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Abstract

While variable selection and oracle inequalities for the estimation and prediction error have

received considerable attention in the literature on high-dimensional models, very little work

has been done in the area of testing and construction of confidence bands in high-dimensional

models. However, in a recent paper van de Geer et al. (2014) showed how the Lasso can be

desparsified in order to create asymptotically honest (uniform) confidence band. In this paper

we consider the conservative Lasso which penalizes more correctly than the Lasso and hence has

a lower estimation error.

In particular, we develop an oracle inequality for the conservative Lasso only assuming

the existence of a certain number of moments. This is done by means of the Marcinkiewicz-

Zygmund inequality which in our context provides sharper bounds than Nemirovski’s inequality.

As opposed to van de Geer et al. (2014) we allow for heteroskedastic non-subgaussian error

terms and covariates. Next, we desparsify the conservative Lasso estimator and derive the

asymptotic distribution of tests involving an increasing number of parameters. As a stepping

stone towards this, we also provide a feasible uniformly consistent estimator of the asymptotic

covariance matrix of an increasing number of parameters which is robust against conditional

heteroskedasticity. To our knowledge we are the first to do so. Next, we show that our confidence

bands are honest over sparse high-dimensional sub vectors of the parameter space and that

they contract at the optimal rate. All our results are valid in high-dimensional models. Our

simulations reveal that the desparsified conservative Lasso estimates the parameters much more
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precisely than the desparsified Lasso, has much better size properties and produces confidence

bands with markedly superior coverage rates.

Keywords and phrases: conservative Lasso, honest inference, high-dimensional data, uniform

inference, confidence intervals, tests.

JEL classification: C12, C13, C21.

1 Introduction

In recent years we have seen a burgeoning literature on high-dimensional problems where the

number of parameters is much greater than the sample size. At first, much focus was devoted

to establishing the so-called oracle property in models of fixed or increasing dimensions, see e.g.

Fan and Li (2001), Zou (2006), and Huang et al. (2008). This entails showing that the procedure

asymptotically detects the correct, and only the correct, variables and that the non-zero coefficients

have the same asymptotic distribution as if only the relevant variables had been included in the

model from the outset.

The oracle property is an asymptotic one and in recent years more focus has been devoted to

establishing finite sample oracle inequalities for the estimation and prediction error. That is, finite

sample upper bounds on the estimation and prediction error that are valid with high probability.

Pioneering work in this direction was done by Bickel et al. (2009). For excellent reviews, see

Bühlmann and van de Geer (2011), Fan and Lv (2010), and Belloni and Chernozhukov (2011).

Methods for analyzing high-dimensional data sets have also found increasing use in econometrics

as many economic data sets are becoming increasingly high-dimensional. For example, Belloni et al.

(2012) have shown how the least absolute shrinkage and selection operator (Lasso) of Tibshirani

(1996) can be used to select among many instruments. Furthermore, Belloni et al. (2012) have

shown how the Lasso can be used to make inference on treatment effects in the presence of a

high-dimensional set of control variables. The authors also allow for non-gaussian heteroskedastic

errors and construct uniformly valid confidence bands for the treatment effect. Caner and Zhang

(2014) have considered GMM estimation with many parameters while Kock (2013) has considered

estimation and inference in large panel data models.

Despite the big progress that has been made in terms of analyzing high-dimensional models

very little progress has been made in the area of testing and constructing reliable confidence bands.

However, recently van de Geer et al. (2014) showed how the classical Lasso estimator may be
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desparsified to construct asymptotically valid confidence bands for a low-dimensional subset of a

high-dimensional parameter vector. The idea behind this procedure is to remove the bias introduced

by shrinkage by desparsifying the estimator and constructing a clever approximate inverse to the

non-invertible empirical Gram matrix. Furthermore, these confidence bands do not suffer from the

critique of Pötscher (2009) regarding the overly large size of confidence bands based on consistent

variable selection techniques. By using the Lasso to construct confidence bands and tests, van de

Geer et al. (2014) strike a middle ground between classical low dimensional inference, which relies

heavily on testing, and Lasso-type techniques which perform estimation an variable selection in one

step without any testing.

In the framework of the high-dimensional linear regression model and inspired by the work of

van de Geer et al. (2014) we introduce the so-called conservative Lasso to econometrics (see Section

2.3). The important observation here is that, in the presence of an oracle inequality on the plain

Lasso, the penalty of conservative Lasso on the non-zero parameters will be no larger than the one

for the Lasso while the penalty on the zero parameters will be the same as the one induced by

the plain Lasso. Hence, the conservative Lasso may be expected to deliver more precise parameter

estimates (in finite samples) than the Lasso. And indeed, our simulations strongly indicate that

this is the case.

We provide an oracle inequality for the conservative Lasso estimator and use the method of

desparsification introduced in van de Geer et al. (2014) to conduct inference without the use of any

assumptions regarding the zero and non-zero coefficients being well-separated (no βmin-condition is

imposed). We only assume the existence of r moments as opposed to the classical sub-gaussianity

assumption. The oracle inequalities rely on the use of the Marcinkiewicz-Zygmund inequality which

we argue deliver slightly more precise estimates than Nemirovski’s inequality.

We also show that hypotheses involving an increasing number of parameters can be tested

which generalizes the results on hypotheses involving a bounded number of parameters in van de

Geer et al. (2014). Furthermore, we allow for heteroskedastic error terms and provide a uniformly

consistent estimator of the high-dimensional asymptotic covariance matrix. This is an important

generalization in practical econometric problems over van de Geer et al. (2014) who focus on

low-dimensional hypotheses in the presence of homoskedastic error terms and do not provide a

practically feasible estimator of the asymptotic covariance matrix. However, heteroskedasticity

is omniscient in econometrics and thus our procedure is of practical interest as it is the first of

its kind which is able to handle high-dimensionality and heteroskedasticity simultaneously. Next,
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we show that the weak convergence to the normal distribution of our estimator is valid uniformly.

More importantly, this is used to show that confidence bands based on the desparsified conservative

Lasso are honest over the subset of the parameter space consisting of sparse vectors. Thus, there

exists a fixed time, not depending on the true parameter β0, from which on our confidence bands

have coverage close to the desired coverage probability. This is in stark opposition to dishonest

confidence intervals. While dishonest confidence intervals might still have the correct coverage rate

asymptotically the sample size which is needed in order to achieve this coverage rate may depend

on the unknown true parameter β0. This is unfortunate for the applied researcher who will not

know how large a sample is needed in order to achieve a desired coverage rate. Finally, we show

that the confidence bands have uniformly the optimal rate of contraction such that their honesty

is not bought at the price of them being wide, see Pötscher (2009). As we shall stress again in the

discussion of Theorem 3 below honest confidence are remarkable as Bahadur and Savage (1956)

have shown that honest confidence intervals can not even exist for the mean based on an iid gaussian

sample if one insists on these bands to have a finite length almost surely. This also underscores

that one can probably not hope for honesty to be valid over the whole parameter space.

The simulations show that vast improvements can be obtained by using the desparsified con-

servative Lasso as opposed to the plain desparsified Lasso. To be precise, β0 is in general estimated

much more precisely and χ2-tests based on the desparsified conservative Lasso have much bet-

ter size properties (and often also higher power) than their counterparts based on the desparsified

Lasso. Finally, and perhaps most importantly, the confidence intervals based on our procedure have

coverage rates much closer to the nominal rate than the confidence bands based on the desparsified

plain Lasso. This improvement in the coverage rates comes directly from more precise parameter

estimates as well as indirectly through a more precise estimate of the covariance matrix by the use

of the conservative Lasso for nodewise regressions instead of the plain Lasso.

The rest of the paper is organized as follows. Section 2 introduces the model and the conservative

Lasso. Section 3 introduces nodewise regression, desparsification, and the approximate inverse to

the empirical Gram matrix. Section 4 establishes honest confidence intervals and shows that they

contract at an optimal rate. The simulations can be found in Section 5. Section 6 provides a

summary. All proofs are deferred to the Appendix.
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2 The Model

Before stating the model setup we introduce some notation used throughout the paper

2.1 Notation

For any real vector x, we let ‖x‖q denote the `q-norm. We will primarily use the `1-, `2-, and the

`∞-norm. For any m×n matrix A, we define ‖A‖∞ = max1≤i≤m,1≤j≤n |ai,j |. Occasionally we shall

also use the induced `∞-norm. This will be denoted by ‖A‖`∞ and equals the maximum absolute

row sum of A. For any symmetric matrix B, let φmin(B) and φmax(B) denote the smallest and

largest eigenvalue of B, respectively. If x ∈ Rn and S is a subset of {1, ..., n} we let xS be the

modification of x that places zeros in all entries of x whose index does not belong to S. For an

n× n matrix B let BS denote submatrix of B consisting only of the rows and columns indexed by

S. If S = {j} is a singleton set, we use Bj as shorthand for the j’th diagonal element of B.

For any set S, we shall let |S| denote its cardinality and for an n−dimensional vector x, ‖x‖2n =

1
n

∑n
i=1 x

2
i .

d→ will indicate convergence in distribution and op(an) as well as Op(bn) are used in

their usual meaning for sequences an and bn. an � bn means that these sequences only differ by a

multiplicative constant.

2.2 The model

We consider the model

Y = Xβ0 + u, (1)

where X is the n × p matrix of explanatory variables and u is a vector of error terms. β0 is the

p×1 population regression coefficient which we shall assume to be sparse. However, the location of

the non-zero coefficients is unknown and potentially p could be much greater than n. We assume

that the explanatory variables are exogenous and precise assumptions will be made in Assumption

1 below. For later purposes define Xj as the j’th column of X and X−j as all columns of X except

for the j’th one.
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2.3 The conservative Lasso

Before we introduce the precise definition of the conservative Lasso we recall that the plain Lasso

of Tibshirani (1996) is defined as

β̂L = argmin
β∈Rp

∥∥Y −Xβ∥∥2

n
+ 2λn

p∑
j=1

|βj | (2)

where λn is a positive tuning parameter determining the size of the penalty attached to non-zero

parameters. For λn sufficiently large, some parameters will be classified exactly as zero. The plain

Lasso attaches the same penalty to all parameters. However, ideally one would like to penalize the

truly non-zero parameters less than the truly zero ones. The problem is that one does not know

which parameters are zero and which are not. One potential solution to this would be to apply the

adaptive Lasso of Zou (2006) which is defined as

β̂AL = argmin
β∈Rp

∥∥Y −Xβ∥∥2

n
+ 2λn

p∑
j=1

1

|β̂L,j |
|βj | , (3)

where β̂L,j is the Lasso estimator for the jth coefficient. However, and first of all, unless one

imposes a restrictive condition on the minimal size of non-zero coefficients, not even the adaptive

Lasso can be guaranteed to penalize truly zero coefficients more than truly non-zero ones. Next,

the adaptive Lasso usually relies on the Lasso as an initial estimator to construct its weights. In

particular, the adaptive Lasso discards those variables from the second step estimation which have

been deemed irrelevant by the first step Lasso estimator. This is unfortunate since we want to

construct confidence intervals and tests for every parameter β0,j , j = 1, ..., p. The conservative

Lasso does not suffer from these two shortcomings and we shall introduce it next. The conservative

Lasso estimator is defined as

β̂ = argmin
β∈Rp

∥∥Y −Xβ∥∥2

n
+ 2λn

p∑
j=1

ŵj |βj | (4)

with ŵj =
λprec

|β̂L,j |∨λprec
. Here λn and λprec are positive non-random quantities chosen by the re-

searcher which we shall be specific about shortly. As opposed to the adaptive Lasso, the conser-

vative Lasso gives variables that were excluded by the first step initial Lasso estimator a second

chance – even if |β̂j | = 0 one has ŵj = 1 instead of an ”infinitely” large penalty. Hence, the name

”conservative” Lasso. The adaptive Lasso usually performs its worst when a relevant variable has

been left out by the initial Lasso estimator. The conservative Lasso rules out such a situation while

still using more intelligent weights than the Lasso as we shall see shortly. Note that our definition
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of the conservative Lasso is at first glance slightly different from the one on page 205 in Bühlmann

and van de Geer (2011) since we have merged one of the tuning parameters into the definition of

the weights. However, the difference is merely a matter of parameterization. Furthermore, these

authors do not provide any inferential procedure for the conservative Lasso, they merely suggest it

as a potential estimator.

We shall choose λprec to equal an upper bound on the estimation error of the first step Lasso

for reasons to be made clear next. In particular, assume that C =
{
‖β̂L − β0‖1 ≤ λprec

}
is a set

with large probability. In Lemma 1 and Theorem 1 below we shall give examples of λprec. Its order

will be the rate of convergence of the Lasso estimator in the l1-norm. Observe that

1. ŵj ≤ 1 for all j = 1, ..., p.

Furthermore, on C =
{
‖β̂L − β0‖1 ≤ λprec

}
we have the following two properties:

2. ŵj = 1 for all j ∈ Sc0 since |β̂L,j | = |β̂L,j − β0,j | ≤ λprec for all j ∈ Sc0.

3. ŵj → 0 for j ∈ S0 if
|β0,j |
λprec

→∞. This is because |β̂L,j | ≥ |β0,j |− |β̂L,j − β0,j | ≥ |β0,j |−λprec =

λprec

(
|β0,j |
λprec

− 1
)
≥ λprec for n large enough. Hence, ŵj ≤ λprec

|β̂L,j |
≤ 1
|β0,j |
λprec

−1
→ 0

Observations 1) and 2) imply that the penalty attached to non-zero coefficients will never be larger

than the penalty attached to the truly zero coefficients on C =
{
‖β̂L − β0‖1 ≤ λprec

}
. As we shall

see below this set has a large probability. Observations 1) and 2) also imply that the conservative

Lasso penalizes the non-zero coefficients less than the plain Lasso does since the latter corresponds

to ŵj = 1 for all j = 1, ..., p. Put differently, the non-zero coefficients will never be penalized more

than the truly zero ones. Observation 2) implies that the truly zero coefficients receive the same

penalty as they do when the Lasso is applied. By consistency of the Lasso (see Lemma 1 below)

β̂L,j is often either zero or close to zero for j ∈ Sc0. Thus even small values of λprec ensure that

Observation 2 is valid, i.e. the zero coefficients will receive a no smaller penalty than the non-zero

ones.

In the situation where the non-zero coefficients are bounded away from zero by more than λprec

(the rate of the initial Lasso estimator) observation 3 implies that one even has that the weights

attached to the non-zero coefficients tend to zero. We also want to remark that the arguments in

observations 2 and 3 actually only rely on λprec dominating the in general smaller sup-norm instead

of the `1-norm. Thus, the requirement
|β0,j |
λprec

→ ∞ in observation 3 can be relaxed since λprec can

be lowered. However, an upper bound on ‖β̂ − β0‖∞ for the Lasso is only available under rather
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strong assumptions, see e.g. Lounici et al. (2008), and we shall stick to the current setting for now.

To sum up, the conservative Lasso is attractive since on a set with high probability it penalizes

the zero coefficients more than the non-zero ones. Thus, on that set the weights are more appropriate

than those of the Lasso which we shall see results in great performance gains.

As is standard in the literature we assume that the covariates Xi are iid with Σ = E(X1X
′
1)

satisfying an adaptive restricted eigenvalue type condition: for |S| ≤ s,

φ2
Σ(s) = min

δ∈Rp\{0}
‖δSc‖1≤3

√
s‖δS‖2

δ′Σδ

‖δS‖22
> 0, (5)

where S ⊆ {1, ..., p} and |S| is its cardinality. Instead of minimizing over all of Rp, the minimum

in (5) is restricted to those vectors which satisfy ‖δSc‖1 ≤ 3
√
s‖δS‖2 and where S has cardinality

at most s.

Notice that the adaptive restricted eigenvalue condition is trivially satisfied if Σ has full rank

since δ′SδS ≤ δ′δ for every δ ∈ Rp and so,

δ′Σδ

‖δS‖22
≥ δ′Σδ

‖δ‖22
≥ min

δ∈Rp\{0}

δ′Σδ

‖δ‖22
> 0.

Assuming Σ to be of full rank is a rather innocent assumption as Σ is nothing else than the

population covariance matrix of X1 in the case where E(X1) is assumed to have mean zero. Since

the population covariance matrix is commonly assumed to be of full rank, the adaptive restricted

eigenvalue condition is satisfied in particular. We will also see that under Assumption 1, Σ̂ =

1
n

∑n
i=1XiX

′
i does also satisfy a restricted eigenvalue condition if Σ does so as long as p is not too

large.

In order to establish an oracle inequality for the conservative Lasso we shall assume the following.

Assumption 1. The covariates Xi, i = 1, ..., n are independently and identically distributed while

the error terms ui, i = 1, ..., n are independently distributed with E(ui|Xi) = 0. Furthermore,

max1≤j≤pE|X1,j |r ≤ C and max1≤i≤nE|ui|r ≤ C for some r ≥ 2 and a positive universal constant

C. Furthermore, φ2
Σ(s0) is bounded away from 0.

Assumption 1 assumes that the covariates are independently and identically distributed with

uniformly bounded r’th moments. The assumption of identical distribution of the covariates is

mainly made to keep expressions simple but could be relaxed. We will comment in more detail on

this later. The error terms are allowed to be non-identically distributed and may, in particular, be

conditionally heteroskedastic. Thus, many economic applications of interest are covered. At this
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point it is also worth mentioning that in the literature one often assumes that the covariates as

well as the error terms are uniformly sub-gaussian. This is a much stronger assumption than the

one imposed here and rules out data with heavy tails. However, strengthening our assumption to

sub-gaussianity would also deliver stronger results. In any case, it would not be difficult to pursue

this avenue but we shall not do so here in order to avoid digressions.

Before stating the oracle inequality we state the following result on the Lasso. It is very similar

to the classical oracle inequality for the Lasso that assumes subgaussianity of the error terms in

Bickel et al. (2009). However, it is tailored to our Assumption 1 which only assumes r moments of

the covariates and the error terms and hence we still mention it here. Furthermore, the result is

needed in order to guide our choice of λprec for the conservative Lasso.

Lemma 1. Let Assumption 1 be satisfied and set λn = M p2/r

n1/2 for M > 0. Then, with probability

at least 1− D
Mr/2 −D

p2s
r/2
0

nr/4
, the Lasso satisfies the following inequalities

‖X(β̂L − β0)‖2n ≤ 18
λ2
ns0

φ2
Σ(s0)

, (6)

‖β̂L − β0‖1 ≤ 24
λns0

φ2
Σ(s0)

, (7)

for a universal constant D > 0. Furthermore, these bounds are valid uniformly over the `0-ball

B`0(s0) =
{
‖β0‖`0 ≤ s0

}
.

Lemma 1 provides an oracle inequality for the prediction and estimation error of the Lasso

under the assumption of uniformly bounded r’th moments of the covariates and the error terms.

It is similar in spirit to previous oracle inequalities, however it does not assume subgaussianity. It

is included here as it reveals that λprec � λns0 will work in connection with observation 3 above to

ensure that C has a high probability. An upper bound on ‖β̂L−β0‖∞ would actually be more useful

for the choice of λprec. Under a quite restrictive assumption of near orthogonality of Σ, Lounici

et al. (2008) has shown that ‖β̂L − β0‖∞ is of the order λn such that the unknown s0 could be

dropped in the choice of λprec.

We are now ready to state the oracle inequality for the conservative Lasso.

Theorem 1. Let Assumption 1 be satisfied, set λn = M p2/r

n1/2 for M > 0 and λprec = 24 λns0
φ2

Σ(S0)
.

Then, with probability at least 1 − D
Mr/2 − D

p2s
r/2
0

nr/4
, the conservative Lasso satisfies the following
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inequalities

‖X(β̂ − β0)‖2n ≤ 18
λ2
ns0

φ2
Σ(s0)

, (8)

‖β̂ − β0‖1 ≤ 24
λns0

φ2
Σ(s0)

, (9)

for a universal constant D > 0. Furthermore, these bounds are valid uniformly over the `0-ball

B`0(s0) =
{
‖β0‖`0 ≤ s0

}
.

We shall see in Section 5 that the conservative Lasso provides more precise parameter estimates

than the plain Lasso since its weights are more intelligent. For establishing the uniform validity of

our covariance matrix estimator over B`0(s0) =
{
‖β0‖`0 ≤ s0

}
in Theorem 2 it will turn out to be

important that (9) is valid uniformly over this set. Theorem 1 is mainly used as a tool to prove

the validity of our inferential procedure but is also of interest in its own right.

3 Inference

In this section we explain how to conduct statistical inference with the conservative Lasso. To do

so we first discuss desparsification.

3.1 The Desparsified Conservative Lasso

In order to conduct inference we shall use the idea of desparsification first proposed in van de Geer

et al. (2014). The idea is that the shrinkage bias introduced due to the presence of penalization

in (4) will show up in the properly scaled limiting distribution of β̂j . Hence, we remove this bias

prior to conducting statistical inference. Letting Ŵ = diag
(
ŵ1, ..., ŵp

)
be a p× p diagonal matrix

containing the weights of the conservative Lasso, the first order condition of (4) may be written as

−X ′(Y −Xβ̂)/n+ λnŴ κ̂ = 0,

‖κ̂‖∞ ≤ 1,

and κ̂j = sign(β̂j) if β̂j 6= 0 for j = 1, ..., p. Using the first equation above

λŴ κ̂ = X ′(Y −Xβ̂)/n. (10)

Next, as Y = Xβ0 + u and defining Σ̂ = X ′X/n the above display yields

λnŴ κ̂+ Σ̂(β̂ − β0) = X ′u/n.
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In order to isolate β̂−β0 we need to invert Σ̂. However, when p > n, Σ̂ is not invertible. Thus, the

idea is now to construct an approximate inverse, Θ̂, to Σ̂ and control the error term resulting from

this approximation. We shall be explicit about the construction of Θ̂ in the next section. For any

p× p square matrix we may write, by multiplying the above equation by Θ̂, and adding β̂ − β0 to

each side of the above equation,

β̂ = β0 − Θ̂λnŴ κ̂+ Θ̂X ′u/n−∆/n1/2, (11)

where

∆ =
√
n(Θ̂Σ̂− Ip)(β̂ − β0),

is the error resulting from using an approximate inverse, Θ̂, as opposed to an exact inverse. We

shall show that ∆ is asymptotically negligible. Note also that the bias term Θ̂λnŴ κ̂ resulting from

the penalization is known. This suggests removing it by simply adding it to both sides of (11),

resulting in the following estimator:

b̂ = β̂ + Θ̂λnŴ κ̂ = β0 + Θ̂X ′u/n−∆/n1/2. (12)

Hence, for any p× 1 vector α with ‖α‖2 = 1 we can consider

√
nα′

(
b̂− β0

)
= α′Θ̂X ′u/n1/2 − α′∆ (13)

such that a central limit theorem for α′Θ̂X ′u/n1/2 and a verification of asymptotic negligibility

of α′∆ will yield asymptotic gaussian inference. Furthermore, we provide a uniformly consistent

estimator of the asymptotic variance of
√
nα′

(
b̂− β0

)
which makes inference practically feasible. In

connection with Theorem 2 we shall see that a central limit theorem for α′Θ̂X ′u/n1/2 puts certain

limitations on the number of non-zero entries of α in (13), i.e. the number of parameters involved

in a hypothesis. A leading special case of the above setting is of course α = ej where ej is the j’th

unit vector for Rp. Then, (13) reduces to

√
n
(
b̂j − β0,j

)
=
(
Θ̂X ′u/n1/2

)
j
−∆j . (14)

In general, let H =
{
j = 1, ..., p : αj 6= 0

}
with cardinality h = |H|. Thus, H contains the indices

of the coefficients involved in the hypothesis being tested. We shall allow for h → ∞ as the first

in the literature on inference in high-dimensional models with more regressors than observations

(p > n), but h/n→ 0 as n→∞.
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In the next section we shall construct the approximate inverse Θ̂ which enters in both terms

in the above display and thus plays a crucial role for the limiting inference. Note that we can

practically compute the desparsified conservative Lasso from the following equation using (10)

b̂ = β̂ + Θ̂X ′(Y −Xβ̂)/n.

The above desparsification procedure is similar in spirit to the one outlined in van de Geer et al.

(2014). However, β̂ is used instead of β̂L. Furthermore, the construction of the approximate inverse

Θ̂ in the next section relies on the conservative Lasso as opposed to the plain Lasso.

Remark: Another way to remove the shrinkage bias would be to perform least squares after

model selection (by the Lasso) as in Belloni and Chernozhukov (2013). However, the Lasso is only

guaranteed to include all relevant variable if the non-zero coefficients are well separated from the

zero ones (βmin-condition). An assumption we are avoiding. Thus, in that framework there is in

general no guarantee that all relevant variables will be included in the second step least squares

estimation and hence inference would be difficult for the parameters of these. However, conducting

inference by means of unpenalized post-estimation is an interesting avenue for future research.

3.2 Constructing the Approximate Inverse of the Gram Matrix: Θ̂

In this subsection we construct the approximate inverse Θ̂ of Σ̂. This is done by nodewise regression

a la Meinshausen and Bühlmann (2006) and van de Geer et al. (2014). To formally define the

nodewise recall that Xj is the j’th column in X and X−j all columns of X except for the j’th one.

First, along the lines of van de Geer et al. (2014) we define the Lasso nodewise regression estimates

γ̂L,j = argmin
γ∈Rp−1

∥∥Xj −X−jγ
∥∥2

n
+ 2λnode,n

∑
k 6=j
|γk| (15)

for each j = 1, ..., p. We use these estimates to construct the weights of the conservative Lasso

nodewise regression which is defined as follows

γ̂j = argmin
γ∈Rp−1

∥∥Xj −X−jγ
∥∥2

n
+ 2λnode,n

∥∥Γ̂jγ
∥∥

1
(16)

where Γ̂j = diag
( λprec
|γ̂L,l|∨λprec , l = 1, ..., p, l 6= j

)
is a (p− 1)× (p− 1) matrix of weights. Note that

we choose λnode,n to be the same in all of the nodewise regressions. This is needed for the uniform

results in Lemma 2 below to be valid. Thus, the conservative Lasso is run p times as an intermediate
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step to construct Θ̂. Using the notation γ̂j =
{
γ̂j,k; k = 1, ..., p, k 6= j

}
we define

Ĉ =


1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p

. . . . . .
. . . . . .

−γ̂p,1 −γ̂p,2 · · · 1


.

To define Θ̂ we introduce T̂ 2 = diag(τ̂2
1 , · · · , τ̂2

p ) which is a p× p diagonal matrix with

τ̂2
j = ‖Xj −X−j γ̂j‖2n + λnode,n‖Γ̂j γ̂j‖1, (17)

for all j = 1, ..., p. We now define

Θ̂ = T̂−2Ĉ. (18)

1 It remains to be shown that this Θ̂ is close to being an inverse of Σ̂. To this end, we define Θ̂j

as the j’th row of Θ̂ but understood as a p× 1 vector and analogously for Ĉj . Thus, Θ̂j = Ĉj/τ̂
2
j .

With this notation in place, note that

sgn(γ̂j)
′Γ̂j γ̂j =

∥∥Γ̂j γ̂j
∥∥

1
. (19)

where sgn(γ̂j) =
(
sgn(γ̂j,k), k = 1, ..., p, k 6= j

)
. Therefore, postmultiplying the Karush-Kuhn-

Tucker conditions (written as a row vector) of the problem (16) by γ̂j and adding (Xj−X−j γ̂j)′Xj/n

to both sides yields

(Xj −X−j γ̂j)′(Xj −X−j γ̂j)
n

+ λnode,n
∥∥Γ̂j γ̂j

∥∥
1

=
(Xj −X−j γ̂j)′Xj

n
. (20)

Next, we recognize the left hand side of (20) as τ̂2
j such that

τ̂2
j =

(Xj −X−j γ̂j)′Xj

n
. (21)

Dividing each side of the above display by τ̂2
j (we shall later rigorously argue that τ̂2

j is bounded

away from zero with high probability) and using the definition of Θ̂j implies that

1 =
(Xj −X−j γ̂j)′Xj

τ̂2
j n

=
(XΘ̂j)

′Xj

n
=

Θ̂′jX
′Xj

n
, (22)

1A practical benefit is that the nodewise regressions actually only have to be run for j ∈ H and not all j = 1, ..., p

as we only need to estimate the covariance matrix of those parameters involved in the hypothesis being tested.
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which shows that the j’th diagonal element of Θ̂Σ̂ equals exactly one. It remains to consider the

off-diagonal elements of Θ̂Σ̂. To this end, note that the Karush-Kuhn-Tucker conditions for the

problem (16) can be written as

κ̂j =
Γ̂−1
j X ′−j(Xj −X−j γ̂j)

nλnode,n
.

Using ‖κ̂j‖∞ ≤ 1 yields ∥∥∥∥ Γ̂−1
j X ′−j(Xj −X−j γ̂j)

nλnode,n

∥∥∥∥
∞

= ‖κ̂j‖ ≤ 1,

which is equivalent to
‖Γ̂−1

j X ′−jXĈj‖∞
n

≤ λnode,n,

since (Xj −X−j γ̂j) = XĈj . Then, dividing both sides of the above display by τ̂2
j and using that

Θ̂j =
Ĉj
τ̂2
j

implies that

‖Γ̂−1
j X ′−jXΘ̂j‖∞

n
≤
λnode,n
τ̂2
j

.

Thus,

‖X ′−jXΘ̂j‖∞
n

=
‖Γ̂jΓ̂−1

j X ′−jXΘ̂j‖∞
n

≤ ‖Γ̂j‖`∞
‖Γ̂−1

j X ′−jXΘ̂j‖∞
n

≤
λnode,n
τ̂2
j

, (23)

where we have used that ‖Γ̂j‖`∞ equals the largest diagonal element of Γ̂j since Γ̂j is diagonal and

that all diagonal elements are less than one by observation 2 after (4). Of course (23) is equivalent

to ∥∥Θ̂′jX
′X−j

∥∥
∞

n
≤
λnode,n
τ̂2
j

. (24)

In total, denoting by ej the j’th p× 1 unit vector, (22) and (24) yield

‖Θ̂′jΣ̂− e′j‖∞ ≤
λnode,n
τ̂2
j

. (25)

Hence, the above display provides an upper bound on the j’th row of Θ̂Σ̂ − Ip which, combined

with the oracle inequality for ‖β̂ − β0‖, will yield an upper bound on ∆j in (13) by arguments made

rigorous in the appendix.

3.3 Properties of the Nodewise Regressions

In order to establish a central limit theorem for α′Θ̂X ′u/n1/2 in (13) we need to understand the

asymptotic properties of Θ̂. To do so we relate Θ̂ to Θ := Σ−1. First, let Σ−j,−j represent the
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(p − 1) × (p − 1) submatrix Σ of where the jth row and column have been removed. Σj,−j is the

jth row of Σ with jth element of that row removed. Σ−j,j represent the j th column of Σ with its

jth element removed. By Section 2.1 of Yuan (2010) we know that

Θj,j =
(

Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j

)−1

and

Θj,−j = −
(

Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j

)−1
Σj,−jΣ

−1
−j,−j = −Θj,jΣj,−jΣ

−1
−j,−j

Next, let Xj,i denote the ith element of Xj and X−j,i the ith element of X−j (recall the definition

of Xj and X−j just prior to (15)). Now, defining γj as the value of γ minimizing,

E
(
Xj,i −X−j,iγ

)2
implies that

γ′j = Σj,−jΣ
−1
−j,−j

such that

Θj,−j = −Θj,jγ
′
j . (26)

Thus, for ηj,i := Xj,i − X−j,iγj , it follows from the definition of γj as an L2-projection that all

entries of X−j,iηj,i have mean zero such that

Xj,i = X−j,iγj + ηj,i (27)

is a regression model with covariates orthogonal in L2 to the error terms for all j = 1, ..., p and

i = 1, ..., n. Let Θj be the j’th row of Θ written as a column vector. Then the crux is that (27) is

sparse if and only if Θj is sparse as can be seen from (26). Let Sj =
{
k = 1, ..., p : Θj,k 6= 0

}
with

cardinality sj = |Sj | denote the indices of the non-zero terms of Θj . Then, the regression model

(27) will also be sparse with γj possessing sj non-zero entries. Thus, with Theorem 1 in mind it is

sensible that the estimator γ̂j resulting from (16) is close to γj . We shall make this claim rigorous

in Lemma 2 below. Next, by (27),

Σj,j = E(X2
j,i) = γ′jΣj,jγj + E(η2

j,i) = Σj,−jΣ
−1
−j,−jΣ−j,j + E(η2

j,i),

such that

τ2
j := E(η2

j,i) = Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j =

1

Θj,j
.

15



Thus, defining

C =


1 −γ1,2 · · · −γ1,p

−γ2,1 1 · · · −γ2,p

. . . . . .
. . . . . .

−γp,1 −γp,2 · · · 1


,

and T 2 = diag(τ2
1 , · · · , τ2

p ) we can write Θ = T−2C using (26). In Lemma 2 below we will show

that τ̂2
j as defined in (17) is close to τ2

j such that Θ̂j is close to Θj when γ̂j is close to γj .

Remark: The above arguments have relied on Xi being i.i.d. such that Σ = E
(
XiX

′
i

)
is constant

and does not depend on i = 1, ..., n. At the cost of more involved notation and proofs the arguments

above would also be valid in the case of non-identically distributed covariates if we consider Σ =

1
n

∑n
i=1E

(
XiX

′
i

)
instead of E(X1X

′
1). However, we shall not pursue this generalization here.

We now turn to the properties of the nodewise regressions which will be of great importance

for the proof of Theorem 2 below. Defining s̄ = maxj∈H sj we introduce the following assumption.

Assumption 2:

a) φmin(Σ) is bounded away from zero.

b) p2s̄r/2

nr/4
→ 0.

c) E(|ηj,i|r) uniformly bounded over i = 1, ..., n and j = 1, ..., p.

Assumption 2a) states that the smallest eigenvalue of the population covariance matrix is bounded

away from zero. It is used to make sure that the τ2
j are bounded away from zero, as τ2

j = 1/Θj,j ≥

1/φmax(Θ) = φmin(Σ). Part b) is needed to show that
∥∥Σ̂− Σ

∥∥
∞ converges to zero sufficiently fast

to conclude that the adaptive restricted eigenvalue of Σ̂ is close to the one of Σ. It implies an upper

bound on how fast the dimension, p, of the model can increase. The more moments one assumes

the covariates and the error terms to possess, the faster p can grow. On the other hand, we must

always have that s̄ = o(
√
n) independently of the number of moments assumed to exist. Thus,

the inverse covariance matrix must be sparse. This is satisfied if Σ is e.g. block diagonal. In the

simulations we shall also see that our methods works well even if Θ = Σ−1 is not sparse as long as

its entries are not too far from zero. Assumption 2c) is a moment assumption on the error terms

from the nodewise regressions.
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Lemma 2. Let Assumptions 1 and 2 be satisfied and set λnode,n � h2/rp2/r

n1/2 . Then,

max
j∈H
‖X−j(γ̂j − γj)‖2n = Op

( s̄h4/rp4/r

n

)
. (28)

max
j∈H
‖γ̂j − γj‖1 = Op

( s̄h2/rp2/r

n1/2

)
. (29)

max
j∈H
|τ̂2
j − τ2

j | = Op

(
s̄1/2h

2/rp2/r

√
n

)
. (30)

max
j∈H

∥∥Θ̂j −Θj

∥∥
1

= Op

(
s̄
h2/rp2/r

√
n

)
. (31)

max
j∈H
‖Θ̂j −Θj‖2 = Op

(
s̄1/2h

2/rp2/r

√
n

)
. (32)

max
j∈H
‖Θ̂j‖1 = Op(s̄

1/2). (33)

Lemma 2 is an auxiliary lemma which will be of great importance in the proof of Theorem 2

below. Note that all bounds provided are uniform in H with upper bounds tending to zero even

when h = |H| → ∞ as long as this does not happen too fast. (28) and (29) reduce to inequalities

of the type (8) and (9) in Theorem 1 when H is a singleton such that h = 1. Note also that

(31) can be used to bound the estimation error of each row of Θ̂ for the corresponding row of Θ.

Thus, choosing H =
{

1, ..., p
}

, (31) provides a bound on ‖Θ̂−Θ‖`∞ . Finally, we remark that the

uniformity of the above results is crucial for establishing the limiting distribution of α′Θ̂X ′u/n1/2

in (13) as well as for estimating the variance of the limiting distribution.

Before stating Theorem 2 we introduce the following notation in connection with the asymptotic

covariance matrix. Let Σxu = n−1
∑n

i=1EXiX
′
iu

2
i and Σ̂xu = n−1

∑n
i=1XiX

′
iû

2
i , where ûi =

Yi −X ′iβ̂. For Theorem 2 we need the following assumptions.

Assumption 3.

Let r ≥ 6 and

a) s0
h2/r+1/2p4/r

n1/2 → 0.

b) p8/rhs̄
n1/2 → 0.

c)
p2/r√s0hs̄

n1/2 → 0,
p8/r√s0hs̄

n3/4 → 0 and p8/rs0hs̄
n(r−2)/r → 0.

d) (hs̄)r/4+1∧(hs̄)r/4p

nr/4−1 → 0.

e) φmin(Σxu) is bounded away from 0 and φmax (Σxu) is uniformly bounded. φmax(Σ) is bounded

from above.
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Assumptions 3a)-d) all restrict the rate at which the size of the model (p), the number of relevant

variables (s0) as well as the number of coefficients involved in the hypothesis being tested (h) are

allowed to increase. However, part b) of Assumption 3 reveals that the number of β0,j involved must

be of order o(n1/2). Letting the number of parameters involved in the hypothesis increase with the

sample size is a vast generalization of van de Geer et al. (2014) who only mention the possibility

of H possessing a fixed or growing number of elements. Part b) also reveals that if one encounters

a situation where p increases faster than the sample size, then one needs r > 16. Furthermore, the

maximal number of non-zero terms in the nodewise regression, s̄, should not increase faster than

the square root of the sample size. Assumptions 3a)-d) are trivially satisfied in the classical setting

where p, h, s0 and s̄ are fixed. It is of course sensible, that these quantities can not grow too fast

if one still wishes to obtain standard normal inference with precise estimation of an asymptotic

covariance matrix of increasing dimension. Finally, Assumption 3e) restricts the eigenvalues of Σ

and Σxu.

Theorem 2. Let Assumptions 1-3 2 be satisfied. Then,

n1/2α′(b̂− β0)√
α′Θ̂Σ̂xuΘ̂′α

d→ N(0, 1), (34)

where α is a p× 1 vector with ‖α‖2 = 1. Furthermore,

sup
β0∈B`0 (s0)

∣∣α′Θ̂Σ̂xuΘ̂′α− α′ΘΣxuΘ′α
∣∣ = op(1). (35)

Theorem 2 provides sufficient conditions for asymptotically gaussian inference to be valid. We

stress again that the number of β0,j , h, involved in the statistic in (34) is allowed to increase as the

sample size tends to infinity as long as this does not happen too fast. Furthermore, these results

can be valid in the presence of more variables than observations (p > n).

We also want to emphasize that the above results allows the error terms to be heteroskedastic

and do not assume that they are independent of the covariates. (35) provides a uniformly consistent

estimator of the asymptotic variance of n1/2α′(b̂−β0). We are the first to do so in the literature on

high-dimensional regressions models in the presence of heteroskedasticity and an increasing number

of parameters. The uniformity of (35) will also be used in the proof of Theorem 3 below. (35) is also

remarkable as it gives the limit of the variance in the denominator of (34) even as the dimension

(p×p) of the matrices involved in the expression increases. Consider the leading special case where

2Assumption 2b) is of course implied by Assumption 3b) but to keep the statement clean we shall simply assume

all of Assumption 2 to be valid.
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H = {j} such that α reduces to the j’th unit vector ej of Rp. If, furthermore, the covariates and

the error terms are independent and the latter are homoskedastic with variance σ2 we get that

α′ΘΣxuΘ′α = e′jΣ
−1σ2ΣΣ−1ej = σ2Σ−1

j,j ,

which is nothing else than the standard formula for the asymptotic variance of the least squares

estimator of the j’th coefficient β̂OLS,j in a fixed dimensional linear regression model. Thus, there

is no efficiency loss. In the case where H is a set of fixed cardinality h, (34) reveals that∥∥∥(Θ̂Σ̂xuΘ̂′
)−1/2

H

√
n (b̂H − β0,H)

∥∥∥2

2

d→ χ2(h), (36)

as it is asymptotically a sum of h independent standard normal random variables. Thus, asymp-

totically valid χ2-inference can be performed in order to test a hypothesis on h parameters simul-

taneously. Wald tests of general restrictions of the type H0 : g(β0) = 0 (where g : Rp → Rh is

differentiable in an open neighborhood around β0 and has derivative matrix of rank h) can now

also be constructed in the usual manner, see e.g. Davidson (2000) Chapter 12, even when p > n

which has hitherto been impossible.

4 Uniform Convergence

The next theorem shows that the confidence bands based on the desparsified conservative Lasso

are honest and that they contract at the optimal rate. Recall that B`0(s0) =
{
‖β0‖`0 ≤ s0

}
.

Theorem 3. Let Assumptions 1-3 be satisfied. Then, for all t ∈ R and α ∈ Rp with ‖α‖2 = 1,

sup
β0∈B`0 (s0)

∣∣∣∣∣P
(
n1/2α′(b̂− β0)√
α′Θ̂Σ̂xuΘ̂′α

≤ t

)
− Φ(t)

∣∣∣∣∣→ 0. (37)

Furthermore, letting σ̂j =
√
e′jΘ̂Σ̂xuΘ̂′ej (corresponding to α = ej in (37)) and z1−δ/2 the 1− δ/2

percentile of the standard normal distribution, one has for all j = 1, ..., p

lim inf
n→∞

inf
β0∈B`0 (s0)

P

(
β0,j ∈

[
b̂j − z1−δ/2

σ̂j√
n
, b̂j + z1−δ/2

σ̂j√
n

])
≥ 1− δ. (38)

Finally, letting diam([a, b]) = b − a be the length (which coincides with the Lebesgue measure of

[a, b]) of an interval [a, b] in the real line, we have that

sup
β0∈B`0 (s0)

diam

([
b̂j − z1−δ/2

σ̂j√
n
, b̂j + z1−δ/2

σ̂j√
n

])
= Op

(
1√
n

)
. (39)
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(37) reveals that convergence to the standard normal distribution in Theorem 2 is actually valid

uniformly over the `0-ball of radius at most s0. Such uniformity is possible in the light of the work of

Leeb and Pötscher (2005) since we refrain from model selection: the desparsified conservative Lasso

is, as its name says, not sparse. Hence, our result does not contradict the work of these authors.

(38) is a consequence of (37) and entails that the confidence band
[
b̂j − z1−δ/2

σ̂j√
n
, b̂j + z1−δ/2

σ̂j√
n

]
is

asymptotically honest for β0,j over B(s0) in the sense of Li (1989). Asymptotic honesty is important

to produce practically useful confidence sets as it ensures that there is a known time n, not depending

on β0, after which the coverage rate of the confidence set is not much smaller than 1 − δ. Thus,

pointwise confidence bands that are dishonest, i.e. which do not satisfy (38) but

inf
β0∈B(s0)

lim inf
n→∞

P

(
β0,j ∈

[
b̂j − z1−δ/2

σ̂j√
n
, b̂j + z1−δ/2

σ̂j√
n

])
≥ 1− δ,

are of much less practical use since the n from which point and onwards the coverage is close to 1−δ

is allowed to depend on the unknown β0. Of course an honest confidence set Sn could also easily

be produced by setting Sn = R for all n ≥ 1. Such a confidence set is clearly of little practical use.

Thus, (39) is important as it reveals that the confidence band
[
b̂j − z1−δ/2

σ̂j√
n
, b̂j + z1−δ/2

σ̂j√
n

]
has

the optimal rate of contraction 1/
√
n. Furthermore, these confidence bands are uniformly narrow

over B`0(s0) such that for all ε > 0 there exists an M > 0, not depending on β0, with the property

that diam

([
b̂j − z1−δ/2

σ̂j√
n
, b̂j + z1−δ/2

σ̂j√
n

])
≤M/

√
n for all β0 ∈ B`0(s0) with probability at least

1−ε. Here it is vital that at the same time the confidence intervals are asymptotically honest. Since

the desparsified conservative Lasso is not a sparse estimator, (39) does not contradict inequality 6 in

Theorem 2 of Pötscher (2009) who shows that honest confidence bands based on sparse estimators

must be large. Results (38) and (39) are also remarkable in light of the classical result of Bahadur

and Savage (1956) stating that even in the problem of constructing confidence intervals for the mean

of a gaussian random variable honest confidence bands are not possible in general if one insists on

the diameter of the confidence bands to be bounded almost surely. Finally, the above results are

valid without any sort of βmin-condition which requires the absolute value of the smallest non-zero

coefficient to be greater than s0λn.

In total, Theorem 3 reveals that the inference of our procedure is very robust as the confidence

bands are honest and contract uniformly at the optimal rate.
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5 Monte Carlo

In this section we investigate the finite sample performance of the (desparsified) conservative Lasso

and compare it to the one the (desparsified) Lasso of van de Geer et al. (2014). The Lasso as well

as the conservative Lasso are implemented in R by means of the publicly available glmnet package

and for both of these λn is chosen by BIC, see e.g. (9.4.9) in Davidson (2000). λnode,n is also chosen

by BIC in the nodewise regressions. Of course, one could also use cross validation to choose λn, but

in our experience this does not improve the quality of the results while being considerably slower.

All data will be generated from the model (1).

As discussed in subsection 2.3 λprec should be chosen of the order of the right hand side of (7)

in order for the conservative Lasso to work well. However, this quantity is unknown and we thus

choose it along with λn by means of BIC. We considered the grid {0.01, 0.05, 0.1, 0.5, 1} for λprec.

The motivation for the values in this grid is that ideally λprec should be bigger than β̂L,j when

j ∈ Sc and smaller than β̂L,j when j ∈ S. As β̂L,j is often either zero or very close to zero for

j ∈ Sc0 (by consistency of the Lasso) it suffices to consider a grid of rather small values for λprec in

order to drive a wedge between the zero and the non-zero coefficients. We also experimented with

a wider and denser grid but this did not change the results.

All simulations are carried out with 1,000 replications and we consider the following performance

measures for each of the procedures:

1. Estimation error: We compute the `2-estimation error of the Lasso and the conservative Lasso

averaged over the Monte Carlo replications.

2. Size: We evaluate the size of the χ2-test in (36) for a hypothesis involving more than one

parameter.

3. Power: We evaluate the power of the χ2-test in (36) for a hypothesis involving more than one

parameter.

4. Coverage rate: We calculate coverage rate a gaussian confidence interval constructed as in

(38). This is done for a non-zero as well as a zero parameter.

5. Length of confidence interval: We calculate the length of the two confidence intervals consid-

ered in point 4, above.

In the simulations we investigate the performance of the conservative Lasso in moderate, high,

and very high-dimensional settings. The covariance matrices of the covariates are always chosen
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to have a Toeplitz structure with (i, j)’th entry equal to ρ|i−j| for some 0 ≤ ρ < 1 to be made

precise below. The covariates and the error terms are assumed to be t-distributed with 10 degrees

of freedom. At this point we also wish to remark that all experiments reported below were also

carried out with the covariates possessing a block diagonal covariance matrix and/or gaussian error

terms (all combinations were tried). This did only affect the findings in the simulations marginally

and we shall not report these results here.

All tests are carried out at a 5% significance level and all confidence intervals are at the 95%

level. The χ2-tests always involve the two first parameters in β0 of which we deliberately make sure

that first one is 1 and the second one is zero. Thus, h = 2 in our simulations. For measuring the size

of the χ2-test, we test the true hypothesis H0 : (β0,1, β0,2) = (1, 0). For measuring the power of the

χ2-test, we test the false hypothesis H0 : (β0,1, β0,2) = (1, 0.4). Thus, the hypothesis is only false

on the second entry of β0. Similarly, we construct confidence intervals for the first two parameters

of β0 such that the coverage rate can be compared between non-zero and zero parameters.

As our theory allows for heteroskedastic error terms we also investigate the effect of this. To

be precise, we consider error terms of the form ui = εi
(

1√
2
X1,i + bxX2,i

)
where εi ∼ t(10) is

independent of the covariates and bx is chosen such that the unconditional variance of ui is still

that of a t-distribution with 10 degrees of freedom3. Note that this ui satisfies our assumption

E(ui|Xi) = 0 and has variance conditional on Xi given by E(ε2i )
(

1√
2
X1,i + bxX2,i

)
. The reason

we ensure that the unconditional variance of ui is still that of a t(10)-distribution is that we do

not want any findings to be driven by a plain change in the unconditional variance. It is also

deliberate that we choose the conditional heteroskedasticity to depend on X1,i and X2,i as these

are the variables involved in the χ2-tests and the confidence intervals.

• Experiment 1a (moderate-dimensional setting). β0 is 50× 1 with 10 ones and 40 zeros. The

10 ones are equidistant in the parameter vector. Thus, p = 50 and s0 = 10. We consider

ρ = 0, 0.5 and 0.9 and n = 100.

• Experiment 1b (moderate-dimensional setting). As Experiment 1a but with heteroskedastic

errors.

• Experiment 2a (high-dimensional setting). β0 is 104 × 1 with the first four entries being

(1, 0, 1, 0.1) and the remaining 100 entries being zero. Thus, p = 104 and s0 = 3. We consider

3To ensure that ui still has the variance of εi ∼ t(10) a small calculation shows that it suffices to choose bx =

−
√

2ρ+
√

2ρ2+2

2
. Thus, the higher the correlation between X1,i and X2,i, the smaller bx should be chosen.
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ρ = 0, 0.5 and 0.9 and n = 100.

• Experiment 2b (high-dimensional setting). As Experiment 2a but with heteroskedastic errors.

• Experiment 3a (very high-dimensional setting). β0 is 1000 × 1 with 10 ones and 990 zeros.

The 10 ones are equidistant in the parameter vector. Thus, p = 1000 and s0 = 10. ρ = 0.75.

This experiment is carried out for n = 100, 150, 200, 500 to gauge the effect of an increasing

sample size. We also experimented with different values of ρ but this did not qualitatively

alter our findings.

• Experiment 3b (very high-dimensional setting). As Experiment 3a but with heteroskedastic

errors.

χ2 Coverage rate Length

n = 100 `2 Size Power non-zero zero non-zero zero

ρ
=

0 Lasso 0.668 0.136 0.949 0.852 0.929 0.386 0.383

CLasso 0.425 0.112 0.966 0.885 0.939 0.354 0.360

ρ
=

0.
5 Lasso 0.709 0.146 0.900 0.852 0.918 0.394 0.409

CLasso 0.454 0.105 0.907 0.902 0.944 0.417 0.471

ρ
=

0.
9 Lasso 1.392 0.201 0.630 0.820 0.854 0.617 0.738

CLasso 1.237 0.123 0.479 0.897 0.929 0.841 1.113

Table 1: Summary statistics for Experiment 1a. `2: average `2-estimation error, χ2: Size and Power report

the size and power of the hypotheses H0 : (β0,1, β0,2) = (1, 0) and H0 : (β0,1, β0,2) = (1, 0.4), respectively.

Coverage rate: the actual coverage rate of the asymptotically gaussian 95% confidence interval for β0,1 and

β0,2. Length: the length of the two confidence intervals mentioned above. CLasso: Conservative Lasso.

Table 1 contains the results for Experiment 1a. First, we wish to stress that as predicted in

Section 2.3, the conservative Lasso has a lower estimation error than the plain Lasso. This is the

case no matter whether ρ = 0, 0.5 or 0.9. Furthermore, the conservative Lasso is always less size

distorted than the Lasso while having slightly more power except for when ρ = 0.9. When ρ = 0.9

both procedures have serious power deficiencies. Next, our procedure always has a coverage rate

which is closer to the nominal rate of 95%. This is the case for the zero as well as the non-zero

parameters. When ρ = 0 one even has that the conservative Lasso has better coverage with narrower
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bands. Note, however, that both procedures still have a slight tendency towards undercoverage (a

phenomenon which disappears as the sample size is increased (not reported here)). This is the case

in particular for the plain Lasso and much less pronounced for the conservative Lasso. The reason

for this is that the confidence intervals produced by the Lasso are too narrow compared to the

more accurate ones produced by the conservative Lasso and that the latter produces more precise

parameter estimates.

χ2 Coverage rate Length

n = 100 `2 Size Power non-zero zero non-zero zero

ρ
=

0 Lasso 0.738 0.158 0.765 0.854 0.898 0.557 0.563

CLasso 0.499 0.155 0.793 0.871 0.912 0.536 0.547

ρ
=

0.
5 Lasso 0.780 0.193 0.774 0.828 0.913 0.609 0.534

CLasso 0.528 0.153 0.782 0.856 0.934 0.617 0.564

ρ
=

0.
9 Lasso 1.484 0.218 0.524 0.792 0.867 0.789 0.835

CLasso 1.378 0.144 0.420 0.868 0.937 0.990 1.203

Table 2: Summary statistics for Experiment 1b. `2: average `2-estimation error, χ2: Size and Power report

the size and power of the hypotheses H0 : (β0,1, β0,2) = (1, 0) and H0 : (β0,1, β0,2) = (1, 0.4), respectively.

Coverage rate: the actual coverage rate of the asymptotically gaussian 95% confidence interval for β0,1 and

β0,2. Length: the length of the two confidence intervals mentioned above. CLasso: Conservative Lasso.

Next, Table 2 adds heteroskedasticity to the results of Experiment 1a. The main message of

this table is that qualitatively the results of Experiment 1a remain unchanged as both procedures

only suffer slightly from the introduction of heteroskedasticity in the error terms.

Table 3 contains the results for experiment 2a) in which the number of variables is slightly

larger than the sample size. For ρ = 0, the estimation error of the conservative Lasso is almost

twice as low as the one for the plain Lasso underscoring the prediction in Section 2.3. However, in

this case this does not result in a better performance along the other dimensions measured as the

two procedures perform similarly there: they both have good size and power properties and the

coverage rate is close to the nominal one.

For ρ = 0.5 the conservative Lasso is still more precise than the Lasso but now it is also

considerably less size distorted than the Lasso and has a power which is around 20%-points higher

than the one of the Lasso. This is a considerable improvement which can also be found in the
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χ2 Coverage rate Length

n = 100 `2 Size Power non-zero zero non-zero zero

ρ
=

0 Lasso 0.398 0.058 0.901 0.946 0.931 0.435 0.412

CLasso 0.220 0.077 0.926 0.925 0.937 0.383 0.389

ρ
=

0.
5 Lasso 0.337 0.162 0.687 0.928 0.823 0.439 0.436

CLasso 0.214 0.074 0.867 0.925 0.929 0.445 0.499

ρ
=

0.
9 Lasso 0.451 0.237 0.407 0.841 0.796 0.642 0.748

CLasso 0.392 0.101 0.450 0.912 0.907 0.843 1.080

Table 3: Summary statistics for Experiment 2a. `2: average `2-estimation error, χ2: Size and Power report

the size and power of the hypotheses H0 : (β0,1, β0,2) = (1, 0) and H0 : (β0,1, β0,2) = (1, 0.4), respectively.

Coverage rate: the actual coverage rate of the asymptotically gaussian 95% confidence interval for β0,1 and

β0,2. Length: the length of the two confidence intervals mentioned above. CLasso: Conservative Lasso.

coverage probability for the zero parameter. When ρ = 0.9 the conservative Lasso again remains

the most precise estimator with superior size and power properties. However, as in Experiment

1, for none of the procedures the χ2-test has good power properties. The conservative Lasso has

much better coverage rate, being up to ten percentage points larger for the zero parameter. This

comes from more precise parameter estimates and wider bands.

When adding heteroskedasticity to Experiment 2a, Table 4 shows that the estimation errors

of both procedures increase slightly. The conservative Lasso remains the most precise one. Both

procedures produce confidence bands having around the same coverage probability as in the ho-

moskedastic case. In fact, the coverage rates are better in the heteroskedastic setting when ρ = 0.9

for both procedure as the bands become quite a bit wider.

The results for the very high-dimensional Experiment 3a are found in Table 5. When the sample

size is n = 100, the plain Lasso has an estimation error which is 50% larger than the one for the

conservative Lasso. Furthermore, the χ2-test based on the Lasso is so size distorted (the size is

70%) that its usefulness may be questioned. While the conservative Lasso also suffers from size

distortion (the size is 32%) it is still much more reliable than the Lasso. In terms of power, the

χ2-tests based on the two procedures perform similarly.

Turning to the coverage rates of the confidence intervals of the non-zero coefficients, the Lasso

provides such a poor coverage (30%) that it may almost be deemed useless. The conservative Lasso,
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χ2 Coverage rate Length

n = 100 `2 Size Power non-zero zero non-zero zero

ρ
=

0 Lasso 0.445 0.082 0.714 0.923 0.945 0.631 0.634

CLasso 0.283 0.095 0.744 0.911 0.943 0.583 0.609

ρ
=

0.
5 Lasso 0.391 0.184 0.545 0.918 0.875 0.698 0.587

CLasso 0.284 0.092 0.686 0.914 0.945 0.670 0.602

ρ
=

0.
9 Lasso 0.512 0.220 0.315 0.879 0.804 0.870 0.862

CLasso 0.482 0.097 0.354 0.913 0.930 1.028 1.163

Table 4: Summary statistics for Experiment 2b. `2: average `2-estimation error, χ2: Size and Power report

the size and power of the hypotheses H0 : (β0,1, β0,2) = (1, 0) and H0 : (β0,1, β0,2) = (1, 0.4), respectively.

Coverage rate: the actual coverage rate of the asymptotically gaussian 95% confidence interval for β0,1 and

β0,2. Length: the length of the two confidence intervals mentioned above. CLasso: Conservative Lasso.

while not being perfect, still has produced a coverage of 70%. It also performs much better for the

truly zero parameter than the Lasso. The superior coverage of conservative Lasso is again due to

much more precise estimates and wider confidence bands than the Lasso.

When the sample size is increased to just n = 150 the conservative Lasso delivers more than

twice as precise parameter estimates as the plain Lasso. Actually, we conclude that it performs

well along all dimensions even in this high-dimensional setting. The size distortion has disappeared

and the coverage for the non-zero parameter has increased to 93% (from 70%). The Lasso has also

improved. However, it is remarkable that the size of its χ2-test for n = 150 still only corresponds

to the one for the conservative Lasso when n = 100. Similarly, the coverage rate of the confidence

bands for zero as well as non-zero parameters based on the Lasso has only now risen to the coverage

rate that the conservative Lasso produced for n = 100.

It is also remarkable that for both procedures the length of the confidence bands has actually

become wider as n is increased from 100 to 150. This indicates that the undercoverage for n = 100

is to a high extent due to too narrow confidence bands as a result of under estimating the variance

of the parameters.

Next, for n = 200, the conservative Lasso still estimates the parameters much more precisely

than the plain Lasso. It also has better size and power properties but the gap has narrowed as these

quantities approach their asymptotic values of 0.05 and 1, respectively. Regarding the coverage rate,
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χ2 Coverage rate Length

ρ = 0.75 `2 Size Power non-zero zero non-zero zero

n
=

1
00 Lasso 1.524 0.700 0.899 0.297 0.813 0.253 0.254

CLasso 0.960 0.317 0.871 0.695 0.909 0.429 0.504

n
=

1
50 Lasso 1.090 0.316 0.794 0.696 0.847 0.360 0.382

CLasso 0.391 0.081 0.891 0.931 0.940 0.445 0.546

n
=

2
00 Lasso 0.868 0.099 0.860 0.902 0.910 0.391 0.428

CLasso 0.280 0.067 0.942 0.939 0.942 0.399 0.493

n
=

50
0

Lasso 0.497 0.080 1.000 0.929 0.919 0.246 0.281

CLasso 0.150 0.057 1.000 0.936 0.950 0.260 0.320

Table 5: Summary statistics for Experiment 3a. `2: average `2-estimation error, χ2: Size and Power report

the size and power of the hypotheses H0 : (β0,1, β0,2) = (1, 0) and H0 : (β0,1, β0,2) = (1, 0.4), respectively.

Coverage rate: the actual coverage rate of the asymptotically gaussian 95% confidence interval for β0,1 and

β0,2. Length: the length of the two confidence intervals mentioned above. CLasso: Conservative Lasso.

the conservative Lasso also remains the superior procedure but now the Lasso now has coverage of

above 90% for both parameters as well.

Finally, for n = 500, both procedures work very well, but the conservative Lasso remains by far

the most precise estimator in terms of `2-estimation error (three times as precise).

Table 6 adds heteroskedasticity to the results in Table 5. Qualitatively nothing changes in the

sense that the rankings between the Lasso and the conservative Lasso remain the same in terms of

estimation precision, size, power and coverage for all sample sizes. The conservative Lasso again

estimates the parameters more precisely and has much better size and coverage properties. For

n = 500 both procedures work well but as usual the conservative Lasso remains the most precise

estimator in terms of `2-estimation error.

6 Conclusion

This paper shows how the conservative Lasso can be used to conduct inference in the high-

dimensional linear regression model. We are the first in the literature to allow for conditional

heteroskedasticity in the error terms and we also show how to consistently estimate the limiting
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χ2 Coverage rate Length

ρ = 0.75 `2 Size Power non-zero zero non-zero zero

n
=

1
00 Lasso 1.663 0.721 0.918 0.277 0.811 0.290 0.271

CLasso 1.171 0.400 0.832 0.611 0.889 0.504 0.526

n
=

1
50 Lasso 1.225 0.368 0.719 0.646 0.861 0.459 0.421

CLasso 0.534 0.111 0.765 0.889 0.939 0.588 0.588

n
=

2
00 Lasso 0.964 0.125 0.663 0.892 0.921 0.559 0.518

CLasso 0.357 0.082 0.791 0.924 0.957 0.563 0.561

n
=

50
0

Lasso 0.558 0.060 0.967 0.933 0.941 0.379 0.342

CLasso 0.186 0.060 0.971 0.945 0.950 0.387 0.371

Table 6: Summary statistics for Experiment 3b. `2: average `2-estimation error, χ2: Size and Power report

the size and power of the hypotheses H0 : (β0,1, β0,2) = (1, 0) and H0 : (β0,1, β0,2) = (1, 0.4), respectively.

Coverage rate: the actual coverage rate of the asymptotically gaussian 95% confidence interval for β0,1 and

β0,2. Length: the length of the two confidence intervals mentioned above. CLasso: Conservative Lasso.

high-dimensional covariance matrix. In fact, the convergence is uniform over sparse sub vectors

of the parameter space. Next, we show that the confidence bands based on the desparsified con-

servative are honest and that they contract at the optimal rate. This rate of contraction is also

uniform over sparse sub vectors of the parameter space. χ2-inference is also briefly discussed. Our

simulations show that the conservative Lasso provides much more precise parameter estimates than

the plain Lasso and that tests based on it have superior size properties. Furthermore, confidence

intervals based on the desparsified conservative Lasso have better coverage rates than the ones

based on the desparsified plain Lasso. Future work may include bootstrapping the desparsified

conservative Lasso to gain further finite sample improvements.
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A Appendix

A.1 Appendix A – auxiliary lemmas

We begin by providing some auxiliary lemmas used for the proofs of the main results in Appendix

B. First, we provide an oracle inequality for a general weighted Lasso which satisfies certain assump-

tions and then utilize that the plain Lasso and the conservative Lasso satisfy these assumptions.

Define

β̂w = argmin
β∈Rp

(
‖Y −Xβ‖2n + 2λn

p∑
j=1

ŵg,j |βj |
)
,

where ŵg,j denotes a general weight. When ŵg,j = 1 one recovers the Lasso, when ŵg,j = ŵj
the result is the conservative Lasso. In particular, we shall work on the intersection of A ={
‖X ′u/n‖∞ ≤ λn/2

}
and B =

{
φ2

Σ̂
≥ φ2

Σ/2
}

. On these sets we have a handle on the maximal

empirical ”correlation” between the covariates and the error terms, and a lower bound on the

empirical adaptive restricted eigenvalue, respectively.

Lemma A.1. Assume that ‖ŵg,S0‖2 ≤
√
s0 and ŵming,Sc0

= minj∈Sc0 ŵj = 1. Then, on the set A ∩ B
the following inequalities are valid.

‖X(β̂w − β0)‖2n ≤ 18
λ2
ns0

φ2
Σ(s0)

. (A.1)

‖β̂w − β0‖1 ≤ 24
λns0

φ2
Σ(s0)

. (A.2)

Proof. We begin by establishing (A.1). By the minimizing property of β̂w it follows that

‖Y −Xβ̂w‖2n + 2λn

p∑
j=1

ŵg,j |β̂w,j | ≤ ‖Y −Xβ0‖2n + 2λn

p∑
j=1

ŵg,j |β0,j |. (A.3)

Inserting Y = Xβ0 + u, using Hölder’s inequality, and using that we are on the set A we arrive at

‖X(β̂w − β0)‖2n + 2λn

p∑
j=1

ŵg,j |β̂w,j | ≤ λn‖β̂w − β0‖1 + 2λn

p∑
j=1

ŵg,j |β0,j |. (A.4)

Then, using ‖β̂w‖1 = ‖β̂w,S0‖1 + ‖β̂w,Sc0‖1 one gets

‖X(β̂w − β0)‖2n + 2λn
∑
j∈Sc0

ŵg,j |β̂w,j | ≤ λn‖β̂w − β0‖1 − 2λn
∑
j∈S0

ŵg,j |β̂w,j |+ 2λn

p∑
j=1

ŵg,j |β0,j |

≤ λn‖β̂w − β0‖1 + 2λn
∑
j∈S0

ŵg,j |β̂w,j − β0,j |. (A.5)

Noting that ‖β̂w − β0‖1 = ‖β̂w,S0 − β0,S0‖1 + ‖β̂w,Sc0‖1 and
∑

j∈Sc0
ŵg,j |β̂w,j | ≥ ŵminSc0

‖β̂w,Sc0‖1 =

‖β̂w,Sc0‖ rewrite (A.5) as

‖X(β̂w−β0)‖2n+ 2λn‖β̂w,Sc0‖1 ≤ λn‖β̂w,S0−β0,S0‖1 +λn‖β̂w,Sc0‖1 + 2λn
∑
j∈S0

ŵg,j |β̂w,j−β0,j |. (A.6)
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Subtract λn‖β̂w,Sc0‖1 from both sides of (A.6) to get

‖X(β̂w − β0)‖2n + λn‖β̂w,Sc0‖1 ≤ λn‖β̂w,S0 − β0,S0‖1 + 2λn
∑
j∈S0

ŵg,j |β̂w,j − β0,j |. (A.7)

Next, use the Cauchy-Schwarz inequality, ‖.‖1 ≤
√
s0‖.‖2, as well as ‖ŵg,S0‖2 ≤

√
s0 to get

‖X(β̂w − β0)‖2n + λn‖β̂w,Sc0‖1 ≤ λn
√
s0‖β̂w,S0 − β0,S0‖2 + 2λn‖ŵg,S0‖2‖β̂w,S0 − β0,S0‖2

= λn
√
s0‖β̂w,S0 − β0,S0‖2 + 2λn

√
s0‖β̂w,S0 − β0,S0‖2

= 3λn
√
s0‖β̂w,S0 − β0,S0‖2. (A.8)

(A.8) implies that
‖β̂w,Sc0‖1 ≤ 3

√
s0‖β̂w,S0 − β0,S0‖2.

Hence, by the adaptive restricted eigenvalue condition, (A.8) implies

‖X(β̂w − β0)‖2n + λn‖β̂w,Sc0‖1 ≤ 3λn
√
s0
‖X(β̂w − β0)‖n

φΣ̂(s0)
. (A.9)

Then, using 3uv ≤ u2/2 + (9/2)v2, with v = λn
√
s0/φΣ̂(s0), u = ‖X(β̂w − β0)‖n, one gets

‖X(β̂w − β0)‖2n + λn‖β̂w,Sc0‖1 ≤
‖X(β̂w − β0)‖2n

2
+

9

2

λ2
ns0

φ2
Σ̂

(s0)
. (A.10)

Subtracting the first right hand side term in (A.10) from the left and right hand sides of (A.10)
and multiplying all terms by 2 yields

‖X(β̂w − β0)‖2n + 2λn‖β̂w,Sc0‖1 ≤ 9
λ2
ns0

φ2
Σ̂

(s0)
, (A.11)

which, using that we are on B, implies (A.1).
Next, we turn to proving (A.2). By adding λn ‖β̂w,S0 − β0,S0‖1 to both sides of (A.8) and using

‖β̂w,Sc0‖1 + ‖β̂w,S0 − β0,S0‖1 = ‖β̂w − β0‖1 one gets

λn‖β̂w − β0‖1 ≤ λn‖β̂w,S0 − β0,S0‖1 + 3λn
√
s0‖β̂w,S0 − β0,S0‖2 (A.12)

≤ 4λn
√
s0‖β̂w,S0 − β0,S0‖2. (A.13)

The adaptive restricted eigenvalue condition and inequality (A.1) of this Lemma yield

λn‖β̂w − β0‖1 ≤ 4λn
√
s0
‖X(β̂w − β0)‖n

φΣ̂(s0)
= 12

s0λ
2
n

φ2
Σ̂

(s0)
, (A.14)

which, using that we are on B, implies (A.2).

To prove Lemma 1 and Theorem 1 it suffices to provide a lower bound on the probabilities of

A and B. To do so, recall the Marcinkiewicz-Zygmund inequality:

Lemma A.2 (Marcinkiewicz-Zygmund inequality, see Lin and Bai (2010), result 9.7.a). Let {Ui}ni=1

be a sequence of independent mean zero real random variables with finite r′th moment. Then, for
positive constants ar and br, only depending on r, r ≥ 2

arE

( n∑
i=1

U2
i

)r/2
≤ E

∣∣∣∣ n∑
i=1

Ui

∣∣∣∣r ≤ brE ( n∑
i=1

U2
i

)r/2
(A.15)
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Note in particular that, by an application of the summation version of Jensen’s inequality on

the convex map x 7→ xr/2, (A.15) implies that

E

∣∣∣∣ n∑
i=1

Ui

∣∣∣∣r ≤ brnr/2E ( 1

n

n∑
i=1

U2
i

)r/2
≤ brnr/2−1

n∑
i=1

E|Ui|r ≤ brnr/2 max
1≤i≤n

E |Ui|r .

Hence, by a union bound and Markov’s inequality we arrive at the following result which we shall

use frequently throughout the appendix.

Lemma A.3. For each j ∈ {1, ...,m} let
{
Uj,i
}n
i=1

be a sequence of independent mean zero real
random variables with finite r′th moment and define Sj,n =

∑n
i=1 Uj,i. Then,

P
(

max
1≤j≤m

|Sj,n| ≥ t
)
≤ brm

nr/2 max1≤j≤m max1≤i≤nE|Uj,i|r

tr

Remark: In Lemma A.3 above we used the Marcinkiewicz-Zygmund inequality. Another

common approach is using Nemirowski’s inequality, see van de Geer et al. (2014). We show that

application of Nemirowski’s inequality will bring an additional
(
8 log(2m)

)r/2
in Lemma A.3. To

make this point clear, for r ≥ 2, note that Nemirovski’s inequality in Lemma 14.24 of van de Geer

et al. (2014) yields

E
(

max
1≤j≤m

|Sj,n|r
)
≤
(
8 log(2m)

)r/2
E

[
max

1≤j≤m

n∑
i=1

U2
j,i

]r/2
. (A.16)

Thus, we need to bound E
[
max1≤j≤m

∑n
i=1 U

2
j,i

]r/2
. By convexity of x 7→ xr/2 and Jensen’s

inequality

E

[
max

1≤j≤m

n∑
i=1

U2
j,i

]r/2
= nr/2E max

1≤j≤m

[
1

n

n∑
i=1

U2
j,i

]r/2
≤ nr/2E max

1≤j≤m

1

n

n∑
i=1

|Uj,i|r

≤ nr/2−1E

m∑
j=1

n∑
i=1

|Uj,i|r ≤ nr/2m max
1≤j≤m

max
1≤i≤n

E|Uj,i|r.

Inserting the above display into (A.16) and using Markov’s inequality yields

P
(

max
1≤j≤m

|Sj,n| ≥ t
)
≤
(
8 log(2m)

)r/2
nr/2mmax1≤j≤m max1≤i≤nE|Uj,i|r

tr
.

Note that the above bound, relying on Nemirovski’s inequality, is larger by a factor
(
8 log(2m)

)r/2
(which increases in m) than the bound in Lemma A.3. This will result in lower choices of the

tuning parameter and hence sharper bounds. This is a new theoretical contribution of the paper.

We are now ready to provide a lower bound on the probability of A.

Lemma A.4. Let M > 0 be an arbitrary positive number. Then, under Assumption 1, for λn =

M p2/r
√
n

the set A =
{
‖X ′u/n‖∞ ≤ λn/2

}
has probability at least 1− C

Mr/2 .
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Proof. For each j ∈ {1, ..., p}, {Xj,iui}ni=1 is a sequence of independent mean zero random variables

with (r/2)′th moment E|Xj,iui|r/2 ≤
√
E|Xj,i|rE|ui|r ≤ C. Hence, Lemma A.3 yields

P (Ac) = P
(
‖X ′u‖∞ > nλn/2

)
≤ p

br/2Cn
r/4

(nλn/2)r/2
=

C

M r/2
,

where the last equality follows from the choice of λn and has merged the constants.

The next two lemmas will provide a lower bound on the probability of set B.

Lemma A.5. Let A and B be two positive semi-definite p×p matrices and assume that A satisfies
the restricted eigenvalue condition RE(s) for some φA(s) > 0. Then, for δ = max1≤i,j≤p |Ai,j −Bi,j |,
one also has φ2

B ≥ φ2
A − 16sδ.

Proof. The proof is similar to Lemma 10.1 in van de Geer and Bühlmann (2009). For any (non-zero)
p× 1 vector v such that ‖vSc‖1 ≤ 3

√
s ‖vS‖2 one has

v′Av − v′Bv ≤ |v′Av − v′Bv| = |v′(A−B)v| ≤ ‖v‖1 ‖(A−B)v‖∞ ≤ δ ‖v‖
2
1

= δ
(
‖vS‖1 + ‖vSc‖1

)2 ≤ δ16s ‖vS‖22 .

Hence, rearranging the above, yields

v′Bv ≥ v′Av − 16sδ ‖vS‖22 ,

or equivalently,

v′Bv

v′SvS
≥ v′Av

v′SvS
− 16sδ.

Minimizing over {v ∈ Rn \ {0} : ‖vSc‖1 ≤ 3
√
s ‖vS‖2} and using the adaptive restricted eigenvalue

condition yields the claim.

In order to verify the restricted eigenvalue condition we present the following lemma.

Lemma A.6. Let Assumption 1 be satisfied. Then, the set B =
{
φ2

Σ̂
≥ φ2

Σ/2
}

has probability at

least 1−D p2s
r/2
0

nr/4
for a universal constant D > 0.

Proof. By Lemma A.5, with s = s0, it suffices to show that δ = ‖Σ̂− Σ‖∞ ≤
φ2

Σ(s0)
32s0

. The (k, l)

entry of Σ̂ − Σ is given by 1
n

∑n
i=1

(
Xk,iXl,i − E(Xk,iXl,i)

)
. Each summand has mean zero and

E |Xk,iXl,i − E(Xk,iXl,i)|r/2 is bounded by a universal constant D by the Cauchy-Schwarz inequal-
ity. Hence, merging constants, Lemma A.3 yields

P (Bc) ≤ P
(
‖Σ̂− Σ‖∞ >

φ2
Σ(s0)

32s0

)
≤ p2 Dn

r/4

( ns0 )r/2
= D

p2s
r/2
0

nr/4
.
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A.2 Appendix B

This appendix provides the proofs of the main theorems.

Proof of Lemma 1. The Lasso corresponds to ŵj = 1 for all j = 1, ..., p. Thus, Lemma A.1 com-
bined with the lower bounds on the probabilities of the sets A and B from Lemmas A.4 and A.6
yields (6) and (7). The uniformity over B`0(s0) follows by noting that the right hand sides of (6)
and (7) only depend on β0 through s0.

Proof of Theorem 1. Choose λprec = 24 λns0
φ2

Σ(s0)
. Then, by the observations in section 2.3 and Lemma

1 we get ŵj ≤ 1 for all j ∈ S0 while ŵj = 1 for all j ∈ Sc0 on A ∩ B. The first observation clearly
implies that ‖ŵS0‖2 ≤

√
s0 while the latter implies that ŵminSc = minj∈Sc0 ŵj = 1. Thus Lemma A.1

applies. Combine this with the lower bounds on the probabilities of the sets A and B from Lemmas
A.4 and A.6, respectively to obtain (8) and (9). The uniformity over B`0(s0) follows by noting that
the right hand sides of (8) and (9) only depend in β0 through s0.

Proof of Lemma 2. We start by establishing the order of magnitude of ‖X−j(γ̂j − γj)‖2n and ‖γ̂j − γj‖1.
For concreteness, consider nodewise regression j. Define

Anode =
{

max
j∈H
‖X ′−jηj‖∞ ≤ λnode,n/2

}
and Bj =

{
φ2

Σ̂−j
(sj) ≥ φ2

Σ−j (sj)/2
}
.

By an exact adaptation of the proof of Lemma A.1 it can be shown for each j ∈ H that

‖X−j(γ̂j − γj)‖2n ≤ 18
λ2
node,nsj

φ2
Σ(sj)

, (A.17)

‖γ̂j − γj‖1 ≤ 24
λnode,nsj

φ2
Σ(sj)

(A.18)

are valid on the set Anode ∩ Bj for j ∈ H. Hence, these inequalities are valid simultaneously for
all j ∈ H on Anode ∩ (∩j∈HBj) 4. Thus, we establish a lower bound on the probability of this set.
First, consider Anode. Since ηj,i is the residual from the L2-projection of Xj,i on the linear span of
the elements of X−j,i it follows that E(X−j,iηj,i) = 0 for all i = 1, ..., n and all j ∈ H. Furthermore,
by the Cauchy-Schwarz inequality, every entry of X−j,iηj,i has bounded r/2-norm via Assumption
2c. The maximum in the definition of Anode is over h(p− 1) terms. Thus, merging constants and

choosing λnode,n = M h2/rp2/r
√
n

for some M > 0, Lemma A.3 yields,

P (Acnode) = P
(

max
j∈H
‖X ′−jηj‖∞ > nλnode,n/2

)
≤ hp brC

2nr/4

(nλnode,n/2)r/2
=

C

M r/2
,

which also shows that

max
j∈H
‖X ′−jηj/n‖∞ = Op

(
λnode,n

)
= Op

(h2/rp2/r

√
n

)
(A.19)

by choosing M sufficiently large.

4It will turn out later that it is quite important that (A.17) and (A.18) are valid simultaneously for all j ∈ H
since this will give us a vital uniformity when bounding τ̂2

j away from 0. If one is only interested in one nodewise
regression the outer maximum in the definition of Anode can be omitted.
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Next, we provide a lower bound on the probability of the set ∩j∈HBj . We know by Lemma A.5

that
{
‖Σ̂−j − Σ−j‖∞ ≤

φ2
Σ−j

(sj)

32sj

}
⊆
{
φ2

Σ̂−j
(sj) ≥ φ2

Σ−j
(sj)/2

}
= Bj . Thus, the relation

‖Σ̂−j − Σ−j‖∞ ≤ ‖Σ̂− Σ‖∞ ≤
φ2

Σ(s̄)

32s̄
≤
φ2

Σ−j
(sj)

32sj

implies that
{
‖Σ̂− Σ‖∞ ≤

φ2
Σ(s̄)
32s̄

}
⊆ Bj for all j ∈ H and therefore

{
‖Σ̂− Σ‖∞ ≤

φ2
Σ(s̄)
32s̄

}
⊆ ∩j∈HBj .

Next, by arguments exactly parallel to those in Lemma A.6, it follows that

P
((
∩j∈HBj

)c) ≤ P (‖Σ̂− Σ‖∞ >
φ2

Σ(s̄)

32s̄

)
≤ Dp

2s̄r/2

nr/4
.

Hence, with probability at least 1− C
Mr/2 −D p2s̄r/2

nr/4

‖X−j(γ̂j − γj)‖2n ≤ 18
λ2
node,nsj

φ2
Σ(sj)

. (A.20)

‖γ̂j − γj‖1 ≤ 24
λnode,nsj

φ2
Σ(sj)

. (A.21)

By choosing M sufficiently large, using p2s̄r/2

nr/4
→ 0, and inserting the definition of λnode,n (28) and

(29) follow upon taking the maximum in the above display and utilizing that the above inequalities
are all valid simultaneously on Anode,n ∩

(
∩j∈HBj

)
.

We shall also need an upper bound on maxj∈H ‖γ̂j − γj‖2 in the proof of Theorem 2. Let v̂j and
vj be p× 1 vectors containing 0 in the j’th position and the elements of γ̂j and γj , respectively, in
the remaining positions in the same order as they appear in γ̂j and γj . Thus, maxj∈H ‖γ̂j − γj‖2 =
maxj∈H ‖v̂j − vj‖2. Thus,

|(v̂j − vj)′Σ̂(v̂j − vj)− (v̂j − vj)′Σ(v̂j − vj)| ≤ ‖Σ̂− Σ‖∞‖v̂j − vj‖21

such that

max
j∈H

(v̂j − vj)′Σ(v̂j − vj) ≤ max
j∈H

(v̂j − vj)′Σ̂(v̂j − vj) + max
j∈H
‖Σ̂− Σ‖∞‖v̂j − vj‖21. (A.22)

Next, we bound each term on the right hand side of the above display. First,

max
j∈H

(v̂j − vj)′Σ̂(v̂j − vj) = max
j∈H

∥∥X(v̂j − vj)
∥∥2

n
= max

j∈H

∥∥X−j(γ̂j − γj)∥∥2

n
= Op

(
s̄h4/rp4/r

n

)
,

by (28). Next, consider the second term in (A.22). To this end, apply Lemma A.3 and Assumption
1, for any t > 0 to get

P
(
‖Σ̂− Σ‖∞ > t

)
= P

(
max

1≤k,l≤p

∣∣∣ 1
n

n∑
i=1

(
Xk,iXl,i − E(Xk,iXl,i)

)∣∣∣ > t

)
≤ br/2

p2nr/4C

(tn)r/2
.

Thus, choosing t = M p4/r

n1/2 for M > 0 sufficiently large yields

‖Σ̂− Σ‖∞ = Op

(
p4/r

n1/2

)
. (A.23)
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In combination with (29) this implies (using ‖γ̂j − γj‖1 = ‖v̂j − vj‖1)

max
j∈H
‖Σ̂− Σ‖∞‖v̂j − vj‖21 = Op

(
p4/r

n1/2

)
Op

(
s̄2h4/rp4/r

n

)
= Op

(
s̄2h4/rp8/r

n3/2

)
.

But since

Op

(
s̄2h4/rp8/r

n3/2

)
= Op

(
s̄p4/r

n1/2

s̄h4/rp4/r

n

)
= op

(
s̄h4/rp4/r

n

)
,

as s̄p4/r

n1/2 =
(
p2s̄r/2

nr/4

)2/r
→ 0 by Assumption 2b) we conclude

max
j∈H

(v̂j − vj)′Σ(v̂j − vj) ≤ Op
(
s̄h4/rp4/r

n

)
.

Therefore, by

max
j∈H

φmin(Σ) ‖v̂j − vj‖22 ≤ max
j∈H

(v̂j − vj)′Σ(v̂j − vj) ≤ Op
(
s̄h4/rp4/r

n

)
,

one gets

max
j∈H
‖γ̂j − γj‖22 = max

j∈H
‖v̂j − vj‖22 = Op

(
s̄h4/rp4/r

n

)
. (A.24)

since φmin(Σ) is bounded away from zero by Assumption 2a).
Next, we consider |τ̂2

j − τ2
j |. First, by (21) and Xj = X−jγj + ηj ,

τ̂2
j =

(Xj −X−j γ̂j)′Xj

n

=
[ηj −X−j(γ̂j − γj)]′[X−jγj + ηj ]

n

=
η′jηj

n
+
η′jX−jγj

n
−

(γ̂j − γj)′X ′−jX−jγj
n

−
(γ̂j − γj)′X ′−jηj

n
.

Using the above expression one gets

max
j∈H
|τ̂2
j − τ2

j | ≤ max
j∈H

∣∣∣η′jηj
n
− τ2

j

∣∣∣+ max
j∈H
|η′jX−j(γ̂j − γj)/n|

+ max
j∈H
|η′jX−jγj/n|+ max

j∈H

∣∣∣∣γ′jX ′−jX−j(γ̂j − γj)n

∣∣∣∣ . (A.25)

Since
η′jηj
n − τ

2
j = 1

n

∑n
i=1

(
η2
j,i − E(η2

j,i)
)

is a sum of mean zero terms with r/2 moments uniformly
bounded by a constant C (the latter is seen by means of the Cauchy-Schwarz inequality and
Assumption 2c) it follows from Lemma A.3

P

(
max
j∈H

∣∣∣η′jηj
n
− τ2

j

∣∣∣ > Mh2/r/n1/2

)
= P

(
max
j∈H

∣∣ 1
n

n∑
i=1

(
η2
j,i − E(η2

j,i)
)∣∣ > Mh2/r/n1/2

)
≤ brC

M r/2
,

which implies that

max
j∈H

∣∣∣η′jηj
n
− τ2

j

∣∣∣ = Op

(h2/r

n1/2

)
. (A.26)
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Next, consider the second term in (A.25). By (29) and (A.19) it follows that

max
j∈H
|η′jX−j(γ̂j − γj)/n| ≤ max

j∈H
‖η′jX−j/n‖∞max

j∈H
‖γ̂j − γj‖1

= Op

(
h2/rp2/r

√
n

)
Op

(
s̄h2/rp2/r

√
n

)
= Op

([
s̄1/2h

2/rp2/r

√
n

]2
)
. (A.27)

Before we bound the third term in (A.25) we show that maxj∈H ‖γj‖1 = O(
√
s̄). To this end, define

the (p − 1) × (p − 1) matrix Σ−j consisting of all rows and columns of Σ except the j’th row and
column. Then, note that

γ′jΣ−jγj

γ′jγj
≥ φmin(Σ−j) ≥ φmin(Σ),

such that

γ′jγj ≤
γ′jΣ−jγj

φmin(Σ)
.

Since Xj,i = X−j,iγj + ηj,i it follows from the orthogonality in L2 of each entry in X−j,i to ηj,i that

E(X2
j,i) = γ′jΣ−jγj +E(η2

j,i) such that γ′jΣ−jγj ≤ E(X2
j,i) ≤ maxj∈H E(X2

j,i). Since
(
E(X2

j,i)
)1/2 ≤(

E(Xr
j,i)
)1/r ≤ C1/r for all j ∈ H one has maxj∈H E(X2

j,i) ≤ C2/r. Hence,

γ′jγj ≤
C2/r

φmin(Σ)
. (A.28)

Thus, by Assumption 2a), γ′jγj is bounded by a constant not depending on j which implies that

maxj∈H ‖γj‖1 = O(
√
s̄). Hence, returning to the third term of (A.25),

max
j∈H
|η′jX−jγj/n| ≤ max

j∈H
‖η′jX−j/n‖∞max

j∈H
‖γj‖1 = Op

(√
s̄
h2/rp2/r

√
n

)
, (A.29)

where we have also used (A.19). It remains to bound the fourth summand in (A.25). By the
Karush-Kuhn-Tucker conditions for the conservative lasso nodewise regression one has

λnode,nΓ̂j κ̂j +
X ′−jX−j γ̂j

n
−
X ′−jXj

n
= 0,

which, using Xj = X−jγj + ηj , is equivalent to

λnode,nΓ̂j κ̂j +
X ′−jX−j γ̂j

n
−
X ′−jηj

n
−
X ′−jX−jγj

n
= 0.

The above equation can be rewritten as

X ′−jX−j

n
(γ̂j − γj) =

X ′−jηj

n
− λnode,nΓ̂j κ̂j .

This implies ∥∥∥∥X ′−jX−jn
(γ̂j − γj)

∥∥∥∥
∞
≤
∥∥∥∥X ′−jηjn

∥∥∥∥
∞

+ ‖λnode,nΓ̂j κ̂j‖∞.
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The second term on the right hand side in the above display can be bounded as

‖λnode,nΓ̂j κ̂j‖∞ ≤ ‖λnode,nΓ̂j‖`∞‖κ̂j‖∞ ≤ λnode,n,

for all j ∈ H since ‖κ̂j‖∞ ≤ 1 and ‖Γ̂j‖`∞ ≤ 1. Hence, using (A.19),

max
j∈H

∥∥∥∥X ′−jX−jn
(γ̂j − γj)

∥∥∥∥
∞

= Op(λnode,n) +Op(λnode,n) = Op

(h2/rp2/r

√
n

)
This means, using maxj∈H ‖γj‖1 = O(s̄1/2),

max
j∈H

∣∣∣γ′jX ′−jX−jn
(γ̂j − γj)

∣∣∣ = Op

(
s̄1/2h

2/rp2/r

√
n

)
. (A.30)

Since h ≤ p, Assumption 2b) implies that

s̄1/2h
2/rp2/r

√
n

≤ s̄1/2 p
4/r

√
n

=
1

s̄1/2

(
s̄r/2p2

nr/4

)2/r

→ 0,

such that the dominant term in (A.25) is Op

(
s̄1/2 h2/rp2/r

√
n

)
. Thus,

max
j∈H
|τ̂2
j − τ2

j | = Op(s̄
1/2h

2/rp2/r

n1/2
).

Next, note that τ2
j = 1/Θj,j ≥ 1/φmax(Θ) = φmin(Σ) for all j = 1, ..., p with φmin(Σ) bounded away

from zero by Assumption 2. Thus, min1≤j≤p τ
2
j is bounded away from zero, and so

min
1≤j≤p

τ̂2
j = min

1≤j≤p
[τ̂2
j − τ2

j + τ2
j ] ≥ min

1≤j≤p
τ2
j − max

1≤j≤p
|τ̂2
j − τ2

j |

is bounded away from zero with probability tending to one using maxj∈H |τ̂2
j − τ2

j | = Op

(
s̄1/2 h2/rp2/r

√
n

)
=

op(1). This implies

max
j∈H

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣ = max
j∈H

|τ2
j − τ̂2

j |
τ̂2
j τ

2
j

= Op

(
s̄1/2h

2/rp2/r

√
n

)
. (A.31)

We are now ready to bound maxj∈H ‖Θ̂j − Θj‖1. Recall that Θ̂j is formed by dividing Ĉj by
τ̂2
j . Let Θj denote the j’th row of Θ written as a column vector. Then, Θj is formed by dividing

Cj (j’th row of C written as a column vector) by τ2
j . Therefore, using maxj∈H ‖γj‖1 = O(s̄1/2),
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(29), and (A.31)

max
j∈H

∥∥Θ̂j −Θj

∥∥
1

= max
j∈H

∥∥∥∥ Ĉjτ̂2
j

− Cj
τ2
j

∥∥∥∥
1

(A.32)

≤ max
j∈H

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣+ max
j∈H

∥∥∥∥ γ̂jτ̂2
j

− γj
τ2
j

∥∥∥∥
1

= max
j∈H

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣+ max
j∈H

∥∥∥∥ γ̂jτ̂2
j

− γj
τ̂2
j

+
γj
τ̂2
j

− γj
τ2
j

∥∥∥∥
1

≤ max
j∈H

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣+ max
j∈H

‖γ̂j − γj‖1
τ̂2
j

+ max
j∈H
‖γj‖1 max

j∈H

(∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣
)

= Op

(
s̄1/2h

2/rp2/r

√
n

)
+Op

( s̄h2/rp2/r

√
n

)
+Op

(
s̄
h2/rp2/r

√
n

)
= Op

( s̄h2/rp2/r

√
n

)
. (A.33)

Next, for later purposes, we also bound ‖Θ̂j − Θj‖2. By (A.24), and maxj∈H ‖γj‖22 = O(1) by
(A.28)

max
j∈H
‖Θ̂j −Θj‖2 ≤ max

j∈H

∣∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣∣+ max
j∈H

‖γ̂j − γj‖2
τ̂2
j

+ max
j∈H
‖γj‖2 max

j∈H

(∣∣∣ 1

τ̂2
j

− 1

τ2
j

∣∣∣)
= Op

(
s̄1/2h

2/rp2/r

√
n

)
+Op

(
s̄1/2h2/rp2/r

n1/2

)
+Op

(
s̄1/2h

2/rp2/r

√
n

)
,

= Op

(
s̄1/2h

2/rp2/r

√
n

)
. (A.34)

Finally, we show that maxj∈H ‖Θ̂j‖1 = Op(
√
s̄). To this end,

max
j∈H
‖Θj‖1 ≤ max

j∈H

1

τ2
j

+ max
j∈H
‖γj/τ2

j ‖1 = O(s̄1/2) (A.35)

(as τ2
j is uniformly bounded away from zero). Then, as h ≤ p implies s̄h2/rp2/r

n1/2 ≤ [p2s̄r/2/nr/4]2/r →
0 by Assumption 2b, we get

max
j∈H
‖Θ̂j‖1 ≤ max

j∈H
‖Θ̂j −Θj‖1 + max

j∈H
‖Θj‖1 = Op

( s̄h2/rp2/r

n1/2

)
+O(

√
s̄) = Op(

√
s̄). (A.36)

Proof of Theorem 2. We show that the ratio

t =
n1/2α′(b̂− β0)√
α′Θ̂Σ̂xuΘ̂′α

, (A.37)

is asymptotically standard normal. First, note that one can write. By (13)

t = t1 + t2,
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where

t1 =
α′Θ̂X ′u/n1/2√
α′Θ̂Σ̂xuΘ̂′α

and t2 = − α′∆√
α′Θ̂Σ̂xuΘ̂′α

.

It suffices to show that t1 is asymptotically standard normal and t2 = op(1).
Step 1. We first show that t1 is asymptotically standard normal.

a) To show that t1 is asymptotically standard normal we first show that

t′1 =
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

converges in distribution to a standard normal where Σxu = n−1
∑n

i=1E(XiX
′
iu

2
i ). Then we show

that t′1 and t1 are asymptotically equivalent. Note that, using E(ui|Xi) = 0 for all i = 1, ..., n, we
obtain

E

[
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

]
= E

[
α′Θ

∑n
i=1Xiui/n

1/2

√
α′ΘΣxuΘ′α

]
= 0, (A.38)

and

E

[
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

]2

= E

[
α′Θ

∑n
i=1Xiui/n

1/2

√
α′ΘΣxuΘ′α

]2

= 1.

Hence, in order to apply Lyapounov’s condition in central limit theorem for independent random
variables, it suffices to show that

1(
α′ΘΣxuΘ′α

)r/4 n∑
i=1

E
∣∣α′ΘXiui/n

1/2
∣∣r/2 → 0. (A.39)

First, using the symmetry of Θ, we get (recall that Θj is the j’th row of Θ written as a column
vector) ∥∥α′Θ∥∥

1
=
∥∥Θα

∥∥
1

=

∥∥∥∥∥∑
j∈H

Θjαj

∥∥∥∥∥
1

≤
∑
j∈H
|αj |

∥∥Θj

∥∥
1

= O
(√

hs̄
)
,

since ‖α‖2 = 1 and maxj∈H ‖Θj‖1 = O(
√
s̄) by (A.35). Note also that

α′Θ =
(
Θα
)′

=

(∑
j∈H

Θjαj

)′
such that the non-zero entries of α′Θ must be contained in S̄ = ∪j∈HSj which has cardinality at
most |S̄| = hs̄ ∧ p, where Sj = {Θj,i 6= 0}. Thus,

E
∣∣α′ΘXiui/n

1/2
∣∣r/2 ≤ E (∥∥α′Θ∥∥r/2

1
max
k∈S̄

∣∣Xk,iui/n
1/2
∣∣r/2)

≤ O

((
hs̄

n

)r/4)(
hs̄ ∧ p

)
max
k∈S̄

E|Xk,iui|r/2

≤ O

((
hs̄

n

)r/4 (
hs̄ ∧ p

))

= O

(
(hs̄)r/4+1 ∧ (hs̄)r/4p

nr/4

)
,
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where the third inequality follows from the Cauchy-Schwarz inequality and using that Xk,i and ui
have uniformly bounded r′th moments. Hence,

n∑
i=1

E
∣∣α′ΘXiui/n

1/2
∣∣r/2 = O

(
(hs̄)r/4+1 ∧ (hs̄)r/4p

nr/4−1

)
= o(1),

by Assumption 3d). Next, we show that α′ΘΣxuΘ′α is asymptotically bounded away from zero in
(A.39). Clearly,

α′ΘΣxuΘ′α ≥ φmin(Σxu) ‖Θ′α‖22 ≥ φmin(Σxu)φ2
min(Θ) ‖α‖22 ≥ φmin(Σxu)

1

φ2
max(Σ)

, (A.40)

which is bounded away from zero since φmin(Σxu) is bounded away from zero and φmax(Σ) is
bounded from above. Hence, the Lyapounov condition is satisfied and t′1 converges in distribution
to a standard normal.

b) We now show that t′1 − t1 = op(1). To do so it suffices that the numerators as well as the
denominators of t′1 and t1 are asymptotically equivalent since α′ΘΣxuΘ′α is bounded away from 0
by (A.40). We first show that the denominators of t′1 and t1 are asymptotically equivalent, i.e.

|α′Θ̂Σ̂xuΘ̂′α− α′ΘΣxuΘ′α| = op(1). (A.41)

Set Σ̃xu = n−1
∑n

i=1XiX
′
iu

2
i . To establish (A.41) it suffices to show the following relations:

|α′Θ̂Σ̂xuΘ̂′α− α′Θ̂Σ̃xuΘ̂′α| = op(1). (A.42)

|α′Θ̂Σ̃xuΘ̂′α− αΘ̂ΣxuΘ̂′α| = op(1). (A.43)

|α′Θ̂ΣxuΘ̂′α− α′ΘΣxuΘ′α| = op(1). (A.44)

We first prove (A.42).

|α′Θ̂Σ̂xuΘ̂′α− α′Θ̂Σ̃xuΘ̂′α| ≤ ‖Σ̂xu − Σ̃xu‖∞‖Θ̂′α‖21. (A.45)

But by (33) and ‖α‖2 = 1

∥∥Θ̂′α
∥∥

1
=

∥∥∥∥∥∑
j∈H

Θ̂jαj

∥∥∥∥∥
1

≤
∑
j∈H
|αj |

∥∥Θ̂j

∥∥
1

= Op
(√
hs̄
)
. (A.46)

To proceed, we bound ‖Σ̂xu − Σ̃xu‖∞. Using ûi = ui −X ′i(β̂ − β0) in the definition of Σ̂xu we get

Σ̂xu − Σ̃xu = − 2

n

n∑
i=1

XiX
′
iuiX

′
i(β̂ − β0) +

1

n

n∑
i=1

XiX
′
i(β̂ − β0)′XiX

′
i(β̂ − β0). (A.47)

We bound each sum separately. First, by the Cauchy-Schwarz inequality,

max
1≤k,l≤p

∣∣∣∣ 2n
n∑
i=1

Xk,iXl,iuiX
′
i(β̂ − β0)

∣∣∣∣ ≤ 2

√√√√ max
1≤k,l≤p

1

n

n∑
i=1

X2
k,iX

2
l,iu

2
i ·
∥∥X(β̂ − β0)

∥∥
n
. (A.48)

Now for any three random variables Z1, Z2 and Z3 with finite r’th moment it follows from two
applications of Hölder’s inequality

E|Z2
1Z

2
2Z

2
3 |r/6 = E|Zr/31 Z

r/3
2 Z

r/3
3 | ≤ E

(
|Z1|r/2|Z2|r/2

)2/3
E
(
|Zr3 |

)1/3
≤ E

(
|Zr1 |

)1/3
E
(
|Zr2 |

)1/3
E
(
|Zr3 |

)1/3
. (A.49)
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Thus, by Assumption 1, all summands in (A.48) have uniformly bounded r/6 moments and therefore
Lemma A.3 implies that

P

(
max

1≤k,l≤p

∣∣∣∣ 1n
n∑
i=1

(
X2
k,iX

2
l,iu

2
i − E(X2

k,iX
2
l,iu

2
i )
)∣∣∣∣ > t

)
≤ br/6

Cp2nr/12

(tn)r/6
.

Hence, choosing t = M p12/r

n1/2 for M > 0 sufficiently large shows that

max
1≤k,l≤p

∣∣∣∣ 1n
n∑
i=1

(
X2
k,iX

2
l,iu

2
i − E(X2

k,iX
2
l,iu

2
i )
)∣∣∣∣ = Op

(p12/r

n1/2

)
.

Furthermore, since the Lr-norm is non-decreasing in r and since r ≥ 6 we have, using (A.49) above,

max
1≤k,l≤p

1

n

n∑
i=1

E
(
X2
k,iX

2
l,iu

2
i

)
≤ max

1≤k,l≤p

1

n

n∑
i=1

(
E
(
X2
k,iX

2
l,iu

2
i

)r/6)6/r

≤ max
1≤k,l≤p

1

n

n∑
i=1

[(
E|Xk,i|r

)1/3 (
E|Xl,i|r

)1/3 (
E|ui|r

)1/3]6/r
,

which is uniformly bounded by Assumption 1 since the r’th moments of Xk,i and ui are uniformly

bounded. Therefore,
√

max1≤k,l≤p
1
n

∑n
i=1X

2
k,iX

2
l,iu

2
i = O(1) +Op

( p6/r

n1/4

)
in (A.48). By Theorem 1

it follows from choosing M sufficiently large∥∥X(β̂ − β0)
∥∥
n

= Op

(
p2/r√s0

n1/2

)
. (A.50)

Thus,

max
1≤k,l≤p

∣∣∣∣ 2n
n∑
i=1

Xk,iXl,iuiX
′
i(β̂ − β0)

∣∣∣∣ = Op

(
p8/r√s0

n3/4

)
+Op

(
p2/r√s0

n1/2

)
(A.51)

Regarding the second term in (A.47) note that

max
1≤k,l≤p

∣∣∣∣ 1n
n∑
i=1

Xk,iXl,i(β̂ − β0)′XiX
′
i(β̂ − β0)

∣∣∣∣ ≤ max
1≤k,l≤p

max
1≤i≤n

∣∣Xk,iXl,i

∣∣ 1

n

n∑
i=1

(
X ′i(β̂ − β0)

)2
.

(A.52)

By the Cauchy-Schwarz inequality, Xk,iXl,i has uniformly bounded r/2 moments. Hence, by the
union bound and Markov’s inequality, for any t > 0 we get via Lemma A.3

P

(
max

1≤i≤n
max

1≤k,l≤p

∣∣∣Xk,iXl,i

∣∣∣ > t

)
≤ np2 C

tr/2
.

Therefore, choosing t = Mp4/rn2/r for M > 0 sufficiently large reveals that

max
1≤i≤n

max
1≤k,l≤p

∣∣Xk,iXl,i

∣∣ = Op

(
p4/rn2/r

)
.

Next, note that by Theorem 1

1

n

n∑
i=1

(
X ′i(β̂ − β0)

)2
=
∥∥X(β̂ − β0)

∥∥2

n
= Op

(
p4/rs0

n

)
, (A.53)
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such that, using (A.52),

max
1≤k,l≤p

∣∣∣∣ 1n
n∑
i=1

Xk,iXl,i(β̂ − β0)′XiX
′
i(β̂ − β0)

∣∣∣∣ = Op

(
p4/rn2/r

)
Op

(
p4/rs0

n

)
= Op

(
p8/rs0

n(r−2)/r

)
. (A.54)

Then, combining (A.51) and (A.54) implies that

∥∥Σ̂xu − Σ̃xu

∥∥
∞ = Op

(
p8/r√s0

n3/4

)
+Op

(
p2/r√s0

n1/2

)
+Op

(
p8/rs0

n(r−2)/r

)
.

Therefore, combining with (A.46) yields

∣∣α′Θ̂Σ̂xuΘ̂′α− α′Θ̂Σ̃xuΘ̂′α
∣∣ = Op

(
p8/r√s0hs̄

n3/4

)
+Op

(
p2/r√s0hs̄

n1/2

)
+Op

(
p8/rs0hs̄

n(r−2)/r

)
= op(1),

by Assumption 3c). This establishes (A.42).
Next, we turn to (A.43). First, note that

|α′Θ̂Σ̃xuΘ̂′α− αΘ̂ΣxuΘ̂′α| ≤ ‖Σ̃xu − Σxu‖∞‖Θ̂′α‖21. (A.55)

Furthermore, similarly to (A.49), three applications of Hölder’s inequality reveal that Xk,iXl,iu
2
i

have uniformly bounded r/4 moments. Hence, by Lemma A.3, for any t > 0

P
(
‖Σ̃xu − Σxu‖∞ > t

)
= P

(∣∣∣ 1
n

n∑
i=1

Xk,iXl,iu
2
i − E

(
Xk,iXl,iu

2
i

)∣∣∣ > t

)
≤ br/4

p2Cnr/8

(tn)r/4
.

Thus, choosing t = M p8/r

n1/2 for M > 0 sufficiently large shows that

‖Σ̃xu − Σxu‖∞ = Op

(
p8/r

n1/2

)
.

By (A.55) and (A.46)

|α′Θ̂Σ̃xuΘ̂′α− αΘ̂ΣxuΘ̂′α| = Op

(
p8/rhs̄

n1/2

)
= op(1),

and Assumption 3b).
Finally, we establish (A.44) to conclude (A.41). By Lemma 6.1 in van de Geer et al. (2014)

|α′Θ̂ΣxuΘ̂′α− α′ΘΣxuΘ′α| ≤ ‖Σxu‖∞‖Θ̂′α−Θ′α‖21 + 2‖ΣxuΘ′α‖2‖Θ̂′α−Θ′α‖2
≤ ‖Σxu‖∞‖(Θ̂′ −Θ′)α‖21 + 2φmax(Σxu)

∥∥Θ′α
∥∥

2
‖(Θ̂′ −Θ′)α‖2.

Note that

‖(Θ̂′ −Θ′)α‖1 =

∥∥∥∥∥∑
j∈H

(
Θ̂j −Θj

)
αj

∥∥∥∥∥
1

≤
∑
j∈H

∥∥Θ̂j −Θj

∥∥
1
|αj | ≤ max

j∈H

∥∥Θ̂j −Θj

∥∥
1

∑
j∈H
|αj |

= Op

(
s̄
h2/r+1/2p2/r

√
n

)
, (A.56)
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by (31) and ‖α‖2 = 1. Furthermore, using the symmetry of Θ,∥∥Θ′α
∥∥

2
≤ φmax(Θ)‖α‖2 =

1

φmin(Σ)
,

which is bounded by Assumption 2a). Finally,

‖(Θ̂′ −Θ′)α‖2 =

∥∥∥∥∥∑
j∈H

(
Θ̂j −Θj

)
αj

∥∥∥∥∥
2

≤
∑
j∈H

∥∥Θ̂j −Θj

∥∥
2
|αj | ≤ max

j∈H

∥∥Θ̂j −Θj

∥∥
2

∑
j∈H
|αj |

= Op

(√
s̄
h2/r+1/2p2/r

√
n

)
,

by (32) and ‖α‖2 = 1. Therefore, by ‖Σxu‖∞ ≤ φmax(Σxu) with the latter assumed bounded from
Assumption 3e),

|α′Θ̂ΣxuΘ̂′α− α′ΘΣxuΘ′α| = Op

(
s̄2h

4/r+1p4/r

n

)
+Op

(√
s̄
h2/r+1/2p2/r

√
n

)
= op(1),

where we used

s̄2h(4/r)+1p4/r

n
≤ s̄(hs̄)p8/r

n
≤ s̄

n1/2
· (hs̄)p8/r

n1/2
→ 0,

and Assumption 3b (which also implies s̄ = o(n1/2)). The uniformity of (A.41) over B`0(s0) follows
from simply observing that (A.50) and (A.53) above are actually valid uniformly over this set and
that this is the only place in which β0 enters in the above arguments.

We now turn to showing that the numerators of t′1 and t1 are asymptotically equivalent, i.e.

|α′Θ̂X ′u/n1/2 − α′ΘX ′u/n1/2| = op(1).

By Lemma A.4 and (A.56) above we get, using h ≤ p, and Assumption 3b

n1/2|α′Θ̂X ′u/n− α′ΘX ′u/n| ≤ n1/2
∥∥∥X ′u
n

∥∥∥
∞
‖α′(Θ̂−Θ)‖1

= n1/2Op

(
p2/r

√
n

)
O

(
s̄
h2/r+1/2p2/r

√
n

)
= Op

(
s̄
h2/r+1/2p4/r

√
n

)
= Op

(
s̄
h1/2p6/r

√
n

)
= op(1). (A.57)

Step 2. It remains to be shown that t2 = op(1). The denominators of t1 and t2 are iden-
tical. Hence, the denominator of t2 is asymptotically bounded away from zero with probability
approaching one by (A.40) and (A.41). Thus, it suffices to show that the numerator of t2 vanishes
in probability. Note that, by the definition of ∆, and ‖α‖2 = 1,

|α′∆| ≤ max
j∈H
|∆j |

∑
j∈H
|αj | ≤ max

j∈H

∣∣∣(Θ̂′jΣ̂− ej) (√n(β̂ − β0)
)∣∣∣∑
j∈H
|αj | (A.58)

≤ max
j∈H

∥∥∥(Θ̂′jΣ̂− ej)∥∥∥∞∥∥√n(β̂ − β0)
∥∥

1
O
(√

h
)
. (A.59)
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First, it follows from Theorem 1 that n1/2‖β̂ − β0‖1 = Op
(
s0p

2/r
)
. Next, we consider

max
j∈H

∥∥∥(Θ̂′jΣ̂− ej)∥∥∥∞ ≤ max
j∈H

λnode,n
τ̂2
j

= Op

(
h2/rp2/r

n1/2

)
,

where we have used the definition of λnode,n and maxj∈H 1/τ̂2
j = Op(1) by (A.31) and Assumption

3b). Thus, in total we have∣∣α′∆∣∣ = Op

(
h2/rp2/r

n1/2

)
Op
(
s0p

2/r
)
O
(√

h
)

= Op

(
s0
h2/r+1/2p4/r

n1/2

)
= op(1),

by Assumption 3a). The fact that supβ0∈B`0 (s0)

∣∣α′∆∣∣ = op(1) follows from the observation that

Theorem 1 actually yields that supβ0∈B`0 (s0) n
1/2‖β̂ − β0‖1 = Op

(
s0p

2/r
)

in the above argument
and that this is the only place in which β0 enters these arguments. Thus, for later reference,

sup
β0∈B`0 (s0)

∣∣α′∆∣∣ = op(1). (A.60)

Proof of Theorem 3. For ε > 0 define

A1,n :=

{
sup

β0∈B`0 (s0)

∣∣α′∆∣∣ < ε

}
, A2,n :=

{
sup

β0∈B`0 (s0)

∣∣∣∣
√
α′Θ̂Σ̂xuΘ̂′α√
α′ΘΣxuΘ′α

− 1

∣∣∣∣ < ε

}
,

and

A3,n :=
{∣∣α′Θ̂X ′u/n1/2 − α′ΘX ′u/n1/2

∣∣ < ε
}
.

By, (A.60), (35), (A.57), and
√
α′ΘΣxuΘ′α being bounded away from zero (by (A.40)) the proba-

bilities of these three sets all tend to one. Thus, for every t ∈ R,∣∣∣∣∣P
(
n1/2α′(b̂− β0)√
α′Θ̂Σ̂xuΘ̂′α
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− Φ(t)
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∪3
i=1A

c
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)
.

Using that
√
α′ΘΣxuΘ′α does not depend on β0 and is bounded away from zero by (A.40) there

exists a positive constant D such that

P

(
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√
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.
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Thus, as the right hand side in the above display does not depend on β0

sup
β0∈B`0 (s0)

P

(
α′Θ̂X ′u/n1/2√
α′Θ̂Σ̂xuΘ̂′α

− α′∆√
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√
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.

In step 1a) of the proof of Theorem 2 we established the asymptotic normality of α′ΘX′u/n1/2
√
α′ΘΣxuΘ′α

.

Therefore, for n sufficiently large,

sup
β0∈B`0 (s0)
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)
≤ Φ

(
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)
+ ε.

As the above arguments are valid for all ε > 0 we can use the continuity of q 7→ Φ(q) to conclude
that for any δ > 0 we can choose ε sufficiently small to conclude that
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)
≤ Φ(t) + δ + ε. (A.61)

Next, using that
√
α′ΘΣxuΘ′α does not depend on β0 and is bounded away from zero by (A.40)

there exists a positive constant D such that
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α′Θ̂X ′u/n1/2√
α′Θ̂Σ̂xuΘ̂′α

− α′∆√
α′Θ̂Σ̂xuΘ̂′α

≤ t, A1,n, A2,n, A3,n

)

= P

(
α′Θ̂X ′u/n1/2

√
α′ΘΣxuΘ′α

− α′∆√
α′ΘΣxuΘ′α

≤ t
√
α′Θ̂Σ̂xuΘ̂′α√
α′ΘΣxuΘ′α

, A1,n, A2,n, A3,n

)

≥ P

(
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

≤ t(1− ε)− ε+ ε√
α′ΘΣxuΘ′α

, A1,n, A2,n, A3,n

)

≥ P

(
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

≤ t(1− ε)− 2Dε, A1,n, A2,n, A3,n

)

≥ P

(
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

≤ t(1− ε)− 2Dε

)
+ P

(
∩3
i=1Ai,n

)
− 1.

Thus, as the right hand side in the above display does not depend on β0 and since P
(
∩3
i=1Ai,n

)
can be made arbitrarily close to one by choosing n sufficiently we conclude

inf
β0∈B`0 (s0)

P

(
α′Θ̂X ′u/n1/2√
α′Θ̂Σ̂xuΘ̂′α

− α′∆√
α′Θ̂Σ̂xuΘ̂′α

≤ t, A1,n, A2,n, A3,n

)

≥ P

(
α′ΘX ′u/n1/2

√
α′ΘΣxuΘ′α

≤ t(1− ε)− 2Dε

)
− ε,

for n sufficiently large. In step 1a) of the proof of Theorem 2 we established the asymptotic

normality of α′ΘX′u/n1/2
√
α′ΘΣxuΘ′α

. Thus, for n sufficiently large,

inf
β0∈B`0 (s0)

P

(
α′Θ̂X ′u/n1/2√
α′Θ̂Σ̂xuΘ̂′α

− α′∆√
α′Θ̂Σ̂xuΘ̂′α

≤ t, A1,n, A2,n, A3,n

)
≥ Φ

(
t(1− ε)− 2Dε

)
− 2ε.
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As the above arguments are valid for all ε > 0 we can use the continuity of q 7→ Φ(q) to conclude
that for any δ > 0 we can choose ε sufficiently small to conclude that

inf
β0∈B`0 (s0)

P

(
α′Θ̂X ′u/n1/2√
α′Θ̂Σ̂xuΘ̂′α

− α′∆√
α′Θ̂Σ̂xuΘ̂′α

≤ t, A1,n, A2,n, A3,n

)
≥ Φ(t)− 2ε− δ. (A.62)

By (A.61) and (A.62) and supβ0∈B`0 (s0) P
(
∪3
i=1A

c
i,n

)
= P

(
∪3
i=1A

c
i,n

)
→ 0 (here we used that none

of the sets A1, A2, or A3 depend on β0) we conclude that

sup
β0∈B`0 (s0)

∣∣∣∣∣P
(
n1/2α′(b̂− β0)√
α′Θ̂Σ̂xuΘ̂′α

≤ t

)
− Φ(t)

∣∣∣∣∣→ 0.

To see (38) note that

P

(
β0,j /∈

[
b̂j − z1−α/2

σ̂j√
n
, b̂j + z1−α/2

σ̂j√
n

])
= P

(∣∣∣∣√n
(
b̂j − β0,j

)
σ̂j

∣∣∣∣ > z1−α/2

)

= P

(√
n
(
b̂j − β0,j

)
σ̂j

> z1−α/2

)
+ P

(√
n
(
b̂j − β0,j

)
σ̂j

< −z1−α/2

)

≤ 1− P

(√
n
(
b̂j − β0,j

)
σ̂j

≤ z1−α/2

)
+ P

(√
n
(
b̂j − β0,j

)
σ̂j

≤ −z1−α/2

)
.

Thus, taking the supremum over β0 ∈ B`0(s0) and letting n tend to infinity yields (38) via (37).
Finally, we turn to (39). By (35) we know supβ0∈B`0 (s0)

∣∣α′Θ̂Σ̂xuΘ̂′α− α′ΘΣxuΘ′α
∣∣ = op(1).

Hence, choosing α = ej and φmax(Θ) = 1/φmin(Σ),

√
n sup
β0∈B`0 (s0)

diam

([
b̂j − z1−α/2

σ̂j√
n
, b̂j + z1−α/2

σ̂j√
n

])
= sup

β0∈B`0 (s0)
2σ̂jz1−α/2

= 2

(
sup

β0∈B`0 (s0)

√
e′jΘΣxuΘ′ej + op(1)

)
z1−α/2

≤ 2

(√
φmax(Σxu)

1

φmin(Σ)
+ op(1)

)
z1−α/2

= Op(1),

as φmax(Σxu) is bounded from above and φmin(Σ) is bounded from below by Assumptions 2a) and
3e).
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