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Abstract

We propose a bootstrap method for estimating the distribution (and functionals of it such as
the variance) of various integrated covariance matrix estimators. In particular, we first adapt the
wild blocks of blocks bootstrap method suggested for the pre-averaged realized volatility estimator
to a general class of estimators of integrated covolatility. We then show the first-order asymptotic
validity of this method in the multivariate context with a potential presence of jumps, dependent
microstructure noise, irregularly spaced and non-synchronous data. Due to our focus on non-
studentized statistics, our results justify using the bootstrap to estimate the covariance matrix of
a broad class of covolatility estimators. The bootstrap variance estimator is positive semi-definite
by construction, an appealing feature that is not always shared by existing variance estimators of
the integrated covariance estimator. As an application of our results, we also consider the boot-
strap for regression coefficients. We show that the wild blocks of blocks bootstrap, appropriately
centered, is able to mimic both the dependence and heterogeneity of the scores, thus justifying the
construction of bootstrap percentile intervals as well as variance estimates in this context. This
contrasts with the traditional pairs bootstrap which is not able to mimic the score heterogeneity
even in the simple case where no microstructure noise is present. Our Monte Carlo simulations
show that the wild blocks of blocks bootstrap improves the finite sample properties of the existing
first-order asymptotic theory. We illustrate its practical use on high-frequency equity data.

JEL Classification: C15, C22, C58
Keywords: High-frequency data, market microstructure noise, non-synchronous data, jumps, re-
alized measures, integrated covariance, wild bootstrap, block bootstrap.

1 Introduction

The covariation between asset returns is indispensable for risk management, portfolio selection, hedging
and pricing of derivatives, etc. Presently, the availability of high-frequency financial intraday data
such as stock prices or currencies allows us to accurately estimate the integrated covariance. An early
popular estimator is realized covariance matrix, computed as the sum of outer product of vectors of

high-frequency returns. The underlying idea is to use quadratic covariation as an ex-post covariance
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measure, whose increments can be studied to learn about the dependence of asset returns over a
given period (see e.g., Andersen et al. (2003) and Barndorff-Nielsen et al. (2004a)). An important
characteristic of high frequency financial data is the presence of market microstructure effects: prices are
observed with contamination errors (the so-called noise) due to the presence of bid-ask bounce effects,
rounding errors, etc., which contribute to a discrepancy between the latent efficient price process and
the price observed by the econometrician (e.g. Hasbrouck (2007)). In a univariate setting, market
microstructure noise makes the standard realized volatility estimator biased and inconsistent. This
has motivated the development of alternative estimators. Currently, there are four main univariate
approaches to restore the consistency of realized volatility estimator, namely linear combination of
realized volatilities obtained by subsampling (Zhang et al. (2005), and Zhang (2006)), kernel-based
autocovariance adjustments (Barndorff-Nielsen et al. (2008)), the pre-averaging method (Podolskij and
Vetter (2009), and Jacod et al. (2009)), and the maximum likelihood-based approach (Xiu (2010)).

In a multivariate setting, matters are further complicated with the distinctive feature of multivariate
financial data: the phenomenon of non-synchronous trading, i.e. the prices of two assets are often not
observed at the same time, leading to the well-known Epps effect, highlighted by Epps (1979). These
factors create a further level of challenge to the problem of integrated covariance matrix estimation.
The most prominent estimators of integrated covolatility that are consistent under non-synchronous
observed data and contaminated by market microstructure noise include but are not limited to, the
pre-averaged Hayashi-Yoshida estimator studied by Christensen et al. (2010), the multivariate realized
kernel estimator of Barndorff-Nielsen et al. (2011), the flat-top realized kernel by Varneskov (2014),
the two-scales covariance estimator of Zhang (2011), the generalized multi-scale covariance estimator
of Bibinger (2011), the maximum likelihood based-estimator of Ait-Sahalia, Fan and Xiu (2010), Corsi,
Peluso and Audrino (2014), Liu and Tang (2014), Shephard and Xiu (2014), the Fourier based estimator
of covariances of Park and Linton (2012), and the local method of moments estimator of Bibinger et
al. (2014).

Despite the fact that these statistics are measured over large samples, their finite sample distribu-
tions are not necessarily well approximated by their asymptotic mixed normal distribution. Indeed,
Zhang et al. (2011) showed in the univariate case that the asymptotic normal approximation is often
inaccurate for the subsampling realized volatility estimator of Zhang et al. (2005), whose finite sam-
ple distribution is skewed and heavy tailed. They proposed Edgeworth corrections for this estimator
as a way to improve upon the standard normal approximation. Similarly, Bandi and Russell (2011)
discussed the limitations of asymptotic approximations in the context of realized kernels and proposed
a finite sample procedure. As an alternative tool of inference in this context, Gongalves and Meddahi
(2009) introduced bootstrap methods for the realized volatility under no market microstructure noise,
whereas Hounyo et al. (2013) and Gongalves et al. (2014) extend the work of Gongalves and Meddahi
(2009) by allowing market microstructure effects.

In this paper, we focus on the class of estimators of integrated covolatility that can be written



as the sum of miniature realized covolatility measure. Examples of potential estimators of integrated
covolatility in this class include the realized covariance matrix, the cumulative covariance estimator
developed in Hayashi and Yoshida (2005), the truncation-based estimators of integrated covariance
of Mancini and Gobbi (2012), and some noise-robust estimators listed above (pre-averaging, realized
kernel, two and multi-scale based covariance estimators), among others.

The main contribution of this paper is to propose a general bootstrap method for estimating the
distribution as well as the variance of integrated covariance matrix estimators. The bootstrap technique
employed here is related to previous work in the univariate case, in particular, the wild blocks of blocks
bootstrap suggested in Hounyo et al. (2013) for the pre-averaging estimator. To handle both the
dependence and heterogeneity of pre-averaged returns (most often in the form of heteroskedasticity),
Hounyo et al. (2013) propose to combine the wild bootstrap with the blocks of blocks bootstrap. This
procedure relies on the fact that the heteroskedasticity can be handled elegantly by use of the wild
bootstrap, and a block-based bootstrap can be used to treat the serial correlation in the data. The
current article draws ideas from this paper, but here we are faced with two additional challenges at
the same time. We have to extend their univariate wild blocks of blocks bootstrap method to the
multivariate case, but we also need to adapt this method for a broad class of covolatility estimators
(not only for the pre-averaging based-estimator). The univariate method cannot be applied directly
in this general context. We provide intuition of this in Section 4.3. This generalization faces the
additional complexity of possibly having to deal with jumps, various types of noise, irregularly spaced
and non-synchronous data. In particular, in a multivariate setting we first adapt the wild blocks of
blocks bootstrap method studied by Hounyo et al. (2013) to a general class of statistics. Next, we give
a set of high level conditions such that any bootstrap method is asymptotically valid when estimating
the distribution as well as the variance of integrated covariance matrix estimator. We then verify these
high-level conditions for various estimators of integrated covolatility in different settings which allow for
a potential presence of jumps, dependent microstructure noise, irregularly spaced and non-synchronous
data. The bootstrap variance estimator is positive semi-definite by construction, an appealing feature
that is not always shared by existing variance estimators of the integrated covariance estimator.

Our findings have many implications and improve existing results in different settings. Firstly, in
the idealized world where the mechanics of trading is perfect such that there is no market microstruc-
ture effects and prices are observed synchronously, apart from border terms which are Op (%) (where
n denotes the sample size), our bootstrap variance estimator of the variance of the realized covariance
matrix coincides with the sophisticated consistent variance estimator proposed by Barndorff-Nielsen
and Shephard (2004a). This is in contrast with the pairs bootstrap studied by Dovonon et al. (2013),
which is not able to estimate the long run variance of the realized covariance matrix, except when the
volatility is constant. Secondly, in a more interesting setting where data are non-synchronous, however,
ruling out the presence of noise, our bootstrap variance estimator of the variance of the Hayashi and

Yoshida (2005) covariance estimator is an alternative to the consistent variance estimator proposed re-



cently by Mykland (2012), which is not guaranteed to be positive semi-definite. Thirdly, in a framework
where we allow the presence of market microstructure noise, but we rule out asynchronicity, the boot-
strap variance estimator is an alternative to the variance estimator of the bias-corrected multivariate
pre-averaged estimator proposed by Christensen et al. (2010), which is also not guaranteed to be pos-
itive semi-definite. Fourthly, and more realistically, we investigate the combination of asynchronicity,
irregularly spaced and microstructure noise. We find that our bootstrap method consistently estimates
the variance and the entire distribution of the pre-averaged Hayashi-Yoshida estimator of Christensen
et al. (2013). We also explore how and to what extent the wild blocks of blocks bootstrap can be
applied to the multivariate realized kernel estimator of Barndorff-Nielsen et al. (2011). Lastly, in the
context where the covariance between the risk factors of asset prices is due to both Brownian and
jump components, but we rule out asynchronicity and microstructure effects, the bootstrap variance
estimator is an alternative to the asymptotic variance estimator for the truncation-based estimators of
integrated covariance recently proposed by Mancini and Gobbi (2012). This result extends the work of
Hounyo (2013), where a local Gaussian bootstrap method has been proposed for inference on integrated
volatility under no jumps by allowing for the latter. It also provides an alternative to the general local
Gaussian bootstrap method recently introduced by Dovonon et al. (2014) for jump tests.

As an application of our results, we also consider the bootstrap for realized regression coeflicients.
We show that the wild blocks of blocks bootstrap, appropriately centered, is able to mimic both the
dependence and heterogeneity of the scores, thus justifying the construction of bootstrap percentile
intervals as well as asymptotic variance estimates in this context. This contrasts with the traditional
pairs bootstrap analysed in Dovonon et al. (2013), which is not able to mimic the score heterogeneity
even in the simple case where microstructure noise is absent and prices are regularly spaced and
synchronous. Our Monte Carlo simulations suggest that the wild blocks of blocks bootstrap method
improves upon the first-order asymptotic theory in finite samples. Although the wild blocks of blocks
bootstrap that we propose here requires the choice of an additional tuning parameter (the block size),
we follow Hounyo et al. (2013) and use an empirical procedure to select the block size that performs
well in our simulations.

The remainder of this paper is organized as follows. In the next section, we provide the framework
and introduce the general class of statistics of interest. In Section 3, after introducing the bootstrap
method, we give a set of high level conditions such that any bootstrap method is asymptotically valid
when estimating the distribution as well as the asymptotic variance matrix of integrated covariance
matrix estimator. Section 4 illustrates the bootstrap method and verifies these high level conditions
for various estimators of integrated covolatility. In Section 5, we present the Monte Carlo results,
while an empirical illustration is conducted in Section 6. Section 7 concludes. Two appendices are
provided. Appendix A contains the tables with simulation and empirical results whereas Appendix B

is a mathematical appendix providing the proofs.



2 General framework

2.1 Setup

It is well-known in finance that, under the no-arbitrage assumption, price processes must follow a
semimartingale (see, e.g., Delbaen and Schachermayer (1994)). We consider a d-dimensional latent
efficient log-price process X; = (Xt(l),... ’Xt(d)>/ defined on a probability space (Q(O),}'(O),P(O))
equipped with a filtration <Ft(0))t>o' We model X as an [t6 semimartingale process defined by the

equation

Xt:XO—|—/Otasds+/OtJSdWS—i—/Ot/n(é(s,z))(u—l/)(ds,dz)—i—/ot/ml(d(s,z))u(ds,dz), (1)

where a = (at);>( is a d-dimensional predictable locally bounded drift vector, W = (W), is d-
dimensional Brownian motion and o = (0¢);>, is an adapted cadlag d x d locally bounded pro-
cess such that ¥ = oyo] is the spot covariance matrix of X at time t. Whereas p is a a d-
dimensional Poisson random measure on Ry x F, with (E,£) an auxiliary measurable space, on the
space [ Q) FO) (.Ft(o))OO,P(O)) and the predictable compensator (or intensity measure) of pu is
v(ds,dz) = ds ® A (dz) for some given finite or o-finite measure A on (E,€), J is a d-dimensional
predictable function on Q) x Ry x E. Moreover, £ is a continuous truncation function on R%, that is
a function from R? into itself with compact support and & (z) = x on a neighbourhood of zero, and
we set k' (z) = 2 — k (x) to separate the martingale part of small jumps and the large jumps. Note
that a, o and § should be such that the integrals in (1) make sense (see, e.g., Jacod and Shiryaev for
a precise definition of the last two integrals).

In the special case where X is continuous, it has the form

¢ ¢
X = X +/ asds +/ osdWs. (2)
0 0

Under (1), the quadratic (co)variation of X is given by

X], = /tzsdHZ(Axs)(Axs)’

0 s<t

= Ft+JCt7

where AXy = X, — X, Xo— =limy_,g, <5 X;. Thus [X]; is the sum of I'; (the integrated covolatility)
and JCy (the sum of products of simultaneous jumps (called co-jumps)). For empirical applications,
one may be concerned with the behavior of I'y and JC} in isolation making interesting to decompose the
two sources of covariability in the price process. In this paper, our parameter of interest is integrated
covariance matrix I'y. Without loss of generality, we let ¢ = 1 (which we think of as a given day), omit
the index t and defineI' =T'; = fol Yds.

The presence of market frictions such as price discreteness, rounding errors, bid-ask spreads, gradual

response of prices to block trades, etc, prevent us from observing the efficient price process X. Instead,



we observe a noisy price process Y = (Y(l), e ,Y(d))/, given by
Yi =Xt + e,

where €, represents the noise term that collects all the market microstructure effects. These prices are
observed irregularly and non-synchronously over the interval [0, 1]. In particular, for all k = 1,...,d,

we observed the component process (Y(k)) at time points tf fori=0,...,ng, given by

k k k
Yie = X + €
3 3 3

from which we compute n; intraday returns defined as,

AYi]_ﬁEYtEZ—Ytﬁ ci=1,...,n, (3)

t 1—1
with 0 = t’(‘j <...< t’ka = 1 being partitions of the interval [0, 1], which satisfies max;<j<pn, ’tf — tf_l‘ —
Oasny —ooforall 1 <k <d.
In order to make both X and Y measurable with respect to the same kind of filtration, we define

a new probability space (Q, (]:t)tzo , P), which accommodates both processes. To this end, we follow

Jacod et al. (2009) and assume one has a second space (Q(l), <ft(1))t>O,P(1)>, where QW) denotes
RO and FU the product Borel-o-field on Q1. Next, for any ¢ € [0, 1], v;e define Q; (w(o), dy) to be the

probability measure on R, which corresponds to the transition from X; (w(o)) to the observed process
Y;. In the case of i.i.d. noise, this transition kernel is rather simple, but it becomes more pronounced
in a general framework. P! (w(o), dw(l)) denotes the product measure ®;¢,1)Qt (w(o), ) . The filtered
probability space (Q, (]:t>te[0,1} ,P) on which the process Y lives is then defined with Q = Q©) x Q).
F=FO xr®) F = ﬂs>t]:s(0) X fﬁl), and P (dw(o), dw(l)) =p° (w(o)) p! (w(o), dw(l)) .

2.2 Statistics of interest

The statistics of interest in this paper can be written as smooth functions of = (fﬁl> kied where

I'™ is a consistent estimator of the integrated covariance matrix I', such that a central limit theorem

holds. We have, as n — oo,
T (f” - F) 5t MN(0,V), (4)

where n denotes the sample size, 7, = n® with d; € (0,1) is a known rate of convergence, —* MN
denotes stable convergence to a mixed Gaussian distribution (see Jacod and Shiryaev (2003, Ch. 8,
Sect. 5c¢) for the definition and properties of stable convergence) and V = (Vklvk/l/)lgk,k’l,’l’gd is a
d x d x d x d array, whose generic element Vj; /7 corresponding to the asymptotic covariance between
Tnle and Tnfz/l/. In particular, we focus on the class of estimators of I' which can be written as

J’!I,

= le" (a) — b,



or equivalently using the individual entries of T, Z" (@) = (25 (@) < 1«4 @and b= (E};‘J eniey’
have T
~ Jn ~
Ty =Y Zp (o) — by, (5)
a=1
where J,, = Lb%j’ with |-| the integer part function and b, is a sequence of integers such that
by o 02, (6)

where d3 € (0,1). b" can be interpreted as a bias-corrected estimator, which does not contribute to
the asymptotic variance of the statistic of interest. This means that 7L and 7, Zi"zl Z™ () have

the same asymptotic variance. Usually, the following results also holds, as n — oo,
T (b" - b) ~P 0 and 7, (Z Z" (@) —T — b) St MN(0, V), (7)
a=1

where b = plimy, oo b". In the simple case where no bias-correction is needed (i.e. Z,?l = 0), for each
a=1,...,J,, the statistic Z}} («) is essentially the same quantity as Azl, with the difference that it

@%) T

is computed only over time points tf from the smaller interval B, (o) = { =, e ) whereas 1

is computed over the whole interval [0,1]. Thus in this case, Z" (o) is a miniature realized measure,

abp

which can help to get information about ", ¥gds. Similarly, when ZI?Z # 0, 2] («) is the analogue

of Zi”: L 21 (@), but computed over time points t¥ from B, (o). The main advantage of writing "
as in (5) is that it provides a unified bootstrap theory to dealing with a broad class of estimators
of T'. As we show in the next section, as long as this is possible and under some other regularity
conditions, the wild blocks of blocks bootstrap method studied by Hounyo et al. (2013) applies now
to the statistics ZJ} («) is first-order valid. Examples of potential estimators of integrated covolatility
that can be written as (5) are listed in the introduction.

The exact expression of the conditional asymptotic variance V may be rather complicated and can
involve substantially more complex quantities than the original parameter of interest I'. One of our

contributions is to justify the use of the bootstrap to estimate V. Let V" = <Vﬁ7k,l,> denote

1<k,k'1,1'<d
a consistent estimator of V', then together with the CLT result (4) we have that

(‘7”)_1/2 Tn <1)ec (fn> —vec (I‘)) st N(O, Ip),

where vec is the vectorization operator that stacks columns of a matrix below one another, I is a
d?-dimensional identity matrix and Vn = (Vﬁ)1<k,l<d2 is a d? x d? matrix, whose generic element Vk’}
is given by

Vit = ViL al k1)), (-1 )+ —dL =1yl (-1)y/d) 10 L S B TS dP
This result can be applied in order to compute confidence region for some functionals of I' that are
important in practice, such as covariance, regression coefficient and correlation estimates. In particular,

the asymptotic variance estimates for standard measures of dependence between two asset returns such



as the realized covariance, the realized regression and the realized correlation coefficients are obtained
by the delta method, whose finite sample properties are often poor. This motivates the bootstrap
as an alternative method of inference in these contexts. The next section details how the bootstrap
methodology can be used for these purposes in our general setup, which accommodates the potential

presence of jumps, microstructure noise, irregularly spaced and non-synchronous trading.

3 The wild blocks of blocks bootstrap
3.1 Main results

Our aim in this section is to extend the wild blocks of blocks bootstrap method proposed by Hounyo et
al. (2013) to the multivariate context allowing for the presence of jumps, noise, irregularly spaced and
non-synchronous data. In particular, we propose a bootstrap method that can be used to consistently
estimate the distribution of 7, (h (Uec (f")) — h (vec (F))) , where h : R% — R denotes a real valued
function with continuous derivatives. This justifies for instance, the construction of bootstrap percentile
(bootstrap unstudentized statistic) confidence intervals for covariance, regression and correlation. The
bootstrap percentile intervals are easier to implement as they do not require an explicit estimator of
the variance which is hard to compute in our context.

Gongalves and Meddahi (2009) proposed the wild bootstrap method for the realized volatility in
the absence of market microstructure noise and Gongalves et al. (2014) extend their work by allowing
for the latter. In particular, they focus on the pre-averaged realized volatitity estimator proposed by
Podolskij and Vetter (2009). In their ideal setting, pre-averaged returns are non-overlapping, implying
that they are asymptotically uncorrelated as n — oo, but possibly heteroskedastic due to stochastic
volatility, thus motivating the use of a wild bootstrap method.

When pre-averaged returns are overlapping, they are strongly dependent. This implies that the
wild bootstrap is no longer valid when applied to pre-averaged returns. Instead, a block bootstrap
method applied to the pre-averaged returns would seem appropriate. This amounts to a “blocks of
blocks” bootstrap, as proposed by Politis and Romano (1992) and further studied by Biihlmann and
Kiinsch (1995) (see also Kiinsch (1989)). Nevertheless, as Hounyo et al. (2013) show in the univariate
case, such a bootstrap scheme is only consistent when volatility is constant. They argue that squared
pre-averaged returns are heterogenously distributed (in particular, their mean and variance are time-
varying) and this creates a bias term in the blocks of blocks bootstrap variance estimator when volatility
is stochastic. To avoid this problem, Hounyo et al. (2013) propose to combine the wild bootstrap with
the blocks of blocks bootstrap. Here, we generalize their bootstrap method to the class of estimators
of integrated covolatility, which can be written as in (5).

The general multivariate wild blocks of blocks bootstrap pseudo-data is given by

e[ ZR (D) + (R (@) = 2R (a+ 1) e, fa=1,..., 0y —1
2 (O‘)_{z,gl(a), it o= Jy, (®)



where the external random variable 7, is an i.i.d. random variable independent of the data and
whose moments are given by uy = E* (|14]?) . As usual in the bootstrap literature, P* (E* and Var*)
denotes the probability measure (expected value and variance) induced by the bootstrap resampling,
conditional on a realization of the original time series. In addition, for a sequence of bootstrap statistics
7

n?

we write Z* = op~ (1) in probability, or Z¥ =" 0, as n — oo, in probability, if for any £ > 0,
§ > 0, limy o0 P[P*(|Z)| > d) > €] = 0. Similarly, we write Z* = Op~ (1) as n — oo, in probability
if for all € > 0 there exists a M. < oo such that lim,_,o P [P* (|Z}] > M) > ¢] = 0. Finally, we write
Z* —% 7 asn — oo, in probability, if conditional on the sample, Z* weakly converges to Z under P*,
for all samples contained in a set with probability P converging to one.

The bootstrap analogue of (5) is defined by

if —ZZ (9)

and [ = (le*)Kk ey Note that although f’,;‘l contains a bias correction term (when Zgl #0), we

do not consider bias correction in the bootstrap world, even in the case where g}gl = 0. This is because
the bias correction term b" by definition does not affect the asymptotic variance of I, As long as
the bootstrap method is able to consistently estimate this variance, no bias correction is needed in the
bootstrap world. Since we can always center the bootstrap statistic f};l* at its own theoretical mean
B (le* ) without affecting the bootstrap variance. For example, the bias correction term El?l for pre-
averaged realized covolatility estimator (which we will introduce in Section 4.3) is crucially dependent
of the noise assumption whereas the bootstrap estimator is robust regardless.

Our bootstrap method can be seen as a generalization of the wild blocks of blocks bootstrap method

of Hounyo et al. (2013) to the general context described by (5). In particular, here we resample the
statistics ZJ; (o) , which may be a block sum of functions of AY;, AYl (see Section 4 for examples

of statistics ZJ; («)). As in the univariate case, to preserve the weak dependence, we divide the interval

[0, 1] into J,, non-overlapping sub-interval of length % and generate the bootstrap observations within a
(a=1)bn  ab,

] ) using the same external random variable 7,. This preserves

given sub-interval B,, (o) = [
the dependence within each sub-interval. Also, as mentioned in Hounyo et al. (2013), we show that by
centering around 27 (a + 1) instead of J,; ! Z 1 21 (a) (as in the plain wild boostrap method of Wu
(1986) and Liu (1988)) yields an asymptotically valid bootstrap method for IA“’,;LZ This is not necessary
the case for the naive application of the original wild bootstrap of Liu (1988), which generates bootstrap

observations Z* (o) as

JIn

where 7, is i.i.d. (0,1). As we show in this paper, the new wild blocks of blocks bootstrap preserves

the mean heterogeneity property of the statistics Z}; (o) even when volatility is stochastic, in our



multivariate setting that allows for jumps, noise, irregularly spaced and non-synchronous data. The
following result gives the bootstrap moments of <le*7 fﬁ,) . In order to state our results, let Vk’}fk,l, =
Cov* (Tnle*, Tnfﬁ,*l,> denote the wild blocks of blocks bootstrap covariance between Tnf}zl* and Tnfz,*l,

based on an external random variables 1, ~ i.i.d. with mean E* (n,) and variance Var* (1,), and V™

ad x dxdx darray, whose generic element is V;7%.,,, such that (8) holds.

Lemma 3.1. Given (8) and (9), we have

a)
= Jn—1
B (T) = Y Z(a+ 1)+ 2 ()

a=1
Jn—1

+ > (Zh(@) = Zfy (a+ 1) B (na),

in particular, if E* (no) = 1, we have that E* (Z]°) = ZJ” Zh (o) = le —i—g}jl.

b)

&

-1
Zkl — Zp (a+ 1)) (Zy () = Zpp (a+ 1))

Do ‘3\1\3

Vkl KU = 2VCL’I”

—yn
7Vkl,k’l/

Part a) of Lemma 3.1 states that in the case where bkl = 0, if we let E* () = 1 then Fkl is an
unbiased estimator of the integrated covariance I'y;. Part b) shows that the bootstrap covariance of
Tnf’,;”l* and Tnfz,*l, depends on the variance of the external random variable 7, as well as the statistic
Vil kv which is based on a "local estimation" of the covariance of Zj; and Z);,. It follows then that a
sufficient condition for the bootstrap to provide a consistent estimator of the conditional asymptotic
variance V' is that Var* (n) = 2, and the sequence of Z}J, (o), a = 1,...,Jy,, is such that Vil ke —P
Vi, as n — 0o. Next, we provide a set of high level conditions that allow us to derive the first-order
asymptotic validity of the bootstrap method. Note that this is a high level condition that does not

depend on specifying whether the process X is a continous martingale or observed with error or not.

However, for some estimators, it might hold only with some restrictions.

Condition A

A.1. The choice of the external random variable 7 is such that Var* (n) = %, and as n — oo
7_2 Jn—1 P
Vilwr = 5 Y (@) = Zf(a+ 1) (Zy (@) = Zy (a+ 1)) =7 Vi,
a=1

n e 2+e
A.2. (E) Yook |28 ()7 = Op (1), for some € > 0, as n — oo.

10



A.3. For the same € > 0, as in A.2., it holds that, as n — oo

bn _ 24€
~=olmm ).
n

A.1. requires that the choice of the external random variable 7 as well as the statistic Z}, (o) are

such that the bootstrap variance V™ yields a consistent estimator of the asymptotic variance V. This
condition is very general and do not impose any structure on Zj; (). We could replace A.1. by a

condition on the sequence of Z}}, (), o = 1,...,J, such that they are conditionally independent, a

moment condition on Z} (o) (E | |2} (« )2re | F 1)bn> < 00, for some £ > 0) and more importantly

the following homogeneity condition on the means

Jn—1
My =723 (i () = iy (0 + 1)) (i (@) = prfop (ac+ 1)) =70, (11)
a=1

where pjy (o) = E <Z,?l (a) |FL_ 1)bn> . This mean homogeneity condition is suitable for financial high
frequency data, in particular for estimators of integrated covolatility. This is not necessary the case of
a naive application of the original wild bootstrap of Liu (1988), which will require in our context to
verify the following condition

JIn

My = ng (sz —Jn Zﬂkz > ( pugoy (@) = 1ZMM/ ) =" 0. (12)

a=1
In the context of time series, see e.g. Liu (1988) and Gongcalves and White (2002) (cf. Assumption
2.2) for similar restriction of the heterogeneity on the means. It is easy to see that in our setting,
the homogeneity condition defined in (12) does not hold even in the very simple univariate stochastic
volatility model without noise, where we also rule out drift, leverage effect, jumps and we suppose that
prices are observed at equidistant date. In particular, in this case (for simplicity) we can let J, =n

and consider as statistic of interest the realized volatility estimator defined by In = Zﬂ: Z" (o) =
a=1

n 2
> (AY%) . We can show that

a=1

o

a n 2 n v 2 1 2
_ "2 -1 2 _ T2 2
ML = nZ(/ o.ds —n Z:l/alasds> —nz_;(/ﬁosds) — </0 asds>

1 1 2
— P/ olds — (/ afds) ,
0 0

which is not equal to zero (one exception is when the volatility is constant). Whereas for the new

3e

bootstrap method, the mean homogeneity condition requires that

i+l 2
_n2</n st—/n U?dS) -0,

n

In contrast to Liu’s condition, we can show that under some regularity conditions (Riemann integrabil-
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ity of o), we always have M,, —© 0, even if the volatility is stochastic. This explains the new centering
suggested in (8). See Section 4, for more general stochastic volatility model.

Condition A.2. and A.3. are conditions used to show that a central limit theorem holds for
T (f”* — E* (f"*)) in the bootstrap world. Part A.2. is a Lyapounov type condition that drives
the asymptotic normality of Zi"zl Z} (o), whereas part A.3. restricts the choice of the block size b,
such that the CLT holds. Note that, when the sequence of Z}}, (o), @ =1,...,J, can be shown to be
conditionally independent by letting b, = 1, in this case we will simply use b, = 1, i.e. J, =n.

Under this high level condition, we can prove the following results. Theorem 3.1 is the main result

of our paper, and its proof is postponed to the Appendix.

Theorem 3.1. Under Condition A, as n — oo

a)

Vkrll:kk/l/ —)P Vkl,k’l’; so that V™" —)P V.

b) Let S™ = 7, (vec (f”) — vee (fol Esd3>) and S™ = 1, (vec (f”*) — B (vec (f”*))) , if for
some € > 0, B* o[> < A < o0, then
sup |P* (S™ < z)— P (5" < z)| =7 0.
zeR

Part a) of Theorem 3.1 shows that the bootstrap variance estimator is consistent for the asymptotic
variance V according to Condition A. Part b) provides a theoretical justification for using the wild
blocks of blocks bootstrap to consistently estimate the entire distribution of rn.

The statistics of interest in this paper can be written as smooth functions of ™. The following
theorem proves that the wild blocks of blocks bootstrap is first-order asymptotically valid when applied
to smooth functions of the vectorized of I™. Let h : RY — R denote a real valued function with
continuous derivatives, and let the d x 1 vector-valued function Vh denote its gradient. We suppose

that VA (vec (I")) is non-zero for any sample path of I". The statistic of interest is defined as

Sy =Tn (h <vec (f”)) — h (vec (F))) , (13)

the wild blocks of blocks bootstrap version of S}’ is

Spt =Ty (h (vec (f“*)) —h (E* (vec (f”*)))) . (14)
Let V™ = V'h (E* (Uec (f"*))) V™Vh (E* (Uec (f"*))) denote the wild blocks of blocks bootstrap
variance of 7, h (vec (f”*) , where V™* = Vk’}*) e is a d? x d? matrix, whose generic element
Vﬁ* is given by -

Vil = ViZa|(k-1)/d), [ (k-1)/d) +1,0-al0-1)/d), (1) /] 417
with 1 < k,1 < d?. The next theorem establishes the first-order asymptotic validity of the bootstrap

for some smooth functions of the vectorized of T™.

12



Theorem 3.2. Under the same conditions of Theorem 3.1, as n — o0,

a) vV —P Vv, =lim, 0 Var (Tnh (vec (fn)>)
b) If for some ¢ > 0, E* [no|*T° < A < oo, then

sup |P* (S)* < z) — P (S} < z)] —P .
T€R

3.2 The bootstrap for realized covariation measures

In this section we show how we can apply Theorem 3.2 in order to prove first-order asymptotic validity
of the bootstrap for some functionals of the matrix le that are important in practice. The focus will
be on realized covariance, realized regression and realized correlation coeflicients. For the kth and lth

asset, these quantities are given by

~ ry
kls /Blk = F L and Pl = >
kk VI

which under certain conditions consistently estimate
L'y
VTlu’

respectively. For each of these measures, the non-studentized statistics analogue of (13) are given by

1
I
Iy = / Su (s)ds, By = —% and prj, =
0 L

St = 7 (T = Twt) 8B, = Bk — Buv), and S, = 72 (5 — pu)

respectively. Similarly, the corresponding bootstrap percentile statistics (analogue of (14) for I Bﬁi

and pj. are given by
£ (T, e (Th)

s =1, ( _ g ( n*)) S = Tn(ﬁlk E*(fzk))’ and Sp° =7 | P — \/E* (ka) \/E* (fzkl)

respectively, where le* is defined in (9), 5lk = f Land pjf = % According to part b) of Theorem
kk /Ty
n*

3.2, we can use the wild blocks of blocks bootstrap variance of sz’ 5, and Spr to consistently

estimate the variance of Sp SB and S7 , respectively. In particular, for the realized covariance
ik Pik

k1’

measure, a consistent estimator of Vr,, = lim, o Var (Tnle) based on the bootstrap method is
given by
7_2 Jn—1
2
Ve = Vit = > Z (2 (@) = Zp (e +1))7. (15)
a=1

Similarly, for the realized regression,

N2 .
Vﬁzk (sz> 9801 —" Vay, = nh_{lolo Var (Tnﬁlk) ) (16)

13



s _EY(Th) nk B (T) - me _ ( Vite Viikk
where gg, = ( 1, B (1) B {1, B+ (17, with By = . T )
For the realized correlation, the bootstrap estimator of V,,, = lim, ., Var (Tnﬁl"k) is given by

~ ~\—1
Vi = (TaT%) o (17)
o BT L B (Fy,) BT LT\
where o s v by = ( —4E{E 1 —bEEH ) o (A5 1 AR

ank*kk Vlﬁcfkl VleL:ll
with B» = ° Vﬁfkl V,gfj‘ll
° ° Vlﬁl

Note that all the required terms are easy to compute (see Lemma 3.1), so it is rather simple to

implement the bootstrap variance estimator of the variance of Vr,,, Vg, and V,,, .

4  Illustration of the bootstrap scheme

The general results presented so far for a multivariate diffusion model with a potential presence of
jumps, noise, irregularly spaced and non-synchronous data are stated quite compactly. Hence, it is
helpful to focus on some particular cases in order to enhance intuition. In this section, we provide a list
of possible multivariate noisy semimartingale models, showing in details how our bootstrap scheme can
be applied. We then verify the high level Condition A for various estimators of integrated covolatility.
First, we look at a benchmark multivariate model where no market microstructure noise is present and
prices are observed synchronously at equidistant time stamps. Secondly, we show how those results
change when the observed data are non-synchronous. Thirdly, we discuss the case of multivariate
model with noisy prices observed synchronously at equidistant time points. Fourthly, we deal with
asynchronicity in noisy irregularly spaced diffusion model. Lastly, we study the case of presence of
jumps, but we rule out asynchronicity and microstructure noise. In order to discuss these results, let
us first introduce the assumptions on the sampling scheme. The assumptions made here are specific
for the pre-averaging estimator, and others may be considered when using a different estimator. We
follow Christensen et al. (2013) and assume that the observation times tf,z’ =0,....,n, k=1,...,d

satisfy the following conditions:

Assumption 1 - Sampling scheme

(a) (Time transformation) t¥’s are transformations of an equidistant grid, i.e. there exist strictly
monotonic (deterministic) functions fy : [0,1] — [0,1] in C*(]0,1]) with non-zero right and left
derivative in 0 and 1, respectively, and with fi(0) =0, fx(1) = 1 such that

ti.c:fkfl(i/nk), iZO,...,nk, k}:l,...,d.
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(b) (Boundedness of f;) There exists a natural number M > 0 such that

Mt < sup |fi(z)| <M, k=1,..,d
z€(0,1]

(¢) (Comparable number of observations) Set n = Zizl ng. It holds that
Dk s g € (0,1], k=1,..d.
n
(d) (Joint grid points) The grids (tF), (té) (1 < k,l < d) have ng common points which are

denoted by (tl;l)1§p§nkl

the functions fy; satisfy the same assumptions as fi in (a) and (b).

. They have the representation t’;l = fk_l1 (p/nik1) — my € [0, 1], where

Assumption 1 amounts to Assumption 7" in Christensen et al. (2013). As they explain, condition
(a) makes the explicit computation of the asymptotic covariance matrix of the pre-averaged Hayashi-
Yoshida estimator (which we will introduce in Section 4.4) possible. Condition (c) implies that the
observation numbers n; have the same order. Condition (b) means that the points of the [th grid do
not lie dense between any two successive points of the kth grid, i.e. the number of points té» that lie
in the interval [tf_l,tf] is uniformly bounded by a constant for all 1 < k,1 < d. When these last two
conditions (similar number of observations and uniform boundedness of the number of points té that

belong to [tF |, t*

+_1,t7]) are fulfilled we say that the sampling schemes are comparable. See for instance

Lemma 6.1 of Christensen et al. (2013) where conditions (b) and (c) imply that the amount of time
points ¥ contained in all sub-interval [a, b] of [0, 1] is of the same order as in the equidistant case for
all k. Finally, condition (d) means that the number of common points can be negligible compared to
n (if my; = 0) or it can be of order n (if my > 0).

We assume that e; is m-dependent in tick time and that € is independent of X;. Assumption 2

below collects these assumptions.

Assumption 2 - Noise component.

(a) The noise component €; is m-dependent in tick time, which means that for tf < té the random

tf - téH > m with

variables efk and eil are independent if
i i

th — téH = min (j - max{z| th < tf} ,min{z| th > té} - z)
and similarly for té < tf .
(b) E(¢) =0, and E (g¢;) = ¥ € R4 and the marginal law @ of € has finite eight moments.

(¢) € is independent from the latent log-price X;.

Note that this assumption is specific for the pre-averaging estimator, and can be called to question

at very high frequencies. See, e.g. Hansen and Lunde (2006), Voev and Lunde (2007) and Diebold and
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Strasser (2012) for further discussion of this assumption. For instance, for the pre-averaged covolatility
estimator, we could allow for dependence between X and €, at the cost of slowing down the speed
at which this estimator converges to the true integrated covariation (see Christensen et al. (2010),
Section 3.4 for details). We could also consider a general noise model, allowing for both exogenous
and endogenous components with polynomially decaying autocovariances as in Varneskov (2014) for
realized kernel-based estimators.

In some of our results we rule out jumps in oy, formally, we make the following assumption.

Assumption 3 - Volatility

oy is locally bounded away from zero and is a continuous semimartingale.

This assumption is common in the realized volatility literature (e.g. equation (3) of Barndorff-
Nielsen et al. (2008); Assumption 2 of Mykland and Zhang (2009) or equation (3) of Gongalves and
Meddahi (2009)). Assumption 3 can be relaxed (see Assumption H1 of Barndorff-Nielsen et al. (2006)

for a weaker assumption on o).

4.1 Noise-free, synchronous data and no jumps

In the simple case where no market microstructure noise is present and prices are observed syn-
chronously at equidistant time points with no jumps. It follows that Y = X, where X follows (2),
in addition fx(u) = fr(u) = u, then AYtﬁ =AY¥ = AX% fori=1,...,n, k =1,...,d. In applied
work, this refers to a situation where the slamplingnfrequencqes are low enough for the effects of market
microstructure to be negligible, e.g., 5, 15, or 30 minutes. In this relatively simple scenario, a popular
consistent estimator of integrated covariance is the realized covariance matrix. Here, we can simply
take b, = 1, since with this the summands are conditionally asymptotically independent, it follows

that J, = n. There is no bias-corrected estimator term, Zl’;‘l = 0. We have that 7, = y/n and

=3 (a) (a) = (7)o, )

i=1

where

The bootstrap scheme decribed in (8) becomes

AVELAYL, + (AYEAYL - AVELAYL, Y, for1<a<n-1,

AYEAYL, for a = n. (19)

Zjy (a) =

Then, in this simple case, the bootstrap resample the cross product returns instead of returns as in

Gongalves and Meddahi (2009). It follows from Theorem 3.1 that the wild blocks of blocks bootstrap
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covariance between /nI'}/ and NN nI'}h, is given by

n—1
Vit = gz (AY%“AYQ AYE, AY(’T) (AY§ AYE — AYE, AV ) . (20)

a=1

Next we verify Condition A. It is easy to see that Condition A.3. holds by replacing b, by 1. To check
Condition A.2., apply Theorem 2.1 of Barndorff-Nielsen et al. (2006). A.1. follows since we have let
Zlh (o) = AYFAYL, and J, = n, then we can write

Vk’r;,k/l’ - g Z (AY(IEAYQ - AYa;tl AYij;l) (AYQ AYO/ - AY +1 AY(,lvil)

’ / 1 n—l ’ / /
YZ?AYé AYE AYL — 3 > (AYQ Aya AYE i AYL, + AYE LAY AYE AY£)>

a=1

Il
M\S/—\Q

avfayiay} Ayl + AYFAYIAYF AY] )

~0n(3)

P
= Vi,

where the last step uses Theorem 2 of Barndorff-Nielsen and Shephard (2004a). More specifically, we
may let y; = vec <<AY1'> (AY1> ) fori=1,...,n, then we can write

n n—1
! ]_ ’ / n / /
T=n <Z Vit — 5 > (yiym + yi+1y¢>> —3 (y1y1 + ynyn) (21)
i=1 i=1
~ =0p(L
=VEN-s P(n)

where V" = (V,g k,l/> and Vg is the consistent estimator of the asymptotic variance of
’ 1<k,k'l,/I'<d

N (AYL-) (AYL) proposed by Barndorff-Nielsen and Shephard (2004a). Thus, apart from border
i=1 n n

terms, which are Op (%), our bootstrap variance estimator of the variance of the realized covariance
matrix coincides with the sophisticated consistent variance estimator proposed by Barndorff-Nielsen
and Shephard (2004a). This is in contrast with the pairs bootstrap studied by Dovonon et al. (2013),
which is not able to estimate the long run variance of the realized covariance matrix, except when the
volatility is constant. Note that in the univariate case (d = 1), the wild blocks of blocks bootstrap

variance V", becomes

o (Va3 (art)) <35 () - (svta)') v [ ot
i=1 " i=1 " " 0

which is a consistent estimator of the asymptotic variance of /n Z (AY"/’) This is not the case of
i=1
the bootstrap methods studied by Gongalves and Meddahi (2009). In particular, the i.i.d. bootstrap
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variance estimator for the asymptotic variance of the realized volatility is given by

o3 (arn)' - (5 (ovt)") s [ otae (f o)’

which is equal to 2 fol otds only when the volatility is constant.

4.2 Noise-free, asynchronous data and no jumps

We now turn to the case of non-synchronously observed data, but we do not allow jumps and market
microstructure noise. In this particular case, it follows that Y = X, where X follows (2), and conse-
quently we have AYI;? = AX% fori=1,...,ng, k=1,...,d. The "standard" estimator of integrated
covolatility, given in (18) is not robust to asynchronous data. An alternative to the realized covari-
ance estimator that solves the non-synchronicity problem using tick-by-tick data is for example the
cumulative covariance estimator developped in Hayashi and Yoshida (2005). This is defined as

ng 1

=3 S avgarioy = 3z + iy @

i=0 j=0

where ijl = {(i,4) + (tF_,tF] N (t{_1,¢}] # 0} . The idea of Hayashi and Yoshida (2005) is to select
only some of the cross variations AY;?AY;% in order to estimate fo Ykl ds, and precisely the ones for
which there is an intersection between the time intervals ( P l,tk] and ( i l,tl]. Here, we can also
take b, = 1, then J, = n and B, (a) = [O‘nl, O‘) There is also no bias-corrected estimator term, i.e.

Z,’gl = 0. Thus we have set,

Zh(a)= ) ZA Ylé_lcﬁ. (23)

tfeBn(a) J=0
It is easy to verify that Condition A holds, then we can apply all results in Theorems 3.1 and 3.2 to
r 7, defined by (22). The proof of this result is achieved by using arguments alike the ones presented in
the more general case in Section 4.4, where in addition to asynchronicity we allow noise. In particular,
AYE i plays the role of Ytﬁ, see Christensen et al. (2013), for further details. Thus, our bootstrap
variance estimator of the variance of the Hayashi and Yoshida (2005) integrated covariance estimator

is an alternative to the consistent variance estimator proposed recently by Mykland (2012).

4.3 Noisy, synchronous data and no jumps

Let us study the case where we allow for the presence of market microstructure noise, but we rule out
asynchronicity, jumps and we suppose that prices are observed at equidistant time stamps. Specifically,
we consider the multivariate model given by (2), then we have AY® = AX% + Aek  fori =1,...,n,
k = 1,...,d. There exists many estimators alternative to the realinzed covanriance Téstimator that are
robust to the presence of market microstructure noise. Let us consider the bias-corrected pre-averaging

estimator of Christensen et al. (2010), which yields the optimal rate of convergence. The pre-averaging
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approach proposed by Podolskij and Vetter (2009), studied by Jacod et al. (2009) and further extended
to the multivariate context by Christensen et al. (2010) and Christensen et al. (2013) is one way to
lessen the influence of the noise and help us to get information about I'.

To describe this technique, let k,, be a sequence of integers, which defines the window length over

which the pre-averaging of returns is performed. In particular, suppose

\I;% =0+o (nil/‘l) , (24)

1
for some @ > 0. Similarly, let g be a weighting function on [0, 1] such that g (0) = g (1) = 0, [ g (s)* ds >
0

0, and assume g is continuous and piecewise continuously differentiable with a piecewise Lipschitz
derivative ¢’. An example of a function that satisfies these restrictions is ¢ () = min (z,1 — ).
Forall k=1,...,d,i=0,...,nt — k, + 1, the pre-averaged returns in tick time Vtﬁ are obtained

by computing the weighted sum of all consecutive returns performed in (3) over each block of size kj,

Zg (L)avt (25)

Based on the pre-averaged returns Y, tk’ Christensen et al. (2010) defined ™ as:

n—kn+1 f
[ = ¢21kn Zg Yy (Y%) 2n021/)2 ZAY’ (AYl) (26)

bias correction term

1
where ¢ = f g ( du and o = [ g (u)Qdu. The pre-averaging estimator is then simply the analogue
0

of the reahzed covariance but based on pre-averaged returns and an additional term to remove bias
due to noise. As discussed in Jacod et al. (2009), this bias term does not contribute to the asymptotic

’

variance of I, Note that in (26), the bias correction term b" = 2710% Z AY: (AYZ) works only
for i.i.d. noise. In the univariate case, e.g., Hautsch and Podolskij (2013) for the corrected estimator
of the bias b under m-dependent noise. In order to apply the wild blocks of blocks bootstrap method,

we can let

1 n_ B
Z’?[ (Oé) = 1/}27 Z Yikf1+(u71)bn Yilfl+(a71)bn . (27)
i=1 n n

Note that since the pre-averaged returns are strongly dependent, we cannot use b, = 1 as before,
instead we will let b,, tend to infinity as n — oo; since in this way we will asymptotically be able to
mimic the dependence in the pre-averaged returns nonparametrically. In particular, b, follows (6) but
additionally we require that 1/2 < dy < 2/3. In this case and under Assumptions 2 (with i.i.d noise),
it is easy to verify that Condition A holds, then we can apply all results in Theorems 3.1 and 3.2 to
the pre-averaging estimator le defined by (26). In particular the validity of A.1. is detailed in the

proof of Lemma 7.1 in Appendix B. Condition A.2. also follows since under our assumptions we have
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that Y = Op ( 4> uniformly in ¢ and similarly 2}, (o) = Op (%") uniformly in « (see for instance
Lemma 6.2 of Christensen et al. (2013)). Finally A.3. follows since for any € > 0 and 1/2 < d2 < 2/3
we have that —2 — 3¢ + 402 (1 +¢) < 0.

Note that when d = 1, (26) amounts to the pre-averaging estimator proposed by Jacod et al.
(2009) on which Hounyo et al. (2013) first introduced the univariate wild blocks of blocks bootstrap
method. Our new general multivariate wild blocks of blocks bootstrap method given in (8), differs from
the univariate bootstrap method of Hounyo et al. (2013) in important ways. The later resamples the

squared pre-averaged returns YE . Here, in the present paper, we resample the block sum of the squared

n

bn [/ _ 2
pre-averaged returns that belong to B, () = [%, %) el Z0 (o) = 7/)2% > <Yik1+(a1)bn> )
n 7 1 f

In addition, in Hounyo et al. (2013) the choice of the bootstrap block size by, is such that b, = (p + 1) kn,
where k,, is the block length of the interval over which the pre-averaging is done given in (24) and p
is either fixed such that p > 1, or p — oo. This choice of b, is more specific for the pre-averaging
estimator. In this paper, b, x n% where 8y € (0,1). These modifications are important in order to
generalize the wild blocks of blocks bootstrap method to a broad class of statistics.
It follows that, the bootstrap covariance between Tnle* and Tnfz,*l, with 7, = nl/4 is given by
= Y ( V(@) = 27 (o + 1)) (z,:;l (@) = 27, (a+ 1)), where 201 (a) is given by (27).
Given Theorem 3.1, we have that as n — oo, Vk’}fk/l, —P Vi - Also, notice that the bootstrap
variance estimator is positive semi-definite by construction, this is an appealing feature not shared by

the existing variance estimator of Vi proposed by Christensen et al. (2010).

4.4 Noisy, asynchronous data and no jumps

In this subsection, we allow for asynchronicity and as in Section 4.3, we consider a setup where we do
not observe the true efficient prices X, but instead a process Y. These prices are observed irregularly
and non-synchronous over the interval [0, 1] . In this pratical situation, we study two different integrated
covolatility estimators. First, we verify the validity of the high level Condition A for the pre-averaged
Hayashi-Yoshida estimator studied by Christensen et al. (2013). Second, we show that the multivariate
realized kernel estimator of Barndorff-Nielsen et al. (2011) as well as the flat-top realized kernel by
Varneskov (2014) can also be written as an example of estimators of I" given in (5). Then, we outline
what a simple bootstrap variance estimator of the asymptotic variance V' of the multivariate realized

kernel estimator would look like, if our high level conditions hold.

4.4.1 The pre-averaged Hayashi-Yoshida estimator

Based on the pre-averaged returns ?tﬁ (given by (25)), Christensen et al. (2010) defined a Hayashi-
Yoshida-type estimator for the integrated covariance I'y; between assets k and [ as follows

N — kn+1 n;— kn+1

Z Z l 1Akl, (28)

n
kl —
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where k, is given by (24), ¢ = Oflg(s) ds, A = {(i,j) (th ek 1N ( Lt } 75@} gy is the
indicator function discarding pre-averaged returns that do not overlap in time. For the simple function
g (z) = min (2,1 — x), ¢ = 1/4. This estimator has the profound advantage that it does not throw
away information that is typically lost using a synchronization procedure. Note that under Assumption
1, n, ny and n; are of the same order and that n controls the universal pre-averaging window k. In
order to apply the boostrap method given in (8), we can let

kn+1
ZP () = Z 1 Al (29)
theBn(a)
Thus, under Assumptions 1-3, (k,, 6) satisfying (24) and b, follows (6) such that 1/2 < dy < 2/3, we
can show that Condition A holds for the pre-averaged Hayashi-Yoshida estimator le defined by (28).
In particular, the validity of A.1. is detailed in the proof of Lemma 7.2 in Appendix B. Condition A.2.
also holds because under our assumptions we have that Yk Op < 5 /4) uniformly in 4 and similarly

Z (o) = Op (;”) uniformly in « (see for instance Lemma 6.2 of Christensen et al. (2013)). Finally,
A 3. follows since for any ¢ > 0 and 1/2 < 2 < 2/3 we have that —2 — 3¢ + 42 (1 +¢) < 0.

4.4.2 Multivariate realized kernels estimator

In the univariate setting, Jacod et al (2009) show that apart from border terms, i.e. terms close to 0
and 1, the pre-averaging estimator given by (26) coincides with the one-lag "flat top" realized kernel
estimator in Barndorff-Nielsen et al. (2008) using kernel weights
1
b =" [ 9wy u—s)du (30)
s
where g (u) is defined as in Section 4.3. In particular, when we choose the bandwidth of the realized
kernel estimator equal to the size of the pre-averaging window k,,, the realized kernel and pre-averaging
based-estimators have the same asymptotic distribution. Consequently, for the bootstrap we can
resample the same statistics as we did for the pre-averaging estimator to estimate the distribution as
well as the variance of realized kernel based-estimator, provided that we use the weight function as
given by (30). Some of our arguments here are heuristic. To fix ideas, let consider synchronous data
in the following. According to equation (1) of Barndorff-Nielsen et al. (2011) (see also equation (5) of

Varneskov (2014)), the multivariate realized kernel can be rewritten as

-3 () () + E 5k () (a7) (avia) + (avi) () ) o

where AY:; =Y: —Yio1 and k: R — R is a non-stochastic weight function. That is characterised by:

n

Assumption K. (i) k£ (0) = 1,k (0) = 0; (ii) k is twice differentiable with continous derivatives; (iii)
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[ k(z)*dz < oo, f K (2)%de < oo, K'(x)*dzdz < oo; (iv) f k (z) exp (iz\) dz> 0 for all A € R.
0

We follow Barndorff-Nielsen et al. (2011) and we average m prices at the very beginning and end

of the day. More specifically, we set

Yy = nlliy’i, and Vi = ;in_;ﬁ?
Note that, (31) can be written as h h
= i 2" (a),
where for 1 < a < J,, -
e 3 (o) ()« e () () (r) + (av) (30) ).

(32)
given that k& (0) = 1, and we suppose by simplicity that .J,, is an integer such that n = J,-b,. The statis-
tics Z" (a) involve many increments of Y, that are not in the sub-interval B, (o) = [%, %) .
Thus Z™ (o) may be strongly dependent even if we let b, tend to infinity as n — oo because they
rely on many common observations AY.. However, when we use as weight function the Parzen kernel
(which is advocated by Barndorff—NielsZzn et al. (2011)), we show that we can remove substantially
many common observations AY: in Z™ («). In particular, all observations in Z” («) such that % > 1
(since by definition, for the Parzgn kernel k (z) = 0 for x > 1). Thus, according that k (x) is the Parzen
kernel or any others kernel such that Assumption K holds and & (z) = 0 for x > 1, we can write (31)

as follows, for 1 < a < J,—1

o= 5 ((an) (an) k() (o) (ars) + (avs) (ar) ) ).

i=(a—1)by+1 h=1
(33)
whereas for o = J,
= 3 ((n) () TS () () (ove) + () (34) ) ).
i=n—bp+1 h=1

(34)
where H < b,. It is conjecture that the statistics Z” («), as defined by (33) and (34) will verify our
high level Condition A. If this is the case, then a positive semi-definite consistent estimator of the

asymptotic variance V of the multivariate realized kernel estimator will be V" = (Vk’} klll>1<k L <d

where
n2/5 Jn7l
Vitow = "= 3 (ZR1(0) = 21 (@ + 1) (2 (@) — 2y (@ +1)).
a=1
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It would cleary be desirable to have a formal proof of this, but this is beyond the scope of this paper.

We emphasize that the paper by Barndorff-Nielsen et al. (2011) goes much futher in developing
the multivariate realized kernel estimation technology, including non-synchronous trading and allowing
certain types of measurement error (such as endogenous noise). Furthermore, their results are extended

1/4_consistent and efficient.

in Varneskov (2014), who also suggests a class of kernels that are n

In the univariate context, given that we can fit the subsampling-based estimator of Zhang et
al. (2005) and Zhang (2006) into the realized kernel setting (e.g. Barndorff-Nielsen et al. (2008)),
we conjecture that similar analysis as for kernel-based estimators holds for the subsampling-based

estimators, but a full exploration of this is left for future research.

4.5 Jumps, noise-free and synchronous data

It has long been recognized that asset prices do not always evolve continuously over a given time
interval (e.g. Huang and Tauchen (2005), Barndorff-Nielsen and Shephard (2006)). So far we have
focused on the case where X is continuous In this subsection, we allow for jumps in X; and suppose

that no market microstructure noise is present and prices are observed synchronously at equidistant

date. In particular, we observe Y = X + Z, where X is given by (2) at regular time points ¢; = %, for
i=0,...,n, where Z¥ is any finite activity jump process. This means that they have the following
representation, for all k =1,...,d,

t N
2k = | Chantas =3k,
0 r=1 "

where NF = (Ntk)te[o,l]

instants of jump of Z* and C’ik denote the sizes AZF of jumps at 7.

is a counting process with F (Nf) < o0, {Wf, r= 1,...,Nf} denote the

In this context, the covariance between risk factors of asset prices is due to both Brownian and jump
components. To separate the two terms of the quadratic covariation given by the sum of " (integrated
covariance) with the sum of co-jumps, we can for instance used the threshold estimator of Mancini and
Gobbi (2012) (see also Barndorff-Nielsen and Shephard (2004b), Jacod and Todorov (2009), Bollerslev
and Todorov (2010) and Boudt, Croux and Laurent (2011), among others). Following Mancini and
Gobbi (2012), we have that

e (57) (57.) = (M), o, @)

where H/;:(E/Z,,H/i)/ = (AY}l{’ ~},--.,Ayldl /

- {'AY% sani}> » @ 2 0, and

~}. As in Section 4.1, here we can take

Xe(0,1), and Ty =3 AY{?‘l{’
2 oY

i <an—*
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b, = 1. There is no bias-corrected estimator term, i.e. Ab/,Z}l = 0. It follows that J, = n, and
—k 1
Zh(a) =AY aAYa, fora=1,...,n. (36)

Next we verify Condition A. It is easy to see that Condition A.3. holds by replacing b, by 1. To check
Condition A.2., apply Theorem 2.1 of Barndorff-Nielsen et al. (2006). The proof of validity of A.1. is
achieved by using arguments alike the ones presented, in detail, in the proof of Lemma 7.1, where now
AY k% plays the role of Yﬁ It follows from Theorem 3.1 that the bootstrap covariance Vka/l/ is given
by

n—1 ’
Vkl KU = g Z (AY AY i — AY1+1 AY1+1) <AY i AY i — AY2+1 ANYthl) .
i=1

In particular, when (k,l) = (k/, l/) , we have that

n—1
—k-—~—1 =k ——1 \?
i—1
Dk 1 \2 N ek N [~k —I\2 k12
= n) (AViAYL) —n - (AViAY:) <AY%AY%>—§ (av,a7)) "+ (a7,47,) ).
) i=1
—Vn =0r(3)

where VM ¢ 1s the consistent estimator of the asymptotic variance of /n Z AY AY i proposed by
=1

Mancini and Gobbi (2012) (c¢f. Proposition 3.7). Thus, apart from border terms which are Op (5),
we have Vﬁj‘kl = \71\77[(} —P Vit k1, as n — oo. This result extends the work of Hounyo (2013), where a
local Gaussian bootstrap method have been proposed for inference on integrated covolatility under no
jumps by allowing for the latter. It also provides an alternative to the recent general local Gaussian
bootstrap method introduced by Dovonon et al. (2014) for jump tests.

Note that in the univariate context, the jump robust estimators of integrated volatility called
bipower variation introduced by Barndorff-Nielsen and Shephard (2004) and its multipower version,
analysed among others by Barndorff-Nielsen et al. (2006), can also be written as an example of
estimators of I' given in (5). Following Barndorff-Nielsen et al. (2006), we have that

n—L+1 L

O (SEE
=1 [=1

7 (37)

mp
=1

1

such that % p; = 2, where p; > 0 and m, = E|N (0,1)”. In particular, under some regularity
conditions, we can apply the wild blocks of blocks bootstrap method by resampling as in (8) the
statistics Z7), («) given by

Y25

Zkk‘ 5 fOI'O[:].,...,Jn7 (38)

+z 1+(a 1)bn,

e

::]h

N
I
—
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where here J,, = Ln_biiHJ . The full exploration of the multipower variation-based bootstrap is left for

future research.

5 Monte Carlo results

In this section, we assess by Monte Carlo simulation the accuracy of the feasible asymptotic theory
approach of Christensen et al. (2013). We find that this approach leads to important coverage prob-
ability distortions when returns are not sampled too frequently. We also compare the finite sample
performance of this approach with the wild blocks of blocks bootstrap method. The design of our
Monte Carlo study is roughly identical to that used by Christensen et al. (2010) and Barndorff-Nielsen
et al. (2011) with some minor differences. In particular, in addition to the case of i.i.d. noise, we look
at the case of autocorrelated noise. Here we briefly describe the Monte Carlo design we use.

To simulate log-prices we consider the following bivariate stochastic volatility model

dx{" = aWdt 4+ pDoVaB? + /1 - [p0] oMW, for i =1,2,

where B and W are independent Brownian motions. In this model, the term p(i)agi)dBy) is an
idiosyncratic component, while /1 — [p(i)]2a§i)th is a common factor.

The spot volatility is modeled as O’t(i) = exp (5[()” + B%i)ggi)) with an Ornstein-Uhlenbeck speci-
fication for gf) : dggi) = a(i)gt(i)dt + dBt@. This implies that there is perfect correlation between
the innovations of p(i)a,gi)dB,f(i) and at(i), while it is p(¥ between the increments of Xt(i) and gy).
Finally, the magnitude of correlation between the two underlying price processes Xt(l) and Xt(Q) is
\/1 — [,0(1)]2\/1 — [,0(2)]2. The reported results are based on the following configuration of param-

eters for both processes: (a(i),ﬁéi),ﬁfi),p(i),a(i)) = (0.03,—5/16,1/8,—1/40,—0.3), so that Boi) =

[6§ )} / [204(1)]. We note that this particular choice of parameters also means that the volatility

process has been normalized, in the sense that E <f01 [agi)} 2> =1.

We simulate data for the unit interval [0, 1], and normalize one second to be 1/23400, so that [0, 1]
represent 6.5 hours worth of trading, which is then further decomposed into N = 23, 400 subintervals of
equal length 1/N. In constructing noisy prices Y we first generate a complete high frequency record
of N equidistant observations of the efficient price X ® using a standard Euler scheme. We initialize
the spot volatility O't(i) at the start of each interval by drawing the initial values for the Qgi) processes
from its stationary distribution, i.e. Qéi) ~ N (0, [Qa(i)]_1> . The size of the market microstucture

noise is an important parameter. We follow Barndorff-Nielsen et al. (2011) and model the noise
magnitude as &2 = wz/\/fo1 otds. We fix €2 equal to 0, 0.001 and 0.01 (which covers scenarios with

no noise through low-to-high levels of noise) and let w? = &2/ fol olds. This means that the variance
of the noise process increases with the level of volatility of the efficient price X, as documented by

Bandi and Russell (2006). These values are motivated by the empirical study of Hansen and Lunde
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(2006), who investigate 30 stocks of the Dow Jones Industrial Average. We follow Kalnina (2011) and
add autocorrelated microstructure noise simulated as an M A(1) process (for a given frequency of the
observations):
eg) = u(ﬂl + 'yug), where uV] {0, X'} L N <0, 1:)_272) ,

so that Var (e(i)) = w?. The observed process is then given by Y = X 4 () Three different values
of ~ are considered, v = 0, v = —0.5 and v = —0.9 (which covers scenarios of i.i.d. noise, moderate
and high level of correlation of noise). We follow Christensen et al. (2010) and use the conservative
choice of k,, (§ = 1, implying that k, = y/n). We also follow the literature and use the weight function

g (z) = min(x,1 — ) to compute the pre-averaged returns. In order to reduce finite sample biases

1
associated with Riemann integrals, we replace in (28), ) = [ g(s)ds by its Riemann approximation
0

given by ¢, = é % g (ﬁ)

Finally, we ex‘gl":zm(]ct irregular, non-synchronous data from the complete high-frequency record using
Poisson process sampling to generate actual observation times, {ty)} In particular, we consider two
independent Poisson processes with intensity parameter A\ = (A1, A2). Here \; denotes the average
waiting time (in seconds) for new data from process Y, so that an average day will have N/);
observations of Y¥), i = 1,2. We vary \; through (3,10,60) to capture the influence of liquidity on
the performance of the pre-averaged multivariate volatility estimator and we set Ay = 2); such that
on average Y (@ refreshes at half the pace of Y1),

Table 1 gives the actual coverage probability rates of 95% confidence intervals of the three covari-
ation measures (integrated covariance, integrated correlation and integrated regression coefficients) as
well as the average lengths of the confidence intervals, computed over 10,000 replications. Results based
on the asymptotic normal distribution and the wild blocks of blocks bootstrap method are included
under the label CLT and WBBB, respectively.

In our simulations, bootstrap intervals use 999 bootstrap replications for each of the 10,000 Monte
Carlo replications. We consider the bootstrap percentile method computed at the 95% level. To
generate the bootstrap data we use the following external random variables n ~ i.i.d. N (1,1/2). The
choice of the bootstrap block size is critical. We follow Politis, Romano and Wolf (1999) and Hounyo
et al. (2013) and use the Minimum Volatility Method to choose the bootstrap block (for further details
see Hounyo et al. (2013)).

For the three covariation measures, all intervals tend to undercover. The degree of undercoverage
is especially large, when the average arrival times of trades is not too frequent. Results are not very
sensitive to the noise magnitude nor to the level of correlation. The gains associated with the wild
blocks of blocks bootstrap method can be quite substantial, especially for larger values of A\; and A
(long average waiting time for new data from process Y ) and Y(?)), when distortions of the CLT-based

intervals are larger. For instance, when v = —0.5 (moderate level of correlation of noise), &2 = 0.01
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(high level of noise), and A = (60,120) (illiquid assets), for the regression coefficient, the coverage
rate for a symmetric bootstrap percentile interval is equal to 87.52%, whereas it is equal to 70.20%
for the feasible asymptotic theory of Christensen et al. (2013). The gains are especially important
for the correlation coeflicient, when the asymptotic theory-based intervals does worst. The bootstrap
interval has a rate of 90.82%, whereas the Christensen et al. (2013) interval has a rate of 69.32%. For
the covariance, these numbers are equal to 87.52% and 70.15%, for the bootstrap and the Christensen
et al. (2013) interval, respectively. When the average arrival times of trades become frequent, the
bootstrap intervals have coverage rates closer to the desired level, whereas the undercoverage problem
persists for the CLT-based intervals. For instance, for the CLT-based intervals, when v = —0.9 (high
level of correlation of noise), £2 = 0.001 (low level of noise), and A = (3,6) (liquid assets), a two-sided
95% confidence interval for the covariance measure between the two assets has coverage rate equal to
89.19%, whereas it is equal to 88.70% for the regression coefficient. These numbers increase to 94.91%
and 94.78% for the bootstrap-based intervals. The bootstrap performance is quite remarkable for the
correlation coefficient where it essentially removes all finite sample bias associated with the first-order
asymptotic theory of Christensen et al. (2013).

In summary, the results in Table 1 show that the performance of the asymptotic theory-based in-
tervals and the bootstrap percentile intervals in terms of coverage rate crucially depends on the average
arrival times of trades. In fact for non-frequent arrival times of trade, the asymptotic normal approx-
imation is often inaccurate and leads to important coverage distortions. In all cases, the bootstrap

outperforms the existing first order asymptotic theory.

6 Empirical application

To illustrate some empirical features of the wild blocks of blocks bootstrap theory developed above,
we analyse high-frequency assets prices for four assets. In the analysis we focus on the realized beta
estimator based on pre-averaged returns. In particular, we compare the empirical properties of the
bootstrap to the existing feasible asymptotic procedure of Christensen et al. (2013). The data is the
collection of trades recorded on the NYSE in July 2013, taken from the TAQ database through the
Wharton Research Data Services (WRDS) system. This results in 22 distinct trading days. We picked
3 equities at random from the S&P 500 constituents list as of July 1, 2014. They are Microsoft Co.
(listed under the ticker symbol (MSFT)), Boeing Co. (BA) and WPX Energy Inc. (CPWR). We
then added a 4th element, namely the S&P 500 Depository Receipt (ticker symbol SPY). The SPY is
an exchange-traded fund that tracks the large-cap segment of the US stock market. As such, it can
be viewed as generating market-wide index returns. For each day, we consider data from the regular
exchange opening hours from time stamped between 9:30 a.m. until 4 p.m. Eastern Standard Time.
Our procedure for cleaning the data is identical to that used by Barndorff-Nielsen et al. (2011) (for

further details see this paper). Table 2 reports some summary statistics of the data (before and after
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cleaning). As can be seen, these equities display varying degrees of liquidity with MSFT and SPY
being the most liquid, while CPWR is the least liquid.

To implement the pre-averaged returns in tick time as given in (25), we select the tuning parameter
6 by following the conservative rule (§ = 1, implying that k, = y/n). For the bootstrap, to choose the
block size by, we follow Politis, Romano and Wolf (1999) and use the minimum volatility method (see
Appendix A of Hounyo et al. (2013) for details).

We start by analysing the high frequency data. Figure 1 shows time series, autocorrelation and
histogram of raw returns as well as of pre-averaged returns for SPY. We observe a pronounced serial
correlation in raw returns and in pre-averaged returns. In particular, for raw returns the first auto-
correlation is large and negative. This is typical of noisy data and unlikely to arise from a Brownian
semimartingale. Note that, the strong autocorrelation observed for pre-averaged returns in Panel D
of Figure 1 is due to the fact that we have considered overlapping pre-averaged returns, which rely
on many common raw returns. This has nothing to do with the fact that raw returns are possibly
noisy. In fact, the correlogram (not reported here) of non-overlapping pre-averaged returns shows
that the latter are almost uncorrelated (even for the first lag). The effect of pre-averaging is nicely
illustrated by comparing Panel E and F of Figure 1. It appears that pre-averaging helps to reduce
price discreteness effect observed in raw returns. At the same time, return distribution is now much
closer to being Gaussian. These results are not surprising, it confirms theoretical properties of pre-
averaged returns. In particular, under mild conditions on the dynamics of the price process we have
that n”‘*i@]?@ &N <0, Oipoo? + %wQ) . Similar patterns (not reported here) are observed for
MSFT, BA and CPWR. ’

We now turn to the realized beta for MSFT, BA and CPWR. We consider bootstrap percentile
intervals, computed at the 95% level. The results are displayed in Figure 2 in terms of daily 95%
symmetric confidence intervals for the latent realized beta. Two types of intervals are presented:
our proposed wild blocks of blocks bootstrap method and the feasible asymptotic theory-based of
Christensen et al. (2013). The pre-averaged Hayashi-Yoshida estimator-based beta estimate is in the
center of both confidence intervals by construction. In fact, similar series of confidence intervals for beta
was also graphed by Dovonon et al. (2013) in their Figures 1 and 2, except that they used daily log-
returns to calculate estimated betas (based on realized covariance) over intervals of one quarter. The
emphasis of their paper was to illustrate the usefulness of the bootstrap as a method of inference on beta
in a context, where the mechanics of trading is perfect so that there is no market microstructure effects
and prices are observed synchronously. In Figure 2, beta is estimated using full record transaction
prices. For all stocks considered in the present study, the width of confidence intervals (the bootstrap
and the asymptotic theory-based) varies through time. Also, there are a lot of variability in the daily
estimate of beta, but all of them lie in the positive region. This means that, these stocks move in the
same direction as the market.

As illustrated below, a closer analysis of Figure 2 show that these common patterns observed for
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MSFT, BA and CPWR hide different empirical features which allow us to gain valuable insights into
the empirical performance of the wild blocks of blocks bootstrap method. For MSFT: the most liquid
stock after SPY considered in our analysis, a comparison of the bootstrap intervals with the intervals
based on the feasible asymptotic approach of Christensen et al. (2013) suggests that the two types of
interval tend to be quite similar. In contrast to MSF'T, for the less liquid stock considered here, i.e.
CPWR, in most of the cases the confidence intervals for daily beta based on the bootstrap method
are usually wider than the confidence intervals using the feasible asymptotic theory. For BA, there
is no evidence about the relative empirical performance of the bootstrap and the asymptotic theory-
based. These observations lead us to conclude that the degree of liquidity of assets, specifically the
non-trading of MSFT, BA or CPWR versus SPY influences the width of confidence intervals, although
the conclusion might change for other data sets. Note that, as our Monte Carlo simulations showed,
the asymptotic theory-based approach typically have undercoverage problems whereas the bootstrap
intervals have coverage rates closer to the desired level. Therefore, if the goal is to control the coverage

probability, shorter intervals are not necessarily better.

7 Conclusion

This paper proposes the bootstrap as a method of inference for integrated covariance matrix. We show
that the wild blocks of blocks bootstrap studied by Hounyo et al. (2013) can be used to simultane-
ously handle the presence of dependence, jumps, heterogeneity, irregularly spaced and non-synchronous
trading properties of high-frequency data. This combination of properties is unique in the bootstrap
literature, so it is worthwhile exploring this bootstrap method in some detail. The bootstrap method is
particularly useful because it circumvents the need for an explicit estimator of the asymptotic variance,
which has proved difficult in our context.

We provide a set of conditions under which this method is asymptotically valid to first order.
We then verify these conditions for various estimators of integrated covolatility. Our Monte Carlo
simulations show that the wild blocks of blocks bootstrap improves the finite sample properties of
the existing (pre-averaging-based estimator) first order asymptotic theory. Furthermore, an empirical
illustration highlights the usefulness of our approach as an alternative method of inference for realized
covariation measures and its applicability to real high-frequency data. In future work, we plan to
study the higher-order accuracies of this bootstrap method. Another important extension is to provide

a theoretical optimal choice of the block size b,, for confidence interval construction.

Appendix A

Tables 1 reports the actual coverage rates for the feasible asymptotic theory approach of Christensen
et al. (2013) and for our bootstrap methods, as well as the average lengths of the confidence intervals

using the optimal block size by minimizing confidence interval volatility.
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Table 2. Descriptive statistics and number of data before and after filtering.

Stock BA CPWR MSFT SPY
Raw trades 783,150 155,413 3,160,226 5,557,249
Corrected / Abnormal/Zeros 10 26 36 12
Time aggregation 645,249 125,242 2,889,825 5,191,067
# Trades 137,891 30,145 270,365 366,170
Intensity 6,268 1,370 12,289 16,644

Note. This table reports some descriptive statistics and liquidity measures for the selection of stocks included
in our empirical application. Raw trades is the total number of data available from these exchanges during the
trading session, while # trades is the total sample remaining after filtering the data. Intensity is the average
number of data per day.
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Figure 1: Summary statistics of raw and pre-averaged SPY trade data over regular exchange opening days in
July 2013.
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Figure 2: 95% Confidence Intervals (CI's) for the daily pre-averaged Hayashi-Yoshida estimator -based beta
estimates, for each regular exchange opening days for BA, CPWR and MSFT in July 2013, calculated
using the asymptotic theory of Christensen et al. (2013) (CI's with bars), and the wild blocks of
blocks bootstrap method (CI’s with lines). The pre-averaged Hayashi-Yoshida estimator -based beta
estimate is the middle of all CI’s by construction. Days on the z-axis.
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Appendix B

Proof of Lemma 3.1 Part a). Given (8) and (9), result follows directly since we can write

E( n) _ iE*(Zﬁ*(a)

JIn—1

= ZE* 2 () + E* (25 (Jn))
Jn 1

= > [Ehla+ 1)+ (Zf (@) = 2 (a+ 1) E* (na)] + 25 (Jn) -
a=1

Then, under the condition E* (1) = 1, we have that

JIn
B (T) = >z
a=1
= Th+ b,
Proof of Lemma 3.1 Part b). Given the definition of V}}%,,,, equations (8) and (9) we have that

Vit = B (2 — E* (1) (2 — E* (20)))

_ Z ZE*(Z -5z @) (20 (o) - 2 (223 ()

= 23 Y (@ (@) - 2 o+ 1)) (20 (") = 28 (o +1)) Cov™ () -

Using the fact that n, ~ i.i.d., result follows, then we get

T2 Jn—1
Vit = 2Var® (n) = Y (Zhi(@) = 2 (a+ 1) (Z (@) = 2y (a + 1))

a=1

= 2VCLT'* (77) Vk?%,k’l"

Proof of Theorem 3.1 Part a). Result follows directly given part b) of Lemma 3.1 and Condition

Al

Proof of Theorem 3.1 Part b). Let f};‘l* (a) = (257 (@) 1<p1<q - Where Zi7" (a) is defined in (8), and

let =¥, = vec (f}gl* (a )) We have that S™ = n!/4 (vec <f“*)_ E* (vec <f"*))> =Ty Za L (xh — E* (x))) .
The proof follows from showing that for any A € R? such that XA = 1, sup, g |P* (X7, 7 <

_ / — / _ % — 2 2
x) — ®(z/ <)\ VA))\ = 0, where &5 = 7, N (2} — E*(2%)), and V (Vkl) Lehiea is a d® x d* matrix,

whose generic element Vj; is given by

Vkl = Vk—dL(k—l)/dj,|_(k—l)/dJ+1,l—dL(l—l)/dJ,[(l—l)/dj-i—la

with 1 < k,I < d2. Clearly, E* (E’n ) — 0 and Var* (E’n ) — AV A BNV by part a).

a=1%a a=1Ta

Thus, by Katz’s (1963) Berry-Essen Bound, for some small £ > 0 and some constant K > 0 which
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changes from line to line, sup,cp )P* <ZJ” zi < x) — ®(z/ ()\’LVL//\))‘ < K Y7 E*|#5)t. Next,

a=1"«a

we show that 3277 E*|7%[2t¢ = 0,(1). We have that
JIn JIn 5
ZE*’jZ|2+E — ZE* }Tn)\/(xg _E* (QL’Z))‘ +e
a=1 a=1

Jn )
2+4€,_24¢ * | \/ % |21€
277 E F )\ ‘

<
a=1
< 22+6 2+6 Z E* ‘LL’ 24-¢
a=1
JIn
< KTTQL—O—EE* |771|2+E Z |xa‘2+€ 7

a=1
where the first inequality follows from the C, and the Jensen inequalities; the second inequality uses
the Cauchy-Schwarz inequality and the fact that N\ = 1; and the third inequality follows from the C,

and the Jensen inequalities. We let ]2]2 = (2'z) for any vector z. It follows that

JIn
Z E*|7 ‘2+5 < KT72L+6E* ’171’2-1-6 Z ’$a’2(1+8/2)
a=1
- d d 1+e/2
< o E Y (DY @ o))
k=1 1=1
ore o b 1+e n 1+e Jn 2+
* € _2+4¢€ n 5_
< KE"|m|""T, <n> <bn) Z|Zkl =op(1).
—0(1) S———
=o(1) =0p(1)

where consistency follows since for any € > 0, E£* \na\ﬂa < A < 00, and by using Conditions A.2. and
A3.

Proof of Theorem 3.2. Parts a) and b). Since S converges stably in distribution to N (0, V), by
an application of the delta method (see Podolskij and Vetter (2010, Proposition 2.5(iii))),

S st N (o, V'h <vec ( /0 1 sts>> VVh <vec ( /0 1 Esds>)> .

Similarly, by a mean value expansion, and conditionally on the original sample,
S =1,V'h (vec(f"*)) (vec(fn*) — vec <f")> + op+(1),
since fZl* — fZl —P7 0 in probability. It follows that

Spe st (0, V'h <vec ( /0 1 Esds>> VVh <vec ( /0 1 &ds)))

in probability, given Theorem 3.1. The result follows from Polya’s theorem (see, e.g., Serfling (1980)),

given that the normal distribution is continuous.
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Auxilliary Lemmas

As in Jacod et al. (2009), we assume in the following that the processes a,o and X are bounded
processes satisfying (1) with a and o adapted cadlag processes. As Jacod et al. (2009) explain,
this assumption simplifies the mathematical derivations without loss of generality (by a standard
localization procedure detailed in Jacod (2008)). Formally, we derive our results under the following

assumption.

Assumption 4. X satisfies equation (2) with a and o adapted cadlag processes such that a, o, and

X are bounded processes (implying that « is also bounded).

Notation

We introduce the following additional notation associated with the pre-averaged weighting function g.

Let
1 1

$1(s) = /9’(“)9 (u—s)du, ¢2 (s /19 (u— s)du, q)w—/¢i(s)¢j(5)d37

s 0
and for i = 1,2, ¢ZZ¢)Z()
We also let
Apwr (s) = T (8) X (8) + B (5) B ()
Oripr (5) = Zpw (8) Yy (8) 4+ B (8) Wry (8) + L (8) W (8) 4 Zgrr (8) Wr (5)

Tiwry = Wi (8) Wy (s) + Wy (s) Wi () -

Lemma 7.1. Suppose (2) and Assumptions 1-4 hold. Furthermore suppose that " is given by (26) as
well and let 1/2 < 69 < 2/3. Then we have

9 Jn—1
.
Viiwr = ?n > (2R (@) = Zf (a+ 1) (2 (a) = ZRp (a+ 1) =7 Vg
a=1
where T, = n'/4
Zha (o 2k: ZYZ (o e YE (a1 and

2 ! 201, (! Qg !
Vkl,k’l’ = $¢229 Akl,k’l’ (8) dS + 6 @kl,k’l’ (8) dS + QTTklvk,l, = S (S) dS. (39)
2 0 0 0

Lemma 7.2. Suppose (2) and Assumptions 1-4 hold. Furthermore suppose that = <f21>1<k <y’
where f’,;”l is given by (28) as well and let 1/2 < §3 < 2/3. Then we have

2 Jn—1

2N (20 (@) = 2R (a4 1) (2 (@) = 2R (a+ 1) =7 Vi

Vn =
Kkl k'l 9

a=1
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where T, = nl/4

nlfk»,ri»l

Zil)= Y, Y ViVl (40)
=0

theBn(a)
and Vig prv s given in Theorem 3.4 of Christensen et al. (2013).
Proof of Lemma 7.1. The proof follows closely that for Theorem 4.1 of Christensen et al. (2013),
however for completeness, we present the relevant details. Given the definition of V)] ,,,, and Z}} (a),
after adding and substracting appropriately, we can write

JIn—1 JIn—1 JIn—1
Vk:rll,k;’l’ (Z QZkl Zk"l/ <Z Zk:l Zk;’l’ o+ ]. Z Z]?l (a + 1) Z]?/l/ (Oé)))

a=1

£ZnJ Zra () — Z5 (1) 2% (1

+ (Z1 (Jn) 2y (Jn) w (1) 2 (1))
== Lklk’l’+R

kL, K"

where the remainder term is

n n mn n n n
Ry = (] () 2 () — 215 (D) 2 (1)
2
_ “3.9Y _ bn
= O an>—OP<<ng/4)>
= opr(1),

bn _ _
so long as d2 < 3/4, where we used the definitions of Z}; () = lekn S YE e Y a1y, s the

Yk q> < Kn~9/4
uniformly in 4 (cf. Lemma 6.2 of Christensen et al. (2013)). Next we show that the Teading term is

Cauchy-Schwartz inequality, the fact that under Assumption 4 for some ¢ > 0, E (

such that
pnh—{go LZl,k’l’ = Vkl’klll, for 1 S k, k/l,/ l, S d. (41)

It is obviously enough to prove the result for the unsymmetrized estimator

Jn—1
Ly =Vn Z (2 (@) Zip (o) = 23 () Zip (e + 1))

Next, we introduce two approximating version of B (I, r) j first, namely

2 (0) =

n
§ : vk vl
Yi—1+(o¢—1)bn Yi—1+(a—1)bn )

. 1 O _
Zl?l (a) = W Z Yi’i1+abn YLHabn ,
2hn 2:1 n n

L < O‘b” . Indeed we will show that the

K2
n

d
—k -
where we have set Y%, —¢ €i Z o 1 W™, for (@=1)bn

n

‘ 3l

error due to replacing Y by Yk, is small and will not affect our theoretical results, since o is assumed
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to be an Ito semimartingale itself. We have that, for (a—1)bn < 4

E(‘i

i+j i+j
_vk,

D~ ) L B )

1 n o\ d it 1/2
n J
;—i_ 292(%);E

IN

2
o kv kv v
0 = O, AW
- itj—1 n
j=1 n

1/2 1/2
+<kb> >§K<knbn> |
n n n

Note also that E (|2} ()]) < K%, thus it follows that

INA
=
VRS
3|5

= (k)2 (1 0!
(|2 (0) - Zh()]) < Kb, [
( 1 (@) 1 (@) ) n (M)
3/2
< K <b”> :
n
similarly for ZA,?l (), we have E (‘Zkl ZA{Jl (a)’) <K (ﬁ)S/Q So by using the fact that § < 2/3

we obtain Lkl W Lkl v =op (1), where

Jn—1

Ly = Vn Z (Zkl ) 2 (@) — 25 (o) 2y (o + 1)) :

Then it is simple to deduce that

Ju—1 3/2
~ - ~ ~ b2
Vii| S B (Zin(e) 2y @)~ B (B (@) B (@ f?>>>‘ < K"
a=1 "
Jn_l - - - - b3/2
V|3 (2@ 2o @4 1) - B (Zh (@) B 0+ ) fzzmn))‘ < kU
a=1 n

by conditional independence, and now we are left with

Jn—1

T = Vi Z(zkl )2 () - zsxa)z,zl/(aﬂ)rm_nbn)+op<1>.

From the same arguments as in Podolskij and Vetter (2010) and using d2 > 1/2, we obtain

NG (z (@) 22 (0) — 213 (0) 2 (@ + 1) rf?mn)

abn
o b
= ﬂa_l)bn c(s)ds+o (n) ,

uniformly in o, where we use V)] K= fo s)ds with the process ¢ given by the right hand side of
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(39) thus we have

1
L = [ <(o)ds+op (1)
0

and the proof is complete.
Proof of Lemma 7.2. Given the definitions of V}} ,,,, and 2}, (o), after adding and substracting

appropriately, we get that

Jn—1
n ﬁ N n n n n n n
Vipr = —5- Z (225 (o) Zip (o) = Z () Zip (e + 1) = 2 (a + 1) 25y (o))
a=1

P (2 () 2 () — 205 (1) 2y (1)

= LZ‘Ll,k"l’ + Rn

kLK

where the remainder term is

o Y G () 2 () — 23 (1) 2 (1)

kiK1 2
5 o by \?
nl—kn—i-l o
so long as d < 3/4, where we used the definitions of Z}, (o) = > Ytﬁ tll 1 gx1, the Cauchy-
theBy(a) J=0 9 Y

Schwartz inequality, the fact that for some ¢ > 0, F (‘Yf

q
) < Kn~* uniformly in i (cf. Lemma 6.2
of Christensen et al. (2013)). Thus result follows since Ly, ;. is exactly the consistent estimator of

Vit wrv proposed by Christensen et al. (2013) (cf. Theorem 4.1).
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