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Abstract

This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estima-
tor, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional
time series models. The model is parametric and quite general, and, in particular, encompasses the
multivariate non-cointegrated fractional ARIMA model. The novelty of the consistency result, in par-
ticular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter
values, for which the objective function does not converge uniformly in probablity, thus making the
proof much more challenging than usual. The neighborhood around the critical point where uniform
convergence fails is handled using a truncation argument.

Key words and phrases: Asymptotic normality, conditional-sum-of-squares estimator, consistency,
fractional integration, fractional time series, likelihood inference, long memory, nonstationary, uniform
convergence.

JEL classification: C22, C32.

1 Introduction

This paper considers conditional-sum-of-squares (CSS) estimation of multivariate fractional time series
models. The CSS estimator is based on minimizing the sum of squared residuals, and was applied in
classical work on ARIMA models by, e.g., Box & Jenkins (1970). In later work, CSS estimation was
introduced for fractional time series models by Li & McLeod (1986) and Robinson (1994), in the latter
case for hypothesis testing purposes. The CSS estimator has the anticipated advantage of having the
same asymptotic normal distribution as the (unconditional) Gaussian maximum likelihood estimator
and being effi cient under Gaussianity. However, Gaussianity is not assumed in this paper. Compared
to (unconditional) maximum likelihood estimation, though, CSS estimation is computationally much
simpler. For these reasons, the CSS estimator has been very widely applied in the literature, also for
fractional time series models.

In the simplest case, the univariate fractional time series model is

∆d
+Xt = εt, (1)

∗I am grateful to the editor, two anonymous referees, James Davidson, Søren Johansen, James MacKinnon, Lealand Morin, 
and participants at the second CREATES Long Memory Symposium for comments. This research was supported by the 
Canada Research Chairs program, the Social Sciences and Humanities Research Council of Canada (SSHRC), and the Center 
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DNRF78).
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where the operator ∆d
+ is given by ∆d

+Xt = ∆dXt1{t≥1} =
∑t−1

n=0 πn(−d)Xt−n with

πn(u) =
Γ(u+ n)

Γ(u)Γ(n+ 1)
=
u(u+ 1) . . . (u+ n− 1)

n!
(2)

denoting the coeffi cients in the usual binomial expansion of (1−z)−u, Γ(·) denoting the Gamma function,
and 1{A} denoting the indicator function of the event A. Note that ∆d

+Xt only depends on Xt for t ≥ 1

and is therefore always well defined. The inverse operator ∆−d+ is given by ∆−d+ Xt =
∑t−1

n=0 πn(d)Xt−n.
The definition of fractional integration applied in (1) is the so-called “type II”fractional integration.

While “type II”is certainly not the only type of fractional integration, it does have the desirable feature
that the same definition is valid for any value of the fractional parameter, d, and that no prior knowledge
needs to be assumed about the value of d. Importantly, this implies that both stationary, nonstationary,
and overdifferenced time series are permitted and that the range of admissible values of the fractional
parameter can be arbitrarily large.

This paper proves consistency and asymptotic normality results for CSS estimators in multivariate
fractional time series models. Although the CSS estimator has found widespread use in the literature,
the conditions under which it is consistent in fractional time series models, and especially multivariate
fractional time series models, are only recently beginning to be well understood, as explained below.
Consistency results are of course important in their own right and are also necessary prerequisites in any
proof of asymptotic normality for implicitly defined estimators such as the CSS estimator. However, proofs
of consistency have been avoided in the literature due to the non-uniform convergence of the objective
function.

To illustrate the issue in the context of model (1), let the true value of the fractional integration
parameter be denoted by d0. Then the data generating process is Xt = ∆−d0+ εt, which is found by
inverting (1), and residuals defined as ∆d

+Xt = ∆d−d0
+ εt appear in the (conditional) likelihood or in the

CSS objective function; see details below. When d−d0 > −1/2 the residuals are stationary (except for the
truncation in the definition of ∆+), and a law of large numbers can be combined with standard methods
to obtain uniform convergence in probability of the CSS objective function on any compact subset of
d− d0 > −1/2. On the other hand, when d− d0 < −1/2 the residuals are nonstationary and a functional
central limit theorem applies under additional moment conditions. Furthermore, the rate of convergence
of the CSS objective function is different in this case, compared to d−d0 > −1/2. This change in behavior
of the objective function around the critical point d− d0 = −1/2 implies that the objective function does
not converge uniformly in probability on a large parameter space, i.e. one that includes this point, thus
making consistency proofs on a large parameter space much more challenging than usual.

These diffi culties have previously been avoided by, for example, restricting the range of admissible
values to an interval of length less than one-half as in, among others, Fox & Taqqu (1986), Dahlhaus
(1989), Giraitis & Surgailis (1990), Hosoya (1996), and more recently Robinson (2006). Other works, e.g.
Li & McLeod (1986) and Beran (1995), assume consistency in application of the usual Taylor expansion
of the score function to derive the asymptotic distribution, while Tanaka (1999) and Nielsen (2004) give
local consistency proofs. Alternatively, with some prior knowledge of the approximate magnitude of d0

one can (fractionally) difference the data, estimate d, and add back. See also Hualde & Robinson (2011,
pp. 3153—3154) for additional discussion of these issues.

Only very recently, Hualde & Robinson (2011), Lieberman, Rosemarin & Rousseau (2012), and Jo-
hansen & Nielsen (2012a) have proven consistency for time domain estimators1 in parametric fractional

1 In frequency domain estimation, consistency results for admissible parameter intervals of lengths greater than one-half
are more common, for example Robinson (1995) and Shimotsu & Phillips (2005) for semiparametric estimation, Velasco &
Robinson (2000) for tapered Whittle estimation, and Shao (2010) for nonstationarity-extended Whittle estimation. While
the latter is effi cient under Gaussianity, it differs from CSS estimation by using a “type I”definition of fractional integration
and by requiring d0 6= ±1/2,±3/2, etc.
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time series models for a large set of admissible values of d. Lieberman et al. (2012), however, considers only
univariate stationary Gaussian processes, i.e. d < 1/2, and do not allow nonstationary or non-Gaussian
processes. Johansen & Nielsen (2012a) applies methods that are in some respects similar to the ones in
this paper, but considers an entirely different class of fractional vector autoregressive models that is not
nested with the multivariate fractional time series models in this paper.

Dealing with the same model setup as the present paper, Hualde & Robinson (2011) give a consistency
proof in the univariate case, using a method of proof that is rather different from the one used below.
They also consider the multivariate case, but argue that their consistency proof does not straightforwardly
extend to that case (see their discussion on pp. 3174—3176), and therefore provide an asymptotic distrib-
ution result assuming the existence of a

√
T -consistent initial estimator from which a single Newton step

is taken.
On the other hand, this paper provides a full consistency proof for the CSS estimator in multivariate

fractional time series models. The consistency proof in Section 3 below shares with the univariate proof
of Hualde & Robinson (2011) the idea of analyzing the behavior of the objective function in distinct
intervals. However, their proof for the neighborhood around d− d0 = −1/2 requires splitting the critical
interval d − d0 ∈ [−1/2 − κ2,−1/2 + κ3] into two separate intervals immediately to the left and right,
respectively, of the critical point d− d0 = −1/2, which the proof below does not. It is the interval around
this critical point that is most delicate to analyze in the proof, since this is where uniform convergence
of the objective function fails, and it therefore also poses the greatest challenge in the multivariate case.
In particular, the inclusion of the critical interval around d − d0 = −1/2 in the proof below is achieved
by a truncation argument, making it possible to show that when v = d − d0 ∈ [−1/2 − κ2,−1/2 + κ3],
the inverse of product moments of critical processes ∆v

+εt is tight in v, and further that it is convergent
uniformly to zero in probability for (κ3, T )→ (0,∞).

An additional complication in CSS estimation in the multivariate p-dimensional case is that the
objective function may involve processes whose fractional differencing parameters belong to different
intervals (stationary, nonstationary, critical). This presents a significant challenge in the consistency
proof. In particular, a variation of the truncation argument that is applied in the critical interval can
be applied in this case as well, but only if the nonstationary and critical intervals are separated by a
wedge, i.e., if the former interval is bounded from the right by d − d0 ≤ −1/2 − κ1 for some κ1 > κ2.
Although this appears to suggest that a small interval needs to be eliminated from the parameter space,
that is in fact not the case. This separation of the nonstationary and critical intervals is achieved in the
proof by a careful study of all three intervals individually, followed by a study of each situation where
either the nonstationary or the critical interval is left out, and in each of these cases it is shown that
the nonstationary and critical intervals may in fact overlap, i.e., κ1 < κ2 is allowed. This overlap is then
used to prove that, for the general case with all intervals included, the nonstationary and critical intervals
can be assumed to be separated by a wedge, such that κ1 > κ2 for the general proof. To illustrate the
intuition, suppose there are two processes with fractional differencing parameters that are very close and
close to the boundary between the nonstationary and critical intervals. Then the overlap between the
two intervals implies that the two processes can be assumed to both belong to the nonstationary interval
or both belong to the critical interval. In either case, the other interval is not needed for those processes
which implies that one interval is left out and that situation has already been studied. In other words,
only when these two processes have fractional differencing parameters that are quite distant is it necessary
to assume that they are in different intervals, and hence the intervals can be assumed to be separated by
a wedge, i.e. κ1 > κ2, in which case the truncation argument can be applied.

The remainder of the paper is structured as follows. In the next section the consistency result is
presented for a multivariate fractional time series model which allows a wide range of short memory
innovations. The consistency proof is quite involved and is presented in Section 3. In Section 4 the
asymptotic distribution theory is given with proof in Section 5. Section 6 concludes, and the paper ends
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with two appendices of auxiliary results used in the main proofs. No empirical applications or finite
sample simulations of the CSS estimation procedure are included because these can be found in, e.g.,
Nielsen & Frederiksen (2005), Hualde & Robinson (2011), and the references therein.

Some comments on notation: for a sequence of stochastic processes XT (s) ∈ R, s = (s1, . . . , sm) ∈ S,
where S is a compact subset of m-dimensional Euclidean space, the notation XT ⇒ X or XT (s)⇒ X(s)
is used to indicate convergence in distribution of the sequence, either as continuous processes in C(S) or

as cadlag processes in D(S), whereas XT (s)
D→ X(s) means convergence in distribution in R for a fixed s.

The Euclidean norm is denoted | · | and when E|X|r <∞ the Lr-norm is defined as ||X||r = (E|X|r)1/r.
A function f(x) : Rq → R satisfies a Lipschitz condition of order α, or is in Lip(α), if there exists a
finite constant K > 0 such that |f(x1) − f(x2)| ≤ K|x1 − x2|α for all x1, x2 ∈ Rq. For a function

f(x) : Rq → R, the k’th order derivative is sometimes denoted ∂kf(x)

∂x(k)
, which is q×1 and q× q when k = 1

and k = 2, respectively. For higher-order derivatives this can be thought of as a matrix of high dimension,
the exact form of which is not important. For any vector a, the i’th element is denoted a(i), while for
any matrix A, A(i,j), A(i·), and A(·i) denote the (i, j)’th element, i’th row, and i’th column, respectively.
Furthermore, A > B (A ≥ B) denotes that A − B is positive (semi)definite, tr{A} denotes the trace of
A, |A| = (tr{A′A})1/2 is the Euclidean norm of A, and det{A} is the determinant of A. Finally, as a
convention, it is assumed that j−1 = 0 for j = 0 in summations over j.

2 Consistency result

Let Xt = (X1t, . . . , Xpt)
′ be a p-dimensional time series and generalize the simple model (1) as follows:

Xt = Λ+(d)−1ut and ut = A(L,ψ)εt, (3)

where d = (d1, . . . , dp)
′, Λ+(d) = diag(∆d1

+ , . . . ,∆
dp
+ ), ψ is a q-dimensional parameter vector and A(z, ψ) =∑∞

n=0An(ψ)zn with p × p matrix coeffi cients, An(ψ). The parametric form of the function A(z, ψ) is
assumed known. Model (3) generalizes model (1) to multivariate time series and to allow short memory
dynamics (i.e., weak dependence) in ut. Specifically, ut is assumed to be a linear process governed by
an underlying q-dimensional parameter vector. For example, ut could be generated by a vector ARMA
model or by the exponential spectrum model of Bloomfield (1973), which is somewhat popular in the
fractional literature owing to the relatively simple covariance matrix formula it offers in this setting, see,
e.g., Robinson (1994).

Model (3) is analyzed under the following assumptions on the errors εt and the true parameter values,
which are denoted by subscript zero.

Assumption A The p-dimensional errors εt are stationary and ergodic with finite fourth moments and
satisfy E(εt|Ft−1) = 0 and E(εtε

′
t|Ft−1) = Σ almost surely, where Ft = σ({εs, s ≤ t}) is the sigma-algebra

of events generated by εs, s ≤ t. Finally, the conditional (on Ft−1) third and fourth moments of εt are
finite and equal the unconditional moments.

Assumption B The true parameter values satisfy Σ0 > 0 and (d0, ψ0) ∈ Dp × Ψ, where D = [O1,O2]
with −∞ < O1 ≤ O2 <∞ and the set Ψ ⊆ Rq is convex and compact.

Importantly, only four moments are assumed finite in Assumption A and Gaussianity is not assumed.
The errors are assumed to be conditionally homoskedastic martingale differences, which is somewhat
weaker than the independence and identical distribution assumption in Johansen & Nielsen (2012a).
Furthermore, as in Hualde & Robinson (2011, Section 3), positive definiteness of Σ0 rules out cointegration
among the components of Xt. However, even though cointegration, which has been popular especially in
recent empirical macroeconomics, is ruled out, the present model can still be applied to test a number of
interesting hypotheses such as joint stationarity or I(0)-ness, in which case cointegration is not a concern.
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The cointegrated case is analyzed in Johansen & Nielsen (2012a) using a different model that is not nested
with (3).

In Assumption B the short memory parameters ψ are assumed to be in a compact and convex subset of
Rq. More importantly, Assumption B permits the length of the interval D = [O1,O2] of admissible values
of di to be arbitrarily large. Specifically, the length of D is not limited to less than 1/2 as in most previous
studies of fractional time series models that include proofs of consistency. Thus, under Assumption
B, the model can simultaneously accommodate both nonstationary, (asymptotically) stationary, and
overdifferenced processes.

The following condition is imposed on the linear filter A(z, ψ) and the associated coeffi cients:

Assumption C For all ψ ∈ Ψ and all z in the complex unit disk {z ∈ C : |z| ≤ 1} it holds that:

(i) A0(ψ) = Ip and det{A(z, ψ)} is bounded and bounded away from zero.

(ii) Each element of A(eiλ, ψ) is 2 + max(s, 0) times differentiable in λ with 2 + max(2, 0)’th derivative
in Lip(ξ) for any ξ > 0 and s defined as the integer part of min(p− 1,O2 − O1 − 3/2).

(iii) A(z, ψ) =
∑∞

n=0An(ψ)zn is continuously differentiable in ψ and the derivatives Ȧ(i,j)
n (ψ) = ∂A

(i,j)
n (ψ)
∂ψ

satisfy
∑∞

n=0 |Ȧ
(i,j)
n (ψ)| <∞.

Assumption C(i) ensures invertibility of ut in (3). Under this assumption the function B(z, ψ) =
A(z, ψ)−1 =

∑∞
n=0Bn(ψ)zn is well-defined by its power series expansion for |z| ≤ 1 + δ for some δ > 0,

and has det{B(z, ψ)} bounded and bounded away from zero on the complex unit disk. Under Assumption
C the p× p matrix coeffi cients An(ψ) and Bn(ψ) satisfy

|An(ψ)| = O(n−2−max(s,0)−ξ) and |Bn(ψ)| = O(n−2−max(s,0)−ξ) uniformly in ψ ∈ Ψ, (4)

see Zygmund (2003, pp. 46 and 71). In contrast, under Hualde & Robinson’s (2011) univariate Assumption
A(ii) the required rate is only O(n−1−ζ) for ζ > 1/2. Assumption C(ii) is the only assumption that differs
from those in Hualde & Robinson (2011). The stronger rate required for the multivariate model in this
paper illustrates an interesting trade-off: allowing a higher dimensional model with a large parameter
space for the fractional parameters (i.e., a larger/positive s) requires more smoothness of the linear
coeffi cients. In any case, Assumption C is easily satisfied by the Bloomfield model or by stationary and
invertible ARMA processes due to the exponential decay of their linear representation coeffi cients.

Thus, letting θ = (d, ψ) ∈ Dp×Ψ = Θ and letting B+(L,ψ)Xt = B(L,ψ)Xt1{t≥1} =
∑t−1

n=0Bn(ψ)Xt−n
denote the truncated filter, the residuals are defined as

εt(θ) = B+(L,ψ)Λ+(d)Xt, (5)

and the classical least squares or CSS estimator is found by minimizing the sum of squared residuals, i.e.,

θ̂ = arg min
θ∈Θ

det{R(θ)}, (6)

R(θ) = T−1
T∑
t=1

εt(θ)εt(θ)
′. (7)

The estimator (6) is well-known from, e.g., Li & McLeod (1986) and Beran (1995) in a (univariate)
fractional context and of course Box & Jenkins (1970) for non-fractional models. Motivation for (6)
comes from the fact that (the trace of) (7) is proportional to the exponent in the conditional Gaussian
(quasi-)likelihood function, and (6) is of course equivalent to the conditional (quasi-)maximum likelihood
estimator.
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Note the truncation of the autoregressive representation of Xt in calculating the residual in (5), which
is inherent to CSS estimation, and presents an additional challenge that is non-trivial in the context
of fractional models. For discussion of this issue, see e.g. Robinson (2005) and Robinson (2006), where
detailed treatments of the consequences of the truncation are given. However, Robinson (2005) does not
consider consistency for the estimation of d and the consistency proof in Robinson (2006) restricts the
length of the interval D to be less than 1/2. The present paper contains a rigorous treatment of the effects
of the truncation.

Finally, the following identification condition will also be needed:

Assumption D For all ψ ∈ Ψ\{ψ0} it holds that A(z, ψ) 6= A(z, ψ0) on a subset of {z ∈ C : |z| = 1} of
positive Lebesgue measure.

Assumption D is identical to Assumption A1(i) in Hualde & Robinson (2011) and is satisfied, for
example, by all stationary and invertible ARMA processes whose AR and MA polynomials are not both
overspecified.

The main result of this section is stated in the following theorem.

Theorem 1 Suppose Xt is generated by model (3) and satisfies Assumptions A—D, and let (d̂, ψ̂) be

defined by (6). Then (d̂, ψ̂)
P→ (d0, ψ0) as T →∞.

3 Proof of Theorem 1

The residual in (5) is εt(θ) = B+(L,ψ)Λ+(d−d0)ut, and clearly the convergence properties of R(θ) in (7)
depend on the vector d− d0. Let the deterministic function r(θ) denote the pointwise probability limit of
det{R(θ)}, shown subsequently to be given by

r(θ) =

{
det{E(ηt(θ)ηt(θ)

′)} if dk − d0k > −1/2 for k = 1, . . . , p,
∞ otherwise,

(8)

where the untruncated process ηt(θ) = B(L,ψ)Λ(d−d0)ut applies the untruncated filter Λ(d) = diag(∆d1 , . . . ,∆dp)
and is well-defined when dk − d0k > −1/2 for k = 1, . . . , p. In the latter case, ηt(θ) can be represented in
the following convenient way,

ηt(θ) =
∞∑
n=0

Bn(ψ)Λ(d− d0)ut−n

=
∞∑
n=0

p∑
k=1

B(·k)
n (ψ)

∞∑
j=0

πj(d0k − dk)u(k)
t−j−n

=

p∑
k=1

∞∑
j=0

πj(d0k − dk)
∞∑
n=0

B(·k)
n (ψ)u

(k)
t−j−n

=

p∑
k=1

∆dk−d0kekt(ψ), (9)

where the linear processes ekt(ψ) = Ck(L,ψ)εt, k = 1, . . . , p, are defined using

Ck(z, ψ) = B(·k)(z, ψ)A(k·)(z, ψ0) =
∞∑
n=0

Ckn(ψ)zn. (10)

In Lemma 1, presented below, a similar representation is given for εt(θ).
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From Assumption C the p× p matrix coeffi cients Ckn(ψ) in (10) satisfy

|Ckn(ψ)| = O(n−2−max(s,0)−ξ) uniformly in ψ ∈ Ψ. (11)

In the following, the Beveridge-Nelson decomposition,

ekt(ψ) = Ck(L,ψ)εt = C∗k(ψ)εt + ∆
∞∑
n=0

C̃kn(ψ)εt−n, (12)

will be applied repeatedly, where C∗k(ψ) =
∑∞

n=0Ckn(ψ) is finite and C̃kn(ψ) = −
∑∞

m=n+1Ckm(ψ) =

O(n−1−max(s,0)−ξ) uniformly in ψ ∈ Ψ, see (11) and also Phillips & Solo (1992, Lemma 2.1).
Conforming with (8), the parameter space D = [O1,O2] for di is partitioned into three compact

subsets, D1 = D1(κ1) = D ∩ {di : di − d0i ≤ −1/2 − κ1}, D2 = D2(κ2, κ3) = D ∩ {di : −1/2 − κ2 ≤
di − d0i ≤ −1/2 + κ3}, and D3 = D3(κ3) = D ∩ {di : di − d0i ≥ −1/2 + κ3}, for some constants
0 < κ1 < κ2 < κ3 < 1/2, to be determined later. Note that ∪3

i=1Di = D and that there is an overlap
between D1 and D2 because κ1 < κ2, which is used explicitly in Section 3.3.7. Special care is taken
with respect to D2, where the convergence of the objective function is non-uniform, as evident in (8), see
Section 3.3.1.

Clearly, θ0 ∈ Dp
3 ×Θ and if O1 > maxi d0i − 1/2 then the choice κ3 = O1 −maxi d0i + 1/2 > 0 implies

that D1 and D2 are empty for all i = 1, . . . , p, in which case the proof is easily simplified accordingly.
The proof of Theorem 1 proceeds by showing the following results. For any K > 0 there exists a

(fixed) κ̄3 > 0 such that

P

(
inf

d∈Dp\D3(κ̄3)p,ψ∈Ψ
det{R(θ)} > K

)
→ 1 as T →∞. (13)

This implies that P (θ̂ ∈ D3(κ̄3)p×Ψ)→ 1 as T →∞, so that the relevant parameter space is reduced to
Θ3(κ̄3) = D3(κ̄3)p ×Ψ. From Theorem 5.7 of van der Vaart (1998) the desired result then follows if, for
any fixed κ3 ∈ (0, 1/2),

sup
θ∈Θ3(κ3)

|det{R(θ)} − det{r(θ)}| P→ 0 as T →∞, (14)

inf
θ∈Θ3(κ3)∩{θ:|θ−θ0|≥δ}

det{r(θ)} > det{r(θ0)} for all δ > 0. (15)

The first condition entails uniform convergence of the objective function on Θ3, and the second condition
ensures that the optimum of the limit function is uniquely attained at the true value.

The proofs of (14), (15), and (13) are given in Sections 3.1, 3.2, and 3.3, respectively. The most
delicate part is justifying (13) because in (13) the integration orders of the different processes involved
may fall into different subsets. Hence this presents the main complication for the multivariate case relative
to the univariate case.

Before proceding to show (13)—(15), the following lemma gives a representation of εt(θ) similar to (9)
and also analyzes the effect of the truncation in the residual in the definition of R(θ). The result is given
for D2 and D3, while the corresponding result for D1 is more conveniently given in Section 3.3.2, see
Lemma 2.

Lemma 1 With the notation of this section it holds that

εt(θ) = η+
t (θ) +

p∑
k=1

rkt(dk, ψ), (16)

η+
t (θ) =

p∑
k=1

∆dk−d0k
+ ekt(ψ), (17)
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where, under the assumptions of Theorem 1,

sup
dk∈D2∪D3,ψ∈Ψ

|T−1
T∑
t=1

rkt(dk, ψ)rkt(dk, ψ)′| P→ 0 as T →∞. (18)

Proof. Proof of (16)—(17): As in (9), εt(θ) = B+(L,ψ)Λ+(d− d0)ut is

εt(θ) =
t−1∑
n=0

p∑
k=1

B(·k)
n (ψ)

t−n−1∑
j=0

πj(d0k − dk)u(k)
t−j−n

=

p∑
k=1

t−1∑
j=0

πj(d0k − dk)
t−j−1∑
n=0

B(·k)
n (ψ)u

(k)
t−j−n

=

p∑
k=1

∆dk−d0k
+ ekt(ψ)−

p∑
k=1

t−1∑
j=0

πj(d0k − dk)
∞∑

n=t−j
B(·k)
n (ψ)u

(k)
t−j−n

such that rkt(dk, ψ) = −
∑t−1

j=0 πj(d0k − dk)
∑∞

n=t−j B
(·k)
n (ψ)u

(k)
t−j−n.

Proof of (18): First note that rkt(dk, ψ) =
∑∞

m=t φtmku
(k)
t−m, where φtmk = −

∑t−1
j=0 πj(d0k−dk)B(·k)

m−j(ψ)
satisfies, see (4) and Lemmas A.1 and A.2,

sup
ψ∈Ψ

∞∑
m=t

|φtmk| ≤ c
∞∑
m=t

t−1∑
j=1

jd0k−dk−1(m− j)−2−ξ

≤ c
t−1∑
j=1

jd0k−dk−1(t− j)−1−ξ

≤ c(log t)tmax(d0k−dk,−ξ)−1.

Because |u(k)
t−mu

(k)
t−n| = OP (1) uniformly in t, n,m, the sum of squares of rkt(dk, ψ) satisfies the bound

sup
ψ∈Ψ

T∑
t=1

|rkt(dk, ψ)rkt(dk, ψ)′| = sup
ψ∈Ψ

T∑
t=1

∞∑
m=t

∞∑
n=t

|φtmku(k)
t−mu

(k)
t−nφ

′
tnk|

≤ sup
ψ∈Ψ

T∑
t=1

( ∞∑
m=t

|φtmk|
)2

OP (1)

= OP

(
T∑
t=1

(log t)2t2 max(d0k−dk,−ξ)−2

)
= OP ((log T )2T 2 max(d0k−dk−1/2,−ξ−1/2,0))

so that

sup
dk∈D2∪D3,ψ∈Ψ

|T−1
T∑
t=1

rkt(dk, ψ)rkt(dk, ψ)′| = OP ( sup
dk∈D2∪D3

(log T )2T−1+2 max(d0k−dk−1/2,−ξ−1/2,0))

= OP ((log T )2T 2κ2−1).
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3.1 Convergence on Θ3(κ3) and proof of (14)

First of all, if θ ∈ Θ3(κ3) for any κ3 > 0 then εt(θ) is (asymptotically) stationary. By Lemma 1 the
difference between R(θ) and S(θ) = T−1

∑T
t=1 η

+
t (θ)η+

t (θ)′ is negligible in probability uniformly in d ∈
D3(κ3)p, ψ ∈ Ψ, so it suffi ces to consider S(θ). The difference between η+

t (θ) and the stationary and
ergodic process ηt(θ) (without truncation), see (9) and (17), is

ηt(θ)− η+
t (θ) =

p∑
k=1

∞∑
n=t

πn(d0k − dk)ek,t−n(ψ) =
∞∑
n=t

τn(θ)εt−n, (19)

where τn(θ) =
∑p

k=1

∑n
m=0 πm(d0k−dk)Ck,n−m(ψ) and supθ∈Θ3

|τn(θ)| ≤ c(1+log n)nmax(−1/2−κ3,−2−ξ) ≤
c(1 + log n)n−1/2−κ3 by (11) and Lemma A.2. It follows that

E(ηt(θ)− η+
t (θ))(ηt(θ)− η+

t (θ))′ =
∞∑
n=t

τn(θ)Σ0τn(θ)′

≤ c
∞∑
n=t

(1 + log n)2n−1−2κ3 ≤ c(1 + log t)2t−2κ3 → 0

for all θ ∈ Θ3 (pointwise). From the law of large numbers for stationary and ergodic processes it then
holds that

S(θ) = T−1
T∑
t=1

ηt(θ)ηt(θ)
′ + oP (1)

P→ E(ηt(θ)ηt(θ)
′) as T →∞, (20)

which shows the pointwise limit in probability, see (8).
The result (20) can be strengthened to uniform convergence in probability by showing that S(θ)

is stochastically equicontinuous (or tight). From Billingsley (1968, Problem 6.6) this holds if S(i,j)(θ) is
stochastically equicontinuous for each i, j = 1, . . . , p, and from Newey (1991, Corollary 2.2) this holds if the
derivative of T−1

∑T
t=1 η

+(i)
t (θ)η

+(j)
t (θ) =

∑p
k,l=1 T

−1
∑T

t=1(∆dk−d0k
+ e

(i)
kt (ψ))(∆dl−d0l

+ e
(j)
lt (ψ)) is dominated

uniformly in θ ∈ Θ3 by a random variable BT = OP (1). From Lemma B.3 with u1 = dk − d0k ≥
−1/2 + κ3, u2 = dl − d0l ≥ −1/2 + κ3, a = 2κ3, and Ψ̃ = Ψ (noting that only summability of the linear
coeffi cients is assumed in Lemma B.3 and this is satisfied uniformly on Ψ by the derivatives of Ckn(ψ) by

Assumption C(iii)), it holds that BT = supθ∈Θ3
|∂S

(i,j)(θ)
∂θ | = OP (1), showing that S(θ) is stochastically

equicontinuous on Θ3 and hence that (20) holds uniformly in θ ∈ Θ3. Because the result holds for any κ3

it proves (14).

3.2 Proof of (15)

If A > 0 and B ≥ 0 then det{A + B} ≥ det{A} with equality if and only if B = 0. Since det{r(θ0)} =
det{Σ0} it is therefore suffi cient to prove that

inf
θ∈Θ3(κ3)∩{θ:|θ−θ0|≥δ}

E(ηt(θ)ηt(θ)
′)− Σ0 ≥ 0 (and 6= 0) for all δ > 0 and all κ3 ∈ (0, 1/2).

The variance of ηt(θ) = B(L,ψ)Λ(d − d0)ut =
∑∞

n=0 τn(θ)εt−n is E(ηt(θ)ηt(θ)
′) =

∑∞
n=0 τn(θ)Σ0τn(θ)′,

where τn(θ) =
∑p

k=1

∑n
m=0 πm(d0k − dk)Ck,n−m(ψ) with τ0(θ) =

∑p
k=1 π0(d0k − dk)B(·k)

0 (ψ)A
(k·)
0 (ψ0) =∑p

k=1 I
(·k)
p I

(k·)
p = Ip for all θ ∈ Θ3 by Assumption C. It follows that

∑∞
n=0 τn(θ)Σ0τn(θ)′ = Σ0 +∑∞

n=1 τn(θ)Σ0τn(θ)′, where the last term is zero if and only if θ = θ0 by Assumption D. Hence,
E(ηt(θ)ηt(θ)

′)−Σ0 =
∑∞

n=1 τn(θ)Σ0τn(θ)′ ≥ 0 for all θ 6= θ0, which proves (15) by continuity of τn(·) and
compactness of Θ3.
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3.3 Proof of (13)

The proof of (13) is structured as follows. First, the proof is given for the case with θ ∈ Θ2 = Dp
2 ×Ψ in

Section 3.3.1. Then the proof for the case with θ ∈ Θ1 = Dp
1×Ψ is given in Section 3.3.2. In Section 3.3.3

some notation is introduced for the proof in the general case. Sections 3.3.4—3.3.6 consider cases with
processes in at most two different subsets. In Section 3.3.7 an overlap argument is used to show that a
wedge can be inserted between κ1 and κ2, which will subsequently be used in Section 3.3.8 to prove (13)
in the general case. In each of Sections 3.3.5—3.3.8, the processes involved may fall into different subsets.

3.3.1 Convergence on Θ2(κ2, κ3)

First note that, by (18) of Lemma 1, it suffi ces to prove the result for S+(θ) = T−1
∑T

t=1 η
+
t (θ)η+

t (θ)′.
Using the notation ε∗kt(ψ) = C∗k(ψ)εt, the Beveridge-Nelson decomposition (12) shows that the product
moment S+(θ) can be decomposed as

S+(θ) ≥ T−1
p∑

k,l=1

T∑
t=1

(∆dk−d0k
+ ε∗kt(ψ))(∆dl−d0l

+ ε∗lt(ψ))′ (21)

+ T−1
p∑

k,l=1

T∑
t=1

(∆dk−d0k
+ ε∗kt(ψ))(∆dl−d0l+1

+

∞∑
n=0

C̃ln(ψ)εt−n)′ (22)

+ T−1
p∑

k,l=1

T∑
t=1

(∆dk−d0k+1
+

∞∑
n=0

C̃kn(ψ)εt−n)(∆dl−d0l
+ ε∗lt(ψ))′. (23)

The (i, j)’th element of (23) is T−1
∑p

k,l=1

∑T
t=1(∆dk−d0k+1

+

∑∞
n=0 C̃

(i·)
kn (ψ)εt−n)(∆dl−d0l

+ C
∗(j·)
l (ψ)εt)

′ =
OP (1) uniformly in θ ∈ Θ2(κ, κ) for any 0 < κ < 1/2 by Lemma B.3 with u1 = dk − d0k + 1 ≥
1/2− κ, u2 = dl − d0l ≥ −1/2− κ such that u1 + u2 ≥ −2κ and a = min(1/2− κ, 1− 2κ) > 0. The proof
for (22) is identical.

Let the right-hand side of (21) be denoted S+
1 (d, ψ) =

∑p
k,l=1 T

−1
∑T

t=1(∆dk−d0k
+ ε∗kt(ψ))(∆dl−d0l

+ ε∗lt(ψ))′

and define the p-vectors wkt =
∑N−1

n=0 πn(d0k − dk)ε∗k,t−n(ψ) and vkt =
∑t−1

n=N πn(d0k − dk)ε∗k,t−n(ψ). To

analyze S+
1 (d, ψ), decompose ∆dk−d0k

+ ε∗kt(ψ) as

∆dk−d0k
+ ε∗kt(ψ) =

t−1∑
n=0

πn(d0k − dk)ε∗k,t−n(ψ) = wkt + vkt, t ≥ N + 1,

for some N ≥ 1 to be determined. It then holds that

S+
1 (d, ψ) ≥

p∑
k,l=1

T−1
T∑

t=N+1

(∆dk−d0k
+ ε∗kt(ψ))(∆dl−d0l

+ ε∗lt(ψ))′

≥ T−1
T∑

t=N+1

p∑
k,l=1

wktw
′
lt + T−1

T∑
t=N+1

p∑
k,l=1

wktv
′
lt + T−1

T∑
t=N+1

p∑
k,l=1

vktw
′
lt. (24)

Setting N = Tα with 0 < α < min(1/2−κ
1/2+κ ,

1/2
1/2+2κ) for some κ satisfying max(κ2, κ3) ≤ κ < 1/2, noting

that such an α exists because 0 < max(κ2, κ3) < 1/2, it follows from (47) of Lemma B.2 that the second
and third terms on the right-hand side of (24) converge in probability to zero uniformly in θ ∈ Θ2(κ, κ) ⊇
Θ2(κ2, κ3) and that the first term on the right-hand side of (24) satisfies

sup
θ∈Θ2(κ,κ)

∣∣∣∣∣∣T−1
T∑

t=Tα+1

p∑
k,l=1

wktw
′
lt −

p∑
k,l=1

C∗k(ψ)Σ0C
∗
l (ψ)′F

(k,l)
Tα (d− d0)

∣∣∣∣∣∣ P→ 0 as T →∞,
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where F (k,l)
N (d− d0) =

∑N−1
n=0 πn(d0k − dk)πn(d0l − dl), see Lemma A.3.

Next, using (10), write
∑p

k=1C
∗
k(ψ)πn(d0k−dk) = B(1, ψ)Hn(d)A(1, ψ0), whereHn(d) = diag(πn(d01−

d1), . . . , πn(d0p − dp)), so that

p∑
k,l=1

C∗k(ψ)Σ0C
∗
l (ψ)′F

(k,l)
N (d− d0) =

N−1∑
n=0

B(1, ψ)Hn(d)Γ0Hn(d)B(1, ψ)′

with Γ0 = A(1, ψ0)Σ0A(1, ψ0)′. The (k, l)’th element of
∑N−1

n=0 Hn(d)Γ0Hn(d) is Γ
(k,l)
0

∑N−1
n=0 πn(d0k −

dk)πn(d0l − dl) = Γ
(k,l)
0 F

(k,l)
N (d− d0) so that

N−1∑
n=0

Hn(d)Γ0Hn(d) = Γ0 � FN (d− d0),

where � denotes the elementwise (Hadamard) product and FN (u) is the p×p matrix with (k, l)’th element
F

(k,l)
N (u). Hence,

det{
∑p

k,l=1
C∗k(ψ)Σ0C

∗
l (ψ)′F

(k,l)
N (d− d0)} = det{B(1, ψ)(Γ0 � FN (d− d0))B(1, ψ)′}

= det{B(1, ψ)}2 det{Γ0 � FN (d− d0)}

≥ det{B(1, ψ)}2 det{Γ0}|F (1,1)
N (d− d0)| · · · |F (p,p)

N (d− d0)|

by Oppenheim’s Inequality.
Thus,

S+
1 (d, ψ) ≥

p∑
k,l=1

C∗k(ψ)Σ0C
∗
l (ψ)′F

(k,l)
Tα (d− d0) + µ1T (θ),

where µ1T (θ)
P→ 0 as T →∞ uniformly in θ ∈ Θ2(κ, κ) ⊇ Θ2(κ2, κ3) and it follows that

det{S+(θ)} ≥ det{B(1, ψ)}2 det{A(1, ψ0)}2 det{Σ0}|F (1,1)
N (d− d0)| · · · |F (p,p)

N (d− d0)|+ µ2T (θ),

where µ2T (θ) = OP (1) as T →∞ uniformly in θ ∈ Θ2(κ, κ) ⊇ Θ2(κ2, κ3). From Lemma A.3,

F
(k,k)
Tα (d− d0) ≥ 1 + c

1− (T − 1)−2ακ3

2κ3

for d ∈ D2(κ2, κ3)p and k = 1, . . . , p. The factor (2κ3)−1(1 − (T − 1)−2ακ3) is increasing in T from 0
(for T = 2) to (2κ3)−1 and decreasing in κ3 from α log(T − 1) (for κ3 = 0) to 0, such that (2κ3)−1(1 −
(T − 1)−2ακ3) → ∞ as (κ3, T ) → (0,∞). Because det{Σ0} > 0 by Assumption B and det{A(1, ψ)} > 0,
det{B(1, ψ)} > 0 uniformly in ψ ∈ Ψ by Assumption C, it follows that for any K > 0, η > 0, there exists
κ̄3 > 0 and T2 ≥ 1 such that

P ( inf
θ∈Θ2(κ2,κ̄3)

det{R(θ)} > K) ≥ 1− η for all T ≥ T2. (25)

Note that (25) holds for any choice of κ2 ∈ (0, 1/2).

3.3.2 Convergence on Θ1(κ1)

First of all, if d ∈ D1(κ1)p then d0k−dk ≥ 1/2+κ1 such that εt(θ) =
∑p

k=1

∑t−1
n=0B

(·k)
n (ψ)

∑t−n−1
j=0 πj(d0k−

dk)u
(k)
t−j−n is a linear combination of nonstationary processes. To normalize R(θ) correctly for convergence,
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some rotation is convenient. To that end, apply the Beveridge-Nelson decomposition (12) iteratively to
B(·k)(ψ, z),

B(·k)(z, ψ) =
∞∑
n=0

B(·k)
n (ψ)zn =

s∑
h=0

B̃
(·k)
(h) (ψ)(1− z)h +

∞∑
n=0

B̃
(·k)
(s+1),n(ψ)(1− z)s+1zn, (26)

where B̃(·k)
(h) (ψ) =

∑∞
n=0 B̃

(·k)
(h),n(ψ), B̃(·k)

(h),n(ψ) = −
∑∞

m=n+1 B̃
(·k)
(h−1),m(ψ), h ≥ 1, B̃(·k)

(0),n(ψ) = B
(·k)
n (ψ), and

s is the integer part of min(p− 1,O2 − O1 − 3/2) as defined in Assumption C(ii). Suppose, without loss
of generality, that d1 − d01 ≤ · · · ≤ dp − d0p. In view of the iterated Beveridge-Nelson decomposition

(26), if B̃(·1)
(0) (ψ) 6= 0, introduce the direction vector β1(θ) = B̃

(·1)
(0) (ψ)/|B̃(·1)

(0) (ψ)| such that β1(θ)′εt(θ) is
fractionally differenced of order d1− d01 (i.e., fractionally integrated of order d01− d1). Since it is clearly
possible that the next term in the decomposition (26) for k = 1 can have both higher and lower fractional
order than the first term for k = 2, the next direction depends on the difference between d2 − d02 and
d1−d01+1. Hence, if d1−d01+1 < d2−d02 and β1(θ)′B̃

(·1)
(1) (ψ) 6= 0 then define β2(θ) = B̃

(·1)
(1) (ψ)/|B̃(·1)

(1) (ψ)|.
If d2 − d02 ≤ d1 − d01 + 1 and B̃(·2)

(0) (ψ) 6= 0 define β2(θ) = B̃
(·2)
(0) (ψ)/|B̃(·2)

(0) (ψ)|. This procedure defines
βa(θ) for a = 1, . . . , p, and stacking these vectors next to each other defines the rotation matrix β(θ) =
[β1(θ), . . . , βp(θ)], which is orthonormal by contruction.

Let the fractional differencing order of βa(θ)′εt(θ) be denoted δa. Then the following version of Lemma
1 holds for the nonstationary case.

Lemma 2 With the notation of this section and under the assumptions of Theorem 1, for a, b = 1, . . . , p,

T δa+δb+1βa(θ)
′R(θ)βb(θ) = T δa+δb

T∑
t=1

(γa(θ)
′∆δa

+ εt)(γb(θ)
′∆δb

+εt) + rT (θ), (27)

where rT (θ) = oP (1) uniformly in θ ∈ Θ1(κ1) and γa(θ) = |B̃(·l)
(q) (ψ)|(

∑∞
m=0A

(l·)
m (ψ0))′ when βa(θ) is

obtained from the above procedure as the q’th term in the iterated Beveridge-Nelson decomposition (26)
for k = l.

Proof. If βa(θ) is obtained from the above procedure as the q’th term in the iterated Beveridge-Nelson
decomposition (26) for k = l then βa(θ) = B̃

(·l)
(q) (ψ)/|B̃(·l)

(q) (ψ)| and δa = dl − d0l + q. Here, 0 ≤ q ≤ s

because there can be at most s nonstationary terms since the (s+ 1)’th term will either be stationary or
βp(θ) will have been reached already.

Applying a finite-summation version of the iterated Beveridge-Nelson decomposition (26), it holds
that

B
(·k)
+ (z, ψ) =

t−1∑
n=0

B(·k)
n (ψ)zn =

q∑
h=0

t−h−1∑
n=0

B
(·k)
(h),n(ψ)(1− z)h +

t−q−2∑
n=0

B
(·k)
(q+1),n(ψ)(1− z)q+1zn, (28)

with B(·k)
(h),n(ψ) = −

∑t−1
m=n+1B

(·k)
(h−1),m(ψ), h ≥ 1, and B(·k)

(0),n(ψ) = B
(·k)
n (ψ). Thus,

βa(θ)
′εt(θ) = γa(θ)

′∆δa
+ εt + r1t(θ) + r2t(θ) + r3t(θ) + r4t(θ),
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where

r1t(θ) = βa(θ)
′
q−1∑
h=0

(
t−h−1∑
n=0

B
(·l)
(h),n(ψ))

t−1∑
j=0

πj(d0l − dl − h)u
(l)
t−j , q ≥ 1,

r2t(θ) = βa(θ)
′
t−q−2∑
n=0

B
(·l)
(q+1),n(ψ)

t−n−1∑
j=0

πj(d0l − dl − q − 1)u
(l)
t−j−n,

r3t(θ) = βa(θ)
′(

t−q−1∑
n=0

B
(·l)
(q),n(ψ))

t−1∑
j=0

πj(−δa)u(l)
t−j − γa(θ)

′∆δa
+ εt,

r4t(θ) = βa(θ)
′

p∑
k=1,k 6=l

t−1∑
n=0

B(·k)
n (ψ)

t−n−1∑
j=0

πj(d0k − dk)u(k)
t−j−n,

and the terms rit(θ), i = 1, . . . , 4, are shown next to be asymptotically negligible uniformly in θ ∈ Θ1.
First, for r1t(θ), note that by construction of βa(θ) it holds that βa(θ)′B̃

(·l)
(h)(ψ) = 0 for 0 ≤ h ≤ q − 1,

so that

r1t(θ) = −βa(θ)′
q−1∑
h=0

(

∞∑
n=t−h

B
(·l)
(h),n(ψ))∆δa+h−q

+ u
(l)
t

+ βa(θ)
′
q−1∑
h=0

(

∞∑
n=0

B
(·l)
(h),n(ψ)− B̃(·l)

(h)(ψ))∆δa+h−q
+ u

(l)
t .

By (4), |
∑∞

n=t−hB
(·l)
(h),n(ψ)| ≤ ct−1−s+h−ξ and

∑∞
n=0(B

(·l)
(h),n(ψ) − B̃(·l)

(h),n(ψ)) = 1{h≥1}
∑∞

n=t(
1
h!

∏h−1
j=0 (n −

j))B
(·l)
n (ψ) ≤ 1{h≥1}ct

−1−s+h−ξ, both uniformly in ψ ∈ Ψ. Using this together with Lemma A.1 and
ut−j = OP (1) shows

sup
θ∈Θ1

T 2δa

T∑
t=1

r1t(θ)
2 = OP ( sup

δa≤−1/2−κ1
T 2δa

T∑
t=1

(

q−1∑
h=0

t−1−s+h−ξ
t−1∑
j=1

jq−h−δa−1)2)

= OP ( sup
δa≤−1/2−κ1

T 2δa

T∑
t=1

t−2−2s−2ξ+2q−2δa)

= OP ( sup
δa≤−1/2−κ1

(log T )T 2δaTmax(0,−1−2s−2ξ+2q−2δa))

= OP ((log T )Tmax(−1−2κ1,−1−2ξ))
P→ 0,

where the last equality used q ≤ s.
For r2t(θ), note first that the coeffi cients B

(·l)
(q+1),n(ψ) are absolutely summable by Assumption C(ii), see

(4). If dl − d0l + q + 1 = δa + 1 ≤ −1/2− κ1/2, it follows from Lemma B.5 that supθ T
2δa
∑T

t=1 r2t(θ)
2 =

OP (T−2), and if dl − d0l + q + 1 ≥ −1/2 − κ1/2, Lemma B.3 shows that supθ T
2δa
∑T

t=1 r2t(θ)
2 =

T 2δa+1OP (T κ1) = OP (T−κ1) by definition of D1(κ1).
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Next, using the Beveridge-Nelson decomposition (12) applied to A(z, ψ0),

r3t(θ) = βa(θ)
′(

t−q−1∑
n=0

B
(·l)
(q),n(ψ))∆δa

+ u
(l)
t − γa(θ)′∆δa

+ εt

= βa(θ)
′(
∞∑
n=0

B
(·l)
(q),n(ψ))∆δa

+ u
(l)
t − γa(θ)′∆δa

+ εt − βa(θ)′(
∞∑

n=t−q
B

(·l)
(q),n(ψ))∆δa

+ u
(l)
t

= βa(θ)
′(
∞∑
n=0

B
(·l)
(q),n(ψ))

∞∑
m=0

A
(l·)
(1),m(ψ0)∆δa+1

+ εt−m − βa(θ)′(
∞∑

n=t−q
B

(·l)
(q),n(ψ))∆δa

+ u
(l)
t

+ βa(θ)
′(
∞∑
n=0

B
(·l)
(q),n(ψ))(

∞∑
m=0

A(l·)
m (ψ0))∆δa

+ εt − γa(θ)′∆δa
+ εt,

where A(l·)
(1),m(ψ0) = −

∑∞
n=m+1A

(l·)
n (ψ0). The first term is handled in the same way as r2t(θ) and the

second term in the same way as r1t(θ) except with h = q. The last term is

βa(θ)
′(
∞∑
n=0

(B
(·l)
(q),n(ψ)− B̃(·l)

(q),n(ψ)))(
∞∑
m=0

A(l·)
m (ψ0))∆δa

+ εt,

where
∑∞

n=0(B
(·l)
(q),n(ψ)− B̃(·l)

(q),n(ψ)) = 1{q≥1}
∑∞

n=t(
1
q!

∏q−1
j=0(n− j))B(·l)

n (ψ) ≤ 1{q≥1}ct
−1−s+q−ξ uniformly

in ψ ∈ Ψ, see (4), such that this term can be handled in the same way as r1t(θ). Note that γ(θ)′ =

βa(θ)
′(
∑∞

n=0 B̃
(·l)
(q),n(ψ))(

∑∞
m=0A

(l·)
m (ψ0)) = βa(θ)

′B̃
(·l)
(q) (ψ)(

∑∞
m=0A

(l·)
m (ψ0)) = |B̃(·l)

(q) (ψ)|(
∑∞

m=0A
(l·)
m (ψ0)).

Finally, applying (28) with q = s to r4t(θ) shows that r4t(θ) contains terms with ∆dk−d0k+h
+ u

(k)
t , 0 ≤

h ≤ s, and a term with
∑p

k=1,k 6=l
∑t−s−2

n=0 B
(·k)
(s+1),n(ψ)

∑t−n−1
j=0 πj(d0k − dk − s− 1)u

(k)
t−j−n. The last term is

handled in the same way as r2t(θ). For the other terms, if dk − d0k + h ≥ δa + κ1/2, then, as in the proof
for r2t(θ), Lemma B.5 shows that supθ T

2δa
∑T

t=1 r4t(θ)
2 = OP (T−κ1) when dk − d0k + h ≤ −1/2− κ1/2,

and Lemma B.3 shows that supθ T
2δa
∑T

t=1 r4t(θ)
2 = T 2δa+1OP (T κ1) = OP (T−κ1) when dk − d0k + h ≥

−1/2 − κ1/2. If dk − d0k + h ≤ δa + κ1/2, then by construction of βa(θ) there will either be another
β-vector obtained from those terms (certainly when dk − d0k + h ≤ δa since those β-vectors are obtained
prior to βa(θ)) or they will correspond to terms not chosen because βp(θ) has already been determined.

In either case, by orthonormality of β(θ), the factor
∑∞

n=t−hB
(·k)
(h),n(ψ) appears multiplicatively and the

terms are handled in the same way as r1t(ψ).

It follows from Lemma 2 that it is suffi cient to consider (the determinant of) the product moment
R∗(θ) with (i, j)’th element T δi+δj

∑T
t=1(∆δi

+γi(θ)
′εt)(∆

δj
+γj(θ)

′εt) since the determinant of β(θ) is one

by orthonormality. Define the T × p matrices AT and BT , where the (t, i)’th element of AT is A
(t,i)
T =

T δi∆δi
+γi(θ)

′εt and the j’th column ofBT has ones in the first bT/(p− j + 1)c elements and zeros otherwise,
with bxc denoting the largest integer not greater than x. Then A′TAT = R∗(θ), det{B′TBT } = cpT

p for

some constant cp ∈ (0,∞), and the matrix A′TBT has (i, j)’th element T δi
∑bT/(p−j+1)c

t=1 ∆δi
+γi(θ)

′εt =

T δi∆δi−1
+ γi(θ)

′εbT/(p−j+1)c. From Magnus & Neudecker (1999, p. 201, eqn. (3)) the following generalization
of the Cauchy-Schwarz inequality to matrix determinants is obtained: for any two real matrices AT and
BT of the same dimensions it holds that

det
{
A′TAT

}
≥ (det{B′TBT })−1(det{A′TBT })2 = c−1

p (det{T−1/2A′TBT })2, (29)

where the equality uses elementary properties of the determinant function. It follows that the determinant
of the matrix R∗(θ) can be bounded below, uniformly in θ ∈ Θ1, by c−1

p times the square of the determinant
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of the matrixQT (θ) = T−1/2A′TBT with (i, j)’th elementQ(i,j)
T (θ) = T δi−1/2∆δi−1

+ γi(θ)
′εbT/(p−j+1)c, whose

limit is derived next.
Using the notation ε∗it(θ) = γi(θ)

′εt, ε∗t (θ) = [ε∗1t(θ)
′, . . . , ε∗pt(θ)

′]′ = [γ1(θ), . . . , γp(θ)]
′εt = G(θ)′εt, and

δ = (δ1, . . . , δp)
′, the functional central limit theorem of Hosoya (2005, Theorem 2) applies to Λ+(δ −

1)ε∗t (θ) upon verification of Hosoya’s (2005) Assumptions A(i)—(iv) for εt satisfying Assumption A and
0 < |G(θ)| < ∞ uniformly in θ ∈ Θ1. Because E(ε∗l (θ)|Ft) = 0 for l > t and E(ε∗l (θ)ε

∗
m(θ)′|Ft) −

E(ε∗l (θ)ε
∗
m(θ)′) = 0 for min(l,m) > t, Hosoya’s (2005) Assumptions A(i) and A(ii) are trivially satisfied.

Furthermore, Assumption A implies that the fourth-order cumulant spectral density function of ε∗it(θ) is
bounded such that by Lemma 1 and Theorem 3, respectively, of Hosoya (2005), his Assumptions A(iii)
and A(iv) are satisfied. In particular, the moment condition in Assumption A implies that Hosoya’s
(2005) Assumption A(iv) is satisfied with γ5 = 2 such that the fractional order, −δi + 1, must satisfy
2 > (2(−δi + 1) − 1)−1 or δi < 1/4 which is clearly satisfied for all d ∈ D1(κ1)p for any κ1 > 0 since the
latter implies δi ≤ −1/2 − κ1. Introduce the normalization matrix ST (δ) = diag(T δ1−1/2, . . . , T δp−1/2).
Then, as T →∞, Theorem 2 of Hosoya (2005) implies that

ST (δ)∆+(δ − 1)ε∗bTrc(θ)⇒W−δ(r) in Dp[0, 1] (30)

for fixed d ∈ D1(κ1)p, where W−δ(r) is the p-vector fractional Brownian motion of type II with W
(i)
−δ(r) =

Γ(−δi+1)−1
∫ r

0 (r−s)−δidW (i)(s) andW denotes p-vector Brownian motion generated by ε∗t (ψ), i.e., with
variance matrix E(W (s)W (s)′) = sG(θ)′Σ0G(θ). It then clearly holds that, as T →∞,

QT (θ)
D→ Q(θ) with Q(i,j)(θ) = W

(i)
−δ((p− j + 1)−1) (31)

for fixed θ ∈ Θ1(κ1) = D1(κ1)p ×Ψ, which shows the pointwise limit.
The random matrix Q(θ) is non-singular almost surely, uniformly in θ ∈ Θ1. To see this, consider a

linear combination of the columns of Q(θ),

p∑
j=1

µjQ
(·j)(θ) =

p∑
j=1

µj [W
(1)
−δ ((p− j + 1)−1), . . . ,W

(p)
−δ ((p− j + 1)−1)]′,

and a linear combination of the rows of Q(θ),

p∑
i=1

µiQ
(i·)(θ) =

p∑
i=1

µi[W
(i)
−δ(1/p), . . . ,W

(i)
−δ(1)].

Both linear combinations are non-zero almost surely, uniformly in θ ∈ Θ1, for all µ 6= 0, which implies
that Q(θ) is non-singular almost surely, uniformly in θ ∈ Θ1. This holds even though γa(θ) and γb(θ)
may be proportional for some a and b in which case G(θ) has reduced rank. The reason is that, if
γa(θ) and γb(θ) are proportional, their associated fractional parameters δa and δb are different such that
W

(a)
−δ (r) and W

(b)
−δ (r) are linearly independent (noting that W (a)

−δ (r) only depends on δa, etc.), and of
course γa(θ)′Σ0γa(θ) > 0 uniformly in θ for all a = 1, . . . , p.

To strengthen the pointwise convergence in (31) to weak convergence in Cp×p(Θ1), it is suffi cient to
show that QT (θ) is tight as a function of θ on θ ∈ Θ1. As in Section 3.1, it is suffi cient to prove tightness
of Q(i,j)

T (θ) for each i, j = 1, . . . , p by Billingsley (1968, Problem 6.6). Note that Q(i,j)
T (θ) = γi(θ)

′Q̃T (δi),
with Q̃T (δi) = T δi−1/2∆δi−1

+ εbT/(p−j+1)c, is continuously differentiable in θ and the parameter ψ appears

only through the coeffi cient γi(θ), which implies that Q
(i,j)
T (θ) is tight in θ if the p-vector Q̃T (δi) is

tight in δi; see Lemma A.2 of Johansen & Nielsen (2010). Tightness of the k’th element of Q̃T (δi), i.e.,
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Q̃
(k)
T (di) = T δi−1/2∆δi−1

+ εk,bT/(p−j+1)c, is shown using the moment condition in Billingsley (1968, Theorem

12.3), which requires showing that Q̃(k)
T (δi) is tight for fixed δi and that

||Q̃(k)
T (z1)− Q̃(k)

T (z2)||2 ≤ c|z1 − z2| (32)

for some constant c > 0 that does not depend on T , z1, or z2. Tightness for any fixed δi is implied
by the pointwise convergence in (30) and condition (32) is satisfied by (44) of Lemma B.1. Hence the
convergence in (31) is strengthened to

QT (θ)⇒ Q(θ) in Cp×p(Θ1).

By the continuous mapping theorem applied to the infθ∈Θ1(det{·})2 mapping, which is continuous
because Θ1 is compact, it then holds that

inf
θ∈Θ1

(det{QT (θ)})2 D→ inf
θ∈Θ1

(det{Q(θ)})2. (33)

It follows that
inf
θ∈Θ1

det{R(θ)} ≥ c−1
p T 2κ1 inf

θ∈Θ1

(det{QT (θ)})2 + oP (1)

and, because 2κ1 > 0 and Q(θ) is non-singular almost surely, it therefore holds that for any K > 0,

P ( inf
θ∈Θ1

det{R(θ)} > K)→ 1 as T →∞. (34)

Finally, note that (34) holds for any choice of κ1 > 0 via the use of the generalized Cauchy-Schwarz
inequality (29). Because the moment condition implied by Assumption A(iv) in Hosoya (2005) is in fact
necessary, at least for general fractional processes, see Johansen & Nielsen (2012b), the application of
the generalized Cauchy-Schwarz inequality appears to be necessary, as well, to avoid a stronger moment
condition in Assumption A.

3.3.3 Notation for the proof of (13) in the general case

For the proof of the general case, first define the direction vectors βa(θ) that generate all the processes
with fractional differencing order δa ≤ −1/2 + κ3 by the procedure in Section 3.3.2 above. Since
these δa need to be classified into different subsets similar to D1, D2, and D3, define D∗1 = D∗1(κ1) =
{z ∈ R : z ≤ −1/2 − κ1}, D∗2 = D∗2(κ2, κ3) = {z ∈ R : −1/2 − κ2 ≤ z ≤ −1/2 + κ3}, and
D∗3 = D∗3(κ3) = {z ∈ R : z ≥ −1/2 + κ3}. Then define the index sets (corresponding to D∗1 and
D∗2) I = {i : δi ∈ D∗1} and J = {j : δj ∈ D∗2} with number of elements pI and pJ , respectively, and
let βI(θ) = [β1(θ), . . . , βpI (θ)] and βJ(θ) = [βpI+1(θ), . . . , βpI+pJ (θ)] denote the β-vectors that generate
processes whose fractional differencing parameters are in D∗1 and D

∗
2, respectively. Note that if pI = p then

J is empty and pJ = 0. If pI + pJ < p define also the index set (corresponding to D∗3) K = {k : δk ∈ D∗3}
with pK = p− pI − pJ elements, such that pI + pJ + pK = p, and define the p× pK matrix βK(θ) to be a
basis for the null space of [βJ(θ), βI(θ)]. These matrices depend on θ, but this dependence is very simple
and suppressed in the following. Moreover, because the vectors B̃(·k)

(0) (ψ) =
∑∞

n=0B
(·k)
n (ψ) are orthogonal,

the p × p matrix β = [βI , βJ , βK ] is orthonormal such that, in particular, its determinant is one. The
fractional differencing order of βa(θ)′εt(θ) is δa, and conforming with the notation βI , βJ , and βK , these
are stacked in δI = (δ1, . . . , δpI )

′, δJ = (δpI+1, . . . , δpI+pJ )′, δK = (δpI+pJ+1, . . . , δp)
′, and δ = (δ′I , δ

′
J , δ
′
K)′.

The residual product moment R(θ) will be analyzed in the directions given by β, and it is convenient
to define the notation RIK(θ) = β′IR(θ)βK , RII(θ) = β′IR(θ)βI , etc., and let asterisks denote that
nonstationary processes have been normalized, e.g., R∗∗II(θ) has (i, j)’th element T δi+δj+1βi(θ)

′R(θ)βj(θ) =

T δi+δj
∑T

t=1(γi(θ)
′∆δi

+εt)(γj(θ)
′∆

δj
+ εt) + oP (1), where the oP (1) term is uniform in θ by Lemma 2 and will

be suppressed in the following. Likewise, the processes β′Jεt(θ) and β
′
Kεt(θ) include oP (1) contributions

as in Lemma 1, but also from terms like r1t(θ) in the proof of Lemma 2, and these are suppressed in the
following as well.



M. Ø. Nielsen: CSS estimation in multivariate fractional models 17

3.3.4 Proof of (13) when all processes are in I or all processes are in J

For the proof of (13) either I or J (or both) must be non-empty. The proof for the case where all processes
are in I was given in Section 3.3.2 and placed no restrictions on κ1. The proof for the case where all
processes are in J was given in Section 3.3.1, where it was shown that there exists κ̄3 > 0 such that
κ3 ≤ κ̄3 would obtain (25), so such a value is used subsequently.

3.3.5 Proof of (13) when J is empty

Suppose θ ∈ ΘI , which is such that J is empty but I and K are non-empty. In this case,

det{R(θ)} = det{RII(θ)}det{RKK|I(θ)},

where RKK|I(θ) = RKK(θ) − R∗KI(θ)R∗∗II(θ)−1R∗IK(θ) denotes the conditional residual product moment.
The analysis in Section 3.3.2 shows that P (infθ∈ΘI det{RII(θ)} > K) → 1 as T → ∞, see (34), for any
choice of κ1 > 0.

The analysis in Section 3.1 shows that RKK(θ) converges uniformly in probability to a positive definite
matrix for any choice of κ3 > 0. Next, R∗KI(θ) converges to zero uniformly in probability by Lemma
B.4 with u1 = δk, u2 = δi such that a = κ3 > 0 and b = κ1 > 0. Finally, for any matrix A recall
that A−1 = adj{A}/det{A}, where adj{A} denotes the adjoint matrix of A. In the case of R∗∗II(θ)−1,
the generalized Cauchy-Schwarz inquality (29) shows that det{R∗∗II(θ)} ≥ c−1

p (det{QT (θ)})2 and using
(33) it holds that supθ∈ΘI (det{R∗∗II(θ)})−1 ≤ cp/ infθ∈ΘI (det{QT (θ)})2 = OP (1). Each element of the
adjoint matrix adj{R∗∗II(θ)} is a simple function (addition and multiplication) of elements of R∗∗II(θ),
and therefore supθ∈ΘI adj{R∗∗II(θ)} = OP (1) because supθ∈ΘI R

∗∗
II(θ) = OP (1) by Lemma B.5. Thus,

supθ∈ΘI R
∗∗
II(θ)

−1 = OP (1) and R∗KI(θ)R
∗∗
II(θ)

−1R∗IK(θ) converges to zero uniformly in probability such
that det{RKK|I(θ)} has the same limit as det{RKK(θ)}.

Hence, (13) follows for any κ1 > 0 and any κ3 > 0 when J is empty.

3.3.6 Proof of (13) when I is empty

Now suppose θ ∈ ΘJ , which is such that I is empty but J and K are non-empty. In this case,

det{R(θ)} = det{RKK(θ)}det{RJJ |K(θ)},

where the analysis in Section 3.1 shows that RKK(θ) converges uniformly in probability to a positive
definite matrix for any choice of κ3 > 0. This also implies that supθ∈ΘJ RKK(θ)−1 = OP (1). Since
supθ∈ΘJ RKJ(θ) = OP (1) by Lemma B.3 with u1 = δk, u2 = δj such that a = min(1/2 +κ3, 1/2−κ2, κ3−
κ2) = κ3−κ2 > 0 when choosing κ2 < κ3, it holds that RJJ |K(θ) = RJJ(θ)−RJK(θ)RKK(θ)−1RJK(θ) =
RJJ(θ) +OP (1), where the OP (1) term is uniform in θ ∈ ΘJ . Section 3.3.1 shows that there exists κ̄3 > 0
and T0 ≥ 1 such that P (infθ∈ΘJ det{RJJ(θ)} > K) ≥ 1− η for all T ≥ T0 and all κ3 ≤ κ̄3, and the same
result thus holds for infθ∈ΘJ det{RJJ |K(θ)} by choosing κ̄2 < κ̄3 to define D∗2 and D

∗
3 (and hence J and

K). Again, (13) follows for any κ1 > 0.

3.3.7 Overlap-wedge argument

Because no restrictions have been placed on κ1 so far, it can be chosen in the previous subsections as
0 < κ1 < κ̄2, such that there is an overlap between the intervals D∗1(κ1) and D∗2(κ̄2, κ̄3). This implies
that, for the case analyzed in the next subsection, where both I and J (and possibly K) are non-empty,
the analysis can be based on D∗1(κ̄1) and D∗2(κ̄2, κ̄3) with 0 < κ̄2 < min(κ̄1, κ̄3) such that D∗1(κ̄1) and
D∗2(κ̄2, κ̄3) are disjoint and there is a wedge between them.

To see why this is the case, suppose first that there are two processes in D∗1 ∪D∗2 (and possibly some
in D∗3, but these are irrelevant for this argument). If δi ∈ D∗2(κ∗2, κ3) for i = 1, 2 and some κ∗2 > 0 then I
is empty, while if δi ∈ D∗1(κ∗1) for i = 1, 2 and some κ∗1 < κ∗2 (the overlap) then J is empty, and in both
cases the above arguments (in Sections 3.3.6 and 3.3.5, respectively) apply. The remaining case is that
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δi ∈ (D∗1 ∪D∗2)\D∗1(κ∗1) and δj ∈ (D∗1 ∪D∗2)\D∗2(κ∗2, κ3) for i 6= j, in which case I and J are defined using
κ̄1 = κ∗2 and κ̄2 = κ∗1, respectively, such that κ̄2 < κ̄1 (the wedge).

Suppose next that there are three processes in D∗1 ∪D∗2 (and possibly some in D∗3). If all three are in
D∗1(κ∗1) or all are in D∗2(κ∗2, κ3), the arguments above (Sections 3.3.5 and 3.3.6) again apply. Thus, suppose
at least one δi ∈ (D∗1∪D∗2)\D∗1(κ∗1) and at least one δj ∈ (D∗1∪D∗2)\D∗2(κ∗2, κ3) for i 6= j, while δk ∈ D∗1∪D∗2
for k 6= i, j. Then there are two subcases: (a) If δk ≤ −1/2− κ∗1/2− κ∗2/2 then the analysis can be based
on I and J defined using κ̄1 = κ∗1/2+κ∗2/2 > κ∗1 and κ̄2 = κ∗1, respectively. (b) If δk ≥ −1/2−κ∗1/2−κ∗2/2
then the analysis can be based on I and J defined using κ̄1 = κ∗2 and κ̄2 = κ∗1/2 +κ∗2/2 < κ∗2, respectively.
In either subcase, κ̄1 > κ̄2 (the wedge). The argument is straightforwardly generalized to cases with more
than three processes in D∗1 ∪D∗2.
3.3.8 Proof of (13) for the general case

Consider finally the general case, where Θ̄ is defined using D∗1(κ̄1), D∗2(κ̄2, κ̄3), and D∗3(κ̄3) and is such
that I, J , and K are all non-empty with 0 < κ̄2 < min(κ̄1, κ̄3). If one or more of I, J , or K are empty,
the proof simplies easily. Now

det{R(θ)} = det{RII(θ)} det{RKK|I(θ)} det{RJJ |I,K(θ)},

where the first two terms have already been analyzed in Section 3.3.5 above (the case where J is empty),
and it is shown there that, for any κ1 > 0 and any κ3 > 0, it holds that P (infθ∈Θ̄ det{RII(θ)} > K)→ 1
as T →∞ and RKK|I(θ) converges uniformly in probability to a positive definite matrix.

It remains to be shown that there exists a κ̄3 > 0 and a T0 ≥ 1 such that P (infθ∈Θ̄ det{RJJ |I,K(θ)} >
K) ≥ 1 − η for all T ≥ T0. The analysis of RJJ |I,K(θ) is similar to that in Sections 3.3.1 and 3.3.6,
except for the conditioning on both stationary and nonstationary variables. First eliminate the stationary
variables,

RJJ |I,K(θ) = RJJ |I(θ)−RJK|I(θ)RKK|I(θ)−1RKJ |I(θ). (35)

To show that there exists a κ̄3 > 0 and a T0 ≥ 1 such that P (infθ∈Θ̄ det{RJJ |I(θ)} > K) ≥ 1−η for all
T ≥ T0, it needs to be further decomposed, and it is convenient to introduce the notation ZIt and ZJt for
the variables in I and J , respectively, the more compact notation PT,N (Z1t, Z2t) = T−1

∑T
t=N+1 Z1tZ

′
2t and

PT,N (Z1t, Z2t|Z3t) = PT,N (Z1t, Z2t)− PT,N (Z1t, Z3t)PT,N (Z3t, Z3t)
−1PT,N (Z3t, Z2t) for product moments,

and again asterisks denote that nonstationary processes have been normalized. Then, as in Section 3.3.1,
bound RJJ |I(θ) by

RJJ |I(θ) ≥ PT,N (ZJt, ZJt|ZIt)
≥ PT,N (wt, wt|ZIt) + PT,N (wt, vt|ZIt) + PT,N (vt, wt|ZIt),

where

PT,N (wt, vt|ZIt) = PT,N (wt, vt)− P ∗T,N (wt, ZIt)P
∗∗
T,N (ZIt, ZIt)

−1PT,N (ZIt, vt), (36)

PT,N (wt, wt|ZIt)− PT,N (wt, wt) = P ∗T,N (wt, ZIt)P
∗∗
T,N (ZIt, ZIt)

−1P ∗T,N (ZIt, wt). (37)

As in Section 3.3.1, the desired result holds for PT,N (wt, wt), which determines κ̄3 > 0, and hence κ̄1, κ̄2

are chosen according to 0 < κ̄2 < min(κ̄3, κ̄1) < 1/2 such that there is a wedge between the intervals D∗1
and D∗2 as argued in Section 3.3.7. In the analysis of RJJ |I(θ), it thus only remains to be shown that the
right-hand sides of (36) and (37) are both negligible uniformly in θ ∈ Θ̄.

First the result is shown for (36). From Lemma B.2 it holds that supθ∈Θ̄ PT,N (wt, vt) = oP (1)
when N = Tα with α < (1/2 − κ̄2)/(1/2 + κ̄2). Lemma B.4 shows that supθ∈Θ̄ P

∗
T,N (wt, ZIt) =

OP ((log T )T−κ̄1N κ̄1+κ̄2) and supθ∈Θ̄ P
∗
T,N (ZIt, vt) = OP ((log T )T κ̄2). Since supθ∈Θ̄ P

∗∗
T,N (ZIt, ZIt)

−1 =
OP (1) as in the case where J is empty in Section 3.3.5, it thus holds that supθ∈Θ̄ |(36)| when N = Tα
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with α < (κ̄1 − κ̄2)/(κ̄1 + κ̄2), in addition to the previous constraints on α, recalling that κ̄2 < κ̄1. Thus,
the wedge is needed here to ensure that P ∗T,N (wt, ZIt) converges to zero faster than P ∗T,N (vt, ZIt) diverges.

Next, for (37), Lemma B.4 shows that supθ∈Θ̄ P
∗
T,N (wt, ZIt) = OP ((log T )T−κ̄1N κ̄1+κ̄2) and, as before,

supθ∈Θ̄ P
∗∗
T,N (ZIt, ZIt)

−1 = OP (1), such that supθ∈Θ̄ |(37)| = oP (1) when N = Tα with α < κ̄1/(κ̄1 + κ̄2),
in addition to the previous constraints on α.

Finally, it only remains to be shown that the second term on the right-hand side of (35) is OP (1)
uniformly in θ ∈ Θ̄. To see this, note first that RKK|I(θ), and hence RKK|I(θ)−1, converges uniformly in
probability to a positive definite matrix for any choice of κ3 > 0 as in the case where J is empty in Section
3.3.5. The term RJK|I(θ) = RJK(θ)−R∗JI(θ)R∗∗II(θ)−1R∗KI(θ), where supθ∈Θ̄RJK(θ) = OP (1) by Lemma
B.3 with u1 + 1/2 ≥ −κ̄2, u2 + 1/2 ≥ κ̄3, and hence a = κ̄3− κ̄2 > 0. For the term R∗JI(θ)R

∗∗
II(θ)

−1R∗KI(θ)
it holds that supθ∈Θ̄R

∗∗
II(θ)

−1 = OP (1) as in Section 3.3.5. In addition, supθ∈Θ̄R
∗
JI(θ) = OP ((log T )T κ̄2)

by Lemma B.4 with a = −κ̄2 and b = κ̄1 while supθ∈Θ̄R
∗
KI(θ) = OP ((log T )T−min(κ̄1,κ̄3)) by Lemma B.4

with a = κ̄3 and b = κ̄1, such that supθ∈Θ̄R
∗
JI(θ)R

∗∗
II(θ)

−1R∗KI(θ) = OP ((log T )2T κ̄2−min(κ̄1,κ̄3)) = oP (1)
because κ̄2 < min(κ̄1, κ̄3). Here, the wedge is needed once more to ensure that R∗KI(θ) converges to zero
faster than R∗JI(θ) diverges.

This completes the proof of Theorem 1.

4 Asymptotic distribution theory

To prove asymptotic normality for the CSS estimator for model (3), the smoothness conditions on the
linear coeffi cients need to be strengthened and an additional condition is needed to ensure that the
asymptotic variance matrix of the estimator is well-defined.

Assumption E For all z in the complex unit disk {z ∈ C : |z| ≤ 1}, A(z, ψ) =
∑∞

n=0An(ψ)zn is three
times differentiable in ψ on the closed neighborhood Nδ(ψ0) = {ψ ∈ Ψ : |ψ − ψ0| ≤ δ} for some δ > 0,

and the derivatives ∂kA
(i,j)
n (ψ)

∂ψ(k)
satisfy

∑∞
n=0 |

∂kA
(i,j)
n (ψ)

∂ψ(k)
| <∞ for all ψ ∈ Nδ(ψ0) and k = 2, 3.

Assumption F The symmetric (p+ q)× (p+ q) matrix Ω0 with (i, j)’th element

∞∑
n,m=1

n−1m−1 tr{Σ−1
0

∞∑
k=max(0,m−n)

Cik(ψ0)Σ0Cj,k+n−m(ψ0)′} if i, j = 1, . . . , p,

−
∞∑
n=1

n−1 tr{Σ−1
0

∞∑
k=0

Cik(ψ0)Σ0Γj,n+k(ψ0)′} if i = 1, . . . , p and j = p+ 1, . . . , p+ q,

∞∑
n=1

tr{Σ−1
0 Γin(ψ0)Σ0Γjn(ψ0)′} if i, j = p+ 1, . . . , p+ q,

is non-singular, where Cik(ψ) is defined in (10) and Γin(ψ) =
∑n−1

m=0Am(ψ)∂Bn−m(ψ)
∂ψi

.

In the case with martingale difference errors, i.e. with ut = εt, Assumption F reduces to Ω0 =
π2

6 Σ0 � Σ−1
0 being non-singular, where � denotes the elementwise (Hadamard) product. Thus, at least

in this special case, Assumption F follows immediately from Assumption A and in particular from the
assumption that Σ0 > 0. Also in this special case the equations for Ω0 given in Assumption F generalizes
the well-known π2/6 from the univariate case in a straightforward way.

Instead of Assumption E, Hualde & Robinson (2011) assume that A(z, ψ) is twice continuously dif-
ferentiable in ψ, which is slightly weaker. Assumption F is identical to Hualde & Robinson’s (2011)
Assumption A4(v) although it is stated differently. As above, both Assumptions E and F are easily
satisfied by, e.g., the Bloomfield model or stationary and invertible ARMA processes.
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Theorem 2 Under the assumptions of Theorem 1, Assumptions E and F, and (d0, ψ0) ∈ int(Dp ×Ψ),
√
T ((d̂′, ψ̂′)′ − (d′0, ψ

′
0)′)

D→ N(0,Ω−1
0 ) as T →∞.

Theorem 2 proves the anticipated result that the CSS estimator has the same asymptotic distribution
as the (unconditional) Gaussian maximum likelihood estimator. For similar asymptotic distribution re-
sults for the CSS estimator, see also Beran (1995), Tanaka (1999), and Nielsen (2004) in the univariate
case, and Hualde & Robinson (2011) for the multivariate model. An important consequence of these
results is that the CSS estimator is effi cient under Gaussianity, c.f. Fox & Taqqu (1986) and Dahlhaus
(1989) for the univariate case. However, the asymptotic normality result in Theorem 2 is valid much
more generally because Gaussianity is not assumed. Although Theorem 2 is proved in Hualde & Robin-
son (2011), the assumptions are stated in a different way here and allow for a rather brief proof, which is
given next.

5 Proof of Theorem 2

By consistency of θ̂, the asymptotic distribution theory for the CSS estimator is obtained from the usual
Taylor series expansion of the score function. That is,

0 = T 1/2∂ det{R(θ̂)}
∂θ′

= T 1/2∂ det{R(θ0)}
∂θ′

+ T 1/2∂
2 det{R(θ̄)}
∂θ∂θ′

(θ̂ − θ0), (38)

where θ̄ is an intermediate value satisfying |θ̄i − θ0i| ≤ |θ̂i − θ0i|, i = 1, . . . , p+ q.
The normalized score function evaluated at the true value is

T 1/2∂ det{R(θ0)}
∂θi

= det{R(θ0)} tr{R(θ0)−12T−1/2
T∑
t=1

yi,t−1εt(θ0)′} with yi,t−1 =
∂

∂θi
εt(θ)|θ=θ0 .

Define also the vector ST by

S
(i)
T = 2T−1/2

T∑
t=1

ε′tΣ
−1
0 zi,t−1 with zi,t−1 =

∂

∂θi
ηt(θ)|θ=θ0 =

∂

∂θi
B(L,ψ)Λ(d− d0)ut|θ=θ0 .

It is shown in Robinson (2006, pp. 135—136) that 2T−1/2
∑T

t=1 εt(θ0)′R(θ0)−1yi,t−1−S(i)
T = oP (1) under the

assumptions of Theorem 2. The (untruncated) stationary and ergodic process zi,t−1 = ∂
∂θi
B(L,ψ)Λ(d −

d0)ut|θ=θ0 is given by −
∑∞

n=1 n
−1
∑∞

k=0B
(·i)
k (ψ0)u

(i)
t−n−k = −

∑∞
n=1 n

−1
∑∞

k=0Cik(ψ0)εt−n−k when i =

1, . . . , p and
∑∞

n=1
∂Bn(ψ0)
∂ψi

ut−n =
∑∞

n=1 Γin(ψ0)εt−n when i = p+ 1, . . . , p+ q, where Cik(ψ) is defined in
(10).

As usual, the Cramér-Wold device is used to obtain a central limit theorem for the score function, so,

for any (p + q)-vector µ, it needs to be shown that µ′ST =
∑p+q

i=1 µiS
(i)
T

D→ N(0, 4µ′Ω0µ). Because zi,t−1

is measurable with respect to the sigma-algebra Ft−1 = σ({εs, s ≤ t− 1}), νt =
∑p+q

i=1 νit = µiε
′
tΣ
−1
0 zi,t−1

is a martingale difference sequence with respect to the filtration Ft. By the law of large numbers for
stationary and ergodic processes the sum of conditional variances is

T−1
T∑
t=1

E(ν2
t |Ft−1) = T−1

T∑
t=1

p+q∑
i,j=1

µiµjz
′
i,t−1Σ−1

0 zj,t−1

=

p+q∑
i,j=1

µiµj tr{Σ−1
0 T−1

T∑
t=1

zi,t−1z
′
j,t−1}

P→
p+q∑
i,j=1

µiµj tr{Σ−1
0 E(zi,t−1z

′
j,t−1)} =

p+q∑
i,j=1

µiµjΩ
(i,j)
0
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and the Lindeberg condition is satisfied because νt is stationary with finite variance. It therefore follows

from the central limit theorem for martingales, e.g. Hall & Heyde (1980, chp. 3), that ST
D→ N(0, 4Ω0)

and hence also that T 1/2 ∂ det{R(θ0)}
∂θ′

D→ det{Σ0}N(0, 4Ω0). The components of the matrix Ω0 given in
Assumption F are easily found from E(zi,t−1z

′
j,t−1).

The second derivative in (38) is tight (stochastically equicontinuous) by Newey (1991, Corollary 2.2) if
its derivative is dominated uniformly in d ∈ Dp

3 and ψ ∈ Nδ(ψ0) by a random variable BT = OP (1). From
Lemma B.3 with u1 = u2 = d − d0 ≥ −1/2 + κ3 and Ψ̃ = Nδ(ψ0) (noting that only summability of the
linear coeffi cients is assumed in Lemma B.3 and this is satisfied uniformly on Nδ(ψ0) by the derivatives of

Ckn(ψ) by Assumption E) it holds that BT = supd∈Dp3 ,ψ∈Nδ(ψ0)
∂3R(θ)

∂θ(3)
= OP (1), showing that the second

derivative in (38) is tight. This result, together with consistency of θ̂ (Theorem 1), implies by Lemma
A.3 of Johansen & Nielsen (2010) that the second derivative in (38) can be evaluated at the true value.
Hence,

∂2 det{R(θ0)}
∂θi∂θj

= det{R(θ0)} tr{R(θ0)−12T−1
T∑
t=1

yi,j,t−1εt(θ0)′}+ det{R(θ0)} tr{R(θ0)−12T−1
T∑
t=1

yi,t−1y
′
j,t−1}

+ det{R(θ0)} tr{R(θ0)−12T−1
T∑
t=1

yi,t−1εt(θ0)′} tr{R(θ0)−12T−1
T∑
t=1

yj,t−1εt(θ0)′}

− det{R(θ0)} tr{R(θ0)−12T−1
T∑
t=1

yi,t−1εt(θ0)′R(θ0)−12T−1
T∑
s=1

yj,s−1εs(θ0)′},

where yi,j,t−1 = ∂
∂θi∂θj

εt(θ)|θ=θ0 . From the argument in Robinson (2006, pp. 135—136), R(θ0), εt(θ0), yi,t−1,

and yi,j,t−1 can be replaced by Σ0, εt, zi,t−1, and zi,j,t−1, respectively, where zi,j,t−1 = ∂
∂θi∂θj

ηt(θ)|θ=θ0 .
Because zi,j,t−1ε

′
t, zi,t−1ε

′
t, and zj,t−1ε

′
t are martingale difference sequences with respect to Ft with finite

second moments, the first, third, and fourth terms on the right-hand side are oP (1). Finally, from

the law of large numbers it follows that tr{Σ−1
0 T−1

∑T
t=1 zi,t−1z

′
j,t−1}

P→ Ω
(i,j)
0 such that ∂2 det{R(θ0)}

∂θi∂θj

P→
2 det{Σ0}Ω(i,j)

0 , which proves the result.

6 Concluding remarks

This paper has proven consistency and asymptotic normality for the conditional-sum-of-squares estimator
for multivariate fractional time series. The model considered is parametric and allows for a wide range
of weak dependence in the linear process innovations. In particular, it encompasses the multivariate
non-cointegrated fractional ARIMA model. In this fractional context, the consistency proof is the most
challenging, since the objective function does not converge uniformly in probability on the (arbitrarily
large) parameter set. The consistency result is of course important not only in its own right but also as a
required prerequisite for a proof of asymptotic normality of the estimator. On the other hand, the proof
of asymptotic normality, given the consistency result, is more standard.

Empirical applications and finite sample simulations of the CSS estimation procedure for fractional
time series models are well-known, see e.g. Nielsen & Frederiksen (2005), Hualde & Robinson (2011), and
the references therein.

Appendix A Inequalities

This section presents some useful inequalities that are applied both in the proofs of the main theorems
and in proofs of product moment bounds in the next section.
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Lemma A.1 Uniformly in −u0 ≤ v ≤ u ≤ u0 and for j ≥ 1,m ≥ 0 it holds that

| ∂
m

∂um
πj(u)| ≤ c(1 + log j)mju−1, (39)

| ∂
m

∂um
πj(u)− ∂m

∂vm
πj(v)| ≤ c(u− v)(1 + log j)m+1ju−1, (40)

| ∂
m

∂um
πj+1(u)− ∂m

∂um
πj(u)| ≤ c(1 + log j)mju−2, (41)

where the constant c > 0 does not depend on u, ũ, or j.
Uniformly in −δ0 ≤ v + 1/2 ≤ δ0 for δ0 < 1/2 and j ≥ 1 it holds that

πj(−v) ≥ cj−v−1, (42)

where the constant c > 0 does not depend on v or j.

Proof. The results (39) and (40) are in Lemma B.3 of Johansen & Nielsen (2010). From (2) it holds that
πj+1(u)− πj(u) = πj(u)(u− 1)/(j + 1) = πj+1(u− 1) such that (41) follows directly from (39).

To prove (42) let u = −v ∈ [1/2− δ0, 1/2 + δ0] and apply Stirling’s formula,

πj(u) =
Γ(u+ j)

Γ(u)Γ(j + 1)
=

1

Γ(u)
ju−1(1 + ε(u, j)),

where sup1/2−δ0≤u≤1/2+δ0 |ε(u, j)| → 0 as j → ∞. This proves the result and shows that the constant c
can be chosen to depend only on δ0.

Lemma A.2 Uniformly for max(|α|, |β|) ≤ a0 it holds that

t−1∑
j=1

jα−1(t− j)β−1 ≤ c(1 + log t)tmax(α+β−1,α−1,β−1), (43)

where the constant c > 0 does not depend on α, β, or t.

Proof. See Lemma B.4 of Johansen & Nielsen (2010).

Lemma A.3 Let u = (uk, ul) and F
(k,l)
N (u) =

∑N−1
n=0 πn(−uk)πn(−ul). For N ≥ 2,uk, ul ≤ −1/2 + a,

and a > 0,

F
(k,l)
N (u) ≥ 1 + c

1− (N − 1)−2a

2a
,

where the constant c > 0 does not depend on a, u, or N .

Proof. Using (42) of Lemma A.1 it holds that F (k,l)
N (u) ≥ 1 + c

∑N−1
n=1 n

−uk−ul−2 and the result follows
because

∑N−1
n=1 n

−uk−ul−2 ≥
∫ N−1

1 x−uk−ul−2dx = (uk+ul+1)−1(1− (N −1)−uk−ul−1) ≥ (2a)−1(1− (N −
1)−2a).

Appendix B Product moment bounds

This section contains a series of lemmas that are used to verify tightness and stochastic equicontinuity
conditions for the processes in the previous sections. The first lemma deals with nonstationary processes
and the next lemma with product moments of processes that are nearly stationary. It is Lemma B.2 that
contains the truncation argument used to deal with the non-uniform convergence in Θ2, see Section 3.3.1.
Lemma B.3 covers product moments of stationary and nearly stationary processes, and is applied in the
consistency proof —both for the stationary processes and to deal with certain cross-products of stationary
and nearly stationary processes —and it is applied for the Hessian in the proof of asymptotic normality.
The final two lemmas derive bounds for cross-products of nonstationary and (nearly) stationary processes.
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Lemma B.1 Let εt satisfy Assumption A. Then, for k = 1, . . . , p,

||T u+1/2∆u
+εk,t||2 ≤ c and ||T u+1/2∆u

+εk,t − T v+1/2∆v
+εk,t||2 ≤ c|u− v| (44)

uniformly in (u, v) ∈ D̃ × D̃, where D̃ = {u ∈ D : u+ 1/2 ≤ −b} for b > 0 and where the constant c > 0
does not depend on u, v, or T .

Proof. See Lemma C.3 in Johansen & Nielsen (2010), which applies also under Assumption A on εt
instead of Johansen & Nielsen’s (2010) i.i.d. assumption.

Lemma B.2 Let Assumptions A and B be satisfied. Define wkt = wkt(uk) =
∑N−1

n=0 πn(−uk)C∗k(ψ)εt−n
and vkt = vkt(uk) =

∑t−1
n=N πn(−uk)C∗k(ψ)εt−n, where the p × p matrix C∗k(ψ) satisfies 0 < |C∗k(ψ)| < ∞

uniformly in ψ ∈ Ψ. Define the product moments Q1NT (u, ψ) = T−1
∑T

t=N+1wktw
′
lt−C∗k(ψ)Σ0C

∗
l (ψ)T−1(T−

N)F
(k,l)
N (u) and Q2NT (u, ψ) = T−1

∑T
t=N+1wktvlt, with F

(k,l)
N (u) given in Lemma A.3 and u = (uk, ul)

′,
and the set Θ̃ = {(uk, ul, ψ) ∈ D ×D ×Ψ : |uk + 1/2| ≤ a, |ul + 1/2| ≤ a} for a ∈ (0, 1/2). Then

sup
(u,ψ)∈Θ̃

|Q2NT (u, ψ)| = OP ((log T )2T−1/2+aN1/2+a), (45)

sup
(u,ψ)∈Θ̃

|Q1NT (u, ψ)| = OP ((log T )2T−1/2N1/2+2a). (46)

In particular, if N = Tα with 0 < α < min(1/2−a
1/2+a ,

1/2
1/2+2a), then it holds that

sup
(u,ψ)∈Θ̃

|Q1NT (u, ψ)| P→ 0 and sup
(u,ψ)∈Θ̃

|Q2NT (u, ψ)| P→ 0. (47)

Proof. Proof of (45): Let ε∗kt = C∗k(ψ)εt. Rearranging the summations,

Q2NT (u, ψ) = T−1
N−1∑
n=0

πn(−uk)
T−1∑
m=N

πm(−ul)
T∑

t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m,

where summation by parts yields

T−1∑
m=N

πm(−ul)
T∑

t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m = πT−1(−ul)

T−1∑
m=N

T∑
t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m

−
T−2∑
r=N

(πr+1(−ul)− πr(−ul))
r∑

m=N

T∑
t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m.

Now let
K∑

m=N

T∑
t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m = C∗k(ψ)

T−n∑
s=1

zsC
∗
l (ψ)′,

where zs = εs
∑K−n

k=N−n ε
′
s−k is mean zero with

E|zs|2 = E tr{z′szs} = O(K −N).

Using serial uncorrelatedness of zs it follows that

E

∣∣∣∣∣
T−n∑
s=1

zs

∣∣∣∣∣
2

≤
T−n∑
s=1

E|zs|2 = O((T − n)(K −N)),
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such that the L2-norm is ||
∑T−n

s=1 zs||2 = (E|
∑T−n

s=1 zs|2)1/2 = O((T −n)1/2(K−N)1/2) uniformly in n,K.
Hence,

∑T−n
s=1 zs = OP ((T − n)1/2(K −N)1/2), and because 0 < |C∗k(ψ)| <∞ uniformly in ψ ∈ Ψ,

sup
ψ∈Ψ
|

K∑
m=N

T∑
t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m| ≤ sup

ψ∈Ψ
|C∗k(ψ)||C∗l (ψ)′|

∣∣∣∣∣
T−n∑
s=1

zs

∣∣∣∣∣
= OP ((T − n)1/2(K −N)1/2).

Now, rearranging the summations and applying the summation by parts result, sup(u,ψ)∈Θ̃ |Q2NT (u, ψ)|
is

OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
n=0

|πn(−uk)||πT−1(−ul)|(T − n)1/2

)

+OP

(
sup

(u,ψ)∈Θ̃

T−1
N−1∑
n=0

|πn(−uk)|
T−2∑
m=N

(πm+1(−ul)− πm(−ul))(T − n)1/2(m−N)1/2

)
.

By Lemma A.1 the first term is

sup
(u,ψ)∈Θ̃

T−1/2
N−1∑
n=0

|πn(−uk)||πT−1(−ul)|(T−n)1/2 ≤ sup
(u,ψ)∈Θ̃

cT−ul−1
N−1∑
n=0

n−uk−1 ≤ c(log T )T−1/2+aN1/2+a

and the second term is

sup
(u,ψ)∈Θ̃

cT−1/2
N−1∑
n=0

n−uk−1
T−2∑
m=N

mul−3/2 ≤ cT−1/2
N−1∑
n=0

n−1/2+a
T−2∑
m=N

ma−1 ≤ c(log T )2T−1/2+aN1/2+a.

Proof of (46): Decompose Q1NT (u, ψ) as

Q1NT (u, ψ) =

N−1∑
n=0

πn(−uk)πn(−ul)C∗k(ψ)T−1
T∑

t=N+1

(εt−nε
′
t−n − Σ0)C∗l (ψ)′ (48)

+ 2T−1
N−1∑
m=1

πm(−ul)
m−1∑
n=0

πn(−uk)
T∑

t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m, (49)

where T−1
∑T

t=N+1(εt−nε′t−n − Σ0) = OP (T−1/2) uniformly in N under Assumption A. Thus, because
0 < |C∗k(ψ)| <∞ uniformly in ψ ∈ Ψ,

sup
(u,ψ)∈Θ̃

|(48) = OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
n=0

|πn(−uk)πn(−ul)|
)

= OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
n=0

n−uk−ul−2

)
= OP

(
(log T )T−1/2N2a

)
.

Proceeding as in the proof of (45), summation by parts yields

m−1∑
n=0

πn(−uk)
T∑

t=max(N,m)+1

ε∗k,t−nε
∗
l,t−m = πm−1(−uk)

m−1∑
n=0

T∑
t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m

−
m−2∑
r=0

(πr+1(−uk)− πr(−uk))
l∑

n=0

T∑
t=max(N,m)+1

ε∗k,t−nε
∗′
l,t−m,
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where supψ∈Ψ |
∑K

n=0

∑T
t=max(N,m)+1 ε

∗
k,t−nε

∗′
l,t−m| = OP (T 1/2K1/2). Thus, sup(u,ψ)∈Θ̃ |(49) is

OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
m=1

|πm(−ul)||πm−1(−uk)|m1/2

)

+OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
m=1

|πm(−ul)||
m−2∑
r=0

(πr+1(−uk)− πr(−uk))|r1/2

)
,

where the first term is

OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
m=1

m−uk−ul−3/2

)
= OP ((log T )T−1/2N1/2+2a)

and the second term is

OP

(
sup

(u,ψ)∈Θ̃

T−1/2
N−1∑
m=1

m−ul−1
m−2∑
r=1

r−uk−3/2

)
= OP ((log T )2T−1/2N1/2+2a).

Proof of (47): Using the condition on α, the right-hand sides of (45) and (46) converge to zero.

Lemma B.3 Let Assumptions A and B be satisfied and let Zit =
∑∞

n=0 ζin(ψ)εt−n, i = 1, 2, where the
1× p coeffi cients ζin(ψ) satisfy

∑∞
n=0 |ζin(ψ)| <∞, i = 1, 2, uniformly in ψ ∈ Ψ̃ ⊆ Ψ. Define the product

moment QT (u1, u2, ψ) = T−1
∑T

t=1
∂k

∂u
(k)
1

(∆u1
+ Z1t)

∂l

∂u
(l)
2

(∆u2
+ Z2t) for k, l ≥ 0 and the set Θ̃ = {(u1, u2, ψ) ∈

D ×D × Ψ̃ : min(u1 + 1, u2 + 1, u1 + u2 + 1) ≥ a}. Then

sup
(u1,u2,ψ)∈Θ̃

|QT (u1, u2, ψ)| = OP (1) for a > 0,

sup
(u1,u2,ψ)∈Θ̃

|QT (u1, u2, ψ)| = OP ((log T )1+k+lT−a) for a ≤ 0

Proof. The proof is given only for k, l = 0 since the derivatives just add a log-factor, see (39), which
does not change the proof. Also, p = 1 is assumed in the proof to ease the notation.

Rearranging the summations and using symmetry, QT (u1, u2, ψ) is

T−1
T−1∑
j=0

πj(−u1)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)
T−1∑
k=0

πk(−u2)
T∑

t=max(j,k)+1

εt−j−nεt−k−m

= T−1
T−1∑
j=0

πj(−u1)

∞∑
n=0

j+n∑
m=max(0,j+n−T+1)

ζ1n(ψ)ζ2m(ψ)πj+n−m(−u2)
T∑

t=max(j,j+n−m)+1

ε2
t−j−n (50)

+ 2T−1
T−1∑
j=0

πj(−u1)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)

min(T,j+n−m)−1∑
k=0

πk(−u2)
T∑

t=max(j,k)+1

εt−j−nεt−k−m. (51)

Since T−1
∑T

t=max(j,j+n−m)+1 ε
2
t−j−n = OP (1) uniformly in j, n,m it holds that sup(u1,u2,ψ)∈Θ̃ |(50)| is

OP

 sup
(u1,u2,ψ)∈Θ̃

∞∑
n=0

T−1+n∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(T−1,T−1+m−n)∑

j=max(0,m−n)

|πj(−u1)||πj+n−m(−u2)|


= OP

 sup
(u1,u2,ψ)∈Θ̃

∞∑
n=0

T−1+n∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(T−1,T−1+m−n)∑
j=1+max(0,m−n)

j−u1−1(j + n−m)−u2−1

 .
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If a > 0 the summation over j is bounded and then sup(u1,u2,ψ)∈Θ̃ |(50)| = OP (1) because
∑∞

n=0 |ζin(ψ)| <
∞ uniformly in ψ ∈ Ψ̃, i = 1, 2. If a ≤ 0 the summation over j is OP ((log T )T−a) which is then also the
bound for the supremum of (50).

Next, summation by parts yields
min(T,j+n−m)−1∑

k=0

πk(−u2)
T∑

t=max(j,k)+1

εt−j−nεt−k−m

= πj+n−m−1(−u2)

min(T,j+n−m)−1∑
k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m

−
min(T,j+n−m)−2∑

l=0

(πl+1(−u2)− πl(−u2))

l∑
k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m, (52)

where
min(T,j+n−m)−1∑

k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m =

T−m∑
s=max(j−T+2−m,2−n,1−m)

ws,

l∑
k=0

T∑
t=max(j,k)+1

εt−j−nεt−k−m =
T−m∑

s=max(1−m,1+j−l−m)

vs.

Here, ws = εs
∑j+n−m

k=max(1,1+j+n−m−T ) εs−k and vs = εs
∑j+n−m

k=j+n−m−l εs−k satisfy

E(w2
s) = σ2

0E

 j+n−m∑
k=max(1,1+j+n−m−T )

εs−k

2

= O(T ),

E(v2
s) = σ2

0E

 j+n−m∑
k=j+n−m−l

εs−k

2

= O(l),

and, furthermore, ws and vs are both uncorrelated sequences such that

E

 T−m∑
s=max(j−T+2−m,2−n,1−m)

ws

2

=
T−m∑

s=max(j−T+2−m,2−n,1−m)

E(w2
s) = O(T 2),

E

 T−m∑
s=max(1−m,1+j−l−m)

vs

2

=

T−m∑
s=max(1−m,1+j−l−m)

E(v2
s) = O((T + l − j)l).

It follows that
∑min(T,j+n−m)−1

k=0

∑T
t=max(j,k)+1 εt−j−nεt−k−m = OP (T ) and

∑l
k=0

∑T
t=max(j,k)+1 εt−j−nεt−k−m =

OP ((T + l − j)1/2l1/2), in both cases uniformly in j, n,m.
Now, rearranging the summations and applying the summation by parts result, sup(u1,u2,ψ)∈Θ̃ |(51)| is

OP

 sup
(u1,u2,ψ)∈Θ̃

∞∑
n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
min(T−1,T+m−n)∑
j=max(0,1+m−n)

|πj(−u1)||πj+n−m−1(−u2)|

 (53)

+OP

 sup
(u1,u2,ψ)∈Θ̃

T−1
T−1∑
j=0

|πj(−u1)|
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
T−2∑
l=0

|πl+1(−u2)− πl(−u2)|(T + l − j)1/2l1/2

 .

(54)



M. Ø. Nielsen: CSS estimation in multivariate fractional models 27

The result for (53) follows as in the analysis of (50). For term (54) it holds, using (41) and that∑∞
n=0 |ζin(ψ)| <∞ uniformly in ψ ∈ Ψ̃, i = 1, 2, that the order is

sup
(u1,u2,ψ)∈Θ̃

T−1
T−1∑
j=1

j−u1−1
T−2∑
l=1

l−u2−3/2(T + l − j)1/2

≤ sup
(u1,u2,ψ)∈Θ̃

T−1
T−2∑
l=1

l−u2−3/2
T+l−1∑
j=1

j−u1−1(T + l − j)1/2

≤ sup
(u1,u2,ψ)∈Θ̃

c(log T )T−1
T−2∑
l=1

l−u2−3/2(T + l)max(1/2,1/2−u1)

≤ sup
(u1,u2,ψ)∈Θ̃

c(log T )T−1/2
T−2∑
l=1

l−u2−3/2+max(0,−u1),

where the second inequality follows from Lemma A.2 and the third because (T + l)max(1/2,1/2−u1) =
(T+l)1/2(T+l)max(0,−u1) ≤ (2T )1/2lmax(0,−u1). Since −u2−3/2+max(0,−u1) = −min(u2+1, u1+u2+1)−
1/2 ≤ −a− 1/2, the right-hand side is bounded by c(log T )2T−1/2Tmax(0,1/2−a) = c(log T )2Tmax(−1/2,−a)

if a > 0 and c(log T )T−1/2T 1/2−a = c(log T )T−a if a ≤ 0.
In the next lemma, note that when N = 0, Q2T (u1, u2, ψ) = T u2−1/2

∑T
t=1(∆u1

+ Z1t)(∆
u2
+ Z2t).

Lemma B.4 Let Assumptions A and B be satisfied and let Zit =
∑∞

n=0 ζin(ψ)εt−n, i = 1, 2, where the
1 × p coeffi cients ζin(ψ) satisfy

∑∞
n=0 |ζin(ψ)| < ∞, i = 1, 2, uniformly in ψ ∈ Ψ̃ ⊆ Ψ. Define the

product moments Q1T (u1, u2, ψ) = T u2−1/2
∑T

t=N+1(
∑N−1

j=0 πj(−u1)Z1,t−j)(∆
u2
+ Z2t) and Q2T (u1, u2, ψ) =

T u2−1/2
∑T

t=N+1(
∑t−1

j=N πj(−u1)Z1,t−j)(∆
u2
+ Z2t) and the set Θ̃ = {(u1, u2, ψ) ∈ D ×D × Ψ̃ : u1 + 1/2 ≥

a, u2 + 1/2 ≤ −b} for some b > 0. Then

sup
(u1,u2,ψ)∈Θ̃

|Q1T (u1, u2, ψ)| = OP ((log T )T−bNmax(b−a,0)) +OP ((log T )T−1/2Nmax(1/2−a,0)),

sup
(u1,u2,ψ)∈Θ̃

|Q2T (u1, u2, ψ)| = OP ((log T )T−min(a,b,1/2)).

Proof. The proof follows that of Lemma B.3 and is given for Q1T only, since that for Q2T follows in
exactly the same way replacing N by T in the relevant summation limits. As in the proof of Lemma B.3,
p = 1 is assumed to ease the notation.

Rearranging the summations, Q1T (u1, u2, ψ) is

T u2−1/2
N−1∑
j=0

πj(−u1)
∞∑

n,m=0

ζ1n(ψ)ζ2m(ψ)
T−1∑
k=0

πk(−u2)
T∑

t=max(j,k,N)+1

εt−j−nεt−k−m

= T u2−1/2
N−1∑
j=0

πj(−u1)

∞∑
n=0

j+n∑
m=max(0,j+n−T+1)

ζ1n(ψ)ζ2m(ψ)πj+n−m(−u2)

T∑
t=max(j,j+n−m,N)+1

ε2
t−j−n (55)

+ T u2−1/2
N−1∑
j=0

πj(−u1)

∞∑
n,m=0

ζ1n(ψ)ζ2m(ψ)

min(T,j+n−m)−1∑
k=0

πk(−u2)

T∑
t=max(j,k,N)+1

εt−j−nεt−k−m (56)

+ T u2−1/2
N−1∑
j=0

πj(−u1)

∞∑
n,m=0

ζ1n(ψ)ζ2m(ψ)

T−1∑
k=max(0,j+n−m+1)

πk(−u2)

T∑
t=max(j,k,N)+1

εt−j−nεt−k−m. (57)
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Since T−1
∑T

t=max(j,j+n−m,N)+1 ε
2
t−j−n = OP (1) uniformly in j, n,m,N it holds that sup(u1,u2,ψ)∈Θ̃ |(55)|

is

OP

 sup
(u1,u2,ψ)∈Θ̃

T u2+1/2
∞∑
n=0

N−1+n∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(N−1,T−1+m−n)∑

j=max(0,m−n)

|πj(−u1)||πj+n−m(−u2)|


= OP

 sup
(u1,u2,ψ)∈Θ̃

T−b
∞∑
n=0

N−1+n∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(N−1,T−1+m−n)∑
j=1+max(0,m−n)

j−a−1/2(j + n−m)b−1/2

 .

If b ≥ 1/2 then (j + n−m)b−1/2 ≤ T b−1/2 and the bound for (55) is

OP

 sup
(u1,u2,ψ)∈Θ̃

T−1/2
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
N−1∑
j=1

j−a−1/2

 = OP ((log T )T−1/2Nmax(1/2−a,0))

because
∑∞

n=0 |ζin(ψ)| <∞ uniformly in ψ ∈ Ψ̃, i = 1, 2. If b < 1/2 the bound is

OP

 sup
(u1,u2,ψ)∈Θ̃

T−b
∞∑
n=0

n−1∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
min(N−1,T−1+m−n)∑

j=1

j−a−1/2(j + n−m)b−1/2


(58)

+OP

 sup
(u1,u2,ψ)∈Θ̃

T−b
∞∑
n=0

N−1+n∑
m=n

|ζ1n(ψ)||ζ2m(ψ)|
N−1∑

j=1+m−n
j−a−1/2(j + n−m)b−1/2

 . (59)

In (58), (j + n−m)b−1/2 ≤ jb−1/2 such that the bound is

OP

 sup
(u1,u2,ψ)∈Θ̃

T−b
∞∑
n=0

n−1∑
m=max(0,n−T+1)

|ζ1n(ψ)||ζ2m(ψ)|
N−1∑
j=1

jb−a−1

 = OP ((log T )T−bNmax(b−a,0))

because
∑∞

n=0 |ζin(ψ)| < ∞ uniformly in ψ ∈ Ψ̃, i = 1, 2. For (59), the summation over j is bounded if
b < a and OP ((log T )N b−a) if b ≥ a. Because

∑∞
n=0 |ζin(ψ)| < ∞ uniformly in ψ ∈ Ψ̃, i = 1, 2, it then

follows that (59) is OP ((log T )T−bNmax(b−a,0)).
Next, summation by parts as in (52) shows that sup(u1,u2,ψ)∈Θ̃ |(56)| is

OP

 sup
(u1,u2,ψ)∈Θ̃

T u2+1/2
N−1∑
j=0

|πj(−u1)|
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)||πj+n−m−1(−u2)|

 (60)

+OP

 sup
(u1,u2,ψ)∈Θ̃

T u2
N−1∑
j=0

|πj(−u1)|
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
T−2∑
l=0

|πl+1(−u2)− πl(−u2)|l1/2
 (61)

The analysis of (60) is identical to that of (55) and the bound is the same. Since
∑∞

n=0 |ζin(ψ)| < ∞
uniformly in ψ ∈ Ψ̃, i = 1, 2, and −u2 − 3/2 ≥ b− 1 > −1, (61) is of order

sup
(u1,u2,ψ)∈Θ̃

T u2
N−1∑
j=1

j−u1−1
T−2∑
l=1

l−u2−3/2 ≤ c sup
(u1,u2,ψ)∈Θ̃

T u2(log T )Nmax(0,−u1)T−u2−1/2

≤ c(log T )Nmax(0,1/2−a)T−1/2.
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Finally, for (57) apply summation by parts again,

T−1∑
k=max(0,j+n−m+1)

πk(−u2)
T∑

t=max(j,k,N)+1

εt−j−nεt−k−m

= πT−1(−u2)
T−1∑

k=max(0,j+n−m+1)

T∑
t=max(j,k,N)+1

εt−j−nεt−k−m

−
T−1∑

l=max(0,j+n−m+1)

(πl+1(−u2)− πl(−u2))

l∑
k=max(0,j+n−m+1)

T∑
t=max(j,k,N)+1

εt−j−nεt−k−m,

where, as before, it holds that, uniformly in j, n,m,

T−1∑
k=max(0,j+n−m+1)

T∑
t=max(j,k,N)+1

εt−j−nεt−k−m =

T−j−n∑
s=max(1−n,2−m,1+N−j−n)

εs

T−1+m−j−n∑
k=max(1,m−n−j)

εs−k = OP (T ),

l∑
k=max(0,j+n−m+1)

T∑
t=max(j,k,N)+1

εt−j−nεt−k−m =

T−j−n∑
s=max(1−n,2−m,1+N−j−n)

εs

l+m−j−n∑
k=max(1,m−n−j)

εs−k = OP (l1/2T 1/2),

such that sup(u1,u2,ψ)∈Θ̃ |(57)| is

OP

 sup
(u1,u2,ψ)∈Θ̃

T u2+1/2
N−1∑
j=0

|πj(−u1)|
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)||πT−1(−u2)|

 (62)

+OP

 sup
(u1,u2,ψ)∈Θ̃

T u2
N−1∑
j=0

|πj(−u1)|
∞∑

n,m=0

|ζ1n(ψ)||ζ2m(ψ)|
T−1∑

l=max(0,j+n−m+1)

|πl+1(−u2)− πl(−u2)|l1/2
 .

(63)

Because
∑∞

n=0 |ζin(ψ)| <∞ uniformly in ψ ∈ Ψ̃, i = 1, 2, (62) is bounded by

OP

 sup
(u1,u2,ψ)∈Θ̃

T u2+1/2|πT−1(−u2)|
N−1∑
j=0

|πj(−u1)|

 = OP

T−1/2
N−1∑
j=1

j−a−1/2


= OP ((log T )T−1/2Nmax(1/2−a,0)),

while (63) is bounded in an identical way to (61).

Lemma B.5 Let Assumptions A and B be satisfied and let Zit =
∑∞

n=0 ζin(ψ)εt−n, i = 1, 2, where the
1 × p coeffi cients ζin(ψ) satisfy

∑∞
n=0 |ζin(ψ)| < ∞, i = 1, 2, uniformly in ψ ∈ Ψ. Define the product

moment QT (u1, u2, ψ) = T u1+u2
∑T

t=1(∆u1
+ Z1t)(∆

u2
+ Z2t) and the set Θ̃ = {(u1, u2, ψ) ∈ D ×D ×Ψ : ui ≤

−1/2− b, i = 1, 2} for b > 0. Then

sup
(u1,u2,ψ)∈Θ̃

|QT (u1, u2, ψ)| = OP (1).

Proof. The proof is almost identical to that of Lemma B.3, so only the differences are outlined. The
product moment QT (u1, u2, ψ) is decomposed into (50) and (51), multiplied by T u1+u2+1, where (51) is
further decomposed into (53) and (54) using the summation by parts result (52).
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For the term (50), with the normalization of this lemma, the relevant bound is

sup
(u1,u2,ψ)∈Θ̃

T u1+u2+1

min(T−1,T−1+m−n)∑
j=max(0,m−n)

|πj(−u1)||πj+n−m(−u2)|

≤ cT−1

min(T−1,T−1+m−n)∑
j=1+max(0,m−n)

(j/T )b−1/2((j + n−m)/T )b−1/2

≤ cT−1
T−1∑
j=1

(j/T )2b−1 → c

∫ 1

0
x2b−1dx <∞,

where the second inequality is Cauchy-Schwarz and the last line is because b > 0. The bound for term
(53) is identical to that just derived for (50). Finally, the bound for term (54), with the normalization of
this lemma, is

sup
(u1,u2,ψ)∈Θ̃

T u1+u2

T−2∑
l=1

l−u2−3/2
T+l−1∑
j=1

j−u1−1(T + l − j)1/2

≤ T−1
T−2∑
l=1

(l/T )b−1T−1
T+l−1∑
j=1

(j/T )b−1/2((T + l − j)/T )1/2

≤ T−1
T−2∑
l=1

(l/T )b−1

T−1
T+l−1∑
j=1

(j/T )2b−1

1/2T−1
T+l−1∑
j=1

(j/T )

1/2

≤ T−1
T−2∑
l=1

(l/T )b−1

T−1
2T∑
j=1

(j/T )2b−1

1/2T−1
2T∑
j=1

(j/T )

1/2

→
∫ 1

0
xb−1dx

(∫ 2

0
x2b−1dx

)1/2(∫ 2

0
xdx

)1/2

<∞

because b > 0.
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