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Abstract

Abstract: An overview of results for the cointegrated VARmodel for nonstationary
I(1) variables is given. The emphasis is on the analysis of the model and the tools for
asymptotic inference. These include: formulation of criteria on the parameters, for
the process to be nonstationary and I(1), formulation of hypotheses of interest on the
rank, the cointegrating relations and the adjustment coeffi cients. A discussion of the
asymptotic distribution results that are used for inference. The results are illustrated
by a few examples. A number of extensions of the theory are pointed out.
Keywords: adjustment coeffi cients, cointegrating relations, cointegration, cointe-

grated vector autoregressive model, Dickey-Fuller distributions, error correction mod-
els, econometric analysis of macroeconomic data, likelihood inference, mixed Gaussian
distribution, nonstationarity.
JEL Classification: C32

1 Introduction
The term cointegration was defined by Granger (1983) as a formulation of the phenomenon
that nonstationary processes can have linear combinations that are stationary. It was his
investigations of the relation between cointegration and error correction that brought mod-
elling of vector autoregressions with unit roots and cointegration to the center of attention
in applied and theoretical econometrics; see Engle and Granger (1987).
During the last 30 years, many have contributed to the development of theory and ap-

plications of cointegration. The account given here focuses on theory, more precisely on
likelihood based theory for the vector autoregressive model; see Johansen (1996). By build-
ing a statistical model as a framework for inference, one has to make explicit assumptions
about the model used and hence has a possibility of checking the assumptions made before
conducting inference.
We start with some examples of cointegration.
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†The author acknowledges the support of the Center for Research in Econometric Analysis of Time Series

(CREATES - DNRF78, funded by the Danish National Research Foundation).
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Figure 1: The plots shows 229 monthly observations of the 6 month treasury bill rate and
the three years bond rate and their spread i6m − i3y. Note the nonstationary behaviour of
the interest rates and the much more stationary spread, see Example 1.

EXAMPLE 1: As a simple economic example of the main idea in cointegration, consider
229 observations of US monthly interest rates in the period 1987:1 to 2006:1 which defines
the period when Greenspan was the chairperson of the Federal Reserve System. The data is
taken from IMF’s financial database and consists of the 6 month treasury bill rate and the 3
year bond rates, denoted i6m and i3y respectively. In Figure 1 we plot the two interests rates
and their spread i6m − i3y. The expectations hypothesis implies that these interest rates
should be equal up to a constant i3y = i6m + c, and such a relation is not found in data. We
can formulate it instead as their spread being stationary around a constant, possibly zero.
This is an example of the formulation of an economic regularity as a cointegrating relation
and we want below to analyse a statistical model which allows such a formulation.

As simple examples of models for processes of this nature, we first consider a model
for a random walk and a stationary process. Throughout we consider the sequence of
p−dimensional errors εt, t = 1, . . . , T which are independent and identically distributed
with mean zero and variance matrix Ω.

EXAMPLE 2: (Autoregressive processes) Let xt = (yt, zt)
′ be given by the equations for

t = 1, . . . , T

yt = yt−1 + εyt, (1)

zt = ρzt−1 + εzt, (2)

here −1 < ρ < 1. It is seen that yt = y0 + εy1 + · · · + εyt and that E(yt|y0) = y0 and
V ar(yt|y0) = tΩ, so the variance is increasing and the process is nonstationary. We also find
zt = ρtz0 +

∑t−1
i=0 ρ

iεz,t−i which implies that E(zt|z0) = ρtz0 and V ar(zt|z0) = σ2z
∑t−1

i=0 ρ
2i →

σ2z
∑∞

i=0 ρ
2i = σ2z/(1 − ρ2). We can make zt stationary by choosing z0 =

∑∞
i=0 ρ

iεz,−i and
then zt =

∑∞
i=0 ρ

iεz,t−i. We call yt an I(1) process and zt an I(0) process, see section 3.
Next we give a model for nonstationary variables that are cointegrated, using the notation

∆xt = xt − xt−1.
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Figure 2: Three examples of AR(1) processes. Each plot has 100 observations. The first
two are stationary with ρ = 0.1 and ρ = 0.5, and the last is a random walk with ρ = 1. See
Example 2.

EXAMPLE 3: (Cointegrated processes) A bivariate process is given for t = 1, . . . , T by
the equations

∆x1t = α1(x1t−1 − x2t−1) + ε1t, (3)

∆x2t = α2(x1t−1 − x2t−1) + ε2t.

Subtracting the equations, we find that the process yt = x1t − x2t is autoregressive, see (2)
and stationary if ρ = 1+α1−α2 satisfies |ρ| < 1, and the initial value is given by its invariant
distribution. Similarly we find that st = α2x1t− α1x2t is a random walk, see (1), so that the
process xt = (x1t, x2t)

′ is given by

x1t =
st − α1yt
α2 − α1

and x2t =
st − α2yt
α2 − α1

.

This shows, that when |1+α1−α2| < 1, xt is I(1), x1t−x2t is stationary, and α2x1t−α1x2t is a
random walk

∑t
i=1(α2ε1i−α1ε2i), so that xt is a cointegrated I(1) process with cointegration

vector β′ = (1,−1). We call st a common stochastic trend and α the adjustment coeffi cients.

1.1 Three approaches to cointegration

There are at present three different ways of modeling the linear cointegration idea in a
parametric statistical framework. To illustrate the ideas they are formulated in the simplest
possible cases, leaving out deterministic terms.

1.1.1 Regression formulation

The multivariate process xt = (x′1t, x
′
2t)
′ of dimension p = p1 + p2 is given by the regression

equations

x1t = γ′x2t + εt,

∆x2t = ε2t.

3



10 20 30 40 50 60 70 80 90 100
­15.0

­12.5

­10.0

­7.5

­5.0

­2.5

0.0

10 20 30 40 50 60 70 80 90 100
­15

­10

­5

0

5

10

15

Figure 3: Two simulations of model (3) for cointegrated variables, see Example 3.

This model implies that x2t is a nonstationary randomwalk, and x1t−γ′x2t gives p1 stationary
linear combinations. Hence in this case the cointegration rank of xt is p1, see section 3. The
first estimation method used in this model is least squares regression, Engle and Granger
(1987), which is shown to give a superconsistent estimator by Stock (1987). This estimation
method gives rise to residual based tests for cointegration. It was shown by Phillips and
Hansen (1990) that, for a more general error term, a modification of the regression estimator
gives useful methods for inference on coeffi cients of cointegration relations; see also Phillips
(1991).

1.1.2 Autoregressive formulation

In the rest of this contribution we focus on the autoregressive formulation of the p dimensional
process xt defined by the equations

∆xt = αβ′xt−1 + εt,

where α and β are p× r matrices of rank r. Under the condition that ∆xt is stationary, the
solution is

xt = C

t∑
i=1

εi +

∞∑
i=0

Ciεt−i + A, (4)

where C = β⊥(α′⊥β⊥)−1α′⊥ and β
′A = 0. Here β⊥ is a full rank p × (p − r) matrix so that

β′β⊥ = 0. This formulation allows for modelling of both the long-run relations, β′x, and the
adjustment, or feedback coeffi cient α, towards the attractor set {x : β′x = 0} defined by the
long-run relations. Models for different cointegration ranks are nested and the smallest, for
α = β = 0, corresponds to p random walks. The rank can be analyzed by likelihood ratio
tests. Methods usually applied for this analysis are derived from the Gaussian likelihood
function, which is discussed here; see also Johansen (1988, 1996), and Ahn and Reinsel
(1990).
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1.1.3 Unobserved components formulation

Let xt be given by

xt = ξη′
t∑
i=1

ε1i + ε2t,

where ε2t typically is independent of ε1t.
In this formulation too, hypotheses of different ranks are nested but in the opposite di-

rection, and the smallest, for ξ = η = 0, correspond to stationary processes. The parameters
are linked to the autoregressive formulation by ξ = β⊥ and η = α⊥, even though the linear
process,

∑∞
i=0Ciεt−i, in (4) depends on the random walk part, so the unobserved compo-

nents model and the autoregressive model are not the same. However, both adjustment
and cointegration can be discussed in this formulation, and hypotheses on the rank can be
tested. Rather than testing for unit roots one tests for stationarity, which is sometimes a
more natural formulation. Estimation is performed by the Kalman filter, and asymptotic
theory of the rank tests has been worked out by Nyblom and Harvey (2000), see also Durbin
and Koopman (2012).

1.2 The model analyzed in this contribution

In the following we consider cointegration modelled by the cointegrated vector autoregressive
(CVAR) model, H(r), for the p−dimensional process xt,

H(r) : ∆xt = α (β′xt−1 + ΥDt) +
k−1∑
i=1

Γi ∆xt−i + Φdt + εt. (5)

The terms Dt and dt are deterministic terms, like constant, trend, seasonal- or intervention
dummies. The matrices α and β are p× r where 0 ≤ r ≤ p. In section 3, conditions for the
processes β′xt and ∆xt to be stationary around their means are given, and model (5) can
then be formulated as

∆xt − E(∆xt) = α(β′xt−1 − E(β′xt−1)) +
k−1∑
i=1

Γi(∆xt−i − E(∆xt−i)) + εt.

This shows how the change of the process reacts to feedback from disequilibrium errors
β′xt−1 − E(β′xt−1) and ∆xt−i − E(∆xt−i), via the short-run adjustment coeffi cients α and
Γi. The equation β′xt − E(β′xt) = 0 defines the long-run relations between the processes.
There are many surveys of the theory of cointegration; see for instance Watson (1994)

and Stock (1994) or Johansen (2006, 2009), where the last two form the basis for the pre-
sentation here. The topic has become part of most textbooks in econometrics; see among
others Banerjee, Dolado, Galbraith and Hendry (1993), Hamilton (1994), Hendry (1995)
and Lütkepohl (2006). For a general account of the methodology of the cointegrated vector
autoregressive model with applications to the analysis of economic data, see Juselius (2006).

2 Linear stationary processes
We consider p−dimensional linear stationary processes

zt =
∞∑
i=0

Ciεt−i,
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which are well defined if the coeffi cient matrices satisfy the condition that
∑∞

i=0 tr
1/2(C ′iCi) <

∞, where the trace of a matrix, C, is tr(C) =
∑p

i=1Cii. If in (5) we consider r = p we define
the matrix Π = αβ′ and the matrix valued characteristic polynomial

Ψ(z) = (1− z)Ip − Πz − (1− z)
k−1∑
i=1

Γiz
i (6)

with determinant |Ψ(z)|. The properties of the solution of (5) are determined by Ψ(z). We
define the roots zi, i = 1, . . . , n, as the solutions of |Ψ(z)| = 0, and get, because |Ψ(0)| = 1,
that |Ψ(z)| =

∏n
i=1(1− z/zi). The inverse characteristic polynomial is given by

Ψ(z)−1 =
adj(Ψ(z))

det Ψ(z)
, z 6= zi,

that is, the adjoint of Ψ(z) divided by the determinant of Ψ(z).
The function C(z) = Ψ(z)−1 has poles at the roots of the polynomial |Ψ(z)|, and the

position of the poles determine the stochastic properties of the solution of (5). We first
mention a well known result; see Anderson (1971).

Theorem 1 If the roots satisfy |zi| > 1, then α and β have full rank r = p, and the
coeffi cients of Ψ−1(z) =

∑∞
i=0Ciz

i are exponentially decreasing. Let µt =
∑∞

i=0Ci(αΥDt−i+
Φdt−i). Then the distribution of the initial values of xt can be chosen so that xt − µt is
stationary with moving average representation

xt − µt =
∞∑
i=0

Ciεt−i.

Thus the exponentially decreasing coeffi cients are found by simply inverting the char-
acteristic polynomial if the roots are outside the unit disk. The matrices Ci contain the
impulse response coeffi cient of the process in the sense that a shock at time zero to variable
k will have the effect (Ct)ik at time t to variable i.

3 Integration and cointegration
The basic definitions of integration and cointegration are given together with a moving
average representation of the solution of the error correction model (5). This solution reveals
the stochastic properties of the solution, see Example 3.
If the roots of |Ψ(z)| = 0 are not greater than 1, the equations generate nonstationary

processes of various types, and the coeffi cients are not exponentially decreasing. Still, the
coeffi cients of C(z) = Ψ−1(z) determine the stochastic properties of the solution of (5).

DEFINITION 1: If
∑∞

i=0 tr
1/2(C ′iCi) < ∞, the linear process xt − E(xt) =

∑∞
i=0Ciεt−i

is called I(0) if C(1) =
∑∞

i=0Ci 6= 0. The process xt is called integrated of order 1, I(1), if
∆xt − E(∆xt) is I(0). If there is a vector β 6= 0 so that β′xt is stationary around its mean,
then xt is cointegrated with cointegration vector β. The number of linearly independent
cointegration vectors is the cointegration rank.
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We consider the process give by (5) and the characteristic polynomial Ψ(z) defined in
(6). This has a unit root, if Ψ(1) = −Π is singular, and by Theorem 1, the process is not
stationary. A singular matrix Π of rank r can be expressed as Π = αβ′ where α and β are
p× r.We next formulate a condition for the process to be I(1). We define Γ = Ip−

∑k−1
i=1 Γi.

ASSUMPTION 1: (The I(1) condition) The I(1) condition is satisfied if the roots
|Ψ(zi)| = 0 satisfy |zi| > 1 or zi = 1 and it holds that

|α′⊥Γβ⊥| 6= 0. (7)

Condition (7) is needed to avoid solutions that are integrated of order 2 or higher; see
section 7 for references. For a process with one lag Γ = Ip, and (5) implies

β′xt = (Ir + β′α)β′xt−1 + β′εt.

In this case the I(1) condition is equivalent to the condition that β′xt is stationary, that is,
the absolute value of the eigenvalues of Ir + β′α are less than one, and in Example 2 this
condition reduces to |1 + α1 − α2| < 1.
Example 3 presents a special case of the Granger Representation Theorem, which gives

the moving average representation of the solution of the error correction model.

Theorem 2 (The Granger Representation Theorem) If Ψ(z) has unit roots and the I(1)
condition is satisfied, then

(1− z)Ψ(z)−1 = C(z) =
∞∑
i=0

Ciz
i = C + (1− z)C∗(z)

converges for |z| ≤ 1 + δ for some δ > 0. The matrix C is defined by

C = β⊥(α′⊥Γβ⊥)−1α′⊥.

The solution xt of equation (5) has the moving average representation

xt = C

t∑
i=1

(εi + Φdi) +

∞∑
i=0

C∗i (εt−i + Φdt−i + αΥDt−i) + A, (8)

where A depends on initial values, so that β′A = 0.

This result implies that ∆xt and β′xt are stationary around their mean, so that xt is a
cointegrated I(1) process with r cointegration vectors β and p− r common stochastic trends
α′⊥
∑t

i=1 εi.
One of the useful applications of the representation (8) is to investigate the role of the

deterministic terms. Note that dt cumulates in the process with a coeffi cient CΦ, but that
Dt does not, because CαΥ = 0. A leading special case is the model with Dt = t, and dt = 1,
which ensures that any linear combination of the components of xt is allowed to have a linear
trend. Note that if Dt = t is not allowed in the model, that is Υ = 0, then xt has a trend
given by CΦt, but the cointegration relation β′xt has no trend because β′CΦ = 0.
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4 Interpretation of the I(1) model
In this section, model H(r) defined by (5) is discussed. The parameters in H(r) are

(α, β, Γ1, . . . , Γk−1, Υ, Φ, Ω) .

All parameters vary freely and α and β are p× r matrices. The normalization and identifi-
cation of α and β are discussed, and some examples of hypotheses on α and β are given.

4.1 The relation between the models H(r)

The models H(r) are nested

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(p).

Here H(p) is the unrestricted vector autoregressive model, so that α and β are unrestricted
p × p matrices. The model H(0) corresponds to the restriction α = β = 0, which is the
vector autoregressive model for the process in differences. Note that in order to have nested
models, we allow in H(r) for all processes with rank of α and β less than or equal to r.
The formulation allows us to derive likelihood ratio tests for the hypothesis H(r) in the

unrestricted model H(p). These tests can be applied to check if one’s prior knowledge of the
number of cointegration relations is consistent with the data, or alternatively to construct
an estimator of the cointegration rank.
Note that when the cointegration rank is r, the number of common trends is p− r. Thus,

if one can interpret the presence of r cointegration relations one should also interpret the
presence of p− r independent stochastic trends or p− r driving forces in the data.
4.2 Normalization of parameters

The parameters α and β in (5) are not uniquely identified, because given any choice of α
and β and any nonsingular r × r matrix ξ, the choice αξ and βξ′−1 gives the same matrix
αξ(βξ′−1)′ = αξξ−1β′ = αβ′.
If xt = (x′1t, x

′
2t)
′ where x1t is r× 1 and x2t is (p− r)× 1, and β = (β′1, β

′
2)
′, with β1, r× r,

and |β1| 6= 0, we can solve the cointegration relations as

x1t = γ′x2t + ut,

where ut is stationary and γ′ = −(β′1)
−1β′2. This represents cointegration as a regression

equation, see section 1.1.1. A normalization of this type is sometimes convenient for es-
timation and calculation of "standard errors" of the estimator, see section 6.2, but many
hypotheses are invariant with respect to a normalization of β, and thus, in a discussion of a
test of such a hypothesis, β does not require normalization.
Similarly α⊥ and β⊥ are not uniquely defined. From the Granger Representation Theorem

we see that the p− r common trends are the nonstationary random walks in C
∑t

i=1 εi, that
is, can be chosen as α′⊥

∑t
i=1 εi. For any full rank (p − r) × (p − r) matrix η, the processes

ηα′⊥
∑t

i=1 εi could also be used as common trends because

C = β⊥(α′⊥Γβ⊥)−1α′⊥ = β⊥(ηα′⊥Γβ⊥)−1ηα′⊥.

Thus identifying restrictions on the coeffi cients in α⊥ are needed to find their estimates and
standard errors, and a similar result holds for β⊥.
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In the cointegration model there are therefore four separate identification problems: one
for the cointegration relations, one for the common trends, one for β⊥, and finally one for
the short run dynamics, if the model has simultaneous effects.

4.3 Hypotheses on long-run coeffi cients

One purpose of modeling economic data is to test hypotheses on the coeffi cients, thereby
investigating whether the data support an economic hypothesis or rejects it. As an example
consider the series xt = (et, pt, p

∗
t )
′ where pt and p∗t are the log price indices in two countries

and et the exchange rate. The hypothesis of the law of one price, PPP, is that et = pt−p∗t .We
formulate that as the hypothesis that (1,−1, 1) is a cointegration relation so that et−pt+p∗t
becomes stationary. Similarly, the hypothesis of price homogeneity is formulated as the
restriction

R′β = (0, 1, 1)β = 0,

β =

 1 0
0 1
0 −1

( ϕ1
ϕ2

)
= Hϕ,

where H = R⊥. A general formulation of restrictions on each of r cointegration vectors,
including a normalization, is

β = (h1 +H1ϕ1, . . . , hr +Hrϕr) . (9)

Here hi is p × 1 and orthogonal to Hi which is p × (si − 1) of rank si − 1, so that p − si
restrictions are imposed on the vector βi. Let the restrictions be Ri = (hi, Hi)⊥ then βi
satisfies R′iβi = 0, and the normalization (h′ihi)

−1h′iβi = 1. The usual rank condition for
identification is that βi is identified by R′iβi = 0, if

rank(R′i(β1, . . . , βr)) = r − 1.

4.4 Hypotheses on adjustment coeffi cients

The coeffi cients in α measure how the process adjusts to disequilibrium errors. The hypoth-
esis of weak exogeneity is the hypothesis that some rows of α are zero; see Engle, Hendry
and Richard (1983). We decompose the process xt as xt = (x′1t, x

′
2t)
′ and the matrices are

decomposed similarly so that the model equations (without deterministic terms and k = 2)
become

∆x1t = α1β
′xt−1 + Γ11∆xt−1 + ε1t,

∆x2t = α2β
′xt−1 + Γ21∆xt−1 + ε2t.

The conditional model for ∆x1t given ∆x2t and the past is

∆x1t = ω∆x2t + α1β
′xt−1 + (Γ11 − ωΓ21)∆xt−1 + ε1t − ωε2t, (10)

where ω = Ω12Ω
−1
22 . If α2 = 0, there is no levels feedback from β′xt−1 to ∆x2t, and if the

errors are Gaussian, x2t is weakly called exogenous for α1 and β. In this case the likelihood
is a product of two factors depending on (Γ21,Ω22) and (α1, β,Γ11, ω,Ω11.2) respectively.
Because the parameters are unrestricted (variation independent), likelihood inference on β
and α1 can be conducted in the conditional model alone.

9



If the hypothesis of weak exogeneity is not satisfied, inference of the conditional model
is complicated because limit distributions contain nuisance parameters, and asymptotic in-
ference is not Gaussian.
If x2t is weakly exogenous, α⊥ contains the columns of (0, Ip−r)

′, so that
∑t

i=1 ε2i are
common trends. Thus the errors in the equations for ∆x2t cumulate in the system and give
rise to nonstationarity.

5 Likelihood analysis
This section contains first some comments on what aspects of the data are important for
checking for model misspecification, and then describes the calculation of reduced rank
regression, introduced by Anderson (1951). Then reduced rank regression and modifications
thereof are applied to estimate the parameters of the I(1) model (5) and various submodels
defined by restrictions on β, see Johansen and Juselius (1990).

5.1 Checking for specification

In order to apply Gaussian maximum likelihood methods, the assumptions behind the model
have to be checked carefully, so that one is convinced that the statistical model contains the
density that generated the data. If this is not the case, the asymptotic results available from
the Gaussian analysis need not hold. Methods for checking vector autoregressive models
include choice of lag length, test for normality of residuals, tests for autocorrelation, and
test for heteroscedasticity in errors. Asymptotic results for estimators and tests derived
from the Gaussian likelihood turn out to be robust to some types of deviations from the
above assumptions. Thus the limit results hold for i.i.d. errors with finite variance, and
not just for Gaussian errors, but autocorrelated errors violate the asymptotic results, so
autocorrelation has to be checked carefully.
Finally and perhaps most importantly, the assumption of constant parameters is crucial.

In practice it is important to model outliers by suitable dummies, but it is also important to
model breaks in the dynamics, breaks in the cointegration properties, breaks in the station-
arity properties, etc. The papers by Seo (1998) and Hansen and Johansen (1999) contain
some results on recursive tests in the cointegration model, and Doornik and Hendry (2013)
contains a description of a general algorithm (Autometrics) for finding a model that describes
the data.

5.2 Reduced rank regression

Let ut, wt, and zt be three multivariate time series of dimensions pu, pw, and pz respectively.
The algorithm of reduced rank regression, see Anderson (1951), can be described in the
regression model

ut = αβ′wt + Ξzt + εt,

where εt are i.i.d. (0,Ω). The product moments are

Suw = T−1
T∑
t=1

utw
′
t,

and the residuals, which we get by regressing ut on wt, are

(ut|wt) = ut − SuwS−1wwwt,

10



so that the conditional product moments are

Suw.z = Suw − SuzS−1zz Szw = T−1
T∑
t=1

(ut|zt)(wt|zv)′,

Suu.w,z = T−1
T∑
t=1

(ut|wt, zt)(ut|wt, zt)′ = Suu.w − Suz.wS−1zz.wSzu.w.

For fixed β the regression estimates are

α̂(β) = Suw.zβ(β′Sww.zβ)−1,

Ω̂(β) = Suu.z − Suw.zβ(β′Sww.zβ)−1β′Swu.z,

so that

|Ω̂(β)| = |Suu.z|
|β′Sww.uzβ|
|β′Sww.zβ|

.

Minimizing over β gives the reduced rank estimators. This minimization problem is solved
as follows. First we solve the eigenvalue problem

|λSww.z − Swu.zS−1uu.zSuw.z| = 0.

The eigenvalues are ordered λ̂1 ≥ · · · ≥ λ̂pw , with corresponding eigenvectors v̂1, . . . , v̂pw .
The reduced rank estimate of β is

β̂ = (v̂1, . . . , v̂r) (11)

and the other estimators are found by regression of ut on β̂′xt−1 and zt. Finally we find

|Ω̂| = |Suu.z|
r∏
i=1

(1− λ̂i).

The eigenvectors are orthogonal with respect to Sww.z, that is, v̂′iSww.zv̂j = 0 for i 6= j, and
they are normalized by v̂′iSww.zv̂i = 1. The calculations described here are called a reduced
rank regression and are denoted by RRR(ut, wt|zt).
5.3 Likelihood analysis

It is assumed for the likelihood analysis that εt is i.i.d. Np(0,Ω), but for asymptotic re-
sults the Gaussian assumption is not needed. The Gaussian likelihood function shows that
the maximum likelihood estimator can be found by the reduced rank regression of ∆xt on
(x′t−1, D

′
t)
′ correcting for Xt = (∆x′t−1, . . . ,∆x

′
t−k+1, d

′
t)
′

RRR(∆xt,

(
xt−1
Dt

)
|Xt).

The estimates are given by (11), and the maximized likelihood is, apart from a constant,
given by

L−2/Tmax = |Ω̂| = |S00|
r∏
i=1

(1− λ̂i), (12)
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where S00 = T−1
∑T

t=1(∆Xt|Xt)(∆Xt|Xt)′.
Note that all the models H(r), r = 0, . . . , p, have been solved by the same eigenvalue

calculation. The maximized likelihood is given for each r by (12) and by dividing the max-
imized likelihood function for r with the corresponding expression for r = p, the likelihood
ratio test for cointegration rank is obtained:

−2logLR(H(r)|H(p)) = −T
p∑

i=r+1

log(1− λ̂i). (13)

The asymptotic distribution of this test statistic and the estimators are discussed in section
6.
The model obtained under the hypothesis β = Hϕ, is analyzed by

RRR(∆xt,

(
H ′Xt−1
Dt

)
|Xt),

and a number of hypotheses of this type for β and α can be solved in the same way, but the
more general hypothesis

β = (h1 +H1ϕ1, . . . , hr + Hrϕr) ,

see (9), cannot be solved by reduced rank regression.

6 Asymptotic analysis
A discussion of the most important aspects of the asymptotic analysis of the cointegration
model is given. This includes the result that the rank test requires a family of Dickey-Fuller
type distributions, depending on the specification of the deterministic terms of the model.
The asymptotic distribution of β̂ is mixed Gaussian and that of the remaining parameters
is Gaussian, so that tests for hypotheses on the parameters are asymptotically distributed
as χ2.

6.1 Asymptotic distribution of the rank test

The asymptotic distribution of the rank test is given in case the process has a linear trend.

Theorem 3 Let εt be i.i.d. (0,Ω) and assume that Dt = t and dt = 1, in model (5). Under
the assumptions that the cointegration rank is r, the asymptotic distribution of the likelihood
ratio test statistic −2logLR(H(r)|H(p)), (13), is

tr{
∫ 1

0

(dB)F ′(

∫ 1

0

FF ′du)−1
∫ 1

0

F (dB)′}

where F is defined by

F (u) =

(
B(u)
u

∣∣∣∣ 1) ,
and B(u) is the p− r dimensional standard Brownian motion.

The limit distribution is tabulated by simulation. Note that it does not depend on the
parameters (Γ1, . . . ,Γk−1, Υ, Φ,Ω), but only on p−r, the number of common trends, and the
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presence of the linear trend. For finite samples, however, the dependence on the parameters
can be quite pronounced. A small sample correction for the test has been given in Johansen
(2002), and the bootstrap has been investigated by Rahbek, Cavaliere, and Taylor (2012).
In the model without deterministics the same result holds, but with F (u) = B(u). A

special case of this, for p = 1, is the Dickey-Fuller test and the asymptotic distributions
given in Theorem 3 are called the Dickey—Fuller distributions with p− r degrees of freedom;
see Dickey and Fuller (1981).

6.2 Asymptotic distribution of estimators

The main result here is that the estimator of β, suitably normalized, converges to a mixed
Gaussian distribution; see Johansen (1988). This result implies that likelihood ratio tests
on β are asymptotically χ2 distributed. Furthermore the estimators of the adjustment para-
meters α and the short-run parameters Γi are asymptotically Gaussian and asymptotically
independent of the estimator for β.
To illustrate how to conduct inference on a cointegrating coeffi cient, and why it becomes

asymptotic χ2 despite the asymptotic mixed Gaussian limit of β̂, we consider an example.

EXAMPLE 4: (Mixed Gaussian distribution) Let xt be a bivariate process with one lag
for which α = (−1, 0)′ and β = (1, θ)′. The equations become

x1t = θx2t−1 + ε1t, (14)

∆x2t = ε2t.

This model as a special case of (5) with α′ = (−1, 0), β′ = (1,−θ), p = 2, k = 1. If we
add the assumption, that εt is Gaussian with mean zero and variance Ω = diag(σ21, σ

2
2), the

maximum likelihood estimator simplifies to a regression estimator, and becomes

θ̂ =

∑T
t=1 x1tx2t−1∑T
t=1 x

2
2t−1

= θ +

∑T
t=1 ε1tx2t−1∑T
t=1 x

2
2t−1

.

The distribution of θ̂ conditional on the whole process {x2t}Tt=1 is clearly Gaussian:

θ̂|{x2t} is distributed as N(θ, σ21/
T∑
t=1

x22t−1).

By integrating out the process x2t we get a distribution which we call mixed Gaussian with
mixing parameter 1/

∑T
t=1 x

2
2t−1, and hence E(θ̂) = θ and V ar(θ̂) = σ21E(1/

∑T
t=1 x

2
2t−1).

When constructing a test for θ = θ0 we do not use

(θ̂ − θ)/V ar(θ̂)1/2,

but instead expand the likelihood function and find the Wald test which is based on the
observed information:

σ̂−11 (
T∑
t=1

x22t−1)
1/2(θ̂ − θ).
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Figure 4: A scatter plot of θ̂ =
∑T

i=1 x1tx2,t−1/
∑T

i=1 x
2
2,t−1 and the information∑T

i=1 x
2
2,t−1/σ

2
1 for model (14). The number of observations is T = 100, and the number

of simulations is 1000.

This statistic is asymptotically distributed as N(0, 1). Thus we normalize by the observed
information,

∑T
t=1 x

2
2t−1/σ

2
1, not the expected information often used when analysing sta-

tionary processes.
Figure 4 shows a scatter diagram of 1000 simulations of (θ̂,

∑T
t=1 x

2
2t−1/σ

2
1). That is, the

estimator and the information about the parameter. We note that when the information is
large the variation ofθ̂ is small, and when the information is small, the variation of θ̂ is much
larger. Thus the variation of θ̂ should be measured by its conditional variance which is the
reciprocal information in the data. This has the further advantage that if we only consider
those estimates with a given information we see that θ̂ is approximately Gaussian.
The main result is that tests on β are asymptotically χ2, and we formulate that as

Theorem 4 Let εt be i.i.d. (0,Ω). The asymptotic distribution of the likelihood ratio test
statistic for the restrictions (9) in model (5) is χ2 with degrees of freedom given by

∑r
i=1(p−

r − si + 1).

A small sample correction for some tests on β has been developed in Johansen (2000).

7 Further topics in cointegration
The basic model for I(1) processes has be extended to other types of nonstationarity. In
particular models for seasonal roots, Ahn and Reinsel (1994) and Johansen and Schaum-
burg (1998), explosive processes, Nielsen (2010), I(2) processes, Johansen (1997), fractional
processes, Johansen and Nielsen (2012), nonlinear processes, Lange and Rahbek (2006),
panel data cointegration, Larsson, Lyhagen, Löthgren (2001) and Pesaran, Schuermann,
and Weiner (2004), and finally applications to rational expectation models, Johansen and
Swensen (2011).

8 Concluding remarks
In summary one can say, that what has been developed for the cointegrated vector autore-
gressive model is a set of useful tools for the analysis of many types of economic time series.
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The theory is now part of many textbooks, and software for the analysis of data has been im-
plemented in several packages, e.g. in CATS in RATS, Givewin, Eviews, Microfit, Shazam,
R, Gauss, GRETL, etc.
We have given a brief tour in the cointegration landscape showing some of the major

sights without indicating, except by examples, how the formal analysis is conducted. We
concluded with a list of extensions of the basic model, which shows that the ideas behind
the CVAR extends to a large number of other models.
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