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Abstract

We propose a bootstrap method for estimating the distribution (and functionals of it such as
the variance) of various integrated covariance matrix estimators. In particular, we �rst adapt the
wild blocks of blocks bootstrap method suggested for the pre-averaged realized volatility estimator
to a general class of estimators of integrated covolatility. We then show the �rst-order asymptotic
validity of this method in the multivariate context with a potential presence of jumps, dependent
microstructure noise, irregularly spaced and non-synchronous data. Due to our focus on non-
studentized statistics, our results justify using the bootstrap to estimate the covariance matrix of
a broad class of covolatility estimators. The bootstrap variance estimator is positive semi-de�nite
by construction, an appealing feature that is not always shared by existing variance estimators of
the integrated covariance estimator. As an application of our results, we also consider the boot-
strap for regression coe�cients. We show that the wild blocks of blocks bootstrap, appropriately
centered, is able to mimic both the dependence and heterogeneity of the scores, thus justifying the
construction of bootstrap percentile intervals as well as variance estimates in this context. This
contrasts with the traditional pairs bootstrap which is not able to mimic the score heterogeneity
even in the simple case where no microstructure noise is present. Our Monte Carlo simulations
show that the wild blocks of blocks bootstrap improves the �nite sample properties of the existing
�rst-order asymptotic theory. We illustrate its practical use on high-frequency equity data.

JEL Classi�cation: C15, C22, C58
Keywords: High-frequency data, market microstructure noise, non-synchronous data, jumps, re-
alized measures, integrated covariance, wild bootstrap, block bootstrap.

1 Introduction

The covariation between asset returns is indispensable for risk management, portfolio selection, hedging

and pricing of derivatives, etc. Presently, the availability of high-frequency �nancial intraday data

such as stock prices or currencies allows us to accurately estimate the integrated covariance. An early

popular estimator is realized covariance matrix, computed as the sum of outer product of vectors of

high-frequency returns. The underlying idea is to use quadratic covariation as an ex-post covariance

∗I acknowledge support from CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78),
funded by the Danish National Research Foundation, as well as support from the Oxford-Man Institute of Quantitative
Finance.
†Department of Economics and Business, Aarhus University, 8210 Aarhus V., Denmark. Email: ulrich.hounyo@oxford-

man.ox.ac.uk.
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measure, whose increments can be studied to learn about the dependence of asset returns over a

given period (see e.g., Andersen et al. (2003) and Barndor�-Nielsen et al. (2004a)). An important

characteristic of high frequency �nancial data is the presence of market microstructure e�ects: prices are

observed with contamination errors (the so-called noise) due to the presence of bid-ask bounce e�ects,

rounding errors, etc., which contribute to a discrepancy between the latent e�cient price process and

the price observed by the econometrician (e.g. Hasbrouck (2007)). In a univariate setting, market

microstructure noise makes the standard realized volatility estimator biased and inconsistent. This

has motivated the development of alternative estimators. Currently, there are four main univariate

approaches to restore the consistency of realized volatility estimator, namely linear combination of

realized volatilities obtained by subsampling (Zhang et al. (2005), and Zhang (2006)), kernel-based

autocovariance adjustments (Barndor�-Nielsen et al. (2008)), the pre-averaging method (Podolskij and

Vetter (2009), and Jacod et al. (2009)), and the maximum likelihood-based approach (Xiu (2010)).

In a multivariate setting, matters are further complicated with the distinctive feature of multivariate

�nancial data: the phenomenon of non-synchronous trading, i.e. the prices of two assets are often not

observed at the same time, leading to the well-known Epps e�ect, highlighted by Epps (1979). These

factors create a further level of challenge to the problem of integrated covariance matrix estimation.

The most prominent estimators of integrated covolatility that are consistent under non-synchronous

observed data and contaminated by market microstructure noise include but are not limited to, the

pre-averaged Hayashi-Yoshida estimator studied by Christensen et al. (2010), the multivariate realized

kernel estimator of Barndor�-Nielsen et al. (2011), the �at-top realized kernel by Varneskov (2014),

the two-scales covariance estimator of Zhang (2011), the generalized multi-scale covariance estimator

of Bibinger (2011), the maximum likelihood based-estimator of Ait-Sahalia, Fan and Xiu (2010), Corsi,

Peluso and Audrino (2014), Liu and Tang (2014), Shephard and Xiu (2014), the Fourier based estimator

of covariances of Park and Linton (2012), and the local method of moments estimator of Bibinger et

al. (2014).

Despite the fact that these statistics are measured over large samples, their �nite sample distribu-

tions are not necessarily well approximated by their asymptotic mixed normal distribution. Indeed,

Zhang et al. (2011) showed in the univariate case that the asymptotic normal approximation is often

inaccurate for the subsampling realized volatility estimator of Zhang et al. (2005), whose �nite sam-

ple distribution is skewed and heavy tailed. They proposed Edgeworth corrections for this estimator

as a way to improve upon the standard normal approximation. Similarly, Bandi and Russell (2011)

discussed the limitations of asymptotic approximations in the context of realized kernels and proposed

a �nite sample procedure. As an alternative tool of inference in this context, Gonçalves and Meddahi

(2009) introduced bootstrap methods for the realized volatility under no market microstructure noise,

whereas Hounyo et al. (2013) and Gonçalves et al. (2014) extend the work of Gonçalves and Meddahi

(2009) by allowing market microstructure e�ects.

In this paper, we focus on the class of estimators of integrated covolatility that can be written

2



as the sum of miniature realized covolatility measure. Examples of potential estimators of integrated

covolatility in this class include the realized covariance matrix, the cumulative covariance estimator

developed in Hayashi and Yoshida (2005), the truncation-based estimators of integrated covariance

of Mancini and Gobbi (2012), and some noise-robust estimators listed above (pre-averaging, realized

kernel, two and multi-scale based covariance estimators), among others.

The main contribution of this paper is to propose a general bootstrap method for estimating the

distribution as well as the variance of integrated covariance matrix estimators. The bootstrap technique

employed here is related to previous work in the univariate case, in particular, the wild blocks of blocks

bootstrap suggested in Hounyo et al. (2013) for the pre-averaging estimator. To handle both the

dependence and heterogeneity of pre-averaged returns (most often in the form of heteroskedasticity),

Hounyo et al. (2013) propose to combine the wild bootstrap with the blocks of blocks bootstrap. This

procedure relies on the fact that the heteroskedasticity can be handled elegantly by use of the wild

bootstrap, and a block-based bootstrap can be used to treat the serial correlation in the data. The

current article draws ideas from this paper, but here we are faced with two additional challenges at

the same time. We have to extend their univariate wild blocks of blocks bootstrap method to the

multivariate case, but we also need to adapt this method for a broad class of covolatility estimators

(not only for the pre-averaging based-estimator). The univariate method cannot be applied directly

in this general context. We provide intuition of this in Section 4.3. This generalization faces the

additional complexity of possibly having to deal with jumps, various types of noise, irregularly spaced

and non-synchronous data. In particular, in a multivariate setting we �rst adapt the wild blocks of

blocks bootstrap method studied by Hounyo et al. (2013) to a general class of statistics. Next, we give

a set of high level conditions such that any bootstrap method is asymptotically valid when estimating

the distribution as well as the variance of integrated covariance matrix estimator. We then verify these

high-level conditions for various estimators of integrated covolatility in di�erent settings which allow for

a potential presence of jumps, dependent microstructure noise, irregularly spaced and non-synchronous

data. The bootstrap variance estimator is positive semi-de�nite by construction, an appealing feature

that is not always shared by existing variance estimators of the integrated covariance estimator.

Our �ndings have many implications and improve existing results in di�erent settings. Firstly, in

the idealized world where the mechanics of trading is perfect such that there is no market microstruc-

ture e�ects and prices are observed synchronously, apart from border terms which are OP
(

1
n

)
(where

n denotes the sample size), our bootstrap variance estimator of the variance of the realized covariance

matrix coincides with the sophisticated consistent variance estimator proposed by Barndor�-Nielsen

and Shephard (2004a). This is in contrast with the pairs bootstrap studied by Dovonon et al. (2013),

which is not able to estimate the long run variance of the realized covariance matrix, except when the

volatility is constant. Secondly, in a more interesting setting where data are non-synchronous, however,

ruling out the presence of noise, our bootstrap variance estimator of the variance of the Hayashi and

Yoshida (2005) covariance estimator is an alternative to the consistent variance estimator proposed re-
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cently by Mykland (2012), which is not guaranteed to be positive semi-de�nite. Thirdly, in a framework

where we allow the presence of market microstructure noise, but we rule out asynchronicity, the boot-

strap variance estimator is an alternative to the variance estimator of the bias-corrected multivariate

pre-averaged estimator proposed by Christensen et al. (2010), which is also not guaranteed to be pos-

itive semi-de�nite. Fourthly, and more realistically, we investigate the combination of asynchronicity,

irregularly spaced and microstructure noise. We �nd that our bootstrap method consistently estimates

the variance and the entire distribution of the pre-averaged Hayashi-Yoshida estimator of Christensen

et al. (2013). We also explore how and to what extent the wild blocks of blocks bootstrap can be

applied to the multivariate realized kernel estimator of Barndor�-Nielsen et al. (2011). Lastly, in the

context where the covariance between the risk factors of asset prices is due to both Brownian and

jump components, but we rule out asynchronicity and microstructure e�ects, the bootstrap variance

estimator is an alternative to the asymptotic variance estimator for the truncation-based estimators of

integrated covariance recently proposed by Mancini and Gobbi (2012). This result extends the work of

Hounyo (2013), where a local Gaussian bootstrap method has been proposed for inference on integrated

volatility under no jumps by allowing for the latter. It also provides an alternative to the general local

Gaussian bootstrap method recently introduced by Dovonon et al. (2014) for jump tests.

As an application of our results, we also consider the bootstrap for realized regression coe�cients.

We show that the wild blocks of blocks bootstrap, appropriately centered, is able to mimic both the

dependence and heterogeneity of the scores, thus justifying the construction of bootstrap percentile

intervals as well as asymptotic variance estimates in this context. This contrasts with the traditional

pairs bootstrap analysed in Dovonon et al. (2013), which is not able to mimic the score heterogeneity

even in the simple case where microstructure noise is absent and prices are regularly spaced and

synchronous. Our Monte Carlo simulations suggest that the wild blocks of blocks bootstrap method

improves upon the �rst-order asymptotic theory in �nite samples. Although the wild blocks of blocks

bootstrap that we propose here requires the choice of an additional tuning parameter (the block size),

we follow Hounyo et al. (2013) and use an empirical procedure to select the block size that performs

well in our simulations.

The remainder of this paper is organized as follows. In the next section, we provide the framework

and introduce the general class of statistics of interest. In Section 3, after introducing the bootstrap

method, we give a set of high level conditions such that any bootstrap method is asymptotically valid

when estimating the distribution as well as the asymptotic variance matrix of integrated covariance

matrix estimator. Section 4 illustrates the bootstrap method and veri�es these high level conditions

for various estimators of integrated covolatility. In Section 5, we present the Monte Carlo results,

while an empirical illustration is conducted in Section 6. Section 7 concludes. Two appendices are

provided. Appendix A contains the tables with simulation and empirical results whereas Appendix B

is a mathematical appendix providing the proofs.
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2 General framework

2.1 Setup

It is well-known in �nance that, under the no-arbitrage assumption, price processes must follow a

semimartingale (see, e.g., Delbaen and Schachermayer (1994)). We consider a d-dimensional latent

e�cient log-price process Xt =
(
X

(1)
t , · · · , X(d)

t

)′
de�ned on a probability space

(
Ω(0),F (0), P (0)

)
equipped with a �ltration

(
F (0)
t

)
t≥0

. We model X as an Itô semimartingale process de�ned by the

equation

Xt = X0 +

∫ t

0
asds+

∫ t

0
σsdWs +

∫ t

0

∫
κ (δ (s, z)) (µ− ν) (ds, dz) +

∫ t

0

∫
κ
′
(δ (s, z))µ (ds, dz) , (1)

where a = (at)t≥0 is a d-dimensional predictable locally bounded drift vector, W = (Wt)t≥0 is d-

dimensional Brownian motion and σ = (σt)t≥0 is an adapted càdlàg d × d locally bounded pro-

cess such that Σt = σtσ
′
t is the spot covariance matrix of X at time t. Whereas µ is a a d-

dimensional Poisson random measure on R+ × E, with (E, E) an auxiliary measurable space, on the

space

(
Ω(0),F (0),

(
F (0)
t

)
t≥0

, P (0)

)
and the predictable compensator (or intensity measure) of µ is

ν (ds, dz) = ds ⊗ λ (dz) for some given �nite or σ-�nite measure λ on (E, E) , δ is a d-dimensional

predictable function on Ω(0) ×R+ ×E. Moreover, κ is a continuous truncation function on Rd, that is
a function from Rd into itself with compact support and κ (x) = x on a neighbourhood of zero, and

we set κ
′
(x) = x − κ (x) to separate the martingale part of small jumps and the large jumps. Note

that a, σ and δ should be such that the integrals in (1) make sense (see, e.g., Jacod and Shiryaev for

a precise de�nition of the last two integrals).

In the special case where X is continuous, it has the form

Xt = X0 +

∫ t

0
asds+

∫ t

0
σsdWs. (2)

Under (1), the quadratic (co)variation of X is given by

[X]t =

∫ t

0
Σsds+

∑
s≤t

(∆Xs) (∆Xs)
′

≡ Γt + JCt,

where ∆Xs = Xs−Xs−, Xs− = limt→s, t<sXt. Thus [X]t is the sum of Γt (the integrated covolatility)

and JCt (the sum of products of simultaneous jumps (called co-jumps)). For empirical applications,

one may be concerned with the behavior of Γt and JCt in isolation making interesting to decompose the

two sources of covariability in the price process. In this paper, our parameter of interest is integrated

covariance matrix Γt. Without loss of generality, we let t = 1 (which we think of as a given day), omit

the index t and de�ne Γ ≡ Γ1 =
∫ 1

0 Σsds.

The presence of market frictions such as price discreteness, rounding errors, bid-ask spreads, gradual

response of prices to block trades, etc, prevent us from observing the e�cient price process X. Instead,

5



we observe a noisy price process Y =
(
Y (1), · · · , Y (d)

)′
, given by

Yt = Xt + εt,

where εt represents the noise term that collects all the market microstructure e�ects. These prices are

observed irregularly and non-synchronously over the interval [0, 1] . In particular, for all k = 1, . . . , d,

we observed the component process
(
Y (k)

)
at time points tki for i = 0, . . . , nk, given by

Y k
tki

= Xk
tki

+ εk
tki
,

from which we compute nk intraday returns de�ned as,

∆Y k
tki
≡ Y k

tki
− Y k

tki−1
, i = 1, . . . , nk, (3)

with 0 = tk0 < . . . < tknk = 1 being partitions of the interval [0, 1] , which satis�es max1≤i≤nk
∣∣tki − tki−1

∣∣→
0 as nk →∞ for all 1 ≤ k ≤ d.

In order to make both X and Y measurable with respect to the same kind of �ltration, we de�ne

a new probability space
(

Ω, (Ft)t≥0 , P
)
, which accommodates both processes. To this end, we follow

Jacod et al. (2009) and assume one has a second space

(
Ω(1),

(
F (1)
t

)
t≥0

, P (1)

)
, where Ω(1) denotes

R[0,1] and F (1) the product Borel-σ-�eld on Ω(1). Next, for any t ∈ [0, 1], we de�neQt
(
ω(0), dy

)
to be the

probability measure on R, which corresponds to the transition from Xt

(
ω(0)

)
to the observed process

Yt. In the case of i.i.d. noise, this transition kernel is rather simple, but it becomes more pronounced

in a general framework. P 1
(
ω(0), dω(1)

)
denotes the product measure ⊗t∈[0,1]Qt

(
ω(0), ·

)
. The �ltered

probability space
(

Ω, (Ft)t∈[0,1] , P
)
on which the process Y lives is then de�ned with Ω = Ω(0)×Ω(1),

F = F (0) ×F (1), Ft =
⋂
s>tF

(0)
s ×F (1)

s , and P
(
dω(0), dω(1)

)
= P 0

(
ω(0)

)
P 1
(
ω(0), dω(1)

)
.

2.2 Statistics of interest

The statistics of interest in this paper can be written as smooth functions of Γ̂n ≡
(

Γ̂nkl

)
1≤k,l≤d

where

Γ̂n is a consistent estimator of the integrated covariance matrix Γ, such that a central limit theorem

holds. We have, as n→∞,

τn

(
Γ̂n − Γ

)
→st MN(0, V ), (4)

where n denotes the sample size, τn = nδ1 with δ1 ∈ (0, 1) is a known rate of convergence, →st MN

denotes stable convergence to a mixed Gaussian distribution (see Jacod and Shiryaev (2003, Ch. 8,

Sect. 5c) for the de�nition and properties of stable convergence) and V =
(
Vkl,k′l′

)
1≤k,k′l,′l′≤d is a

d× d× d× d array, whose generic element Vkl,k′l′ corresponding to the asymptotic covariance between

τnΓ̂nkl and τnΓ̂nk′l′ . In particular, we focus on the class of estimators of Γ which can be written as

Γ̂n =

Jn∑
α=1

Zn (α)− b̃n,
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or equivalently using the individual entries of Γ̂n, Zn (α) ≡ (Znkl (α))1≤k,l≤d and b̃n ≡
(
b̃nkl

)
1≤k,l≤d

, we

have

Γ̂nkl =

Jn∑
α=1

Znkl (α)− b̃nkl, (5)

where Jn =
⌊
n
bn

⌋
, with b·c the integer part function and bn is a sequence of integers such that

bn ∝ nδ2 , (6)

where δ2 ∈ (0, 1). b̃n can be interpreted as a bias-corrected estimator, which does not contribute to

the asymptotic variance of the statistic of interest. This means that τnΓ̂n and τn
∑Jn

α=1Zn (α) have

the same asymptotic variance. Usually, the following results also holds, as n→∞,

τn

(
b̃n − b̃

)
→P 0 and τn

(
Jn∑
α=1

Zn (α)− Γ− b̃

)
→st MN(0, V ), (7)

where b̃ = p limn→∞ b̃n. In the simple case where no bias-correction is needed (i.e. b̃nkl = 0), for each

α = 1, . . . , Jn, the statistic Znkl (α) is essentially the same quantity as Γ̂nkl, with the di�erence that it

is computed only over time points tki from the smaller interval Bn (α) =
[

(α−1)bn
n , αbnn

)
, whereas Γ̂nkl

is computed over the whole interval [0, 1] . Thus in this case, Zn (α) is a miniature realized measure,

which can help to get information about
∫ αbn

n
(α−1)bn

n

Σsds. Similarly, when b̃nkl 6= 0, Znkl (α) is the analogue

of
∑Jn

α=1Znkl (α), but computed over time points tki from Bn (α) . The main advantage of writing Γ̂n

as in (5) is that it provides a uni�ed bootstrap theory to dealing with a broad class of estimators

of Γ. As we show in the next section, as long as this is possible and under some other regularity

conditions, the wild blocks of blocks bootstrap method studied by Hounyo et al. (2013) applies now

to the statistics Znkl (α) is �rst-order valid. Examples of potential estimators of integrated covolatility

that can be written as (5) are listed in the introduction.

The exact expression of the conditional asymptotic variance V may be rather complicated and can

involve substantially more complex quantities than the original parameter of interest Γ. One of our

contributions is to justify the use of the bootstrap to estimate V . Let V n =
(
V n
kl,k′l′

)
1≤k,k′l,′l′≤d

denote

a consistent estimator of V , then together with the CLT result (4) we have that(
Ṽ n
)−1/2

τn

(
vec

(
Γ̂n
)
− vec (Γ)

)
→st N(0, Id2),

where vec is the vectorization operator that stacks columns of a matrix below one another, Id2 is a

d2-dimensional identity matrix and Ṽ n =
(
Ṽ n
kl

)
1≤k,l≤d2

is a d2× d2 matrix, whose generic element Ṽ n
kl

is given by

Ṽ n
kl = V n

k−db(k−1)/dc,b(k−1)/dc+1,l−db(l−1)/dc,b(l−1)/dc+1, 1 ≤ k, l ≤ d2.

This result can be applied in order to compute con�dence region for some functionals of Γ that are

important in practice, such as covariance, regression coe�cient and correlation estimates. In particular,

the asymptotic variance estimates for standard measures of dependence between two asset returns such
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as the realized covariance, the realized regression and the realized correlation coe�cients are obtained

by the delta method, whose �nite sample properties are often poor. This motivates the bootstrap

as an alternative method of inference in these contexts. The next section details how the bootstrap

methodology can be used for these purposes in our general setup, which accommodates the potential

presence of jumps, microstructure noise, irregularly spaced and non-synchronous trading.

3 The wild blocks of blocks bootstrap

3.1 Main results

Our aim in this section is to extend the wild blocks of blocks bootstrap method proposed by Hounyo et

al. (2013) to the multivariate context allowing for the presence of jumps, noise, irregularly spaced and

non-synchronous data. In particular, we propose a bootstrap method that can be used to consistently

estimate the distribution of τn

(
h
(
vec

(
Γ̂n
))
− h (vec (Γ))

)
, where h : Rd2 → R denotes a real valued

function with continuous derivatives. This justi�es for instance, the construction of bootstrap percentile

(bootstrap unstudentized statistic) con�dence intervals for covariance, regression and correlation. The

bootstrap percentile intervals are easier to implement as they do not require an explicit estimator of

the variance which is hard to compute in our context.

Gonçalves and Meddahi (2009) proposed the wild bootstrap method for the realized volatility in

the absence of market microstructure noise and Gonçalves et al. (2014) extend their work by allowing

for the latter. In particular, they focus on the pre-averaged realized volatitity estimator proposed by

Podolskij and Vetter (2009). In their ideal setting, pre-averaged returns are non-overlapping, implying

that they are asymptotically uncorrelated as n → ∞, but possibly heteroskedastic due to stochastic

volatility, thus motivating the use of a wild bootstrap method.

When pre-averaged returns are overlapping, they are strongly dependent. This implies that the

wild bootstrap is no longer valid when applied to pre-averaged returns. Instead, a block bootstrap

method applied to the pre-averaged returns would seem appropriate. This amounts to a �blocks of

blocks� bootstrap, as proposed by Politis and Romano (1992) and further studied by Bühlmann and

Künsch (1995) (see also Künsch (1989)). Nevertheless, as Hounyo et al. (2013) show in the univariate

case, such a bootstrap scheme is only consistent when volatility is constant. They argue that squared

pre-averaged returns are heterogenously distributed (in particular, their mean and variance are time-

varying) and this creates a bias term in the blocks of blocks bootstrap variance estimator when volatility

is stochastic. To avoid this problem, Hounyo et al. (2013) propose to combine the wild bootstrap with

the blocks of blocks bootstrap. Here, we generalize their bootstrap method to the class of estimators

of integrated covolatility, which can be written as in (5).

The general multivariate wild blocks of blocks bootstrap pseudo-data is given by

Zn∗kl (α) =

{
Znkl (α+ 1) + (Znkl (α)−Znkl (α+ 1)) ηα, if α = 1, . . . , Jn − 1
Znkl (α) , if α = Jn,

(8)
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where the external random variable ηα is an i.i.d. random variable independent of the data and

whose moments are given by µ∗q ≡ E∗ (|ηα|q) . As usual in the bootstrap literature, P ∗ (E∗ and V ar∗)

denotes the probability measure (expected value and variance) induced by the bootstrap resampling,

conditional on a realization of the original time series. In addition, for a sequence of bootstrap statistics

Z∗n, we write Z∗n = oP ∗ (1) in probability, or Z∗n →P ∗ 0, as n → ∞, in probability, if for any ε > 0,

δ > 0, limn→∞ P [P ∗ (|Z∗n| > δ) > ε] = 0. Similarly, we write Z∗n = OP ∗ (1) as n → ∞, in probability

if for all ε > 0 there exists a Mε <∞ such that limn→∞ P [P ∗ (|Z∗n| > Mε) > ε] = 0. Finally, we write

Z∗n →d∗ Z as n→∞, in probability, if conditional on the sample, Z∗n weakly converges to Z under P ∗,

for all samples contained in a set with probability P converging to one.

The bootstrap analogue of (5) is de�ned by

Γ̂n∗kl =

Jn∑
α=1

Zn∗kl (α) , (9)

and Γ̂n∗ ≡
(

Γ̂n∗kl

)
1≤k,l≤d

. Note that although Γ̂nkl contains a bias correction term (when b̃nkl 6= 0), we

do not consider bias correction in the bootstrap world, even in the case where b̃nkl 6= 0. This is because

the bias correction term b̃n by de�nition does not a�ect the asymptotic variance of Γ̂n. As long as

the bootstrap method is able to consistently estimate this variance, no bias correction is needed in the

bootstrap world. Since we can always center the bootstrap statistic Γ̂n∗kl at its own theoretical mean

E∗
(

Γ̂n∗kl

)
without a�ecting the bootstrap variance. For example, the bias correction term b̃nkl for pre-

averaged realized covolatility estimator (which we will introduce in Section 4.3) is crucially dependent

of the noise assumption whereas the bootstrap estimator is robust regardless.

Our bootstrap method can be seen as a generalization of the wild blocks of blocks bootstrap method

of Hounyo et al. (2013) to the general context described by (5). In particular, here we resample the

statistics Znkl (α) , which may be a block sum of functions of

(
∆Y k

tki
,∆Y l

tlj

)
(see Section 4 for examples

of statistics Znkl (α)). As in the univariate case, to preserve the weak dependence, we divide the interval

[0, 1] into Jn non-overlapping sub-interval of length
bn
n and generate the bootstrap observations within a

given sub-interval Bn (α) =
[

(α−1)bn
n , αbnn

)
using the same external random variable ηα. This preserves

the dependence within each sub-interval. Also, as mentioned in Hounyo et al. (2013), we show that by

centering around Znkl (α+ 1) instead of J−1
n

∑Jn
α=1Znkl (α) (as in the plain wild boostrap method of Wu

(1986) and Liu (1988)) yields an asymptotically valid bootstrap method for Γ̂nkl. This is not necessary

the case for the naive application of the original wild bootstrap of Liu (1988), which generates bootstrap

observations Zn∗kl (α) as

Zn∗kl (α) = J−1
n

Jn∑
α=1

Znkl (α)−

(
Znkl (α)− J−1

n

Jn∑
α=1

Znkl (α)

)
ηα, α = 1, . . . , Jn, (10)

where ηα is i.i.d. (0, 1). As we show in this paper, the new wild blocks of blocks bootstrap preserves

the mean heterogeneity property of the statistics Znkl (α) even when volatility is stochastic, in our

9



multivariate setting that allows for jumps, noise, irregularly spaced and non-synchronous data. The

following result gives the bootstrap moments of
(

Γ̂n∗kl , Γ̂
n∗
k′l′

)′
. In order to state our results, let V n∗

kl,k′l′ ≡

Cov∗
(
τnΓ̂n∗kl , τnΓ̂n∗k′l′

)
denote the wild blocks of blocks bootstrap covariance between τnΓ̂n∗kl and τnΓ̂n∗k′l′

based on an external random variables ηα ∼ i.i.d. with mean E∗ (ηα) and variance V ar∗ (ηα) , and V n∗

a d× d× d× d array, whose generic element is V n∗
kl,k′l′ such that (8) holds.

Lemma 3.1. Given (8) and (9), we have

a)

E∗
(

Γ̂n∗kl

)
=

Jn−1∑
α=1

Znkl (α+ 1) + Znkl (Jn)

+

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1))E∗ (ηα) ,

in particular, if E∗ (ηα) = 1, we have that E∗ (Zn∗kl ) =
∑Jn

α=1Znkl (α) = Γ̂nkl + b̃nkl.

b)

V n∗
kl,k′l′ = 2V ar∗ (η)

τ2
n

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1)) (Znk′l′ (α)−Znk′l′ (α+ 1))︸ ︷︷ ︸
≡V n

kl,k′l′

.

Part a) of Lemma 3.1 states that in the case where b̃nkl = 0, if we let E∗ (ηα) = 1 then Γ̂n∗kl is an

unbiased estimator of the integrated covariance Γkl. Part b) shows that the bootstrap covariance of

τnΓ̂n∗kl and τnΓ̂n∗k′l′ depends on the variance of the external random variable η, as well as the statistic

V n
kl,k′l′ which is based on a "local estimation" of the covariance of Znkl and Znk′l′ . It follows then that a

su�cient condition for the bootstrap to provide a consistent estimator of the conditional asymptotic

variance V is that V ar∗ (η) = 1
2 , and the sequence of Znkl (α) , α = 1, . . . , Jn, is such that V n

kl,k′l′ →P

Vkl,k′l′ , as n→∞. Next, we provide a set of high level conditions that allow us to derive the �rst-order

asymptotic validity of the bootstrap method. Note that this is a high level condition that does not

depend on specifying whether the process X is a continous martingale or observed with error or not.

However, for some estimators, it might hold only with some restrictions.

Condition A

A.1. The choice of the external random variable η is such that V ar∗ (η) = 1
2 , and as n→∞

V n
kl,k′l′ =

τ2
n

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1)) (Znk′l′ (α)−Znk′l′ (α+ 1))→P Vkl,k′l′ .

A.2.
(
n
bn

)1+ε∑Jn
α=1 |Znkl (α)|2+ε = OP (1) , for some ε > 0, as n→∞.

10



A.3. For the same ε > 0, as in A.2., it holds that, as n→∞

bn
n

= o

(
τ
− 2+ε

1+ε
n

)
.

A.1. requires that the choice of the external random variable η as well as the statistic Znkl (α) are

such that the bootstrap variance V n∗ yields a consistent estimator of the asymptotic variance V . This

condition is very general and do not impose any structure on Znkl (α) . We could replace A.1. by a

condition on the sequence of Znkl (α) , α = 1, . . . , Jn such that they are conditionally independent, a

moment condition on Znkl (α) (E

(
|Znkl (α)|2+ε |Fn(α−1)bn

n

)
<∞, for some ε > 0) and more importantly

the following homogeneity condition on the means

Mn ≡ τ2
n

Jn−1∑
α=1

(µnkl (α)− µnkl (α+ 1)) (µnk′l′ (α)− µnk′l′ (α+ 1))→P 0, (11)

where µnkl (α) = E

(
Znkl (α) |Fn(α−1)bn

n

)
. This mean homogeneity condition is suitable for �nancial high

frequency data, in particular for estimators of integrated covolatility. This is not necessary the case of

a naive application of the original wild bootstrap of Liu (1988), which will require in our context to

verify the following condition

ML
n ≡ τ2

n

Jn∑
α=1

(
µnkl (α)− J−1

n

Jn∑
α=1

µnkl (α)

)(
µnk′l′ (α)− J−1

n

Jn∑
α=1

µnk′l′ (α)

)
→P 0. (12)

In the context of time series, see e.g. Liu (1988) and Gonçalves and White (2002) (cf. Assumption

2.2) for similar restriction of the heterogeneity on the means. It is easy to see that in our setting,

the homogeneity condition de�ned in (12) does not hold even in the very simple univariate stochastic

volatility model without noise, where we also rule out drift, leverage e�ect, jumps and we suppose that

prices are observed at equidistant date. In particular, in this case (for simplicity) we can let Jn = n

and consider as statistic of interest the realized volatility estimator de�ned by Γ̂n =
Jn∑
α=1
Zn (α) =

n∑
α=1

(
∆Yα

n

)2
. We can show that

ML
n = n

n∑
α=1

(∫ α
n

α−1
n

σ2
sds− n−1

n∑
α=1

∫ α
n

α−1
n

σ2
sds

)2

= n
n∑

α=1

(∫ α
n

α−1
n

σ2
sds

)2

−
(∫ 1

0
σ2
sds

)2

→ P

∫ 1

0
σ4
sds−

(∫ 1

0
σ2
sds

)2

,

which is not equal to zero (one exception is when the volatility is constant). Whereas for the new

bootstrap method, the mean homogeneity condition requires that

Mn = n
n−1∑
i=1

(∫ i
n

i−1
n

σ2
sds−

∫ i+1
n

i
n

σ2
sds

)2

→P 0.

In contrast to Liu's condition, we can show that under some regularity conditions (Riemann integrabil-
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ity of σ), we always have Mn →P 0, even if the volatility is stochastic. This explains the new centering

suggested in (8). See Section 4, for more general stochastic volatility model.

Condition A.2. and A.3. are conditions used to show that a central limit theorem holds for

τn

(
Γ̂n∗ − E∗

(
Γ̂n∗
))

in the bootstrap world. Part A.2. is a Lyapounov type condition that drives

the asymptotic normality of
∑Jn

α=1Znkl (α), whereas part A.3. restricts the choice of the block size bn,

such that the CLT holds. Note that, when the sequence of Znkl (α) , α = 1, . . . , Jn can be shown to be

conditionally independent by letting bn = 1, in this case we will simply use bn = 1, i.e. Jn = n.

Under this high level condition, we can prove the following results. Theorem 3.1 is the main result

of our paper, and its proof is postponed to the Appendix.

Theorem 3.1. Under Condition A, as n→∞

a)

V n∗
kl,k′l′ →P Vkl,k′l′ , so that V n∗ →P V.

b) Let Sn = τn

(
vec

(
Γ̂n
)
− vec

(∫ 1
0 Σsds

))
and Sn∗ = τn

(
vec

(
Γ̂n∗
)
− E∗

(
vec

(
Γ̂n∗
)))

, if for

some ε > 0, E∗ |ηα|2+ε ≤ ∆ <∞, then

sup
x∈Rd2

|P ∗ (Sn∗ ≤ x)− P (Sn ≤ x)| →P 0.

Part a) of Theorem 3.1 shows that the bootstrap variance estimator is consistent for the asymptotic

variance V according to Condition A. Part b) provides a theoretical justi�cation for using the wild

blocks of blocks bootstrap to consistently estimate the entire distribution of Γ̂n.

The statistics of interest in this paper can be written as smooth functions of Γ̂n. The following

theorem proves that the wild blocks of blocks bootstrap is �rst-order asymptotically valid when applied

to smooth functions of the vectorized of Γ̂n. Let h : Rd2 → R denote a real valued function with

continuous derivatives, and let the d × 1 vector-valued function ∇h denote its gradient. We suppose

that ∇h (vec (Γ)) is non-zero for any sample path of Γ. The statistic of interest is de�ned as

Snh = τn

(
h
(
vec

(
Γ̂n
))
− h (vec (Γ))

)
, (13)

the wild blocks of blocks bootstrap version of Snh is

Sn∗h = τn

(
h
(
vec

(
Γ̂n∗
))
− h

(
E∗
(
vec

(
Γ̂n∗
))))

. (14)

Let V n∗
h ≡ ∇′h

(
E∗
(
vec

(
Γ̂n∗
)))

Ṽ n∗∇h
(
E∗
(
vec

(
Γ̂n∗
)))

denote the wild blocks of blocks bootstrap

variance of τnh
(
vec

(
Γ̂n∗
))

, where Ṽ n∗ =
(
Ṽ n∗
kl

)
1≤k,l≤d2

is a d2 × d2 matrix, whose generic element

Ṽ n∗
kl is given by

Ṽ n∗
kl = V n∗

k−db(k−1)/dc,b(k−1)/dc+1,l−db(l−1)/dc,b(l−1)/dc+1,

with 1 ≤ k, l ≤ d2. The next theorem establishes the �rst-order asymptotic validity of the bootstrap

for some smooth functions of the vectorized of Γ̂n.
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Theorem 3.2. Under the same conditions of Theorem 3.1, as n→∞,

a) V n∗
h →P Vh ≡ limn→∞ V ar

(
τnh

(
vec

(
Γ̂n
)))

.

b) If for some ε > 0, E∗ |ηα|2+ε ≤ ∆ <∞, then

sup
x∈R
|P ∗ (Sn∗h ≤ x)− P (Snh ≤ x)| →P 0.

3.2 The bootstrap for realized covariation measures

In this section we show how we can apply Theorem 3.2 in order to prove �rst-order asymptotic validity

of the bootstrap for some functionals of the matrix Γ̂nkl that are important in practice. The focus will

be on realized covariance, realized regression and realized correlation coe�cients. For the kth and lth

asset, these quantities are given by

Γ̂nkl, β̂
n
lk =

Γ̂nkl

Γ̂nkk
and ρ̂nlk =

Γ̂nkl√
Γ̂nkkΓ̂

n
ll

,

which under certain conditions consistently estimate

Γkl =

∫ 1

0
Σkl (s) ds, βlk =

Γkl
Γkk

and ρlk =
Γkl√
ΓkkΓll

,

respectively. For each of these measures, the non-studentized statistics analogue of (13) are given by

SnΓkl ≡ τn
(

Γ̂nkl − Γkl

)
, Snβlk ≡ τn(β̂nlk − βlk), and Snρlk ≡ τn (ρ̂nlk − ρlk) ,

respectively. Similarly, the corresponding bootstrap percentile statistics (analogue of (14) for Γ̂kl, β̂
n
lk

and ρ̂nlk are given by

Sn∗Γkl
≡ τn

(
Γ̂n∗kl − E∗

(
Γ̂n∗kl

))
, Sn∗βlk ≡ τn(β̂n∗lk −

E∗
(

Γ̂∗kl

)
E∗
(

Γ̂∗kk

)), and Sn∗ρlk ≡ τn

ρ̂n∗lk − E∗
(

Γ̂∗kl

)
√
E∗
(

Γ̂∗kk

)√
E∗
(

Γ̂∗ll

)
 ,

respectively, where Γ̂n∗kl is de�ned in (9), β̂
n∗
lk =

Γ̂∗kl
Γ̂∗kk

and ρ̂n∗lk =
Γ̂∗kl√

Γ̂∗k

√
Γ̂∗l

. According to part b) of Theorem

3.2, we can use the wild blocks of blocks bootstrap variance of Sn∗Γkl
, Sn∗βlk and Sn∗ρlk to consistently

estimate the variance of SnΓkl , S
n
βlk

and Snρlk , respectively. In particular, for the realized covariance

measure, a consistent estimator of VΓkl = limn→∞ V ar
(
τnΓ̂nkl

)
based on the bootstrap method is

given by

V n∗
Γkl

= V n∗
kl,kl =

τ2
n

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1))2 . (15)

Similarly, for the realized regression,

V n∗
βlk

=
(

Γ̂nkk

)−2
ĝβlk →

P Vβlk ≡ lim
n→∞

V ar
(
τnβ̂lk

)
, (16)
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where ĝβlk =

(
1, − E∗(Γ̂∗kl)

E∗(Γ̂∗kk)

)
Bn∗
βlk

(
1, − E∗(Γ̂∗kl)

E∗(Γ̂∗kk)

)′
with Bn∗

βlk
=

(
V n∗
kl,kl V n∗

kl,kk

• V n∗
kk,kk

)
.

For the realized correlation, the bootstrap estimator of Vρlk = limn→∞ V ar (τnρ̂
n
lk) is given by

V n∗
ρlk

=
(

Γ̂nkkΓ̂
n
ll

)−1
ĝρlk , (17)

where ĝρlk is de�ned by ĝρlk =

(
−1

2

E∗(Γ̂∗kl)
E∗(Γ̂∗kk)

, 1, −1
2

E∗(Γ̂∗kl)
E∗(Γ̂∗ll)

)
Bn∗
ρlk

(
−1

2

E∗(Γ̂∗kl)
E∗(Γ̂∗kk)

, 1, −1
2

E∗(Γ̂∗kl)
E∗(Γ̂∗ll)

)′

with Bn∗
ρlk

=

 V n∗
kk,kk V n∗

kk,kl V n∗
kk,ll

• V n∗
kl,kl V n∗

kl,ll

• • V n∗
ll,ll

 .

Note that all the required terms are easy to compute (see Lemma 3.1), so it is rather simple to

implement the bootstrap variance estimator of the variance of VΓkl , Vβlkand Vρlk .

4 Illustration of the bootstrap scheme

The general results presented so far for a multivariate di�usion model with a potential presence of

jumps, noise, irregularly spaced and non-synchronous data are stated quite compactly. Hence, it is

helpful to focus on some particular cases in order to enhance intuition. In this section, we provide a list

of possible multivariate noisy semimartingale models, showing in details how our bootstrap scheme can

be applied. We then verify the high level Condition A for various estimators of integrated covolatility.

First, we look at a benchmark multivariate model where no market microstructure noise is present and

prices are observed synchronously at equidistant time stamps. Secondly, we show how those results

change when the observed data are non-synchronous. Thirdly, we discuss the case of multivariate

model with noisy prices observed synchronously at equidistant time points. Fourthly, we deal with

asynchronicity in noisy irregularly spaced di�usion model. Lastly, we study the case of presence of

jumps, but we rule out asynchronicity and microstructure noise. In order to discuss these results, let

us �rst introduce the assumptions on the sampling scheme. The assumptions made here are speci�c

for the pre-averaging estimator, and others may be considered when using a di�erent estimator. We

follow Christensen et al. (2013) and assume that the observation times tki , i = 0, . . . , nk, k = 1, . . . , d

satisfy the following conditions:

Assumption 1 - Sampling scheme

(a) (Time transformation) tki 's are transformations of an equidistant grid, i.e. there exist strictly

monotonic (deterministic) functions fk : [0, 1] → [0, 1] in C1([0, 1]) with non-zero right and left

derivative in 0 and 1, respectively, and with fk(0) = 0, fk(1) = 1 such that

tki = f−1
k (i/nk), i = 0, ..., nk, k = 1, ..., d.
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(b) (Boundedness of f ′k) There exists a natural number M > 0 such that

M−1 < sup
x∈[0,1]

∣∣f ′k(x)
∣∣ < M, k = 1, ..., d.

(c) (Comparable number of observations) Set n =
∑d

k=1 nk. It holds that

nk
n
→ mk ∈ (0, 1], k = 1, ..., d.

(d) (Joint grid points) The grids
(
tki
)
,
(
tlj

)
(1 ≤ k, l ≤ d) have nkl common points which are

denoted by
(
tklp
)

1≤p≤nkl
. They have the representation tklp = f−1

kl (p/nkl) → mkl ∈ [0, 1], where

the functions fkl satisfy the same assumptions as fk in (a) and (b).

Assumption 1 amounts to Assumption T in Christensen et al. (2013). As they explain, condition

(a) makes the explicit computation of the asymptotic covariance matrix of the pre-averaged Hayashi-

Yoshida estimator (which we will introduce in Section 4.4) possible. Condition (c) implies that the

observation numbers nk have the same order. Condition (b) means that the points of the lth grid do

not lie dense between any two successive points of the kth grid, i.e. the number of points tlj that lie

in the interval [tki−1, t
k
i ] is uniformly bounded by a constant for all 1 ≤ k, l ≤ d. When these last two

conditions (similar number of observations and uniform boundedness of the number of points tlj that

belong to [tki−1, t
k
i ]) are ful�lled we say that the sampling schemes are comparable. See for instance

Lemma 6.1 of Christensen et al. (2013) where conditions (b) and (c) imply that the amount of time

points tki contained in all sub-interval [a, b] of [0, 1] is of the same order as in the equidistant case for

all k. Finally, condition (d) means that the number of common points can be negligible compared to

n (if mkl = 0) or it can be of order n (if mkl > 0).

We assume that εt is m-dependent in tick time and that εt is independent of Xt. Assumption 2

below collects these assumptions.

Assumption 2 - Noise component.

(a) The noise component εt is m-dependent in tick time, which means that for tki ≤ tlj the random

variables εk
tki
and εl

tlj
are independent if

∥∥∥tki − tlj∥∥∥ > m with∥∥∥tki − tlj∥∥∥ = min
(
j −max

{
z| tlz ≤ tki

}
,min

{
z| tkz ≥ tlj

}
− i
)

and similarly for tlj < tki .

(b) E (εt) = 0, and E (εtε
′
t) = Ψ ∈ Rd×d, and the marginal law Q of ε has �nite eight moments.

(c) εt is independent from the latent log-price Xt.

Note that this assumption is speci�c for the pre-averaging estimator, and can be called to question

at very high frequencies. See, e.g. Hansen and Lunde (2006), Voev and Lunde (2007) and Diebold and
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Strasser (2012) for further discussion of this assumption. For instance, for the pre-averaged covolatility

estimator, we could allow for dependence between X and ε, at the cost of slowing down the speed

at which this estimator converges to the true integrated covariation (see Christensen et al. (2010),

Section 3.4 for details). We could also consider a general noise model, allowing for both exogenous

and endogenous components with polynomially decaying autocovariances as in Varneskov (2014) for

realized kernel-based estimators.

In some of our results we rule out jumps in σt, formally, we make the following assumption.

Assumption 3 - Volatility

σt is locally bounded away from zero and is a continuous semimartingale.

This assumption is common in the realized volatility literature (e.g. equation (3) of Barndor�-

Nielsen et al. (2008); Assumption 2 of Mykland and Zhang (2009) or equation (3) of Gonçalves and

Meddahi (2009)). Assumption 3 can be relaxed (see Assumption H1 of Barndor�-Nielsen et al. (2006)

for a weaker assumption on σ).

4.1 Noise-free, synchronous data and no jumps

In the simple case where no market microstructure noise is present and prices are observed syn-

chronously at equidistant time points with no jumps. It follows that Y = X, where X follows (2),

in addition fk(u) = fkl(u) = u, then ∆Y k
tki

= ∆Y k
i
n

= ∆Xk
i
n

for i = 1, . . . , n, k = 1, . . . , d. In applied

work, this refers to a situation where the sampling frequencies are low enough for the e�ects of market

microstructure to be negligible, e.g., 5, 15, or 30 minutes. In this relatively simple scenario, a popular

consistent estimator of integrated covariance is the realized covariance matrix. Here, we can simply

take bn = 1, since with this the summands are conditionally asymptotically independent, it follows

that Jn = n. There is no bias-corrected estimator term, b̃nkl = 0. We have that τn =
√
n and

Γ̂n =

n∑
i=1

(
∆Y i

n

)(
∆Y i

n

)′
=
(

Γ̂nkl

)
1≤k,l≤d

, (18)

where

Γ̂nkl =

Jn∑
α=1

∆Y k
α
n

∆Y l
α
n︸ ︷︷ ︸

=Znkl(α)

.

The bootstrap scheme decribed in (8) becomes

Zn∗kl (α) =

 ∆Y k
α+1
n

∆Y l
α+1
n

+
(

∆Y k
α
n

∆Y l
α
n
−∆Y k

α+1
n

∆Y l
α+1
n

)
ηα, for 1 ≤ α ≤ n− 1,

∆Y k
α
n

∆Y l
α
n
, for α = n.

(19)

Then, in this simple case, the bootstrap resample the cross product returns instead of returns as in

Gonçalves and Meddahi (2009). It follows from Theorem 3.1 that the wild blocks of blocks bootstrap
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covariance between
√
nΓ̂n∗kl and

√
nΓ̂n∗k′l′ is given by

V n∗
kl,k′l′ =

n

2

n−1∑
α=1

(
∆Y k

α
n

∆Y l
α
n
−∆Y k

α+1
n

∆Y l
α+1
n

)(
∆Y k

′
α
n

∆Y l
′
α
n
−∆Y k

′

α+1
n

∆Y l
′

α+1
n

)
. (20)

Next we verify Condition A. It is easy to see that Condition A.3. holds by replacing bn by 1. To check

Condition A.2., apply Theorem 2.1 of Barndor�-Nielsen et al. (2006). A.1. follows since we have let

Znkl (α) = ∆Y k
α
n

∆Y l
α
n
, and Jn = n, then we can write

V n
kl,k′l′ =

n

2

n−1∑
α=1

(
∆Y k

α
n

∆Y l
α
n
−∆Y k

α+1
n

∆Y l
α+1
n

)(
∆Y k

′
α
n

∆Y l
′
α
n
−∆Y k

′

α+1
n

∆Y l
′

α+1
n

)
= n

(
n∑

α=1

∆Y k
α
n

∆Y l
α
n

∆Y k
′

α
n

∆Y l
′
α
n
− 1

2

n−1∑
α=1

(
∆Y k

α
n

∆Y l
α
n

∆Y k
′

α+1
n

∆Y l
′

α+1
n

+ ∆Y k
α+1
n

∆Y l
α+1
n

∆Y k
′

α
n

∆Y l
′
α
n

))
−n

2

(
∆Y k

1
n

∆Y l
1
n

∆Y k
′

1
n

∆Y l
′

1
n

+ ∆Y k
1 ∆Y l

1∆Y k
′

1 ∆Y l
′

1

)
︸ ︷︷ ︸

=OP ( 1
n)

→ PVkl,k′l′ ,

where the last step uses Theorem 2 of Barndor�-Nielsen and Shephard (2004a). More speci�cally, we

may let yi = vec

((
∆Y i

n

)(
∆Y i

n

)′)
for i = 1, . . . , n, then we can write

V n = n

(
n∑
i=1

yiy
′
i −

1

2

n−1∑
i=1

(
yiy
′
i+1 + yi+1y

′
i

))
︸ ︷︷ ︸

=V̂ n
BN-S

− n

2

(
y1y

′
1 + yny

′
n

)
︸ ︷︷ ︸

=OP ( 1
n)

, (21)

where V n =
(
V n
kl,k′l′

)
1≤k,k′l,′l′≤d

and V̂ n
BN-S is the consistent estimator of the asymptotic variance of

√
n

n∑
i=1

(
∆Y i

n

)(
∆Y i

n

)′
proposed by Barndor�-Nielsen and Shephard (2004a). Thus, apart from border

terms, which are OP
(

1
n

)
, our bootstrap variance estimator of the variance of the realized covariance

matrix coincides with the sophisticated consistent variance estimator proposed by Barndor�-Nielsen

and Shephard (2004a). This is in contrast with the pairs bootstrap studied by Dovonon et al. (2013),

which is not able to estimate the long run variance of the realized covariance matrix, except when the

volatility is constant. Note that in the univariate case (d = 1), the wild blocks of blocks bootstrap

variance V n∗
kk,kk becomes

V ar∗

(
√
n

n∑
i=1

(
∆Y k∗

i
n

)2
)

=
n

2

n−1∑
i=1

((
∆Y k

i
n

)2
−
(

∆Y k
i+1
n

)2
)2

→P 2

∫ 1

0
σ4
sds,

which is a consistent estimator of the asymptotic variance of
√
n

n∑
i=1

(
∆Y k

i
n

)2
. This is not the case of

the bootstrap methods studied by Gonçalves and Meddahi (2009). In particular, the i.i.d. bootstrap
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variance estimator for the asymptotic variance of the realized volatility is given by

n
n∑
i=1

(
∆Y k

i
n

)4
−

(
n∑
i=1

(
∆Y k

i
n

)2
)2

→P 3

∫ 1

0
σ4
sds−

(∫ 1

0
σ2
sds

)2

,

which is equal to 2
∫ 1

0 σ
4
sds only when the volatility is constant.

4.2 Noise-free, asynchronous data and no jumps

We now turn to the case of non-synchronously observed data, but we do not allow jumps and market

microstructure noise. In this particular case, it follows that Y = X, where X follows (2), and conse-

quently we have ∆Y k
tki

= ∆Xk
tki
for i = 1, . . . , nk, k = 1, . . . , d. The "standard" estimator of integrated

covolatility, given in (18) is not robust to asynchronous data. An alternative to the realized covari-

ance estimator that solves the non-synchronicity problem using tick-by-tick data is for example the

cumulative covariance estimator developped in Hayashi and Yoshida (2005). This is de�ned as

Γ̂nkl =

nk∑
i=0

nl∑
j=0

∆Y k
tki

∆Y l
tlj

1Cklij
=

Jn∑
α=1

Znkl (α) + b̃nkl, (22)

where Cklij =
{

(i, j) :
(
tki−1, t

k
i

]
∩
(
tli−1, t

l
i

]
6= ∅
}
. The idea of Hayashi and Yoshida (2005) is to select

only some of the cross variations ∆Y k
tki

∆Y l
tlj
in order to estimate

∫ 1
0 Σkl

s ds, and precisely the ones for

which there is an intersection between the time intervals
(
tki−1, t

k
i

]
and

(
tli−1, t

l
i

]
. Here, we can also

take bn = 1, then Jn = n and Bn (α) =
[
α−1
n , αn

)
. There is also no bias-corrected estimator term, i.e.

b̃nkl = 0. Thus we have set

Znkl (α) =
∑

tki ∈Bn(α)

nl∑
j=0

∆Y k
tki

∆Y l
tlj

1Cklij
. (23)

It is easy to verify that Condition A holds, then we can apply all results in Theorems 3.1 and 3.2 to

Γ̂nkl de�ned by (22). The proof of this result is achieved by using arguments alike the ones presented in

the more general case in Section 4.4, where in addition to asynchronicity we allow noise. In particular,

∆Y k
tki

plays the role of Ȳ k
tki

; see Christensen et al. (2013), for further details. Thus, our bootstrap

variance estimator of the variance of the Hayashi and Yoshida (2005) integrated covariance estimator

is an alternative to the consistent variance estimator proposed recently by Mykland (2012).

4.3 Noisy, synchronous data and no jumps

Let us study the case where we allow for the presence of market microstructure noise, but we rule out

asynchronicity, jumps and we suppose that prices are observed at equidistant time stamps. Speci�cally,

we consider the multivariate model given by (2), then we have ∆Y k
i
n

= ∆Xk
i
n

+ ∆εki
n

, for i = 1, . . . , n,

k = 1, . . . , d. There exists many estimators alternative to the realized covariance estimator that are

robust to the presence of market microstructure noise. Let us consider the bias-corrected pre-averaging

estimator of Christensen et al. (2010), which yields the optimal rate of convergence. The pre-averaging
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approach proposed by Podolskij and Vetter (2009), studied by Jacod et al. (2009) and further extended

to the multivariate context by Christensen et al. (2010) and Christensen et al. (2013) is one way to

lessen the in�uence of the noise and help us to get information about Γ.

To describe this technique, let kn be a sequence of integers, which de�nes the window length over

which the pre-averaging of returns is performed. In particular, suppose

kn√
n

= θ + o
(
n−1/4

)
, (24)

for some θ > 0. Similarly, let g be a weighting function on [0, 1] such that g (0) = g (1) = 0,
1∫
0

g (s)2 ds >

0, and assume g is continuous and piecewise continuously di�erentiable with a piecewise Lipschitz

derivative g′. An example of a function that satis�es these restrictions is g (x) = min (x, 1− x) .

For all k = 1, . . . , d, i = 0, . . . , nk − kn + 1, the pre-averaged returns in tick time Ȳ k
tki
are obtained

by computing the weighted sum of all consecutive returns performed in (3) over each block of size kn

Ȳ k
tki

=

kn∑
j=1

g

(
j

kn

)
∆Y k

tki+j
. (25)

Based on the pre-averaged returns Ȳ k
tki
, Christensen et al. (2010) de�ned Γ̂n as:

Γ̂n =
1

ψ2kn

n−kn+1∑
i=0

Ȳ i
n

(
Ȳ i
n

)′
− ψ1

2nθ2ψ2

n∑
i=1

∆Y i
n

(
∆Y i

n

)′
︸ ︷︷ ︸

bias correction term

, (26)

where ψ1 =
1∫
0

g′ (u)2du and ψ2 =
1∫
0

g (u)2du. The pre-averaging estimator is then simply the analogue

of the realized covariance but based on pre-averaged returns and an additional term to remove bias

due to noise. As discussed in Jacod et al. (2009), this bias term does not contribute to the asymptotic

variance of Γ̂n. Note that in (26), the bias correction term b̃n = ψ1

2nθ2ψ2

n∑
i=1

∆Y i
n

(
∆Y i

n

)′
works only

for i.i.d. noise. In the univariate case, e.g., Hautsch and Podolskij (2013) for the corrected estimator

of the bias b̃ under m-dependent noise. In order to apply the wild blocks of blocks bootstrap method,

we can let

Znkl (α) =
1

ψ2kn

bn∑
i=1

Ȳ k
i−1+(α−1)bn

n

Ȳ l
i−1+(α−1)bn

n

. (27)

Note that since the pre-averaged returns are strongly dependent, we cannot use bn = 1 as before,

instead we will let bn tend to in�nity as n → ∞; since in this way we will asymptotically be able to

mimic the dependence in the pre-averaged returns nonparametrically. In particular, bn follows (6) but

additionally we require that 1/2 < δ2 < 2/3. In this case and under Assumptions 2 (with i.i.d noise),

it is easy to verify that Condition A holds, then we can apply all results in Theorems 3.1 and 3.2 to

the pre-averaging estimator Γ̂nkl de�ned by (26). In particular the validity of A.1. is detailed in the

proof of Lemma 7.1 in Appendix B. Condition A.2. also follows since under our assumptions we have
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that Ȳ k
i
n

= OP

(
1

n1/4

)
uniformly in i and similarly Znkl (α) = OP

(
bn
n

)
uniformly in α (see for instance

Lemma 6.2 of Christensen et al. (2013)). Finally A.3. follows since for any ε > 0 and 1/2 < δ2 < 2/3

we have that −2− 3ε+ 4δ2 (1 + ε) < 0.

Note that when d = 1, (26) amounts to the pre-averaging estimator proposed by Jacod et al.

(2009) on which Hounyo et al. (2013) �rst introduced the univariate wild blocks of blocks bootstrap

method. Our new general multivariate wild blocks of blocks bootstrap method given in (8), di�ers from

the univariate bootstrap method of Hounyo et al. (2013) in important ways. The later resamples the

squared pre-averaged returns Ȳ 2
i
n

. Here, in the present paper, we resample the block sum of the squared

pre-averaged returns that belong to Bn (α) =
[

(α−1)bn
n , αbnn

)
, i.e. Znkk (α) = 1

ψ2kn

bn∑
i=1

(
Ȳ k
i−1+(α−1)bn

n

)2

.

In addition, in Hounyo et al. (2013) the choice of the bootstrap block size bn is such that bn = (p+ 1) kn,

where kn is the block length of the interval over which the pre-averaging is done given in (24) and p

is either �xed such that p ≥ 1, or p → ∞. This choice of bn is more speci�c for the pre-averaging

estimator. In this paper, bn ∝ nδ2 where δ2 ∈ (0, 1) . These modi�cations are important in order to

generalize the wild blocks of blocks bootstrap method to a broad class of statistics.

It follows that, the bootstrap covariance between τnΓ̂n∗kl and τnΓ̂n∗k′l′ with τn = n1/4 is given by

V n∗
kl,k′l′ =

√
n

2

∑Jn−1
α=1

(
Znkl (α)−Zn

k′ l′
(α+ 1)

)(
Znkl (α)−Zn

k′ l′
(α+ 1)

)
, where Znkl (α) is given by (27).

Given Theorem 3.1, we have that as n → ∞, V n∗
kl,k′l′ →P Vkl,k′l′ . Also, notice that the bootstrap

variance estimator is positive semi-de�nite by construction, this is an appealing feature not shared by

the existing variance estimator of Vkl,k′l′ proposed by Christensen et al. (2010).

4.4 Noisy, asynchronous data and no jumps

In this subsection, we allow for asynchronicity and as in Section 4.3, we consider a setup where we do

not observe the true e�cient prices X, but instead a process Y . These prices are observed irregularly

and non-synchronous over the interval [0, 1] . In this pratical situation, we study two di�erent integrated

covolatility estimators. First, we verify the validity of the high level Condition A for the pre-averaged

Hayashi-Yoshida estimator studied by Christensen et al. (2013). Second, we show that the multivariate

realized kernel estimator of Barndor�-Nielsen et al. (2011) as well as the �at-top realized kernel by

Varneskov (2014) can also be written as an example of estimators of Γ given in (5). Then, we outline

what a simple bootstrap variance estimator of the asymptotic variance V of the multivariate realized

kernel estimator would look like, if our high level conditions hold.

4.4.1 The pre-averaged Hayashi-Yoshida estimator

Based on the pre-averaged returns Ȳ k
tki

(given by (25)), Christensen et al. (2010) de�ned a Hayashi-

Yoshida-type estimator for the integrated covariance Γkl between assets k and l as follows

Γ̂nkl =
1

(ψkn)2

nk−kn+1∑
i=0

nl−kn+1∑
j=0

Ȳ k
tki
Ȳ l
tlj

1Aklij
, (28)
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where kn is given by (24), ψ =
1∫
0

g (s) ds, Aklij =
{

(i, j) :
(
tki , t

k
i+kn

]
∩
(
tlj , t

l
j+kn

]
6= ∅
}
, 1{·} is the

indicator function discarding pre-averaged returns that do not overlap in time. For the simple function

g (x) = min (x, 1− x), ψ = 1/4. This estimator has the profound advantage that it does not throw

away information that is typically lost using a synchronization procedure. Note that under Assumption

1, n, nk and nl are of the same order and that n controls the universal pre-averaging window kn. In

order to apply the boostrap method given in (8), we can let

Znkl (α) =
∑

tki ∈Bn(α)

nl−kn+1∑
j=0

Ȳ k
tki
Ȳ l
tlj

1Aklij
. (29)

Thus, under Assumptions 1-3, (kn, θ) satisfying (24) and bn follows (6) such that 1/2 < δ2 < 2/3, we

can show that Condition A holds for the pre-averaged Hayashi-Yoshida estimator Γ̂nkl de�ned by (28).

In particular, the validity of A.1. is detailed in the proof of Lemma 7.2 in Appendix B. Condition A.2.

also holds because under our assumptions we have that Ȳ k
i
n

= OP

(
1

n1/4

)
uniformly in i and similarly

Znkl (α) = OP
(
bn
n

)
uniformly in α (see for instance Lemma 6.2 of Christensen et al. (2013)). Finally,

A.3. follows since for any ε > 0 and 1/2 < δ2 < 2/3 we have that −2− 3ε+ 4δ2 (1 + ε) < 0.

4.4.2 Multivariate realized kernels estimator

In the univariate setting, Jacod et al (2009) show that apart from border terms, i.e. terms close to 0

and 1, the pre-averaging estimator given by (26) coincides with the one-lag "�at top" realized kernel

estimator in Barndor�-Nielsen et al. (2008) using kernel weights

k (s) = ψ−1
2

1∫
s

g (u) g (u− s) du, (30)

where g (u) is de�ned as in Section 4.3. In particular, when we choose the bandwidth of the realized

kernel estimator equal to the size of the pre-averaging window kn, the realized kernel and pre-averaging

based-estimators have the same asymptotic distribution. Consequently, for the bootstrap we can

resample the same statistics as we did for the pre-averaging estimator to estimate the distribution as

well as the variance of realized kernel based-estimator, provided that we use the weight function as

given by (30). Some of our arguments here are heuristic. To �x ideas, let consider synchronous data

in the following. According to equation (1) of Barndor�-Nielsen et al. (2011) (see also equation (5) of

Varneskov (2014)), the multivariate realized kernel can be rewritten as

Γ̂n =
n∑
i=1

k (0)
(

∆Y i
n

)(
∆Y i

n

)′
+

n−1∑
i=1

n−i∑
h=1

k

(
h

H

)((
∆Y i

n

)(
∆Y i+h

n

)′
+
(

∆Y i+h
n

)(
∆Y i

n

)′)
, (31)

where ∆Y i
n

= Y i
n
− Y i−1

n
and k : R→ R is a non-stochastic weight function. That is characterised by:

Assumption K. (i) k (0) = 1, k
′
(0) = 0; (ii) k is twice di�erentiable with continous derivatives; (iii)
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∞∫
0

k (x)2dx <∞,
∞∫
0

k′(x)2dx <∞, k′′(x)2dxdx <∞; (iv)
∞∫
−∞

k (x) exp (ixλ) dx≥ 0 for all λ ∈ R.

We follow Barndor�-Nielsen et al. (2011) and we average m prices at the very beginning and end

of the day. More speci�cally, we set

Y0 =
1

m

m∑
i=1

Y i
n
, and Y1 =

1

m

m∑
i=1

Yn−m+i
n

.

Note that, (31) can be written as

Γ̂n =

Jn∑
α=1

Zn (α) ,

where for 1 ≤ α ≤ Jn,

Zn (α) =

αbn∑
i=(α−1)bn+1

((
∆Y i

n

)(
∆Y i

n

)′
+

n−i∑
h=1

k

(
h

H

)((
∆Y i

n

)(
∆Y i+h

n

)′
+
(

∆Y i+h
n

)(
∆Y i

n

)′))
,

(32)

given that k (0) = 1, and we suppose by simplicity that Jn is an integer such that n = Jn ·bn. The statis-
tics Zn (α) involve many increments of Y , that are not in the sub-interval Bn (α) =

[
(α−1)bn

n , αbnn

)
.

Thus Zn (α) may be strongly dependent even if we let bn tend to in�nity as n → ∞ because they

rely on many common observations ∆Y i
n
. However, when we use as weight function the Parzen kernel

(which is advocated by Barndor�-Nielsen et al. (2011)), we show that we can remove substantially

many common observations ∆Y i
n
in Zn (α). In particular, all observations in Zn (α) such that h

H > 1

(since by de�nition, for the Parzen kernel k (x) = 0 for x > 1). Thus, according that k (x) is the Parzen

kernel or any others kernel such that Assumption K holds and k (x) = 0 for x > 1, we can write (31)

as follows, for 1 ≤ α ≤ Jn − 1

Zn (α) =

αbn∑
i=(α−1)bn+1

((
∆Y i

n

)(
∆Y i

n

)′
+

H∑
h=1

k

(
h

H

)((
∆Y i

n

)(
∆Y i+h

n

)′
+
(

∆Y i+h
n

)(
∆Y i

n

)′))
,

(33)

whereas for α = Jn

Zn (α) =
n∑

i=n−bn+1

(∆Y i
n

)(
∆Y i

n

)′
+

min(H,n−i)∑
h=1

k

(
h

H

)((
∆Y i

n

)(
∆Y i+h

n

)′
+
(

∆Y i+h
n

)(
∆Y i

n

)′) ,

(34)

where H ≤ bn. It is conjecture that the statistics Zn (α) , as de�ned by (33) and (34) will verify our

high level Condition A. If this is the case, then a positive semi-de�nite consistent estimator of the

asymptotic variance V of the multivariate realized kernel estimator will be V n =
(
V n
kl,k′l′

)
1≤k,k′l,′l′≤d

,

where

V n
kl,k′l′ =

n2/5

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1)) (Znk′l′ (α)−Znk′l′ (α+ 1)) .
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It would cleary be desirable to have a formal proof of this, but this is beyond the scope of this paper.

We emphasize that the paper by Barndor�-Nielsen et al. (2011) goes much futher in developing

the multivariate realized kernel estimation technology, including non-synchronous trading and allowing

certain types of measurement error (such as endogenous noise). Furthermore, their results are extended

in Varneskov (2014), who also suggests a class of kernels that are n1/4-consistent and e�cient.

In the univariate context, given that we can �t the subsampling-based estimator of Zhang et

al. (2005) and Zhang (2006) into the realized kernel setting (e.g. Barndor�-Nielsen et al. (2008)),

we conjecture that similar analysis as for kernel-based estimators holds for the subsampling-based

estimators, but a full exploration of this is left for future research.

4.5 Jumps, noise-free and synchronous data

It has long been recognized that asset prices do not always evolve continuously over a given time

interval (e.g. Huang and Tauchen (2005), Barndor�-Nielsen and Shephard (2006)). So far we have

focused on the case where X is continuous In this subsection, we allow for jumps in Xt and suppose

that no market microstructure noise is present and prices are observed synchronously at equidistant

date. In particular, we observe Y = X + Z, where X is given by (2) at regular time points ti = i
n , for

i = 0, . . . , n, where Zk is any �nite activity jump process. This means that they have the following

representation, for all k = 1, . . . , d,

Zkt =

∫ t

0
Cks dN

k
s ds =

Nk
t∑

r=1

Ckπkr
,

where Nk =
(
Nk
t

)
t∈[0,1]

is a counting process with E
(
Nk

1

)
< ∞,

{
πkr , r = 1, . . . , Nk

1

}
denote the

instants of jump of Zk and Ck
πkr

denote the sizes ∆Zkt of jumps at πkr .

In this context, the covariance between risk factors of asset prices is due to both Brownian and jump

components. To separate the two terms of the quadratic covariation given by the sum of Γ (integrated

covariance) with the sum of co-jumps, we can for instance used the threshold estimator of Mancini and

Gobbi (2012) (see also Barndor�-Nielsen and Shephard (2004b), Jacod and Todorov (2009), Bollerslev

and Todorov (2010) and Boudt, Croux and Laurent (2011), among others). Following Mancini and

Gobbi (2012), we have that

Γ̂n =

n∑
i=1

(
∆̃Y i

n

)(
∆̃Y i

n

)′
≡
(

Γ̂nkl

)
1≤k,l≤d

, (35)

where ∆̃Y i
n
≡
(

∆̃Y
1
i
n
, . . . , ∆̃Y

d
i
n

)′
=

(
∆Y 1

i
n

1{∣∣∣∣∆Y 1
i
n

∣∣∣∣≤α̃n−λ̃}, . . . ,∆Y d
i
n

1{∣∣∣∣∆Y di
n

∣∣∣∣≤α̃n−λ̃}
)′
, α̃ ≥ 0, and

λ̃ ∈
(
0, 1

2

)
, and Γ̂nkl =

n∑
i=1

∆Y k
i
n

1{∣∣∣∣∆Y ki
n

∣∣∣∣≤α̃n−λ̃}∆Y l
i
n

1{∣∣∣∣∆Y li
n

∣∣∣∣≤α̃n−λ̃}. As in Section 4.1, here we can take
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bn = 1. There is no bias-corrected estimator term, i.e. b̃nkl = 0. It follows that Jn = n, and

Znkl (α) = ∆̃Y
k
α
n

∆̃Y
l
α
n
, for α = 1, . . . , n. (36)

Next we verify Condition A. It is easy to see that Condition A.3. holds by replacing bn by 1. To check

Condition A.2., apply Theorem 2.1 of Barndor�-Nielsen et al. (2006). The proof of validity of A.1. is

achieved by using arguments alike the ones presented, in detail, in the proof of Lemma 7.1, where now

∆̃Y
k
α
n
plays the role of Ȳ k

tki
. It follows from Theorem 3.1 that the bootstrap covariance V n∗

kl,k′l′ is given

by

V n∗
kl,k′l′ =

n

2

n−1∑
i=1

(
∆̃Y

k
i
n

∆̃Y
l
i
n
− ∆̃Y

k
i+1
n

∆̃Y
l
i+1
n

)(
∆̃Y

k′
i
n

∆̃Y
l′
i
n
− ∆̃Y

k′
i+1
n

∆̃Y
l′
i+1
n

)
.

In particular, when (k, l) =
(
k
′
, l
′
)
, we have that

V n∗
kl,kl =

n

2

n−1∑
i=1

(
∆̃Y

k
i
n

∆̃Y
l
i
n
− ∆̃Y

k
i+1
n

∆̃Y
l
i+1
n

)2

= n
n∑
i=1

(
∆̃Y

k
i
n

∆̃Y
l
i
n

)2

− n
n−1∑
i=1

(
∆̃Y

k
i
n

∆̃Y
l
i
n

)(
∆̃Y

k
i+1
n

∆̃Y
l
i+1
n

)
︸ ︷︷ ︸

=V̂ n
M-G

− n
2

((
∆̃Y

k

1∆̃Y
l

1

)2

+
(

∆̃Y
k

n∆̃Y
l

n

)2
)

︸ ︷︷ ︸,
=OP ( 1

n)

where V̂ n
M-G is the consistent estimator of the asymptotic variance of

√
n

n∑
i=1

∆̃Y
k
i
n

∆̃Y
l
i
n
proposed by

Mancini and Gobbi (2012) (cf. Proposition 3.7). Thus, apart from border terms which are OP
(

1
n

)
,

we have V n∗
kl,kl = V̂ n

M-G →P Vkl,kl, as n → ∞. This result extends the work of Hounyo (2013), where a

local Gaussian bootstrap method have been proposed for inference on integrated covolatility under no

jumps by allowing for the latter. It also provides an alternative to the recent general local Gaussian

bootstrap method introduced by Dovonon et al. (2014) for jump tests.

Note that in the univariate context, the jump robust estimators of integrated volatility called

bipower variation introduced by Barndor�-Nielsen and Shephard (2004) and its multipower version,

analysed among others by Barndor�-Nielsen et al. (2006), can also be written as an example of

estimators of Γ given in (5). Following Barndor�-Nielsen et al. (2006), we have that

Γ̂n =
1

L∏
l=1

mpl

n−L+1∑
i=1

L∏
l=1

∣∣∣∆Y k
i+l−1
n

∣∣∣pl , (37)

such that
∑L

l=1 pl = 2, where pl ≥ 0 and mp = E |N (0, 1)|p . In particular, under some regularity

conditions, we can apply the wild blocks of blocks bootstrap method by resampling as in (8) the

statistics Znkk (α) given by

Znkk (α) =
1

L∏
l=1

mpl

bn∑
i=1

L∏
l=1

∣∣∣∣∆Y k
i+l−1+(α−1)bn

n

∣∣∣∣pl , for α = 1, . . . , Jn, (38)
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where here Jn =
⌊
n−L+1
bn

⌋
. The full exploration of the multipower variation-based bootstrap is left for

future research.

5 Monte Carlo results

In this section, we assess by Monte Carlo simulation the accuracy of the feasible asymptotic theory

approach of Christensen et al. (2013). We �nd that this approach leads to important coverage prob-

ability distortions when returns are not sampled too frequently. We also compare the �nite sample

performance of this approach with the wild blocks of blocks bootstrap method. The design of our

Monte Carlo study is roughly identical to that used by Christensen et al. (2010) and Barndor�-Nielsen

et al. (2011) with some minor di�erences. In particular, in addition to the case of i.i.d. noise, we look

at the case of autocorrelated noise. Here we brie�y describe the Monte Carlo design we use.

To simulate log-prices we consider the following bivariate stochastic volatility model

dX
(i)
t = a(i)dt+ ρ(i)σ

(i)
t dB

(i)
t +

√
1−

[
ρ(i)
]2
σ

(i)
t dWt, for i = 1, 2,

where B(i) and W are independent Brownian motions. In this model, the term ρ(i)σ
(i)
t dB

(i)
t is an

idiosyncratic component, while
√

1−
[
ρ(i)
]2
σ

(i)
t dWt is a common factor.

The spot volatility is modeled as σ
(i)
t = exp

(
β

(i)
0 + β

(i)
1 %

(i)
t

)
with an Ornstein-Uhlenbeck speci-

�cation for %
(i)
t : d%

(i)
t = α(i)%

(i)
t dt + dB

(i)
t . This implies that there is perfect correlation between

the innovations of ρ(i)σ
(i)
t dB

(i)
t and σ

(i)
t , while it is ρ(i) between the increments of X

(i)
t and %

(i)
t .

Finally, the magnitude of correlation between the two underlying price processes X
(1)
t and X

(2)
t is√

1−
[
ρ(1)
]2√

1−
[
ρ(2)
]2
. The reported results are based on the following con�guration of param-

eters for both processes:
(
a(i), β

(i)
0 , β

(i)
1 , ρ(i), α(i)

)
= (0.03,−5/16, 1/8,−1/40,−0.3), so that β

(i)
0 =[

β
(i)
1

]2
/
[
2α(i)

]
. We note that this particular choice of parameters also means that the volatility

process has been normalized, in the sense that E

(∫ 1
0

[
σ

(i)
s

]2
)

= 1.

We simulate data for the unit interval [0, 1], and normalize one second to be 1/23400, so that [0, 1]

represent 6.5 hours worth of trading, which is then further decomposed into N = 23, 400 subintervals of

equal length 1/N . In constructing noisy prices Y (i), we �rst generate a complete high frequency record

of N equidistant observations of the e�cient price X(i) using a standard Euler scheme. We initialize

the spot volatility σ
(i)
t at the start of each interval by drawing the initial values for the %

(i)
t processes

from its stationary distribution, i.e. %
(i)
0 ∼ N

(
0,
[
2α(i)

]−1
)
. The size of the market microstucture

noise is an important parameter. We follow Barndor�-Nielsen et al. (2011) and model the noise

magnitude as ξ2 = ω2/
√∫ 1

0 σ
4
sds. We �x ξ2 equal to 0, 0.001 and 0.01 (which covers scenarios with

no noise through low-to-high levels of noise) and let ω2 = ξ2
√∫ 1

0 σ
4
sds. This means that the variance

of the noise process increases with the level of volatility of the e�cient price X(i), as documented by

Bandi and Russell (2006). These values are motivated by the empirical study of Hansen and Lunde
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(2006), who investigate 30 stocks of the Dow Jones Industrial Average. We follow Kalnina (2011) and

add autocorrelated microstructure noise simulated as an MA(1) process (for a given frequency of the

observations):

ε
(i)
j
n

= u
(i)
j−1
n

+ γu
(i)
j
n

, where u(i)| {σ,X} i.i.d.∼ N

(
0,

ω2

1 + γ2

)
,

so that V ar
(
ε(i)
)

= ω2. The observed process is then given by Y (i) = X(i) + ε(i). Three di�erent values

of γ are considered, γ = 0, γ = −0.5 and γ = −0.9 (which covers scenarios of i.i.d. noise, moderate

and high level of correlation of noise). We follow Christensen et al. (2010) and use the conservative

choice of kn (θ = 1, implying that kn =
√
n). We also follow the literature and use the weight function

g (x) = min (x, 1− x) to compute the pre-averaged returns. In order to reduce �nite sample biases

associated with Riemann integrals, we replace in (28), ψ =
1∫
0

g (s) ds by its Riemann approximation

given by ψn = 1
kn

kn∑
i=0

g
(
i
kn

)
.

Finally, we extract irregular, non-synchronous data from the complete high-frequency record using

Poisson process sampling to generate actual observation times,
{
t
(i)
j

}
. In particular, we consider two

independent Poisson processes with intensity parameter λ = (λ1, λ2). Here λi denotes the average

waiting time (in seconds) for new data from process Y (i), so that an average day will have N/λi

observations of Y (i), i = 1, 2. We vary λ1 through (3, 10, 60) to capture the in�uence of liquidity on

the performance of the pre-averaged multivariate volatility estimator and we set λ2 = 2λ1 such that

on average Y (2) refreshes at half the pace of Y (1).

Table 1 gives the actual coverage probability rates of 95% con�dence intervals of the three covari-

ation measures (integrated covariance, integrated correlation and integrated regression coe�cients) as

well as the average lengths of the con�dence intervals, computed over 10,000 replications. Results based

on the asymptotic normal distribution and the wild blocks of blocks bootstrap method are included

under the label CLT and WBBB, respectively.

In our simulations, bootstrap intervals use 999 bootstrap replications for each of the 10,000 Monte

Carlo replications. We consider the bootstrap percentile method computed at the 95% level. To

generate the bootstrap data we use the following external random variables η ∼ i.i.d. N (1, 1/2). The

choice of the bootstrap block size is critical. We follow Politis, Romano and Wolf (1999) and Hounyo

et al. (2013) and use the Minimum Volatility Method to choose the bootstrap block (for further details

see Hounyo et al. (2013)).

For the three covariation measures, all intervals tend to undercover. The degree of undercoverage

is especially large, when the average arrival times of trades is not too frequent. Results are not very

sensitive to the noise magnitude nor to the level of correlation. The gains associated with the wild

blocks of blocks bootstrap method can be quite substantial, especially for larger values of λ1 and λ2

(long average waiting time for new data from process Y (1) and Y (2)), when distortions of the CLT-based

intervals are larger. For instance, when γ = −0.5 (moderate level of correlation of noise), ξ2 = 0.01
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(high level of noise), and λ = (60, 120) (illiquid assets), for the regression coe�cient, the coverage

rate for a symmetric bootstrap percentile interval is equal to 87.52%, whereas it is equal to 70.20%

for the feasible asymptotic theory of Christensen et al. (2013). The gains are especially important

for the correlation coe�cient, when the asymptotic theory-based intervals does worst. The bootstrap

interval has a rate of 90.82%, whereas the Christensen et al. (2013) interval has a rate of 69.32%. For

the covariance, these numbers are equal to 87.52% and 70.15%, for the bootstrap and the Christensen

et al. (2013) interval, respectively. When the average arrival times of trades become frequent, the

bootstrap intervals have coverage rates closer to the desired level, whereas the undercoverage problem

persists for the CLT-based intervals. For instance, for the CLT-based intervals, when γ = −0.9 (high

level of correlation of noise), ξ2 = 0.001 (low level of noise), and λ = (3, 6) (liquid assets), a two-sided

95% con�dence interval for the covariance measure between the two assets has coverage rate equal to

89.19%, whereas it is equal to 88.70% for the regression coe�cient. These numbers increase to 94.91%

and 94.78% for the bootstrap-based intervals. The bootstrap performance is quite remarkable for the

correlation coe�cient where it essentially removes all �nite sample bias associated with the �rst-order

asymptotic theory of Christensen et al. (2013).

In summary, the results in Table 1 show that the performance of the asymptotic theory-based in-

tervals and the bootstrap percentile intervals in terms of coverage rate crucially depends on the average

arrival times of trades. In fact for non-frequent arrival times of trade, the asymptotic normal approx-

imation is often inaccurate and leads to important coverage distortions. In all cases, the bootstrap

outperforms the existing �rst order asymptotic theory.

6 Empirical application

To illustrate some empirical features of the wild blocks of blocks bootstrap theory developed above,

we analyse high-frequency assets prices for four assets. In the analysis we focus on the realized beta

estimator based on pre-averaged returns. In particular, we compare the empirical properties of the

bootstrap to the existing feasible asymptotic procedure of Christensen et al. (2013). The data is the

collection of trades recorded on the NYSE in July 2013, taken from the TAQ database through the

Wharton Research Data Services (WRDS) system. This results in 22 distinct trading days. We picked

3 equities at random from the S&P 500 constituents list as of July 1, 2014. They are Microsoft Co.

(listed under the ticker symbol (MSFT)), Boeing Co. (BA) and WPX Energy Inc. (CPWR). We

then added a 4th element, namely the S&P 500 Depository Receipt (ticker symbol SPY). The SPY is

an exchange-traded fund that tracks the large-cap segment of the US stock market. As such, it can

be viewed as generating market-wide index returns. For each day, we consider data from the regular

exchange opening hours from time stamped between 9:30 a.m. until 4 p.m. Eastern Standard Time.

Our procedure for cleaning the data is identical to that used by Barndor�-Nielsen et al. (2011) (for

further details see this paper). Table 2 reports some summary statistics of the data (before and after
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cleaning). As can be seen, these equities display varying degrees of liquidity with MSFT and SPY

being the most liquid, while CPWR is the least liquid.

To implement the pre-averaged returns in tick time as given in (25), we select the tuning parameter

θ by following the conservative rule (θ = 1, implying that kn =
√
n). For the bootstrap, to choose the

block size bn, we follow Politis, Romano and Wolf (1999) and use the minimum volatility method (see

Appendix A of Hounyo et al. (2013) for details).

We start by analysing the high frequency data. Figure 1 shows time series, autocorrelation and

histogram of raw returns as well as of pre-averaged returns for SPY. We observe a pronounced serial

correlation in raw returns and in pre-averaged returns. In particular, for raw returns the �rst auto-

correlation is large and negative. This is typical of noisy data and unlikely to arise from a Brownian

semimartingale. Note that, the strong autocorrelation observed for pre-averaged returns in Panel D

of Figure 1 is due to the fact that we have considered overlapping pre-averaged returns, which rely

on many common raw returns. This has nothing to do with the fact that raw returns are possibly

noisy. In fact, the correlogram (not reported here) of non-overlapping pre-averaged returns shows

that the latter are almost uncorrelated (even for the �rst lag). The e�ect of pre-averaging is nicely

illustrated by comparing Panel E and F of Figure 1. It appears that pre-averaging helps to reduce

price discreteness e�ect observed in raw returns. At the same time, return distribution is now much

closer to being Gaussian. These results are not surprising, it con�rms theoretical properties of pre-

averaged returns. In particular, under mild conditions on the dynamics of the price process we have

that n1/4Ȳα
n
|Fn(α−1)bn

n

a∼ N
(

0, θψ2σ
2
α
n

+ ψ1

θ ω
2
)
. Similar patterns (not reported here) are observed for

MSFT, BA and CPWR.

We now turn to the realized beta for MSFT, BA and CPWR. We consider bootstrap percentile

intervals, computed at the 95% level. The results are displayed in Figure 2 in terms of daily 95%

symmetric con�dence intervals for the latent realized beta. Two types of intervals are presented:

our proposed wild blocks of blocks bootstrap method and the feasible asymptotic theory-based of

Christensen et al. (2013). The pre-averaged Hayashi-Yoshida estimator-based beta estimate is in the

center of both con�dence intervals by construction. In fact, similar series of con�dence intervals for beta

was also graphed by Dovonon et al. (2013) in their Figures 1 and 2, except that they used daily log-

returns to calculate estimated betas (based on realized covariance) over intervals of one quarter. The

emphasis of their paper was to illustrate the usefulness of the bootstrap as a method of inference on beta

in a context, where the mechanics of trading is perfect so that there is no market microstructure e�ects

and prices are observed synchronously. In Figure 2, beta is estimated using full record transaction

prices. For all stocks considered in the present study, the width of con�dence intervals (the bootstrap

and the asymptotic theory-based) varies through time. Also, there are a lot of variability in the daily

estimate of beta, but all of them lie in the positive region. This means that, these stocks move in the

same direction as the market.

As illustrated below, a closer analysis of Figure 2 show that these common patterns observed for
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MSFT, BA and CPWR hide di�erent empirical features which allow us to gain valuable insights into

the empirical performance of the wild blocks of blocks bootstrap method. For MSFT: the most liquid

stock after SPY considered in our analysis, a comparison of the bootstrap intervals with the intervals

based on the feasible asymptotic approach of Christensen et al. (2013) suggests that the two types of

interval tend to be quite similar. In contrast to MSFT, for the less liquid stock considered here, i.e.

CPWR, in most of the cases the con�dence intervals for daily beta based on the bootstrap method

are usually wider than the con�dence intervals using the feasible asymptotic theory. For BA, there

is no evidence about the relative empirical performance of the bootstrap and the asymptotic theory-

based. These observations lead us to conclude that the degree of liquidity of assets, speci�cally the

non-trading of MSFT, BA or CPWR versus SPY in�uences the width of con�dence intervals, although

the conclusion might change for other data sets. Note that, as our Monte Carlo simulations showed,

the asymptotic theory-based approach typically have undercoverage problems whereas the bootstrap

intervals have coverage rates closer to the desired level. Therefore, if the goal is to control the coverage

probability, shorter intervals are not necessarily better.

7 Conclusion

This paper proposes the bootstrap as a method of inference for integrated covariance matrix. We show

that the wild blocks of blocks bootstrap studied by Hounyo et al. (2013) can be used to simultane-

ously handle the presence of dependence, jumps, heterogeneity, irregularly spaced and non-synchronous

trading properties of high-frequency data. This combination of properties is unique in the bootstrap

literature, so it is worthwhile exploring this bootstrap method in some detail. The bootstrap method is

particularly useful because it circumvents the need for an explicit estimator of the asymptotic variance,

which has proved di�cult in our context.

We provide a set of conditions under which this method is asymptotically valid to �rst order.

We then verify these conditions for various estimators of integrated covolatility. Our Monte Carlo

simulations show that the wild blocks of blocks bootstrap improves the �nite sample properties of

the existing (pre-averaging-based estimator) �rst order asymptotic theory. Furthermore, an empirical

illustration highlights the usefulness of our approach as an alternative method of inference for realized

covariation measures and its applicability to real high-frequency data. In future work, we plan to

study the higher-order accuracies of this bootstrap method. Another important extension is to provide

a theoretical optimal choice of the block size bn for con�dence interval construction.

Appendix A

Tables 1 reports the actual coverage rates for the feasible asymptotic theory approach of Christensen

et al. (2013) and for our bootstrap methods, as well as the average lengths of the con�dence intervals

using the optimal block size by minimizing con�dence interval volatility.
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Table 2. Descriptive statistics and number of data before and after �ltering.

Stock BA CPWR MSFT SPY

Raw trades 783,150 155,413 3,160,226 5,557,249
Corrected/Abnormal/Zeros 10 26 36 12
Time aggregation 645,249 125,242 2,889,825 5,191,067

# Trades 137,891 30,145 270,365 366,170
Intensity 6,268 1,370 12,289 16,644

Note. This table reports some descriptive statistics and liquidity measures for the selection of stocks included
in our empirical application. Raw trades is the total number of data available from these exchanges during the
trading session, while # trades is the total sample remaining after �ltering the data. Intensity is the average
number of data per day.

Panel A: Time series of raw returns Panel B: Time series of pre-averaged returns

Panel C: Autocorrelation of raw returns Panel D: Autocorrelation of pre-averaged returns

Panel E: Histogram of raw returns Panel F: Histogram of pre-averaged returns

Figure 1: Summary statistics of raw and pre-averaged SPY trade data over regular exchange opening days in

July 2013.
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Figure 2: 95% Con�dence Intervals (CI's) for the daily pre-averaged Hayashi-Yoshida estimator -based beta

estimates, for each regular exchange opening days for BA, CPWR and MSFT in July 2013, calculated

using the asymptotic theory of Christensen et al. (2013) (CI's with bars), and the wild blocks of

blocks bootstrap method (CI's with lines). The pre-averaged Hayashi-Yoshida estimator -based beta

estimate is the middle of all CI's by construction. Days on the x-axis.
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Appendix B

Proof of Lemma 3.1 Part a). Given (8) and (9), result follows directly since we can write

E∗
(

Γ̂n∗kl

)
=

Jn∑
α=1

E∗ (Zn∗kl (α))

=

Jn−1∑
α=1

E∗ (Zn∗kl (α)) + E∗ (Zn∗kl (Jn))

=

Jn−1∑
α=1

[Znkl (α+ 1) + (Znkl (α)−Znkl (α+ 1))E∗ (ηα)] + Znkl (Jn) .

Then, under the condition E∗ (ηα) = 1, we have that

E∗
(

Γ̂n∗kl

)
=

Jn∑
α=1

Znkl (α)

= Γ̂nkl + b̃nkl, .

Proof of Lemma 3.1 Part b). Given the de�nition of V n∗
kl,k′l′ , equations (8) and (9) we have that

V n∗
kl,k′l′ = τ2

nE
∗ ((Zn∗kl − E∗ (Zn∗kl )) (Zn∗k′l′ − E∗ (Zn∗k′l′)))

= τ2
n

Jn−1∑
α=1

Jn−1∑
α′=1

E∗
(

(Zn∗kl (α)− E∗ (Zn∗kl (α)))
(
Zn∗k′l′

(
α
′
)
− E∗

(
Zn∗k′l′

(
α
′
))))

= τ2
n

Jn−1∑
α=1

Jn−1∑
α′=1

((Znkl (α)−Znkl (α+ 1)))
(
Znk′l′

(
α
′
)
−Znk′l′

(
α
′
+ 1
))

Cov∗
(
ηα, ηα′

)
.

Using the fact that ηα ∼ i.i.d., result follows, then we get

V n∗
kl,k′l′ = 2V ar∗ (η)

τ2
n

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1)) (Znk′l′ (α)−Znk′l′ (α+ 1))

= 2V ar∗ (η)V n
kl,k′l′ .

Proof of Theorem 3.1 Part a). Result follows directly given part b) of Lemma 3.1 and Condition

A1.

Proof of Theorem 3.1 Part b). Let Γ̂n∗kl (α) ≡ (Zn∗kl (α))1≤k,l≤d , where Z
n∗
kl (α) is de�ned in (8), and

let x∗α ≡ vec
(

Γ̂n∗kl (α)
)
. We have that Sn∗ ≡ n1/4

(
vec

(
Γ̂n∗
)
− E∗

(
vec

(
Γ̂n∗
)))

= τn
∑Jn

α=1 (x∗α − E∗ (x∗α)) .

The proof follows from showing that for any λ ∈ Rd2 such that λ′λ = 1, supx∈R |P ∗(
∑Jn

α=1 x̃
∗
α ≤

x)− Φ(x/
(
λ′Ṽ λ

)
)| P→ 0, where x̃∗α = τnλ

′(x∗α − E∗(x∗α)), and Ṽ =
(
Ṽkl

)
1≤k,l≤d2

is a d2 × d2 matrix,

whose generic element Ṽkl is given by

Ṽkl = Vk−db(k−1)/dc,b(k−1)/dc+1,l−db(l−1)/dc,b(l−1)/dc+1,

with 1 ≤ k, l ≤ d2. Clearly, E∗
(∑Jn

α=1 x̃
∗
α

)
= 0 and V ar∗

(∑Jn
α=1 x̃

∗
α

)
= λṼ n∗λ

P→ λ′Ṽ λ by part a).

Thus, by Katz's (1963) Berry-Essen Bound, for some small ε > 0 and some constant K > 0 which
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changes from line to line, supx∈R

∣∣∣P ∗ (∑Jn
α=1 x̃

∗
α ≤ x

)
− Φ(x/

(
λ′LV L

′
λ
)

)
∣∣∣ ≤ K∑Jn

α=1E
∗|x̃∗α|2+ε.Next,

we show that
∑Jn

α=1E
∗|x̃∗α|2+ε = op(1). We have that

Jn∑
α=1

E∗|x̃∗α|2+ε =

Jn∑
α=1

E∗
∣∣τnλ′(x∗α − E∗ (x∗α))

∣∣2+ε

≤ 22+ετ2+ε
n

Jn∑
α=1

E∗
∣∣λ′x∗α∣∣2+ε

≤ 22+ετ2+ε
n

Jn∑
α=1

E∗ |x∗α|
2+ε

≤ Kτ2+ε
n E∗ |η1|2+ε

Jn∑
α=1

|xα|2+ε ,

where the �rst inequality follows from the Cr and the Jensen inequalities; the second inequality uses

the Cauchy-Schwarz inequality and the fact that λ′λ = 1; and the third inequality follows from the Cr

and the Jensen inequalities. We let |z|2 = (z′z) for any vector z. It follows that

Jn∑
α=1

E∗|x̃∗α|2+ε ≤ Kτ2+ε
n E∗ |η1|2+ε

Jn∑
α=1

|xα|2(1+ε/2)

≤ Kτ2+ε
n E∗ |η1|2+ε

Jn∑
α=1

(
d∑

k=1

d∑
l=1

(Znkl (α))2

)1+ε/2

≤ KE∗ |η1|2+ε︸ ︷︷ ︸
=O(1)

τ2+ε
n

(
bn
n

)1+ε

︸ ︷︷ ︸
=o(1)

(
n

bn

)1+ε Jn∑
α=1

|Znkl (α)|2+ε

︸ ︷︷ ︸
=OP (1)

= oP (1) .

where consistency follows since for any ε > 0, E∗ |ηα|2+ε ≤ ∆ <∞, and by using Conditions A.2. and

A.3.

Proof of Theorem 3.2. Parts a) and b). Since Sn converges stably in distribution to N(0, Ṽ ), by

an application of the delta method (see Podolskij and Vetter (2010, Proposition 2.5(iii))),

Snh →st N

(
0,∇′h

(
vec

(∫ 1

0
Σsds

))
Ṽ∇h

(
vec

(∫ 1

0
Σsds

)))
.

Similarly, by a mean value expansion, and conditionally on the original sample,

Sn∗h = τn∇′h
(
vec(Γ̂n∗)

)(
vec(Γ̂n∗)− vec

(
Γ̂n
))

+ oP ∗(1),

since Γ̂n∗kl − Γ̂nkl →P ∗ 0 in probability. It follows that

Sn∗h →st N

(
0,∇′h

(
vec

(∫ 1

0
Σsds

))
Ṽ∇h

(
vec

(∫ 1

0
Σsds

)))
in probability, given Theorem 3.1. The result follows from Polya's theorem (see, e.g., Ser�ing (1980)),

given that the normal distribution is continuous.
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Auxilliary Lemmas

As in Jacod et al. (2009), we assume in the following that the processes a, σ and X are bounded

processes satisfying (1) with a and σ adapted càdlàg processes. As Jacod et al. (2009) explain,

this assumption simpli�es the mathematical derivations without loss of generality (by a standard

localization procedure detailed in Jacod (2008)). Formally, we derive our results under the following

assumption.

Assumption 4. X satis�es equation (2) with a and σ adapted càdlàg processes such that a, σ, and

X are bounded processes (implying that α is also bounded).

Notation

We introduce the following additional notation associated with the pre-averaged weighting function g.

Let

φ1 (s) =

1∫
s

g′ (u) g′ (u− s) du, φ2 (s) =

1∫
s

g (u) g (u− s) du, Φij =

1∫
0

φi (s)φj (s) ds,

and for i = 1, 2, ψi = φi (0) .

We also let

Λkl,k′l′ (s) = Σkk′ (s) Σll′ (s) + Σkl′ (s) Σlk′ (s)

Θkl,k′l′ (s) = Σkk′ (s) Ψll′ (s) + Σkl′ (s) Ψk′l (s) + Σkl′ (s) Ψkl′ (s) + Σll′ (s) Ψkk′ (s)

Υkl,k′l′ = Ψkk′ (s) Ψll′ (s) + Ψkl′ (s) Ψlk′ (s) .

Lemma 7.1. Suppose (2) and Assumptions 1-4 hold. Furthermore suppose that Γ̂n is given by (26) as

well and let 1/2 < δ2 < 2/3. Then we have

V n
kl,k′l′ =

τ2
n

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1)) (Znk′l′ (α)−Znk′l′ (α+ 1))→P Vkl,k′l′ .

where τn = n1/4

Znkl (α) =
1

ψ2kn

bn∑
i=1

Ȳ k
i−1+(α−1)bn

n

Ȳ l
i−1+(α−1)bn

n

and

Vkl,k′l′ =
2

ψ2
2

Φ22θ

∫ 1

0

(
Λkl,k′l′ (s) ds+

2Φ12

θ

∫ 1

0
Θkl,k′l′ (s) ds+

Φ11

θ3
Υkl,k′l′

)
≡
∫ 1

0
ς (s) ds. (39)

Lemma 7.2. Suppose (2) and Assumptions 1-4 hold. Furthermore suppose that Γ̂n =
(

Γ̂nkl

)
1≤k,l≤d

,

where Γ̂nkl is given by (28) as well and let 1/2 < δ2 < 2/3. Then we have

V n
kl,k′l′ =

τ2
n

2

Jn−1∑
α=1

(Znkl (α)−Znkl (α+ 1)) (Znk′l′ (α)−Znk′l′ (α+ 1))→P Vkl,k′l′ .
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where τn = n1/4

Znkl (α) =
∑

tki ∈Bn(α)

nl−kn+1∑
j=0

Ȳ k
tki
Ȳ l
tlj

1Aklij
, (40)

and Vkl,k′l′ is given in Theorem 3.4 of Christensen et al. (2013).

Proof of Lemma 7.1. The proof follows closely that for Theorem 4.1 of Christensen et al. (2013),

however for completeness, we present the relevant details. Given the de�nition of V n
kl,k′l′ and Znkl (α),

after adding and substracting appropriately, we can write

V n
kl,k′l′ =

√
n

2

(
Jn−1∑
α=1

2Znkl (α)Znk′l′ (α)−

(
Jn−1∑
α=1

Znkl (α)Znk′l′ (α+ 1) +

Jn−1∑
α=1

Znkl (α+ 1)Znk′l′ (α)

))

+

√
n

2
(Znkl (Jn)Znk′l′ (Jn)−Znkl (1)Znk′l′ (1))

= Lnkl,k′l′ +Rn
kl,k′l′

.

where the remainder term is

Rn
kl,k′l′

=

√
n

2
(Znkl (Jn)Znk′l′ (Jn)−Znkl (1)Znk′l′ (1))

= OP

(
n−

3
2 b2n

)
= OP

((
bn

n3/4

)2
)

= oP (1) ,

so long as δ2 < 3/4, where we used the de�nitions of Znkl (α) = 1
ψ2kn

bn∑
i=1

Ȳ k
i−1+(α−1)bn

n

Ȳ l
i−1+(α−1)bn

n

, the

Cauchy-Schwartz inequality, the fact that under Assumption 4 for some q > 0, E
(∣∣∣Ȳ k

i
n

∣∣∣q) ≤ Kn−q/4

uniformly in i (cf. Lemma 6.2 of Christensen et al. (2013)). Next we show that the leading term is

such that

p lim
n→∞

Lnkl,k′l′ = Vkl,k′l′ , for 1 ≤ k, k′l,′ l′ ≤ d. (41)

It is obviously enough to prove the result for the unsymmetrized estimator

L̃nkl,k′l′ =
√
n

Jn−1∑
α=1

(Znkl (α)Znk′l′ (α)−Znkl (α)Znk′l′ (α+ 1)) .

Next, we introduce two approximating version of B̄ (l, r)j �rst, namely

Z̃nkl (α) =
1

ψ2kn

bn∑
i=1

Ỹ k
i−1+(α−1)bn

n

Ỹ l
i−1+(α−1)bn

n

,

Ẑnkl (α) =
1

ψ2kn

bn∑
i=1

Ỹ k
i−1+αbn

n

Ỹ l
i−1+αbn

n

,

where we have set Ỹ k
i
n

=ε̄ i
n

+
d∑

ν=1
σkν(α−1)bn

n

W ν
i
n

k
, for (α−1)bn

n ≤ i
n <

αbn
n . Indeed we will show that the

error due to replacing Ȳ k
i
n

by Ỹ k
i
n
is small and will not a�ect our theoretical results, since σ is assumed
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to be an Ito semimartingale itself. We have that, for (α−1)bn
n ≤ i

n <
αbn
n

E
(∣∣∣Ȳ k

i
n

−Ỹ k
i
n

∣∣∣) = E

∣∣∣∣∣∣
kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

aksds+

kn∑
j=1

g

(
j

kn

)∫ i+j
n

i+j−1
n

(
σkνs − σkν(α−1)bn

n

)
dW ν

s

∣∣∣∣∣∣
≤ K

kn
n

+

 kn∑
j=1

g2

(
j

kn

) d∑
ν=1

E

∣∣∣∣∣
∫ i+j

n

i+j−1
n

(
σkνs − σkν(α−1)bn

n

)
dW ν

s

∣∣∣∣∣
2
1/2


≤ K

(
kn
n

+

(
kn
n

bn
n

)1/2
)
≤ K (knbn)1/2

n
.

Note also that E (|Znkl (α)|) ≤ K bn
n , thus it follows that

E
(∣∣∣Znkl (α)− Z̃nkl (α)

∣∣∣) ≤ Kbn

(knbn)1/2

n

(
1√
kn

) (l+r)
4
−1


≤ K

(
bn
n

)3/2

,

similarly for Ẑnkl (α), we have E
(∣∣∣Znkl (α)− Ẑnkl (α)

∣∣∣) ≤ K
(
bn
n

)3/2
. So by using the fact that δ < 2/3

we obtain L̃nkl,k′l′ − L̂nkl,k′l′ = oP (1) , where

L̂nkl,k′l′ =
√
n

Jn−1∑
j=1

(
Ẑnkl (α) Ẑnk′l′ (α)− Ẑnkl (α) Z̃nk′l′ (α+ 1)

)
.

Then it is simple to deduce that

√
n

∣∣∣∣∣
Jn−1∑
α=1

E

(
Ẑnkl (α) Ẑnk′l′ (α)− E

(
Ẑnkl (α) Ẑnk′l′ (α) |Fn(α−1)bn

n

))∣∣∣∣∣ ≤ K
b
3/2
n

n
,

√
n

∣∣∣∣∣
Jn−1∑
α=1

(
Ẑnkl (α) Z̃nk′l′ (α+ 1)− E

(
Ẑnkl (α) Z̃nk′l′ (α+ 1) |Fn(α−1)bn

n

))∣∣∣∣∣ ≤ K
b
3/2
n

n
,

by conditional independence, and now we are left with

L̂nkl,k′l′ =
√
n

Jn−1∑
α=1

(
Ẑnkl (α) Z̃nk′l′ (α)− Ẑnkl (α) Z̃nk′l′ (α+ 1) |Fn(α−1)bn

n

)
+ oP (1) .

From the same arguments as in Podolskij and Vetter (2010) and using δ2 > 1/2, we obtain

√
n

(
Ẑnkl (α) Z̃nk′l′ (α)− Ẑnkl (α) Z̃nk′l′ (α+ 1) |Fn(α−1)bn

n

)
=

∫ αbn
n

(α−1)bn
n

ς (s) ds+ o

(
bn
n

)
,

uniformly in α, where we use V n
kl,k′l′ =

∫ 1
0 ς (s) ds with the process ς given by the right hand side of
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(39) thus we have

L̂nkl,k′l′ =

∫ 1

0
ς (s) ds+ oP (1)

and the proof is complete.

Proof of Lemma 7.2. Given the de�nitions of V n
kl,k′l′ and Znkl (α), after adding and substracting

appropriately, we get that

V n
kl,k′l′ =

√
n

2

(
Jn−1∑
α=1

(2Znkl (α)Znk′l′ (α)−Znkl (α)Znk′l′ (α+ 1)−Znkl (α+ 1)Znk′l′ (α))

)

+

√
n

2
(Znkl (Jn)Znk′l′ (Jn)−Znkl (1)Znk′l′ (1))

≡ Lnkl,k′l′ +Rn
kl,k′l′

.

where the remainder term is

Rn
kl,k′l′

=

√
n

2
(Znkl (Jn)Znk′l′ (Jn)−Znkl (1)Znk′l′ (1))

= OP

(
n−

3
2 b2n

)
= OP

((
bn

n3/4

)2
)

= oP (1) ,

so long as δ2 < 3/4, where we used the de�nitions of Znkl (α) =
∑

tki ∈Bn(α)

nl−kn+1∑
j=0

Ȳ k
tki
Ȳ l
tlj

1Aklij
, the Cauchy-

Schwartz inequality, the fact that for some q > 0, E
(∣∣∣Ȳ k

i
n

∣∣∣q) ≤ Kn−q/4 uniformly in i (cf. Lemma 6.2

of Christensen et al. (2013)). Thus result follows since Lnkl,k′l′ is exactly the consistent estimator of

Vkl,k′l′ proposed by Christensen et al. (2013) (cf. Theorem 4.1).
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