions 1, 2, 3, and 5, and as T →∞ we have:

1

T

∥∥∥Z DW (θ̂−θ)
∥∥∥2→p 0 (4)∥∥∥θ̂−θ∥∥∥

`1
→p 0 (5)

Theorem 2 states that the prediction and estimation errors tend to zero in probability
provided a set of conditions involving jointly the speed of growth of the cardinality of the
active set (O (T 1−a)) and the speed at which the minimal distance between breaks grows
O (T d ). The condition 1−a+d ≤ 1 simply ensures that the number of breaks multiplied by the
distance between them is not of a larger order than the sample size. The condition 3

2 −a−d < 0

ensures that sλ
κ2

T
∈Op (T 3/2−a−d ), the upper bound from (3), tends to 0. sλ

κ2
T
→p 0 in turn implies

sλ2

κ2
T
→p 0 so that the prediction error tends to 0. The admissible region for a and d is plotted in

figure 1.
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Figure 1: Admissible region for a and d . The whole gray area is the admissible region for the Lasso, with the
constraints on a and d represented by the dashed lines. In darker gray is the admissible region for the adaptive
Lasso, with the constraint represented by the dotted line.

The speed with which the estimation error tends to zero is sλ
κ2

T
∈ Op (T 3/2−a−d ), the line

3/2−a−d = 0 is the top-left to bottom-right dashed line in figure 1. Figure 1 shows clearly that
the constraints impose a ≥ 3

4 (in which case we must have d > 3
4 ) implying that the number of

breaks may grow at most as T 1/4 in order to have convergence. Moving orthogonally away
from the constraint 3/2−a −d = 0 the highest speed of convergence, T −1/2, is reached for
a = d = 1 in which case the number of breaks is constant and the distance between them
increases at rate T .

For completeness we state an asymptotic counterpart to corollary 1.

Corollary 2. With probability tending to one, no relevant variables is excluded if there exists a
T0 ≥ 1 such that θmin > 16s

κ2
T
λT for all T ≥ T0.

Corollary 2 is similar to corollary 1 in that it gives a lower bound for the smallest non-zero
parameter above which no relevant variables are excluded. This bound tends to zero at the
same speed as the estimation error.

3.2. The adaptive Lasso

If we were to penalize more heavily the parameters that are truly equal to zero than those
that are different from it, instead of penalizing all parameters by λT , we could construct an
estimator that is more accurate than the Lasso. The adaptive Lasso of Zou (2006) is based on
this idea, using an initial estimator to construct adaptive penalties for each of the parameters.
In this setting we use the Lasso both as a screening device and as the initial estimator. The
variables that were excluded by the Lasso are not retained in the second stage. We note
(Z DWŜ ) the set of variables retained by the Lasso and θ̂Ŝ the corresponding set of estimated
parameters, and we construct the adaptive weights w by taking the inverse of the absolute
value of the estimated parameters w = 1

|θ̂Ŝ | . The adaptive Lasso objective function is thus
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given by:

θ̃ = argminθŜ

 1

T

∥∥∥y − (Z DWŜ )θŜ

∥∥∥2 +2λT
∑

i∈Ŝ

wi

∣∣∣θŜ ,i

∣∣∣
 . (6)

The adaptive Lasso objective function is convex and hence fast to minimize, furthermore
since the initial estimator discards a large amount of irrelevant variables the adaptive Lasso
problem (6) is of much smaller size than (2).

We study the properties of the adaptive Lasso by, as in the case of the Lasso, establishing
finite sample results before turning to asymptotic analysis. We focus on the oracle property of
the adaptive Lasso, the ability for the estimator to recover the exact model, sign(θ̃) = sign(θ).
We make use of the `1 bound on the estimation error of the Lasso to derive the properties
of the adaptive Lasso; we could use other consistent estimators to compute the adaptive
weights, the efficiency of the adaptive Lasso depends on that of the initial estimator via the

`1 estimation error
∥∥∥θ̂−θ∥∥∥

`1
. We now give a finite sample probability and conditions for the

adaptive Lasso to be sign consistent.

Theorem 3. Let λT =
√

8ln(1+T )5 ln(1+r )2 ln(r (T−r+1))σ4
T

T . Under assumptions 1, 2, 3, and 5, and

assuming that θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
and

[
sKT

κ2
T

(
1

2
+ 2

θmin

)
+ 1

2

]∥∥∥θ̂−θ∥∥∥
`1

≤ 1 (7)

p
s

κ2
T

(
λT

2
+ 2λT

θmin

)
≤ θmin (8)

with KT = ln(1+ r (T − r +1))2 ln(T )σ2
T . For some constant A > 0, on a set with probability at

least 1−πB
T −πC

T , with πB
T is as in theorem 1 and πC

T = 2T −1/A, we have sign(θ̃) = sign(θ).

The condition θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
ensures that the initial estimator has not discarded any

relevant variables, this condition is stronger than necessary, and indeed the 2 could be re-
placed by some q > 1 at the price of more involved notations. (7) illustrates the dependence

of the adaptive Lasso on the performance of the initial estimator in the form of
∥∥∥θ̂−θ∥∥∥

`1
, and

indeed (7) can be interpreted as a condition on the performance of the initial estimator. (8)
is a condition on θmin to ensure that no break is so small as to go unnoticed by the adaptive
Lasso.

We now turn to an asymptotic counterpart to theorem 3, where we show that the probabil-
ity that the adaptive Lasso recovers the correct model tends to one.

Theorem 4. Let a and d be scalars with a,d ≤ 1, 1−a +d ≤ 1 and 7/2−2a −2d < 0. Define

i) aT = ln(T ) ln(1+T )5/2 ln(r (T − r +1))1/2 ln(1+ r (T − r +1))2T 7/2−2a−2d ,

ii) bT = ln(1+T )5/4 ln(r (T − r +1))1/4T 1/2−a/4−d/2,

and let θmin ∈Ω(ln(T )max(aT ,bT )) . Then, under assumptions 1, 2, 3, and 5, we have:

P (sign(θ̃) = sign(θ)) → 1.
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Theorem 4 states the conditions under which the adaptive Lasso possesses the oracle
property. The rate at which θmin is allowed to tend to 0 is bounded from below by functions
of a and d so that achieving consistency requires stronger constraints on the parameters
than for consistency of the Lasso in theorem 2. The admissible region for the adaptive Lasso
has a quarter the area of that of the Lasso as shown in figure 1. The adaptive Lasso can
achieve perfect selection with probability tending to one only when the upper bound on the
`1 parameter estimation error of the Lasso, our initial estimator, tends to zero at least as fast
as T −1/4. This also implies that we require θmin to tend to zero slower for the adaptive Lasso
than for the Lasso so as to be certain to rule out classification errors.

3.3. Penalty parameter selection

The theorems above give analytical expressions and rates of growth for the penalty param-
eter λT , but do not provide a practical way of selecting it. We suggest selecting the value of λT

that minimizes the Bayesian Information Criterion (BIC), given by:

B IC (λ) = T × log

(
ε̂′
λ
ε̂λ

T

)
+

∣∣∣Ŝλ

∣∣∣ log(T ).

BIC is a convenient way to select the penalty parameter since it is easily computable
making it fast to find the minimizer of the BIC among the sequence of values of λT selected
by the estimation algorithm. Let ŜB IC denote the set of variables retained by the (adaptive)
Lasso using the value of λ selected by the BIC, then theorem 2 in Kock (2014) shows that, in an
autoregressive setting, choosing λT by BIC leads to consistent variable selection in the sense

that P
(
ŜB IC =S

)
→ 1. Wang, Li, and Leng (2009) shows similar results in a high dimensional

i.i.d. setting.

3.4. Post Lasso OLS

By construction the Lasso will select an active set Ŝ for which the smallest eigenvalue of
W ′

Ŝ
Z D′

Z D WŜ

T is strictly positive, implying that the cardinality of the set of selected variables

s =
∣∣∣Ŝ ∣∣∣ is smaller than the number of observations. Hence Z DWŜT

has rank s and the model

y = Z DWŜ θ̇+ ε̇ can be estimated by ordinary least squared. This post Lasso OLS has several
desirable properties

i) The Lasso biases the estimated non-zero parameters towards zero, the post Lasso provides
unbiased and

p
T -consistent estimates of the variables selected by the Lasso. See Belloni,

Chernozhukov, et al. (2013) for a formal analysis of the post Lasso OLS.

ii) Standard errors can be computed for the non-zero parameters, however they do not
account for the uncertainty in the Lasso step.

iii) Belloni et al. (2013) and Kock and Callot (2015) documents by simulation that the post
Lasso OLS improves marginally on the Lasso in terms of estimation and prediction errors.

4. Monte Carlo

In this section we explore the empirical properties of our model using simulated data. We
compute 8 statistics for each estimator and experiment, and average them across iterations. A
first group of 4 statistics focus on variable selection, a second group of 4 focuses on estimation:
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i) The number of breaks (non-zero parameters) estimated, noted # breaks.

ii) The number of variables incorrectly selected (false positive), noted FP.

iii) The number of variables correctly selected (true positive), noted TP.

iv) The number of breaks missed (false negative), noted FN.

v) The estimation error of the path of the parameter
∥∥∥θ̂−θ∥∥∥

`1
, noted `1 error.

vi) The prediction error
∥∥∥Z DW (θ̂−θ)

∥∥∥, noted `2 error.

vii) The root mean square error
∥∥ε̂∥∥ which, in a well specified model, converges towards the

variance of the innovations, noted RMSE.

viii) The size of the penalty parameter λ, noted λ.

We report tables with the 8 statistics enumerated above for a variety of experiments. We
also plot the true parameter path and a sample of estimated parameter paths for different
estimators to give a sense of the location and amplitude of the breaks in the estimated paths
relative to the true parameter paths. In these experiments we choose not to penalize the
estimator of the initial value.

The estimators we consider are the Lasso, the adaptive Lasso with the Lasso as initial esti-
mator, and the post Lasso OLS. The penalty parameter λT for both the Lasso and the adaptive
Lasso is selected by minimizing the BIC. The data generating process for the simulations is
y =βX +εwhere X is generated by drawing from a standard normal distribution, ε is Gaussian
with mean 0, variance 0.1 (except when specified otherwise), and is independent from X .

All the computations are carried out using R and the parsimonious package which per-
mits easy replication1 of the simulations and empirical application. The estimation of these
models is fast, each iteration takes in the order of 10−3 seconds in most cases and around 0.5
second for the hardest model, using commodity hardware.

4.1. Deterministic paths

We first consider the case of a constant parameter equal to 1. For this experiment we
consider 2 sample sizes, T = 100 and T = 1000, and 3 variances for the residuals, σ2

ε = 0.1,1,10.
This experiment allows us to investigate the behaviour of our estimators in a setting with a
constant parameter, and investigate the effect of modifying the noise to signal (n2s) ratio on
the estimators.

Table 1 reports the value of 5 out of the 8 statistics, the number of false positives, false
negatives, and true positives being uninformative in a setting with no breaks. Since the active
set of the initial estimator (Lasso) is often empty, no breaks are detected, the adaptive Lasso
frequently cannot be estimated so we do not report results for this estimator. This table reveals
that the Lasso incorrectly selects on average 0.1 breaks per models when T = 100 (0.01 when
T = 1000), implying that at least in the order of 90% of the models (99% for T = 1000) correctly
estimate a constant parameter. The number of breaks selected is not very sensitive to the
noise to signal ratio in contrast to the error measures. The RMSE is close to, but on average
smaller than, the standard error of the innovations (the true values are ≈ 0.316,1,≈ 3.16) for

1Replication files can be found at https://github.com/lcallot/ptv-var.
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T = 100 T = 1000

n2s ratio
σ2
ε

σ2
X

0.1 1 10 0.1 1 10

# breaks
DGP 0 0 0 0 0 0
Lasso 0.138 0.093 0.095 0.006 0.012 0.013
aLasso 0.121 0.086 0.088 0.006 0.011 0.012

`1 error
Lasso 0.153 0.272 0.483 0.083 0.147 0.264
aLasso - - - - - -
Post 0.157 0.28 0.498 0.083 0.148 0.266

`2 error
Lasso 0.028 0.088 0.279 0.008 0.026 0.083
aLasso - - - - - -
Post 0.031 0.097 0.308 0.008 0.026 0.084

RMSE
Lasso 0.311 0.985 3.108 0.316 0.998 3.158
aLasso - - - - - -
Post 0.311 0.984 3.106 0.316 0.998 3.158

λ
Lasso 0.023 0.073 0.228 0.008 0.026 0.083
aLasso - - - - - -

Table 1: Constant parameter, varying sample size: 10000 iterations. The adaptive Lasso results are not reported
since the Lasso often excludes every variables preventing us from estimating the adaptive Lasso.

T = 100; the RMSE is closer to its theoretical value when T = 1000. This under-evaluation of
the RMSE, overfitting, can be attributed to the spurious inclusions of breaks in the estimated
parameter path. The noise to signal ratio has a large influence on the `1 and `2 errors, they
both increase with the noise-to-signal ratio but fall when going from T = 100 to T = 1000.
Interestingly while the RMSE of the post Lasso OLS is identical or slightly smaller than that of
the Lasso, it appears that the `1 and `2 errors of the post Lasso OLS are marginally larger than
those of the Lasso.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

T=100 n2s=0.1 T=100 n2s=1 T=100 n2s=10

1.0

1.1

0.9

1.0

1.1

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

β

Estimator ●● Lasso Adaptive Lasso DGP

Figure 2: DGP parameter path (black crossed line) and a sample of 5 paths estimated with the Lasso (blue dotted
line) with corresponding adaptive Lasso (red solid line) when feasible.
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Figure 2 plots 5 estimated paths for the Lasso and adaptive Lasso (note that when no
breaks are selected in the first step the adaptive Lasso is not estimated) highlighting that
the vast majority of the estimated paths are constant. This figure also shows that despite
the downward bias introduced by the Lasso, the estimated paths cluster around the true
value, with few instances of large estimation errors on both sides of the true value. Figure 2
also reveals that when the Lasso incorrectly selects a break in the parameter path, it often
selects more than one, this is consistent with the selection of a low penalty parameter λ
in these iterations. This implies that the average number of breaks is an upper bound on
the number of estimated paths with non-constant parameters. The adaptive Lasso tends to
reduces the number of irrelevant breaks selected by the Lasso but only marginally since the
breaks incorrectly retained are large.

Break Location Break Size Break Number
10% 50% 90% 0.1 1 10 3 9 4

# breaks
DGP 1 1 1 1 1 1 3 9 4
Lasso 3.66 3.315 3.386 0.322 3.325 3.901 8.397 19.45 10.45
aLasso 1.501 1.305 1.423 - 1.314 1.005 3.913 11.71 5.354

FP
Lasso 2.895 2.529 2.666 0.304 2.538 2.91 6.062 12.74 7.519
aLasso 0.882 0.673 0.808 - 0.682 0.131 1.987 5.968 2.858

TP
Lasso 0.765 0.786 0.72 0.017 0.787 0.991 2.335 6.71 2.931
aLasso 0.619 0.632 0.615 - 0.632 0.874 1.927 5.74 2.497

FN
Lasso 0.235 0.214 0.28 0.983 0.213 0.009 0.665 2.29 1.069
aLasso 0.381 0.368 0.385 - 0.368 0.126 1.073 3.26 1.503

`1 error
Lasso 0.249 0.256 0.248 0.22 0.256 0.285 0.333 0.439 0.353
aLasso 0.214 0.212 0.213 - 0.212 0.249 0.279 0.397 0.31
Post 0.262 0.253 0.254 0.234 0.252 0.27 0.343 0.501 0.383

`2 error
Lasso 0.088 0.079 0.087 0.056 0.079 0.089 0.123 0.187 0.145
aLasso 0.065 0.058 0.064 - 0.058 0.066 0.094 0.162 0.117
Post 0.08 0.073 0.078 0.062 0.073 0.074 0.113 0.18 0.136

RMSE
Lasso 0.31 0.309 0.31 0.313 0.309 0.313 0.306 0.3 0.307
aLasso 0.301 0.307 0.302 - 0.307 0.316 0.299 0.278 0.293
Post 0.303 0.304 0.303 0.312 0.303 0.304 0.29 0.264 0.286

λ
Lasso 0.017 0.023 0.017 0.027 0.023 0.028 0.013 0.007 0.009
aLasso 0.007 0.008 0.002 - 0.008 3.844 0.05 0.082 0.026

Table 2: Structural breaks experiments, T = 100, 10000 iterations. We do not report the adaptive Lasso estimator
for the experiment with a break of size 0.1 since the initial estimator often discard all variables.

We now turn to the case of deterministic breaks (structural breaks) in the parameters and
consider 3 types of experiments. In the first experiment we consider a single break in the
parameter path occurring at either 10%, 50%, or 90% of the sample. In the second series of
experiments a single break, located in the middle of the sample, varies in size, the size of
the break being either 0.1, 1, or 10. In the third series of experiments we vary the number
of structural breaks in the path. The parameter value switches between 0 and 1, this can be
seen as a minimalistic regime switching process. In these series of experiments we hold the
sample size constant (T = 100 throughout) as well as the variance of the innovations σ2

ε = 0.1
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while the covariates are still drawn from a standard normal distribution. Notice that the first 4
blocks of rows of table 2 now show detailed variable selection statistics.
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Figure 3: Structural breaks. DGP parameter path (black crossed line) and a sample of 3 paths estimated with the
Lasso (blue dotted line) with corresponding adaptive Lasso (red solid line) when feasible.

In all experiments the Lasso selects, on average, models that are larger than the true model,
except in the case when the break size is 0.1. The adaptive Lasso further reduces the model.
As the results of the experiments on break locations and sizes illustrate, the (adaptive) Lasso
is not very sensitive to the location of the break point but is sensitive to its amplitude. When
the break is of size 10, the Lasso and adaptive Lasso detect a break in the correct location in
99% and 87% of the iterations. These rates fall below 2% when the break is of size 0.1. The
rate of rejection of relevant variables (false negative, FN) is similarly not very sensitive to the
location of the break but is sensitive to its size, with FN < 1% when the break is of size 10 while
FN ≈ 98% when it is of size 0.1.

The break size and location experiments also reveal that the Lasso is an efficient screening
device, out of 98 irrelevant variables the number of true negatives TN = 98−FP is greater than
95 for the Lasso. In these experiments the estimated models contain on average fewer than 4
variables (fewer than 2 for the adaptive Lasso); this set contains the true location of the break
in over 70% of the iterations in most settings.

The `1 and `2 errors are comparable across experiments, neither the location nor the
amplitude of the break seem to have a systematic impact on these measures. Both the adaptive
Lasso and the post Lasso OLS reduce the prediction and estimation errors in most experiments
but these improvements are marginal. The RMSE is stable across experiments and estimators,
being always close to its theoretical minimum of

p
0.1 ≈ 0.316.
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The experiments varying the number of breaks, right columns of table 2, show that when
we increase the number of breaks in the DGP the selected model is larger leading to a higher
number of false positives while keeping the number of true positives close, but inferior, to the
true number of breaks. In these settings the Lasso is not as efficient at discarding irrelevant
variables as it was in the previous, sparser, experiment; the adaptive Lasso is here a useful
second step since it further reduces the size of the active set and improves upon the Lasso on
all the error measures. However, this comes at the price of a slight decline in the true positive
rate.

Figure 3 plots 3 estimated paths for each experiment. The top 3 panels illustrate the break
location experiments, the stability of the estimated paths away from the region of the break
is striking. The figure also reveals that some paths follow a gradual adjustment with several
breaks instead of a single one. The lower 3 panels show the break size experiments in which it
appears that when the break is small it is often ignored (bottom left panel), whereas a very
large break will be often detected and adjusted to in a single step even though evidence of
gradual adjustment for some paths persists.

4.2. Stochastic paths

We now turn to simulations with stochastic paths, the results are reported in table 3.
The parameters follow parsimonious random walks as described by assumption 3. We vary
the degree of sparsity of the model by considering αT = 0.01,0.031,0.1 (corresponding to
a = 1,0.75,0.5), where αT is the probability of a break at each point. We also consider 3
variances for the non zero increments: Var(η) = 0.1,1,10, for a total of 9 experiments.

In the experiments with Var(η) = 0.1 the Lasso tends to select models that are sparser than
the DGP, and the Lasso only detects around 15% of the correct break locations. However when
Var(η) = 1 or Var(η) = 10 the selected models tend to be larger than the true models, and over
50% of the breaks are detected. When the models selected by the Lasso are larger than the
true model, the models selected by the adaptive Lasso in the second step have dimensions
close to those of the DGP. When the models selected by the Lasso are sparser than the DGP,
the adaptive Lasso tends to select models that are even more sparse.

The `1 and `2 errors do increase with the variance of η and with the number of breaks,
and the adaptive Lasso and post Lasso OLS are not consistently better or worse than the Lasso
on these measures. The RMSE is close to, but below, its theoretical value (≈ 0.316) for most
experiments, showing that overfitting is not excessive despite the flexible nature of the model.
The RMSE is in most instances lower for the adaptive Lasso and the post Lasso OLS.

Interestingly the chosen penalty parameter λ decreases while αT increases for the Lasso,
but increases withαT for the adaptive Lasso. This can be explained by the fact that the number
of potential parameters is constant for the Lasso, while it is increasing withαT for the adaptive
Lasso since the Lasso selects increasingly larger models. For the Lasso the selected penalty
parameter also decreases when Var(η) increases.

Figure 4 provides complementary information on the dynamics of the selected models,
it displays a sample of 3 true and estimated parameter paths from each of the Monte Carlo
experiments in table 3. The left side panels of figure 4 display experiments where the variance
of the innovations to the parameters is low. The Lasso tends to discard a large amount of small
breaks only adjusting to large, and persistent, changes in the parameter value. The estimated
paths are increasingly time varying when the number of breaks increases (moving downward
in figure 4) but more stable than the true path. When the variance of the breaks increases
(moving rightwards in figure 4) the paths are increasingly close to the true path, displaying a
high degree of time variation when this is the case for the true path.
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Var(η) = 0.1 Var(η) = 1 Var(η) = 10
αT 0.01 0.031 0.1 0.01 0.031 0.1 0.01 0.031 0.1

a =− log(αT )
log(T ) 1 0.75 0.5 1 0.75 0.5 1 0.75 0.5

# breaks
DGP 0.992 3.063 9.975 1.008 3.063 9.859 0.983 3.102 9.823
Lasso 0.992 2.614 6.33 2.251 6.002 14.77 3.091 8.641 21.05
aLasso 0.561 1.388 3.307 0.992 2.681 7.347 1.038 2.984 8.744

FP
Lasso 0.824 2.1 4.597 1.752 4.479 9.877 2.323 6.243 13.61
aLasso 0.436 1.021 2.15 0.584 1.482 3.605 0.393 1.006 2.689

TP
Lasso 0.168 0.515 1.733 0.499 1.523 4.888 0.768 2.397 7.442
aLasso 0.126 0.367 1.157 0.408 1.2 3.742 0.645 1.978 6.055

FN
Lasso 0.824 2.548 8.242 0.509 1.541 4.971 0.215 0.704 2.381
aLasso 0.867 2.696 8.818 0.6 1.864 6.117 0.338 1.124 3.767

`1 error
Lasso 0.205 0.263 0.335 0.22 0.292 0.387 0.23 0.32 0.453
aLasso 0.24 0.267 0.332 0.236 0.276 0.371 0.235 0.287 0.415
Post 0.209 0.27 0.352 0.227 0.311 0.448 0.24 0.349 0.518

`2 error
Lasso 0.056 0.089 0.133 0.066 0.108 0.166 0.071 0.124 0.21
aLasso 0.076 0.092 0.131 0.075 0.098 0.155 0.072 0.106 0.184
Post 0.058 0.089 0.133 0.065 0.105 0.162 0.067 0.114 0.184

RMSE
Lasso 0.312 0.313 0.316 0.311 0.309 0.306 0.31 0.31 0.32
aLasso 0.304 0.305 0.308 0.305 0.305 0.301 0.31 0.315 0.325
Post 0.31 0.308 0.306 0.307 0.3 0.287 0.305 0.296 0.279

λ
Lasso 0.024 0.023 0.019 0.022 0.017 0.01 0.02 0.015 0.01
aLasso 0.004 0.004 0.016 0.013 0.031 0.096 0.228 2.917 8.53

Table 3: Parsimonious random walks, T = 100, 10000 iterations.

4.3. Autoregressions

We finally consider an AR(1) model with a break in the autoregressive parameter. The
data is generated using yt = γt yt−1 + εt , εt ∼ N (0,0.1), where γt = γ0 if 1 ≤ t ≤ T /2 and
γt = γ1 if T /2 < t ≤ T and T = 100. We evaluate the performances of our estimator using every
combinations of γ0 = 0,0.5,0.9 and γ1 = 0.5,0.9. Two out of the six experiments have a stable
autoregressive parameter either equal to 0.5 or to 0.9, which can be seen as the benchmarks
for the autoregressive experiments.

When estimating the AR(1) models, in a non negligible number of iterations the Lasso
selects a saturated model (|Ŝ | = T ). To remedy this problem we impose that |Ŝ | ≤ T /2 = 50.
This relatively large upper bound has the effect of eliminating the instances where the Lasso
selects a saturated model without affecting the other estimates.

The results of the experiments with AR(1) models are reported in table 4. In the experi-
ments where no breaks is present the Lasso mistakenly selects breaks in some iterations. More
false positives occur when the persistence is high, 0.51 breaks on average when γt = 0.9∀t ,
than when γt = 0.5∀t (0.08 breaks on average). It is interesting to contrast these false positive
rates with those found in the leftmost column of table 1 where the model has the same dimen-
sions as in the autoregressive case and the innovations follow the same distribution. In the
setting of table 1 where the covariates are exogenous, false positives occur more frequently
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Figure 4: Parsimonious random walks. DGP parameter path (black crossed line) and a sample of 3 paths estimated
with the Lasso (blue dotted line) with corresponding adaptive Lasso (red solid line) when feasible.

than in the AR case when γt = 0.5∀t .
The Lasso has a low rate of true positives (at most 0.29) and tends to underestimate the

number of breaks in models where breaks do occur, the exception being γ0 = 0, γ1 = 0.9
in which case the Lasso selects 2.6 breaks. In that case the adaptive Lasso helps reduce the
dimension of the model to 1.3 on average, whereas for the other models with a break the
adaptive Lasso increases the underevaluation of the number of changes in the autoregressive
parameter.

5. Empirical application

Whether US monetary policy in the second half of the 20th century has followed a stable
model or not is a controversial issue, with empirical evidence supporting both views as dis-
cussed in Sims and Zha (2006). We use the parsimoniously time varying model introduced in
this paper to investigate this issue. To do so we use the Taylor rule (Taylor, 1993) as describing
the monetary policy response to economic conditions. According to the Taylor rule, the policy
rate of the central bank can be decomposed into two parts: a response to changes in the
inflation rate; and a response to deviations of output from its trend.

5.1. Models

Hansen, Lunde, and Nason (2011) illustrate the model confidence set (MCS) by estimating
a large number of specifications of (backward looking) Taylor rules. We choose to estimate
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γ0 = 0 γ0 = 0 γ0 = 0.5 γ0 = 0.5 γ0 = 0.9 γ0 = 0.9
γ1 = 0.5 γ1 = 0.9 γ1 = 0.5 γ1 = 0.9 γ1 = 0.5 γ1 = 0.9

# breaks
DGP 1 1 0 1 1 0
Lasso 0.752 2.647 0.086 0.729 0.993 0.408
aLasso 0.558 1.326 0.08 0.537 0.721 0.336

FP
Lasso 0.688 2.361 - 0.684 0.868 -
aLasso 0.507 1.129 - 0.499 0.606 -

TP
Lasso 0.064 0.286 - 0.045 0.125 -
aLasso 0.051 0.197 - 0.037 0.115 -

FN
Lasso 0.936 0.714 - 0.955 0.875 -
aLasso 0.949 0.803 - 0.963 0.885 -

`1 error
Lasso 0.433 0.432 0.251 0.398 0.391 0.213
aLasso 0.367 0.353 0.468 0.336 0.33 0.398
Post 0.445 0.407 0.258 0.411 0 0

`2 error
Lasso 0.074 0.088 0.028 0.083 0.084 0.037
aLasso 0.062 0.069 0.1 0.067 0.078 0.118
Post 0.079 0.078 0.031 0.087 0 0

RMSE
Lasso 0.314 0.311 0.312 0.315 0.314 0.31
aLasso 0.305 0.306 0.297 0.305 0.303 0.287
Post 0.312 0.305 0.311 0.313 0.311 0.309

λ
Lasso 0.01 0.012 0.009 0.015 0.017 0.016
aLasso 0 0.005 0 0 0 0.014

Table 4: Autoregressive process, T=100, 10000 iterations.

parsimoniously time varying parameter versions of two specifications of the Taylor rule
included in the MCS, resulting in the following 3 models:

Rt = (1−ρ)
[
γ+αtπt−1 +βt yt−1

]+ρRt−1 + vt , (9)

Rt = (1−ρt )
[
γ+αtπt−1 +βt yt−1

]+ρt Rt−1 + vt , (10)

Rt = (1−ρ)
[
γ+α1,tπt−1 +α2,tπt−2 +β1,t yt−1 +β2,t yt−2

]+ρRt−1 + vt , (11)

where Rt denotes the short-term nominal interest rate, πt is inflation, and yt is deviations of
output from its trend (i.e. the output gap). Notice that the difference between (9) and (10) is
whether ρ is allowed to vary over time or not.

The parameters of main interest are the ones associated with the response of interest rates
to the inflation and output variables. The response to inflation is given by αt or α1,t +α2,t .
The Taylor principle suggests that the response to inflation should exceed 1 such that a rise in
inflation results in comparatively larger rise in the interest rate. The monetary policy response
to real side fluctuations is given by βt or β1,t +β2,t ; this response should be positive so when
output is below trend, the interest rate decreases. In all our specifications we let these key
parameters be time-varying to examine whether these responses have changed over time.

All specifications contain the lagged interest rate which, as discussed by Hansen et al.
(2011), can be interpreted as interest rate smoothing by the central bank or alternatively as
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a proxy for unobserved determinants of the interest rate. When estimating (9), (10), or (11),
the parameter associated with the lagged interest rate, ρ or ρt , also enters the parameters
associated with inflation and the output gap making it difficult to disentangle time varia-
tions stemming from changes in the response to economic conditions from time variations
stemming from changes in the persistence of Rt . We choose to assume that ρ does not vary
over time in (9) and (11) in order to focus on changes in the response to inflation and the
output gap. We allow ρt to vary in (10) for comparison and to examine whether changes in
the persistence of monetary policy occurred during the sample we investigate.

5.2. Estimation and data

We estimate models (9) to (11) using the Lasso, and OLS assuming constant parameters.
We do not report the adaptive Lasso estimates as they are similar to the Lasso. We also
report results for models (9) to (11) estimated with the Lasso under the constraint that there
are at most 16 (≈p

T ) changes in the parameter values. This constraint is added to reduce
the number of false positives that might be induced by heteroskedasticity. We refer to this
estimator as constrained Lasso henceforth.

The estimator of the initial value of the parsimonious random walk is not penalized
so that when no breaks is selected in the model, the Lasso is identical to OLS. Confidence
intervals for the OLS estimates are based on heteroskedasticity and autocorrelation consistent
standard errors. The penalty parameter, λ, is selected using the BIC. We always include an
non-penalized intercept in the estimated model, we experimented with a parsimoniously
time-varying intercept but in all specifications no breaks were found in the intercept and
hence we do not report results for this case.
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Figure 5: Plots of the data used for estimation of the Taylor rule. The variables are: Interest rate, Rt , inflation, πt ,
and output gap, yt . The vertical grey bars are the NBER recessions.

We use the same variables as Hansen et al. (2011), but for a longer timespan covering
1954:Q4–2014:Q2. For the dependent variable we use the Effective Fed Funds Rate aggregated
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to quarterly frequency and measured at an annual rate, Reffr,t , and then define: Rt = 100×
log(1+Reffr,t /100). The inflation measure is based on the seasonally adjusted Implicit GDP
Deflator, Pt , with inflation defined as: πt = 400×log(Pt /Pt−1). Finally, the output gap measure
is based on Real GDP in Billions of Chained 2009 Dollars, Qt , where yt = logQt − trend Qt and
trend Qt is obtained by applying a one-sided Hodrick-Prescott filter to logQt . All data have
been obtained from the FRED database at the Federal Reserve Bank of St. Louis, and plots of
the variables are given in figure 5.

5.3. Results
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Figure 6: Parameters of the Taylor rule (9). The horizontal grey bars are 90% confidence bands for the OLS
estimates. The vertical grey bars are the NBER recessions.

We first consider the Lasso and OLS estimates of model (9) plotted in figure 6. The upper
panel shows ρ̂, which we assumed to be constant over time, and indicates that Rt is very
persistent. The middle panel shows the estimated response to inflation. The unconstrained
Lasso estimates of αt (blue solid line) exhibits a high degree of time variation in the 1970s and
1980s as does, over a more restricted period, the Lasso constrained to a maximum of 16 breaks
(red dotted line). These estimates indicate that the response to inflation became weaker in
the second half of the 1970s, weaker than the response warranted by the Taylor principle. A
strengthening of the response to inflation takes place from the late 1970s, reaching its peak
in 1981 before mostly stabilizing from the mid 1980s onward. Both Lasso estimators find a
weakening of the response to inflation starting in 2007, which is consistent with the fact that
interest rates have been close to the lower bound from that time to the end of our sample.

The response to the output gap (lower panel of figure 6) is more stable, and even found to
be constant by the constrained Lasso. The unconstrained Lasso finds a drop in the response
to the output gap starting during the 2007–2009 recession, corresponding with the period
where interest rates fell to 0.

Figure 7 report the estimates of model (10), where ρt is allowed to vary over time. To
isolate changes occurring in the parameter associated with the lagged interest rate to those
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Figure 7: Parameters of the Taylor rule (10) with time varying ρ. Note that we report ρ̂t as well as á(1−ρt )αt andá(1−ρt )βt to separate breaks in the persistence parameter from breaks in the responses to inflation and the
output gap. The vertical grey bars are the NBER recessions.

occurring in the parameters associated with inflation and the output gap, figure 7 reports the
untransformed estimates of our model, that is, ρ̂t , á(1−ρt )αt , and á(1−ρt )βt . The constrained
Lasso selects no breaks so that it is identical to the OLS estimates. The unconstrained Lasso
finds a drop in the persistence of the interest rate parameter from 1970 to 1985 indicating that
monetary policy has been less persistent during that period. The patterns found for the other
variables are similar to those found in figure 6. The response to inflation becomes weaker
during the mid 1970s, becomes strong in the early 1980s, and stabilizes afterwards, and the
response to the output gap is mostly stable and drops at the end of the sample.

Figure 8 and 9 report the estimated responses to inflation and the output gap for model
(11). The top and middle panels show the parameters associated with the first and second
lags while the bottom panel shows the sum of both parameters, thus giving the estimate of
the total response to inflation (figure 8) or to the output gap (figure 9).

The response to inflation follows a pattern similar to those of figures 6 and 7, it is found to
be stable from the beginning of the sample to the start of the 1970s, and again from the mid
1980s until 2008, with a response α1,t +α2,t close to 2. There is clear evidence of instability
from the start of the 1970s to the start of the 1980s, both with the Lasso and the constrained
Lasso. A first period during the 1970s is characterized by a weak monetary policy response
in the face of increasing inflation, in particular in the second half of that decade where it is
below 1. The response then increases sharply before stabilizing close to 2.

Figure 9 gives the same illustration for the parameters associated with the output gap
variables. The response to output gap is much more stable, and indeed entirely stable in the
case of the constrained Lasso. The response to the output gap seems to be higher from 1990
to 2008 than it is in the rest of the sample
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Figure 8: Parameters associated with the inflation variables in the Taylor rule (11). The horizontal grey bars are
90% confidence bands for the OLS estimates. The vertical grey bars are the NBER recessions.
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Figure 9: Parameters associated with the output gap variables in the Taylor rule (11). The horizontal grey bars are
90% confidence bands for the OLS estimates. The vertical grey bars are the NBER recessions.
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5.4. Interpretation

A few patterns emerge from our results, most importantly we find robust evidence of
instability in the response of interest rates to changes in inflation with a period of weak
response, sufficiently weak in fact that the Taylor principle is not satisfied, starting around
1973 and lasting for 5 to 8 years. Monetary policy was gradually tightened before reaching
extremes after the recession of 1980. After that decade of instability, as before it, monetary
policy appears to have been mostly stable according to the Taylor rule.

Instability in US monetary policy during the 1970s and 1980s is well documented. Primiceri
(2005) finds that the systematic component of the monetary policy response to inflation has
grown more aggressive from the 1960 onward with considerable instability around this trend,
particularly in the 1970s and 1980s. Our findings are also consistent with Boivin and Giannoni
(2006) who find that monetary policy was more stable in the post 1980 period than in the two
preceding decades. Using a regime switching model Sims and Zha (2006) documents frequent
regime switches in the 1970s and 1980s, and in particular around 1980 where we also find the
policy response to have been extremely aggressive for a short period.

While empirical evidence in favour of substantial changes occurring in monetary policy
in the second half of the 20th century is numerous, evidence to the contrary also abounds as
reviewed by Sims and Zha (2006). Our empirical evidences could be viewed as conciliating
both views as, even though we find substantial instability in the 1970s and 1980s, the param-
eters of the models are very similar, and stable, in the periods preceding and following the
period of instability.

Another pattern emerging from our analysis is the disconnection between the interest
rate and both inflation and the output gap from 2007 captured by the drop in the value of the
parameters relating to economic conditions. This reflects the inability of the Taylor rule to
describe monetary policy when interest rates are at the zero lower bound.

6. Conclusion

This paper proposes the parsimoniously time-varying parameter VARX model, and inves-
tigates the properties of the Lasso as an estimator for this model. We propose a process for
the parameters, the parsimonious random walk, where the probability of an increment to the
random walk being equal to 0 is greater than 0. This process can accommodate time-varying
paths that are constant, exhibit structural breaks, or a large number of changes.

We estimate the vector of increments to the parameters which is sparse by the parsimo-
nious random walk assumption, and high dimensional by construction. We derive bounds
on the precision of the Lasso in finite samples, and conditions for asymptotic consistency.
We also provide finite sample and asymptotic results on the probability that the adaptive
Lasso recovers the true model. Because of the convexity of the Lasso’s objective function, our
estimator is computationally fast.

We apply our model to the estimation of Taylor rules to investigate the US monetary policy
response to inflation from 1954 to 2014. We find evidence of substantial instability in the policy
response in the 1970s and 1980s, which is consistent with previous research and historical
facts. We also observe a long lasting change in the monetary policy response since 2007, driven
by the fact that the Fed Funds Rate has been close to zero since that time. The simulations and
empirical results in this paper can easily be replicated using the parsimonious package for R.

To further develop the parsimoniously time-varying parameter model we see a few direc-
tions for future research. First, develop a inferential framework for this model taking advantage
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of the construction of the variables (Z DW ) to get an accurate estimator for the covariance ma-
trix. Second, render the estimator more robust to heteroskedasticity by constructing adaptive
weights that are a function of the local variance of the innovations.

Appendix A. Proofs

A.1. Proofs for the restricted eigenvalue condition

Lemma 2. For two matrices A and B we have φ(A′A)φ(B ′B) ≤φ(B ′A′AB)

Proof.

φ(A′A) = min
u1

u′
1 A′Au1

u′
1u1

(A.1)

so for any vector u2 we have

φ(A′A) ≤ u′
2 A′Au2

u′
2u2

φ(A′A)u′
2u2 ≤ u′

2 A′Au2 (A.2)

specifically choose u2 = Bu3 for any vector u3

φ(A′A)u′
3B ′Bu3 ≤ u′

3B ′A′ABu3 (A.3)

Now, applying the same argument, i.e. (A.1)–(A.2), to B ′B we get

φ(B ′B)u′
3u3 ≤ u′

3B ′Bu3

Combining this with (A.3) we get

φ(A′A)φ(B ′B)u′
3u3 ≤ u′

3B ′A′ABu3

φ(A′A)φ(B ′B) ≤ u′
3B ′A′ABu3

u′
3u3

and since this must hold for any vector u3 it must also hold for the eigenvector associated
with the smallest eigenvalue of B ′A′AB so we get

φ(A′A)φ(B ′B) ≤φ(B ′A′AB)

Proof of Lemma 1. First note that we can rewrite the design matrix Z DWT as Z̃ D (W̃mT ⊗ Ir )
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where W̃mT is a mT ×mT matrix with ones on and below the diagonal and

Z̃D =



Z1 0 0 · · ·
...

...
...

Zt1 0 0 · · ·
0 Zt1+1 0 · · ·
...

...
...

0 Zt2 0 · · ·
...

... Zt2+1
...

...
...

. . .


which is T × r mT . Under assumption 4(i) the largest mT is attained when τi = DT∀i in which
case mT = T /DT = c−1T 1−d . Hence in general we have that mT ≤ c−1T 1−d implying that the
number of grid points grows slower than the sample size. Therefore for sufficiently large T we
have that r mT ≤ T , so if we can bound the smallest eigenvalue of (W̃mT ⊗ Ir )′Z̃ D ′Z̃ D (W̃mT ⊗
Ir )/T we also have a bound on κ2

T .
Notice that Z̃ D ′Z̃ D /T d is a block diagonal matrix which smallest eigenvalue will be

bounded away from zero with probability approaching one by assumption 4(ii). Next, for
W̃mT consider

(W̃ ′
mT

W̃mT )−1 =


1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2


We can bound the eigenvalues of this matrix using the Gershgorin circle theorem (Horn and
Johnson, 1985, Thm. 6.1.1) and get φ((W̃ ′

mT
W̃mT )−1) ≤ 4, this implies that φ(W̃ ′

mT
W̃mT ) ≥ 1/4.

As W̃ ′
mT

W̃mT and (W̃mT ⊗ Ir )′(W̃mT ⊗ Ir ) = W̃ ′
mT

W̃mT ⊗ Ir have the same eigenvalues we get

φ((W̃mT ⊗ Ir )′(W̃mT ⊗ Ir )/T 1−d ) ≥ 1/(4T 1−d ).
By lemma 2

φ(W ′
T Z D ′Z DWT /T ) =φ((W̃mT ⊗ Ir )′Z̃ D ′Z̃ D (W̃mT ⊗ Ir )/T )

≥φ(Z̃ D ′Z̃ D /T d )φ((W̃mT ⊗ Ir )′(W̃mT ⊗ Ir )/T 1−d )

Hence putting it together we have that φ(W ′
T

Z D ′Z DWT /T ) ∈Ωp (T d−1) implying that κ2
T ∈

Ωp (T d−1).

A.2. Proofs for the Lasso

Before proving the main results we state some useful lemmas.

Lemma 3 ((6.8.14) in Hoffmann-Jørgensen (1994)). Let f :R×R→R be measurable such that
| f (U ,V )| is integrable and f (U , v) is integrable for PV almost all v ∈ R (here PV denotes the
distribution of V ), and letφ(v) = E ( f (U , v)). If, for a sigma field G , V is measurable with respect
to G and U is independent of G , then we have

E( f (U ,V )|G ) =φ(V ) P-almost surely
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Lemma 4 (Lemma 2 in Kock and Callot (2015)). Let assumptions 1 and 2 be satisfied. Then, for
some positive constant A and for any LT > 0,

P

(
max

1≤t≤T
max

1≤k≤r
|Zktεt | ≥ LT

)
≤ 2exp

(
−LT

A ln(1+T ) ln(1+ r )σ2
T

)
.

The following lemma provides bounds on the prediction and estimation error without
making use of the restricted eigenvalue assumption.

Lemma 5. Assuming that
∥∥∥T −1ε′Z DW

∥∥∥∞ ≤λT /2, then

T −1
∥∥Z DW θ−Z DW θ̂

∥∥2 +λT

∥∥∥θ̂−θ∥∥∥
`1

≤ 2λT

(∥∥∥θ̂−θ∥∥∥
`1
+∥∥θ∥∥

`1
−∥∥θ̂∥∥

`1

)
(A.4)

T −1
∥∥Z DW θ−Z DW θ̂

∥∥2 +λT

∥∥∥θ̂−θ∥∥∥
`1

≤ 4λT

(∥∥∥θ̂S −θS

∥∥∥
`1
∧∥∥θS

∥∥
`1

)
(A.5)∥∥∥θ̂S c −θS c

∥∥∥
`1

≤ 3
∥∥∥θ̂S −θS

∥∥∥
`1

(A.6)

Proof. Since θ̂ is the minimizer of the objective function (2) we have:

T −1
∥∥y −Z DW θ̂

∥∥2 +2λT
∥∥θ̂∥∥

`1
≤ T −1

∥∥y −Z DW θ
∥∥2 +2λT

∥∥θ∥∥
`1

(A.7)

We can thus rewrite (A.7) as

T −1
∥∥Z DW (θ̂−θ)

∥∥2 − 2

T
ε′Z DW (θ̂−θ)+2λT

∥∥θ̂∥∥
`1

≤ 2λT
∥∥θ∥∥

`1

Using y = Z DW θ+εwe can write 2
T ε

′Z DW (θ̂−θ) ≤ 2
∥∥∥T −1ε′Z DW

∥∥∥∞

∥∥∥θ̂−θ∥∥∥
`1

≤λT

∥∥∥θ̂−θ∥∥∥
`1

.

We now have

T −1
∥∥Z DW (θ̂−θ)

∥∥2 ≤λT

∥∥∥θ̂−θ∥∥∥
`1
+2λT

(∥∥θ∥∥
`1
−∥∥θ̂∥∥

`1

)
so adding λT

∥∥∥θ̂−θ∥∥∥
`1

yields

T −1
∥∥Z DW (θ̂−θ)

∥∥2 +λT

∥∥∥θ̂−θ∥∥∥
`1

≤ 2λT

(∥∥∥θ̂−θ∥∥∥
`1
+∥∥θ∥∥

`1
−∥∥θ̂∥∥

`1

)
which is (A.4). Note that∥∥θ̂−θ∥∥

`1
+∥∥θ∥∥

`1
−∥∥θ̂∥∥

`1
=∥∥θ̂S −θS

∥∥
`1
+∥∥θS

∥∥
`1
−∥∥θ̂S

∥∥
`1

≤ 2
∥∥θ̂S −θS

∥∥
`1

using continuity of the norm, and∥∥θ̂S −θS

∥∥
`1
+∥∥θS

∥∥
`1
−∥∥θ̂S

∥∥
`1

≤ 2
∥∥θS

∥∥
`1

by sub-additivity of the norm. Using the two results above in (A.4) yields (A.5). Finally notice
that (A.5) gives

λT
∥∥θ̂−θ∥∥

`1
≤ 4λT

∥∥θ̂S −θS

∥∥
`1
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or equivalently ∥∥θ̂S c −θS c
∥∥
`1

≤ 3
∥∥θ̂S −θS

∥∥
`1

which establishes (A.6).

Lemma 6. Let assumptions 1 and 2 be satisfied and define:

BT =
 max

1≤k≤r
max

1≤s≤T−r+1

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣< λT

2

 .

Then, for λT =
√

8ln(1+T )5 ln(1+r )2 ln(r (T−r+1))σ4
T

T and some constant A > 0,

P
(
BT

)= P

({∥∥∥T −1ε′Z DW
∥∥∥∞ <λT /2

})
≥ 1−2(1+T )−1/A +2(r (T − r +1))1−ln(1+T ).

Proof. For any LT > 0, and using sub-additivity of the probability measure,

P

 max
1≤k≤r

max
1≤s≤T−r+1

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2


= P

 r⋃
k=1

T−r+1⋃
s=1


∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2




≤ P

 r⋃
k=1

T−r+1⋃
s=1


∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2

∩
{

T⋂
t=1

r⋂
k=1

{|εt Ztk | < LT
}}+P

{
T⋂

t=1

r⋂
k=1

{|εt Ztk | < LT
}}c


≤

r∑
k=1

T−r+1∑
s=1

P

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2
,

T⋂
t=1

{|εt Ztk | < LT }

+P

(
max

1≤t≤T
max

1≤k≤r
|εt Ztk | ≥ LT

)

Using lemma 4 on the second term yields a first bound

P

(
max

1≤t≤T
max

1≤k≤r
|εt Ztk | ≥ LT

)
≤ 2exp

(
−LT

A ln(1+T ) ln(1+ r )σ2
T

)
.

Note that in the first term we are considering the probability of a sum of random vari-
ables on a set on which the summands are bounded by LT . Now consider the sequence{
εt Ztk1|εt Ztk |<LT

}
and the filtration FZ ,ε,t =σ

({
εi Zi , i = 1, ..., t

})
and the conditional expecta-

tion

E
(
εt Ztk1|εt Ztk |<LT |FZ ,ε,t−1

)= E

(
E

(
εt Ztk1|εt Ztk |<LT |σ

({
FZ ,ε,t−1, Ztk

})) |FZ ,ε,t−1

)

= E

(
Ztk E

(
εt1|εt Ztk |<LT |σ

({
FZ ,ε,t−1, Ztk

})) |FZ ,ε,t−1

)
.

If Ztk belongs to the set of lagged variables yi ,t−l i = 1, ...,ry , l = 1, ..., p,σ
({

FZ ,ε,t−1, Ztk
})=
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FZ ,ε,t−1 making the equations above redundant. This is not the case when Ztk belongs to the
set of contemporaneous exogenous variables X tk , k = 1, ...,rX .

Since Ztk is measurable onσ
({

FZ ,ε,t−1, Ztk
})

we use lemma 3 with f (εt , Ztk ) = εt1|εt Ztk |<LT

such that for all v ∈R we get

E(εt1|εt v |<LT |σ({Fε,Z ,t−1,k , Ztk })) = E(εt1|εt |< LT
|v |
|σ({Fε,Z ,t−1,k , Ztk })) = 0.

This argument holds for v 6= 0, for the case where v = 0 the results follows from noting that
E (εt1|εt v |<LT |σ({Fε,Z ,t−1,k , Ztk })) = E (εt |σ({Fε,Z ,t−1,k , Ztk })) = 0. The sequence

{
εt Ztk1|εt Ztk |<LT

}
is a martingale difference sequence with bounded increments. We can thus apply the Azuma-
Hoeffding inequality to bound the first term.

r∑
k=1

T−r+1∑
s=1

P

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2
,

T⋂
t=1

{|εt Ztk | < LT }


≤ r (T − r +1)2exp

−λ2
T

4 T 2

2T L2
T


≤ r (T − r +1)2exp

(
−Tλ2

T

8L2
T

)

Let LT = ln(1+T )2 ln(1+ r )σ2
T , and gather the two bounds found above,

P

(∥∥∥∥ 1

T
ε′Z DW

∥∥∥∥∞
≥ λT

2

)
≤ 2(r (T − r +1))1−ln(1+T ) +2(1+T )−1/A.

Proof of Theorem 1. On BT and under assumptions 1, 2, 3, and 5, we use equations (A.5) and
Jensen’s inequality to get:

1

T

∥∥Z DW (θ̂−θ)
∥∥2 ≤ 4λT

∥∥θ̂S −θS

∥∥
`1

≤ 4λT
p

s
∥∥θ̂S −θS

∥∥≤ 4λT
p

s

∥∥Z DW (θ̂−θ)
∥∥

κT
p

T
.

Note that the restricted eigenvalue condition applies due to (A.6). Rearranging yields (1). We
also get

∥∥θ̂−θ∥∥
`1

≤ 4
∥∥θ̂S −θS

∥∥
`1

≤ 4
p

s
∥∥θ̂S −θS

∥∥≤ 4
p

s

∥∥Z DW (θ̂−θ)
∥∥

κT
p

T
≤ 16

κ2
T

sλT .

which is (3). Lemma 6 gives the probability of being on BT .

Proof of Corollary 1. To prove this result, assume that θ̂ j = 0 for j ∈S , then |θmin| ≤
∥∥∥θ̂−θ∥∥∥

`1
.

Hence if |θmin| >
∥∥∥θ̂−θ∥∥∥

`1
no relevant variables are excluded.

Proof of Theorem 2. From lemma 6, P (BT ) → 1. Note thatκ2
T ∈Ωp (T d−1)) ⇐⇒ κ−2

T ∈Op (T 1−d ).
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16sλT

κ2
T

∈Op

(
T 1−a−1/2−d+1

)
∈Op

(
T 3/2−a−d

)
16sλ2

T

κ2
T

∈Op

(
T 1−a−1−d+1

)
∈Op

(
T 1−a−d

)

so that 16sλT

κ2
T

→p 0 and
16sλ2

T

κ2
T

→p 0.

It follows that

T −1
∥∥Z DW (θ̂−θ)

∥∥2 ≤ 16sλ2
T

κ2
T

→p 0,∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλT

κ2
T

→p 0,

which proves (4) and (5).

Proof of Corollary 2. The proof of corollary 2 follows from the fact proven in corollary 1 that
on BT and if |θmin| > 16sλT

κ2
T

, no relevant variables are excluded. Noticing that P (BT ) → 1 and

16sλT

κ2
T

→p 0 completes the proof.

A.3. Proofs for the adaptive Lasso.

The proofs of lemma 7 and theorem 3 are very similar to those of lemma 11 and theorem 6
in Kock and Callot (2015), hence we simply state lemma 7 and sketch the proof of theorem 3.
The proof of theorem 4 differs from previous results in the literature due to the fact that the
restricted eigenvalue tends to zero in our setting, hence we prove that result in greater details.

Lemma 7 (Lemma 11 in Kock and Callot (2015)). Let

CT =
{

max
1≤i , j≤r (T−r+1)

∣∣∣∣ 1

T
(Z DWi )′(Z DW j )

∣∣∣∣< KT

}

for KT = ln(1+ r (T − r +1))2 ln(T )σ2
T . Then P

(
CT

)≥ 1−2T −1/A for some constant A > 0.

Proof of theorem 3. The proof of theorem 3 is very similar to the proof of theorem 6 in Kock
and Callot (2015), hence we only give the main steps of this proof and refer the reader to Kock

and Callot (2015) for details. Let Ψi ,Ŝ = (Z D Wi )′(Z D WŜ )
T and ΨŜ ,Ŝ = (Z D WŜ )′(Z D WŜ )

T . van de
Geer, Bühlmann, Zhou, et al. (2011) (and Kock and Callot (2015) in the VAR case) show that
sign(θ̃) = sign(θ) if and only if the following two conditions are met for every i ∈S c :∣∣∣∣∣∣Ψi ,Ŝ

(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θi )wi

)
− (Z DWi )′ε

T

∣∣∣∣∣∣≤λT wi , (A.8)

and

sign

θŜ +
(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θŜ )wŜ

)= sign(θS ). (A.9)
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Kock and Callot (2015) shows that on the set BT ∩CT the left side of (A.8) can be bounded
from above by:∣∣∣∣∣∣Ψi ,Ŝ

(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θi )wi

)
− (Z DWi )′ε

T

∣∣∣∣∣∣≤ sKT

κ2
T

(
λT

2
+ 2λT

θmin

)
+ λT

2
.

The right side of (A.8) is bounded from below by
∣∣λT wi

∣∣≥ λT∥∥∥θ̂−θ∥∥∥
`1

. We replace these bounds

in (A.8) and multiply both sides by

∥∥∥θ̂−θ∥∥∥
`1

λT
to get (7). If (7) holds, so does (A.8).

For the condition (A.9) to be verified it suffices to show that∥∥∥∥∥∥
(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θŜ )wŜ

)∥∥∥∥∥∥∞
≤ θmin

which Kock and Callot (2015) shows to be satisfied if (8) is satisfied.
Lemmas 7 and 6 provide the desired bound on P

(
BT

⋂
CT

)
which completes the proof.

Proof of theorem 4. To prove theorem 4 we have to prove that the conditions in theorem 3
are valid asymptotically. We work on the set BT ∩CT which we begin by showing holds with
probability tending to 1, we then turn to the other conditions.

1. P (BT ∩CT ) → 1 can be seen to hold from lemmas 7 and 6 since P (Bc
T ) → 0 and P (C c

T ) →
0.

2. To show that θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
is asymptotically valid, recall that from (3):

∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλT

κ2
T

∈Op

(
ln(1+T )5/2 ln(r (T − r +1))1/2T 3/2−a−d

)
,

and since θmin ∈Ω(
ln(T )aT

)
we have:∥∥∥θ̂−θ∥∥∥

`1

θmin
∈Op

(
ln(1+T )5/2 ln(r (T − r +1))1/2T 3/2−a−d

ln(T )2 ln(1+T )5/2 ln(r (T − r +1))1/2 ln(1+ r (T − r +1))2T 7/2−2a−2d

)

∈Op

(
T a+d−2

ln(T )2 ln(1+ r (T − r +1))2

)
∈ op (1)

so that θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
with probability approaching 1.

3. Recall that by assumption 5, κ−2
T ∈ Op

(
T 1−d

)
. To show that (7) holds asymptotically,

we replace
∥∥∥θ̂−θ∥∥∥

`1
by its upper bound from (3) and we are left to show that s2KTλT

κ4
T

+
s2KTλT

κ4
T θmin

+ sλT
κ2 →p 0.

i) Consider the first term, s2KTλT

κ4
T

∈Op (aT ) ∈ op (1).

ii) Consider now the second term s2KTλT

κ4
T θmin

, which is equal to the first term divided by

θmin. Since θmin ∈Ω(
ln(T )aT

)
, the second term tends to zero.
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iii) The third term is proportional to the estimation error of the Lasso, which by
theorem 2 tends to zero, so that sλT

κ2 →p 0.

4. To show that (8) holds asymptotically we have to show that
p

sλT

κ2
T

(
1

2θmin
+ 2

θ2
min

)
→p 0.

Notice that
p

sλT

κ2
T

∈Op (b2
T ) and recall that θmin ∈Ω(

ln(T )bT
)

so that
p

sλT

κ2
T θ

2
min

→p 0 implying

that
p

sλT

κ2
T θmin

→p 0.

This completes the proof.
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