
 

Department of Economics and Business 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Measuring the Behavioral Component of Financial 

Fluctuations: An Analysis Based on the S&P 500 

 

Massimiliano Caporin, Luca Corazzini 

and Michele Costola 

 

CREATES Research Paper 2014-33 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Measuring the Behavioral Component of Financial Fluctuations:

An Analysis Based on the S&P 500∗

Massimiliano Caporin† Luca Corazzini‡ Michele Costola§

September 30, 2014

Abstract

We study the evolution of the behavioral component of the financial market by estimating
a Bayesian mixture model in which two types of investors coexist: one rational, with stan-
dard subjective expected utility theory (SEUT) preferences, and one behavioral, endowed
with an S-shaped utility function. We perform our analysis by using monthly data on the
constituents of the S&P 500 index from January 1962 to April 2012. We assume that agents
take investment decisions by ranking the alternative assets according to their performance
measures. A tuning parameter blending the rational and the behavioral choices can be es-
timated by using a criterion function. The estimated parameter can be interpreted as an
endogenous market sentiment index. This is confirmed by a number of checks controlling for
the correlation of our endogenous index with measures of (implied) financial volatility, market
sentiments and financial stress. Our results confirm the existence of a significant behavioral
component that reaches its peaks during periods of recession. Moreover, after controlling for
a number of covariates, we observe a significant correlation between the estimated behavioral
component and the S&P 500 return index.
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1 Introduction

The main assumption of the traditional approach to finance (LeRoy and Werner, 2000) is that,

in taking their investment decisions, agents maximize a well-conformed utility function that

satisfies the requirements of the Subjective Expected Utility Theory (SEUT).

As is well known, the validity of this hypothesis has been strongly questioned for its inability

to account for systematic empirical puzzles, such as the persistent mispricing of assets and

the existence of arbitrage opportunities in the financial market (Hirshleifer, 2001; Barberis and

Thaler, 2003; Lamont and Thaler, 2003).1 Moreover, there is a huge amount of experimental

evidence documenting systematic violations of the SEUT assumptions in risky gamble decisions;

for an extensive and comprehensive survey, see Starmer (2000).

Once admitted that the requirements of the SEUT are rather innocuous for describing fi-

nancial decisions, scholars have begun introducing novel behavioral assumptions on individual

preferences in their models. An intriguing research question that remains open in the litera-

ture is concerned with how to isolate and empirically measure the behavioral component of the

financial market.

The present paper is aimed at tackling this gap. In particular, by using monthly data on the

500 components of the S&P 500 index from January 1962 to April 2012, we propose a Bayesian

mixture approach to estimate the relative impact of the behavioral component on financial

market movements.

As in standard heterogeneous agent settings (Zeeman, 2007; Grossman and Stiglitz, 1980;

De Long et al., 1990), the underlying model assumes that, in every period of time, the evolution

of the asset prices reflects the interplay between the investment choices of two types of non-

strategic financial agents: one rational, endowed with a standard risk averse utility function

that satisfies the SEUT requirements, and one characterized by behavioral preferences. Of all

the new non-expected utility theories proposed as valid alternatives to the SEUT, the Prospect

Theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) represents the most

successful approach and serves as the natural benchmark for our methodology. According to the

original formulation, behavioral agents’ preferences are described by an S-shaped value function

that presents three main attributes: (a) agents perceive a monetary outcome as a gain or a loss

relative to a reference point; (b) agents’ risk attitude changes over the monetary outcomes such

1The equity premium puzzle surely represents the most intriguing empirical inconsistency studied by financial
economists: although stocks on average exhibit attractive risk-return performances, investors appear to demand
a substantial risk premium in order to prefer this asset to other riskless investment opportunities.
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that they exhibit risk averse preferences in the gain domain, while they are risk lovers in the loss

domain; (c) agents are loss averse whereby, beginning from the reference point and for a given

monetary change, their utility is more sensitive to negative monetary changes than to positive

ones. As a first step, we set the Bayesian mixture by assuming that the behavioral agents

are endowed with an S-shaped utility function. Given the specification of the two categories

of agents, the mixture depends on a weighting factor that expresses the relative weight of the

behavioral view over the rational ones: the higher the value of the weighting factor, the closer

the asset evaluations of the financial market to those of the behavioral agents.

Although grounded in traditional agent’s design, our methodology presents two main fea-

tures that make it a powerful empirical instrument to analyze financial data. First, the relative

importance of the behavioral component is estimated in every period by using an optimizing

methodology that is based on performance measures. Performance measures have several ad-

vantages from an empirical viewpoint. They summarize into a single parameter the interplay

between risk and return of the corresponding asset. Moreover, performance measures can be

ordered in such a manner that assets with higher measures perform better. Finally, to define the

performance measure of an asset, the financial agent chooses the partition of wealth between a

riskless activity and the risky asset that maximizes her utility function (Pedersen and Satchell,

2002). In a capital allocation setting, both rational and behavioral agents make choices by max-

imizing a specific performance measure, which is related to the feature of their utility functions.

Risk-averse agents consider the Generalized Sharpe ratio (see Zakamouline and Koekebakker

(2009a) and Zakamouline and Koekebakker (2009b)), while the Z-ratio is adopted by behavioral

agents (Zakamouline, 2014). To make their investment decisions, in every period, each of the

two categories of agents first determines the performance measure associated with each of the

500 constituents of the S&P 500, and then builds a ranking ordered from the best to the least

performing asset. Given the evaluations of the two types of agents, the market acts as a so-

phisticated investor that builds a mixture ranking by conditioning, in a Bayesian setting, the

prior ordering of the rational agents on that of the behavioral category. The mixture depends

on a weighting factor that expresses the uncertainty on the rational prior, or, from an antithetic

viewpoint, the relative weight of the behavioral evaluations over the rational one: the higher the

value of the weighting factor, the more the mixture ordering approaches that of the behavioral

agents. We compute the value of the weighting factor by maximizing the cumulated return of

the first 100 most performing assets of the mixture ranking. Intuitively, the weighting factor
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captures the extent to which the financial market should have moved from the ordering of the

rational category to the ranking of the behavioral agents to maximize the financial performances

of her investments.

The second main feature of our methodology concerns its recursive nature. To build their

rankings and make their investment decisions, financial agents use a substantial quantity of in-

formation on the past returns of assets. In particular, we assume that, to define the performance

measure of an asset in a period, an agent considers the distribution of the asset’s past returns in

the previous 60 months. This is compatible with the idea that the performance measure defined

by an agent in a period represents her best adaptive expectation of the future performance of

the corresponding asset.

By virtue of the specific recursive structure, the methodology can be used to analyze the

evolution of the behavioral component over time and its relationship with the economic cycle.

For example, the assumptions underlying the S-shaped value function imply that the risk attitude

of behavioral agents changes along with the economic cycle. On the one hand, in periods of

(financial and economic) recession, behavioral agents are risk seeking and, therefore, willing

to invest in riskier assets that, with positive probabilities, might compensate past (observed)

losses. On the other hand, in periods of expansion, agents are risk averse and prefer safer assets

to capitalize past (observed) capital gains.

The novel framework as introduced here represents our first contribution to the literature.

Further insight comes from the empirical applications of our model. We confirm the existence of

a substantial behavioral component which changes over time according to the fluctuations of the

financial market. Under the specification based on the S-shaped utility functions, the weighting

factor is significantly greater than zero and reaches its highest values when nearing periods of

financial and economic crises. Consequently, the weighting factor might be given alternative

financial explanations associated with market sentiment or market stress. To further validate

this possible interpretation, we formally study the relation between the weighting factor and

alternative measures of financial market stress (such as the Kansas City Financial Stress Index,

Hakkio and Keeton (2009), or the St. Louis FED Financial Stress Index), market sentiment

(Baker and Wurgler (2007)), as well as a number of further financial and macro-related controls

(including time indicators for NBER-dated recessions, industrial production index, measures of

market volatility and market liquidity). We find our behavioral indicator to be significantly

associated with both financial market stress and sentiment measures, thereby reaffirming the
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validity of our interpretation. Building on these results, we interpret the indicator as an endoge-

nous market sentiment index. More interestingly, when introduced as additional independent

covariate in a multifactor model to explain the evolution of market returns, our behavioral indi-

cator accounts for a substantial proportion of the unexplained time variability of the dependent

variable. These findings are consistently observed under a number of alternative designs for the

weighting factor estimation.

Our methodology does not impose any particular restriction on the function used to describe

the preferences of the behavioral agent. In this respect, to check for robustness and in line

with recent empirical findings (see Tibiletti and Farinelli (2003); Malmendier and Nagel (2011);

Guiso et al. (2013); Cohn et al. (2013)), we also replicate our analysis by considering a reversed-

S-shaped value function that is concave in the loss domain and convex in the gain domain.

Interestingly, compared to the S-shaped specification, the correlation between the S&P 500

return index and the estimated weighting factor series under this different specification reduces

substantially, thereby providing evidence in favor of the existence of pro-cyclical risk aversion in

the financial market.

The remainder of the paper proceeds in the following manner. Section 2 describes the agent

types and how they determine investment choices, while Section 3 focuses on the market and

on the blending of rational and behavioral choices. Section 4 presents the empirical analyses,

where the data is described and weighting factors are estimated. Section 5 further analyses these

factors and provides a financial interpretation. Section 6 contains the robustness checks, and

Section 7 concludes. The paper also has an online web appendix with complimentary results.

2 Rational and Behavioral Views

As anticipated in the introduction, we assume that there are two types of agents in the market

that differ in terms of preferences. To optimally allocate financial wealth over assets, both types

of agents build performance measures at the single asset level on the basis of their preferences.

Moreover, performance measures are related to the level of maximum expected utility provided

by a given single asset, and, generally speaking,2 are functions of the moments of the return

distribution of the risky asset. The higher the performance measure of an asset, the higher

the maximum expected utility it yields to the investor. Given the performance measures of the

2This concept is linked to the maximum principle introduced by Pedersen and Satchell (2002).
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assets, both agents’ categories invest their financial resources in the subset (a fraction of the in-

vestment universe) that contains the most performing assets. The purpose of the mixture model

(synthesized in Figure 1) is to efficiently combine the two views, the rational and behavioral

ones, in order to recover the composite investment perspective of a sophisticated investor, the

market. In the following subsections, we briefly describe the utility functions characterizing the

two types of agent and how they rank and select assets. We discuss the construction of the

composite view in the next section.

2.1 The Choices of the Rational Agent

The first type of agent is equipped with a SEUT utility function satisfying the hypotheses of

the expected utility theory. Thus, in this case, we refer to the optimal choices of a rational

agent. For computational convenience, we use a Constant Absolute Risk Aversion (CARA)

utility function.3 Namely, preferences of the rational agents are described by the following

negative exponential utility:

U(W ) = −e−λW , (1)

where λ represents the coefficient of risk aversion. It is worth noticing that the concavity of

the utility function depends on both λ and the wealth of the investor, W . In a simplified

framework, the wealth of the agent is optimally allocated between a risky and a risk-free asset.

In the Markowitz model (Markowitz (1952)), under Gaussianity of the risky asset returns and

negative exponential utility function specification, it is known that the optimal choice of the

rational agents (i.e. that maximizes her expected utility) is obtained by maximizing the Sharpe

ratio; see, among others, Zakamouline (2014). Moreover, a second well-known result is that

the Sharpe ratio begins to be biased in the measurement of optimal allocations when there is a

departure from the normal distribution assumption (for the risky asset returns). This has been

empirically demonstrated in Gatfaoui (2009), among others. To overcome this issue and remain

within the expected utility maximization framework, Zakamouline and Koekebakker (2009b)

introduce a Generalized Sharpe Ratio (GSR), that is sensitive to higher order moments and can

be evaluated with a parametric or non-parametric methodology. The GSR is obtained by the

numerical optimization of the expected utility, see (Zakamouline and Koekebakker, 2009b), and

3The choice of a CARA (instead of a Constant Relative Risk Aversion - CRRA) utility function is merely due
to computational tractability. Moreover, as discussed in Zakamouline and Koekebakker (2009b), for high values
of the relative risk aversion coefficient, a power utility function provides relative preferences across the moments
of the (risky) return distribution that are similar to those of CARA utility functions.
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is defined in the following manner:

GSR =

√

−2 log(−E[U(W̃ )], (2)

where the argument of the log in (2) is the expected wealth, W̃ , that depends on the future

returns of the risky asset. Note that, by resorting to the GSR, all moments of the risky asset

returns have an impact on the performance measurement; thus, we do not constrain ourselves

to the evaluation of the mean and variance. In addition, the GSR approaches the standard

Sharpe ratio when the underlying distribution of the risky asset returns is close to the Gaus-

sian. Given the well-known deviations from Gaussianity of asset returns, we consider GSR as

the performance measure adopted by the rational investor to make investment decisions. The

rational investor would prefer investment opportunities with higher GSR.4

2.2 The Choices of the Behavioral Agent

The second type of agent is characterized by a behavioral utility function that satisfies the

following properties: (i) It contains a kink at the level of financial wealth that the investor

considers as reference to discriminate between gains and losses; (ii) the concavity of the utility

function (and, therefore, the risk attitude of the investor) changes passing from the loss domain

to the gain domain.

Recently, Zakamouline (2014) proposed a generalized behavioral utility function characterized

by a piecewise linear plus power utility function. Namely,

U(W ) =















1+(W −W0)× (W −W0)− (γ+/α)(W −W0)
α, if W ≥ W0,

−λ(1−(W0 −W )× (W −W0) + (γ−/β)(W0 −W )β), if W < W0,

(3)

where W0 is the reference level of wealth, 1+ (·) and 1− (·) are the indicator functions in

{0, 1} which define the linear part of the utility and assume unit value for positive or negative

arguments, respectively, and zero otherwise, γ+ and γ− are real numbers that affect the shape of

the utility and, finally, the additional parameters λ > 0, α > 0 and β > 0 are real numbers. The

utility function is continuous and increasing in wealth, and with proved existence of the first

and second derivatives with respect to the wealth of the investor, W . In this case, the expected

4The appendix provides further details on how the Sharpe ratio drives agent’s choice. In addition, we depict
a formal derivation of the Generalized Sharpe Ratio.
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generalized behavioral utility function can be approximated by a function of the mean and of

the partial moments of the distribution. Similarly to what shown for the rational category,

Zakamouline (2014) proves that the optimal allocation of a behavioral agent is obtained by

maximizing the following Z-ratio:

Zγ−,γ+,λ,β =
E [x]− rf − (1−(W −W0)λ− 1)LPM1(x, rf )

β
√

γ+UPMβ(x, rf ) + λγ−LPMβ(x, rf )
,

where x is the return of the risky asset; in addition, LPM and UPM are the lower and upper

partial moments, respectively, as defined by Fishburn(1977):

LPMn(x, r) =

∫ r

−∞

(r − x)ndFx(x),

UPMn(x, r) =

∫ ∞

r
(x− r)ndFx(x),

where n is the order of the partial moment of x at a threshold level r, usually set at the risk

free return, and Fx(·) is the cumulative distribution function of x.5 Similar to the GSR, higher

values of the Z-ratio are preferred to lower values.

There is one additional element to be consider when analyzing the choices of behavioral

agents. The utility function proposed by Zakamouline (2014) allows for the construction of

different preferences or beliefs of the agents through the calibration of the corresponding pa-

rameters. Therefore, the shape of the utility function in the domain of gains and losses depends

on the specification choices of the researcher. In this respect, we set parameters to make our

behavioral function as close as possible to the original formulation proposed by Kahneman and

Tversky (1979).6 In particular, we chose γ+ = 0.1, γ− = −0.1, λ = 1.5, and β = α = 2. The

main difference between our formulation and that proposed by Kahneman and Tversky (1979)

lies in the definition of loss aversion. In our version, the agent exhibits loss aversion in the sense

of Köbberling and Wakker (2005). More specifically, the loss aversion is locally defined around

5See the Appendix for additional details on the derivation of the Z-ratio.
6The best choice would be the classical utility function by (Kahneman and Tversky, 1979):

{

(W −W0)
α, W ≥ W0

−λ(W0 −W )β, W < W0

Nonetheless, Zakamouline and Koekebakker (2009a) show that the existence of the solution and thus the Z-ratio
requires β > α, which implies the absence of loss aversion in the utility.
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the reference point7. Let us we define the ratio

λ =
U ′(W0−)

U ′(W0+)
,

where the numerator and the denominator are the left and the right derivatives of the utility

function, respectively. We say that the agent exhibits loss aversion if λ is greater than one.

This implies that the utility function is steeper in the domain of losses: losses loom larger

than corresponding gains, (Kahneman and Tversky, 1979). Beside of this, our formulation is

equivalent to the original specification as it assumes the utility function to be concave in the

gain domain and convex in the loss domain.

2.3 Agent’s Asset Ranks and Investment Choices

The two utility functions previously described are generally considered for the evaluation of

optimal investment decisions, or for the construction of optimal allocations between a risky asset

and risk-free investment (or within a set of risky assets). In our framework, both the rational

and the behavioral agents have to optimally allocate their wealth across a set of risky assets. In

particular, agents first rank assets according to their performance measures,8 and then invest in

the top performers. If the market includes K assets, we assume that the rational (behavioral)

investor allocates his wealth across the M << K assets with highest value of the GSR (Z-

ratio). The investment choices are thus myopic, as investors disregard the portfolio behavior

and the correlation across assets. Consequently, we refer to a single risky asset choice instead

of a portfolio decision/allocation where many different risky activities are jointly considered.

This allows us to compare different evaluations of the two types of investors across assets (the

investment universe). We are interested in the rankings produced, on the basis of their utility

function, by the rational and behavioral agents. Given the rankings, agents are able to identify

the best performers, that will enter into their optimal portfolios. The last observation concerns

the construction of allocations across the selected best assets M . In principle, agents could

combine the M assets by maximizing a criterion function. However, we prefer focusing on a

more naive criteria, and thus consider an equally weighted allocation scheme. This limits the

7Kahneman and Tversky (1979) define loss aversion in a global sense,

−U(W0 −∆W ) > U(W0 +∆W ), ∀∆W > 0.

See Zakamouline and Koekebakker (2009a) for a detailed explanation.
8This corresponds to maximize and then order the expected utility associated with the investment in a risk-free

asset and in a set of alternative risky assets.
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impact of the portfolio weights estimation error and has been shown to be preferred over optimal

weighting schemes by DeMiguel et al. (2009). Specifically, we assume that agents allocate their

wealth using equal weights across a (relatively) small number of assets.

3 The Market Model

Given the mixture of the two types of agents, the main object of our methodology is to determine

the relevance of the choices made by the behavioral category in explaining the fluctuations of

the risky asset returns. An intuitive approach to recover this measure is to blend the rational

and behavioral choices and estimate the blending parameter in such a way that the mixture

choice approaches as close as possible the observed market fluctuations.

One way of blending the choices of the two agent types is to build on a Bayesian framework:

the ranking of one category is taken as prior, while that of the other category keeps the role

of additional conditioning information. As a result, the posterior will represent a composite of

rational and behavioral elements.

From a Bayesian perspective, we define the prior as the decision of the rational investor.

Such a choice is purely subjective, but allows, in a limiting case, to have the rational choices

as the market outcome. Thus, the conditioning component is represented by the behavioral

ranking. As the choices of the two types of agents are driven by performance measures, GSR

and Z-ratio, the mixture is produced at the performance measure level.

Thus, we begin by assuming that both performance measures are normally distributed,

centered on their mean. For a generic performance measure, PM , we have

PM ∼ N(µPM , σ2
PM), (4)

where µPM and σ2
PM are the mean and dispersion of the performance measure. The distri-

butional hypothesis in (4) takes into account the fact that agents aim at evaluating the expected

value of a performance measure. This can be done in several ways and could permit the intro-

duction of some uncertainty in performance evaluation. Here comes the prior, which is a density

for the expected performance measure, centered on the estimates. Therefore, for the prior it

holds that

µGSR = GSR(E(U∗(W̃ ))) + ǫ, ǫ ∼ N(0, σ2), (5)
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while for the conditional we have

µZ = Zγ−,γ+,λ,β,(E(U∗(W̃ ))) + η, η ∼ N(0, ω2). (6)

Note that both distributions have their means set to the optimal choice of the corresponding

agent, that is, the GSR and the Z-ratio derived from market data. Moreover, the distributions

refer to the performance measures of a single asset, that is, we have a collection of distributions,

two for each risky asset in the market. Finally, to simplify the analysis, we also assume that

innovations, ǫ and η, are independent. We emphasize that, by introducing innovations in (5)

and (6), we are accounting for the presence of estimation errors in the two measures.

To determine the relevance of behavioral and rational choices, we modify the density in (5)

by adding a multiplicative factor τ to the dispersion, thereby yielding

µGSR = GSR(E(U∗(W̃ ))) + ǫ, ǫ ∼ N(0, τσ2). (7)

The coefficient τ can be interpreted as the reliability or uncertainty of the rational (prior)

expectations. The higher the τ , the less reliable (more uncertain) are the rational choices, and

thus more weight can be attached to behavioral rankings once the two are blended. Conversely,

the closer τ is to zero, the lower the level of uncertainty is. By construction, and given that τ

affects the variance, this parameter can assume values in the domain [0,∞].

The aggregation of the rational and behavioral performance measures in a Bayesian frame-

work gives rise to a composite performance measure, consistent with (4), where mean and

variance have the following expressions:

µp =
[

(τσ2)−1 + ω−2
]−1 [

(τσ2)−1GSR+ ω−2
Zγ−γ+,λ,β

]

(8)

and

σ2
p =

[

(τσ2)−1 + ω−2
]−1

. (9)

Now, the aggregate expected measure, namely µp, might be considered as the quantity used

to order or rank assets at the market level. Consequently, we can determine the role of behavioral

choices through the composite measure, by examining the optimal allocation made by an agent

who is deciding where to invest his wealth across a set of risky assets ordered according to (8).

In this case, the allocations can be evaluated in terms of past performances, while the impact
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of the behavioral rankings is determined by estimating the optimal τ level within a specified

criterion function.

As already mentioned, we take a simplified allocation choice and consider an equally weighted

investment strategy. Therefore, past performances can be evaluated as the cumulated returns

of an equally weighted portfolio in a given time window.

rp =
1

m

t
∑

l=t−m+1

rp,l : (10)

where rp,l is the time l return of the equally weighted portfolio and m represents the time

range for the portfolio evaluation (from time t − m + 1 to time t). The portfolio is composed

by the best performing equities, according to (8). Let At (τ) be the set containing the M best

assets selected across the K assets included in the market (with M << K) at time t. This set

depends on the parameter τ , as a change in τ modifies the rankings produced by the agents.

Moreover, the set is also a function of time, given that the impact of the behavioral choices

might change over time. Therefore, portfolio returns are represented as

rp,l =
1

M

∑

j∈At(τ)

rj,l, (11)

where rj,l is the return of asset j at time l; we emphasize that the index j vary from 1 to K

although only M values are included in the set At (τ). Given the dependence on τ of the best

performing asset set, the portfolio cumulated return in (10) is also a function of τ . The optimal

choice of τ is determined by maximizing the portfolio returns, that is,

max
τ

f (τ) =
1

m

t
∑

l=t−m+1

rp,l

s.t. rp,l =
1

k

∑

j∈At(τ)

rj,l.

(12)

The optimal value τ∗ provides the maximum cumulated return obtained by an agent investing

on a subset of risky assets traded in the market, and taking decisions by blending the rational

and behavioral rankings. Consequently, the estimated τ∗ represents the relevance of behavioral

choices, or, conversely, the reliability of the rational rankings.

In fact, a high value of τ∗ implies that the rational investor should correct her investment
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evaluations towards a behavioral direction. On the contrary, a low value of τ∗ would imply

that the investor should have continued according to her prior rational rankings. The criterion

function enables us to ascertain which component, rational versus behavioral, had a larger

influence on the market fluctuations. Moreover, by solving (12) over different samples, we

obtain a sequence τ∗t that gives further insight on the rational and behavioral rankings.

The proposed approach is linked to the investment decisions as modeled by Black and Lit-

terman (1992).9 In fact, our Bayesian combination is precisely equivalent to the Black and

Litterman model where rational choices are prior expectations on asset returns (the equilib-

rium returns) and behavioral choices play the same role as that of the analysts’ views. In our

implementation, both the prior and the views are univariate. Moreover, the methodology for

the evaluation of optimal choices when a subset of risky assets is selected from an investment

universe, similar to the one adopted in Billio et al. (2012), in the framework of determining a

composite performance measure by a convex linear combination of standard performance ratios.

4 Empirical Analysis

4.1 The S&P 500 in 1962–2012

Generally speaking, as indicated by Siegel (1991), the stock market evolution is one of the

most sensitive indicators of the business cycle. Moreover, by using a bivariate model with two

regimes, Hamilton and Lin (1998) found that economic recessions are the main determinant of

the fluctuations in the volatility of stock returns. Therefore, a focus on equities might enable

the derivation of relevant evidences on the relationship between economic and financial cycles,

as well as on their association with agent’s behavior.

Our reference market is composed by the equities included in the S&P 500 index from January

1962 to April 2012. The S&P 500 is a stock market index produced by Standard & Poor’s and

based on the 500 leading companies traded in the US market.10 Consequently, we focus the

analysis on the components of the S&P500 market index across time. The series of interest, the

prices of the equities included in the index, have been downloaded from CRSP/COMPUSTAT

at a monthly frequency. Moreover, we recover the US 3-Month Treasury Bill rates as a proxy

used for the risk–free rate.

9See He and Litterman (1999) for a detailed description of the model.
10Equities are included in the index on the basis of their market value. The index composition is regularly

revised.
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Figure (2) illustrates the log–level of the S&P500 for the considered period and the bands in

the plot represent the financial crises according to Kindleberger and Aliber (2011). Figure (3)

reports the bands of economic recessions according to the National Bureau of Economic Research

(NBER). Tables (1) and (2) report the timing of financial and economic crisis, respectively. It

is evident from the plots that there is a match between the local minima in the log-index and

the bands for the financial crisis. There is also a correspondence with the economic recessions.

For example, during the recession in 1969–70 (the post-Vietnam era), a lower peak is clearly

observable in Figure (3). This supports the validity of the financial market as a reliable indicator

of the state of the economy.11

Table (3) presents some descriptive statistics grouped by decades. The average returns reveal

that the period 1991-2000 was one of great expansion. On the contrary, the last period from

2000–2012 has been the lowest in term of average returns. The risk level of the last decade is

comparable to observed in the period 1971–1990 when oil market shocks and the Black Monday

occurred.

4.2 Model Specification and Empirical Results

The model we introduced in Sections 2 and 3 has been applied on rolling windows of 60 monthly

returns to take into account the time-varying structure of the returns series. Different periods can

be clearly used, but those have an impact on the evaluation of performance measures: shorter

periods increase the variability of performance measures and thus amplify the uncertainty of

the rankings. In addition, the use of 60 months is consistent with the sample periods used

to extract, for example, market factors, such as those based on long-term reversal; see Fama

and French (1996). To implement our model and estimate the optimal value τ∗ at a given

time t, we select only those assets with at least 60 observations from the 500 stocks included

in the index. Thus, we exclude those with a limited history where the evaluation of both the

rational and behavioral performance measures, GSR and Z -ratio, might be characterized by an

excessively large uncertainty. The variances of the performance measures are obtained using a

block bootstrap procedure, setting the block size to a dimension of 4. Such a choice enables

preserving any form of temporal dependence across the returns.12 Such a procedure is repeated

for each point in time, excluding the first five years, 1962–1969, which are needed to initialize

11Note that our study does not focus on the real time detection of changes in economic and financial cycles but
rather on the association between them and the impact of behavioral decisions in the financial market.

12The bootstrap procedure has been applied to the returns. The measures have been computed in each iteration
and then the variances have been obtained on the cross-section of simulated measures.
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the computation. Ultimately, we obtain a time series of optimal values τ∗t . Note that for each

utility function we recover a different sequence τ∗t .

We filtered the optimized τ∗ by using a local level model in a state space representation.

This enables extracting the level of the signal component while preserving its time variation.13

The filtering model is given below:















τ∗t = µt + ǫt, ǫt ∼ N(0, σ2
ǫ )

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ ),

(13)

where µt is the unobserved level, ǫt is the observation disturbance and ξi,t is the level disturbance

at time t. We assume that both disturbances are identically and independently distributed

according to a Gaussian density function. The estimated hyper-parameters of the model, using

the filtered τ∗t from the S-shaped utility function, are ǫ̂1,t ∼ N(0, .4547) and ξ̂1,t ∼ N(0, .001678).

Figure (4) illustrates µt (henceforth, the filtered τ∗t ) which includes the economic recession bands

according NBER.

The first check we consider for the filtered τ∗t refers to the evaluation of the significance of

that quantity. For this purpose, we perform a TOBIT regression on the filtered τ∗t , by specifying

the censored dependent variable in the model. Thus, we set the lower bound equal to zero, as

τ∗t cannot be negative and will be zero when there is no uncertainty on the rational behavior.

Accordingly, we test whether the constant is significantly different from zero in the model

µt = c+ ǫ. (14)

Table (4) reports the results for the regressions in decades and for the full sample. The

filtered τ∗t is statistically different from zero in all the sub-samples and in the full sample.

Other descriptive statistics are also included in the table and show that the filtered τ∗t series is

concentrated around the mean, generally with positive asymmetry and larger range during the

70s and 80s.

Examining the dynamic of the filtered τ∗t , see Figures (4) and (5), it clearly emerges the

existence of three local maxima that coincide with the three longest economic recessions. The

first is the oil crisis which corresponds to the highest value of the filtered τ∗t . The second is the

13Thus, we filter out the noise and focus on the signal. See Durbin and Koopman (2012) for further details on
the local-level model.
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energy crisis which begun during the Iranian revolution. According to Labonte and Makinen

(2002), one of the main reasons for this crisis was the FED’s monetary policy for inflation control.

This energy crisis is often considered a ’Double Dip’ recession (January 1980 – July 1980); we

found an inflection point that is associated with this crisis in the series. In this regard, we found

a similar result when considering the crisis from December 1969 to November 1970. The last two

shortest recessions are very similar to each other: both occurred at the beginning of the decade

(early 80s and 90s) and both lasted for a period of eight months. In these cases, our estimated

behavioral factor does not provide any particular pattern. Finally, the third largest recession in

the considered period is the sub-prime crisis (2007–2009). It is worth noticing that the level of

the filtered τ∗t after the recession begins to decay very slowly. Then it remains substantially high

at the beginning of the European sovereign debt crisis. We associate such a finding with the

increased impact of behavioral rankings on market fluctuations during turmoils. As expected

from the previous comments, we find the local minima in correspondence of booming periods

of the equity market index. For example, the first minimum is located just before the early-80s

crisis (in the 1978) and the other is located just before the subprime crisis. In the period 1991–

2000, the economy had experienced a period of solid economic growth; we found a relative low

dynamic of the filtered τ∗t . Figure (2) depicts the estimated factor that includes the bands for

the financial crisis in accordance with Kindleberger and Aliber (2011). Naturally, financial and

economics crisis are highly interrelated and interdependent. Except for the 1987 stock market

crash, they follow each other in most of the cases. An examination of the given crisis clearly

reveals a local minimum in the estimated factor before the beginning of the crisis and then a

local maxima during the crisis. As reported in Table (4), the periods 1971-1980 and 1981-1990

contain on average the highest value and the highest standard deviation for the filtered τ∗t . This

is probably due to the fact that there were two recessions in each decade.

Now, we analyze the relation between the filtered τ∗t and the systematic component of the

financial market as proxied by the equity index. Each optimal value of τ∗t is associated with a

selection of equities — those included in the portfolio returns in (11) evaluated at the optimal

value τ∗t . If the mixed selection and the extrapolation of τ∗t comes from two types of investors, it

should reflect the real fluctuations in the financial market. Therefore, if this relation is present,

it provides supporting evidence in favor of the existence of the two categories of agents in the

market. Consequently, the market returns can be explained by the portfolio returns generated

by the selection of the best performing assets used to estimate τ∗t .
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In order to verify the validity of the previous argument, we estimate the following model

rm,t = c+ βrτ,t + e, (15)

where rm is the S&P 500’s return and rτ is the return of the aggregated selection according to the

optimal τ∗t . Contrary to the CAPM model, the market return represents the dependent variable

in this model. Hence, according to our assumption, the model should return a high value for β

and a constant close to zero. In the estimation, we use the equally-weighted returns for the S&P

500 (the dependent variable) since the returns from the selection are defined according to an

equally-weighted allocation method. Table (5) reports the estimated coefficients. The constant

captures the risk premium which is slightly positive but close to zero. Moreover, the positive

sign of the constant term is consistent with the hypothesis of efficiency of the market portfolio;

see Sharpe (1966) and Fama (1998). β is significant at the 1% confidence level and has a value

close to 0.90.

We replicate the previous analysis by using the S&P 100 which includes the 100 most capi-

talized companies in the US market. In this case, we use the value-weighted return series for the

S&P100 because of the short length of the equally-weighted series. The series for the index has

been downloaded from Datastream and is available from January 1973; the results are reported

in Table (5). β is still significant at the 1% confidence interval, but has a lower value of 0.78.

The constant is not statistically significant. A lower beta in this case is rather reasonable due to

the different underlying market focus. In fact, it is possible that some of the selected assets are

included in the S&P500 but not in the S&P100. However, the risk premium is not statistically

different from zero and β captures a high level of systematic risk.

As a double check, the analysis is also conducted by considering the selection of the rational

agent as implied by the GSR rankings. If we expect a co-existence between the two agents, the

GSR-based rankings should capture a lower systematic component of the market — a lower β

in the estimated model (15). Table (5) reports the results for the regression with the S&P 500

equally-weighted returns and the S&P100 value weighted returns. The β coefficients for both

returns are 0.83 and 0.64 respectively. These results confirm that the rankings provided by the

aggregated measure reflects a higher systematic part of the market movements with respect to

the rankings resulting from rational agent’s utility function. Given these results, it reasonable

to assume the co-existence of the two types of agents in the market.
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5 A Financial Interpretation of the Filtered τ

As we have observed in the previous section, the sequence of filtered τ∗t might be associated with

periods of financial stress. This is in line with the approach followed for the derivation of τ , and

that intuitively leads to higher values of τ during periods of market turbulence, when agents

are more heterogeneous (and thus more irrational/behavioral). Moreover, we could link these

higher values of τ to a larger impact of the noise on agent’s expectations. Since it is much more

difficult to separate the true ’signal’ from the market , there is a higher probability that agents

make choices on the basis of a behavioral view. Thus, the τ could be interpreted as a quantity

associated with an agent’s overall behavior in periods of market stress. To support such a claim,

we can relate the evolution of the τ to other indicators monitoring the level of financial stress. As

reported in Hakkio and Keeton (2009), financial stress can be viewed as an irregular functioning

of financial markets. A Financial Stress Index (FSI) captures the key features of this type

of stress (i.e. increased uncertainty about fundamental value of assets, increased uncertainty

about behavior of other investors, increased information asymmetry, flight-to-quality effect and

flight-to-liquidity effect).14

One popular choice is the Financial Stress Index proposed by the Federal Reserve Bank of

St.Louis (STLFSI). The STLFSI is derived from a collection of 17 weekly data series: seven

interest rate series, six yield spreads, and five financial series as bond index, market volatility

indices, Financial ETF and 10y treasury yields minus 10y Treasury inflation protected security

yield. The interpretation of the STLFSI is that of a measure for market uncertainty or for

negative expectations of future market movements. Thus, we regress the filtered τ sequence, τ∗t ,

on the STLFSI; the regression considers the changes in the two variables due to mild evidences

of integration (such a choice prevents the risk of spurious regression); the results are reported in

Table (6).15 We observe that the coefficient is statistically significant and positive, as expected.

Both variables increase during turbulence. We obtain the same results by considering the Kansas

City Financial Stress Index (KCFSI) by Federal Reserve Bank of Kansas City, see Hakkio and

Keeton (2009). The main difference among the FSIs is the use of monthly data in the KCFSI.

Table (6) reports the associated estimates. A potentially disappointing outcome is associated

14An FSI is generally obtained through Principal Component Analysis (PCA) on a set of indicators associated
with financial stress. We do not discuss the derivation of FSI in detail. We refer to the cited papers for such a
discussion.

15The sample size for the regressions reported in Table (6) is shorter than the sample size of the filtered τ∗
t .

This is a consequence of the shorter times series, as compared to those of the filtered τ∗
t , available for the STLFSI.

Thus, we adopted the STLFSI sample size in all regressions for reasons of comparability of results. Regressions
for all the available data, with sample sizes differing across regressors, are reported in the web appendix.
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with the R-squared, which is rather low for both FSIs. Nevertheless, this could be motivated

by the different assets behind the FSIs and τ∗t . In fact, the former depend on mostly on bonds,

while the latter derives only from equity data.

The outcome of this first regression suggests a relation between the filtered τ∗t and market

stress. One might question whether what the τ∗t is really capturing is nothing more than market

volatility or the market expectation about volatility levels. As a check, we regress our endoge-

nously determined index on the VIX index. Table (6) includes the regression results, which

show that the filtered τ∗t is capturing a component unrelated to market volatility. In fact, the

regression coefficient, despite being positive (in line with the expectation), is only marginally

statistically significant and the regression provides a very low R-squared. Thus, this support

our approach and shows that τ∗t is not associated with the dispersion of market returns.16

Despite these first intriguing results, we believe that the outcome is not very satisfactory,

particularly with respect to the Financial Stress Index, as they are not purely equity-driven.

However, an equity-related FSI does not exist. Nevertheless, as the filtered τ∗t captures the

agent’s behavior, it can be linked to market sentiment. In this case, we can refer to the indices

provided by Baker and Wurgler (2007). In the paper, investor sentiment is defined as a belief

about future asset cash flows and investment risks that is not justified in the current period.

Moreover, as indicated by Shleifer and Vishny (1997), betting against this sentiment is expensive

and risky. Their sentiment index combines several proxies such as investor mood, retail investor

trades, mutual fund flows, trading volume, dividend premium, closed-end fund discount, option

implied volatility, IPO first-day return, IPO Volume, Equity Issues over total new issues and

Insider trading. For the purpose of comparison, we consider the two versions of the index

proposed by Baker and Wurgler (2007). The main version (equation 3 in the author’s paper,

denoted as BW⊥) which eliminates business cycle variation (industrial production index, growth

in consumer durable, non-durable, services and a dummy variable for NBER recessions) from

each variable of the index. and the raw version (equation 2 in the author’s paper, denoted as

BW).17

16We conducted a similar analysis by using the monthly realized volatility of the S&P500 index, computed on
the basis of daily data in the following manner:

RVt =

√

√

√

√

m
∑

i=1

ri, (16)

where ri is the daily market return and m is the number of trading days in each month. Replacing the VIX with
the realized volatility does not affect the results: the filtered τ∗

t is not related to market volatility.
17Since we are considering changes in variables, the changes in sentiment measures are based on first principal
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Table (6) includes the results for the linear regressions between our index and the sentiment

indices by Baker and Wurgler (2007). Notably, the regression coefficients are not statistically

significant (on both sentiment indices) and suggest that the Baker and Wurgler (2007) indices

capture different views on the market as compared to those from the τ . An element supporting

this interpretation is the approach adopted for the construction of the two indices. While Baker

and Wurgler (2007) combine different indicators that monitor the evolution of the market, our

approach determines the τ∗t in an endogenous manner. Thus, it is sensible that the views are

extracted from the market data.

To further analyze the behavior of the filtered τ∗t , we evaluate its association with other

three variables, namely the industrial production index (INDPRO),18 the liquidity of Pastor

and Stambaugh (2001),19 , and the dummy for NBER recessions. The results are reported in

Table (6), where we observe the relevant significance of the three variables with coefficients in

line with expectations: negative for liquidity and industrial production, as a decrease in those

variables leads to an increase in the uncertainty (which we might associate with the filtered

τ∗t ); positive on the NBER recession dummy as uncertainty is expected to be higher during

recessions. Thus, we provide further evidences on the relation of the τ∗t with both market

uncertainty or stress, as monitored by the FSI, as well as with macroeconomic (or business-cycle

related) variables that potentially impact the equity market evolution. Further, it is also evident

from these analyses that our index, the filtered τ sequence, τ∗t , differs from previous FSI and

market sentiment indices. Finally, as a last check, we regress the filtered τ∗t on the entire set of

indicators previously mentioned, thereby obtaining a high significance for the KSFSI, liquidity,

industrial production and NBER recessions. The overall R-square is close to 28%, (see Table

(6)).

Given the previous comments and evidences, we believe the filtered τ∗t , τ∗t captures an

endogenous market sentiment that differs from those proposed by Baker and Wurgler, also

differs from the FSI.

As a final check for this last claim, we mimic the approach of Baker and Wurgler (2007).

It corresponds to a regression of market returns on the sequence of filtered τ∗t . However, to

further verify the relevance of our index, robustify the outcome of the analyses, and given the

components of the changes in the underlying series.
18The Industrial Production Index (INDPRO) measures real output for manufacturing such as mining, electric,

gas utilities (excluding those in US territories) located in the US. Data have been downloaded from FRED — St.
Louise FED.

19This liquidity measure is obtained as an average at stock-level measures, estimated with daily data. The
principle behind is that order flow causes greater return reversals when liquidity is lower in the market.
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fact that τ∗t provides additional information opposed to the sentiment indices, the FSI, the VIX

and other macro-related quantities, we also added those quantities in the regressions. Selected

results are reported in Table (7); regressions are always run considering first differences of all

variables. We observe that the filtered τ∗t is statistically significant and has a negative impact.

This is expected as the increase in the τ∗t leads to a decrease in market returns. More relevantly,

such a result is confirmed in all regressions reported, which consider several combinations for

the contemporaneous presence of FSI, sentiment indices, and other variables. Thus, we interpret

these further evidences as a confirmation for the endogenous market sentiment interpretation of

τ∗t .

6 Robustness Checks

We perform two main checks to ensure the stability of our empirical analysis.20 The results are

discussed here and the associated tables are included in the supplementary material available

online. First, we change the number of assets included in the subset of the top performer,

increasing K from 100 to 20021. The results with τ200 confirm our previous findings on the

relation between our index, FSIs, market sentiment indices and selected macroeconomic-related

variables. Some slight differences emerge when specifying a general regression with all possible

explanatory variables. Nevertheless, the main message is unchanged as the filtered τ∗t provides

sentiment or uncertainty elements that are not included in other proxies of market sentiment or

financial stress.

There is a vivid empirical literature that studies how investors’ risk attitude is mediated by

behavioral artifacts and changes over time along with the economic cycle. Guiso et al. (2013)

elicit risk preferences using hypothetical lotteries in a repeated survey of Italian bank’s clients

and find that risk aversion increases substantially after the 2008 financial crises. Similarly, in

a controlled experiment involving professionals, Cohn et al. (2013) found that, compared to

expansion phases, financial crises trigger negative emotions and diminish risk-taking choices in

incentivized lotteries. Together, these findings are difficult to reconcile with the predictions

provided by the Prospect Theory, as they suggest that risk aversion is countercyclical.

By following this literature, as a second robustness check, we replicate our analysis by mod-

20In addition to the elements described here, we also test the consistency of the assets ranking with the S-shaped
utility function by varying the magnitude of the parameters from γ+ = 0.1, γ− = −0.1, λ = 1.5, and β = α = 2.
The order of ranks are invariant. Results are available upon request.

21We also test for k = 50, but given the higher turnover in the selected assets we obtain a noise signal that is
totally uninformative when we apply the local level model.
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ifying the specification of the behavioral utility function. In particular, we assume that prefer-

ences of the behavioral agents are now described by an inverse-S-shaped utility function with

no loss-aversion that is concave in the loss domain and convex in the gain domain. The perfor-

mance measures implied by the new behavioral utility function are based on the ratio proposed

by Tibiletti and Farinelli (2003). In the model, we use the utility function proposed by Za-

kamouline and Koekebakker (2009b).22 The estimations for the local level model in equation

(13) for the filtered τ∗t are ǫ̂2,t ∼ NID(0, .1080) and ξ̂2,t ∼ NID(0, .04454).

We replicate the analyses over decades and for the entire sample, as we have done in Section

4. Even in this case, the filtered τ∗t for this utility function is statistically different from zero

in all the sub-samples and in the entire sample. Thereafter, we repeat the analysis for this

’alternative’ τ both in terms of its association with market stress and sentiment indices as well

as for macro-finance related variables. The results show evidence of a limited relation, partic-

ularly with market stress and sentiment indices, and with economic recession. These results

corroborate our finding and the choice of the behavioral utility function made in Section 4. Fi-

nally, we consider the regressions between the market index and the alternative filtered τ∗t , that

is, those associated with 200 assets and with the inverse-S-shaped utility. The results are co-

herent with the previous ones, with a limited relevance of the inverse-S-shaped utility filtered τ∗t .

7 Conclusion

Identifying and measuring the behavioral component of financial investments is an open question

for economists. We contribute to this flourishing literature by proposing a Bayesian mixture

model to estimate the behavioral component of the financial market. Our methodology is based

on two main assumptions. First, agents take investment decisions by ranking the alternative

assets according to their performance measures. Second, the financial market is populated by

two types of agents, one with standard SEUT preferences and one endowed with an S-shaped

utility function that is compatible with the Prospect Theory.

Rather than using experimental and survey data and with the intent of reducing the impact

of sampling and measurement errors, we conducted the analysis on real financial data. In

particular, we used monthly data on the 500 components of the S&P 500 index from January

22To obtain this utility function, the parameters are γ+ = −α, γ− = β, 1+ = 0, 1− = 0, λ = 1.5, α = 1.5 and
β = 2.
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1962 to April 2012. The length of the sample allows us to reasonably depict the evolution of

the behavioral component over the various of boom and bust phases of the financial market.

We detected a significant and time-varying behavioral component that reaches its peaks during

economic and financial crises, such as the oil crisis in the 70s and the recent 2010 financial burst.

Further, we interpreted the behavioral component obtained through the Bayesian mixture

model as an endogenous sentiment measure. In fact, it differs from the market sentiment indices

introduced by Baker and Wurgler (2007) and provides additional information with respect to

market stress indices. Our claim is supported by a number of regressions considering, apart from

sentiment indices, financial stress indices, and several macrofinance related control variables.

Moreover, our explanation is not influenced by risk considerations, as we also show that our

endogenous sentiment measure is uncorrelated with market volatility and thus does not capture

the dispersion of financial fluctuations. Finally, we also demonstrate that the introduction of

the endogenous sentiment in a linear factor model for the market returns yields statistically

significant and negative (as expected) coefficient, thereby providing some insight for future

extensions of the present work.

By virtue of the flexibility of our methodology, we assess how results change when the

underlying behavioral utility function is replaced by an inverse-S-shaped that assumes agents to

be risk averse in the loss domain and risk seeker in the gain domain. In this case, the filtered τ∗t

has a limited impact, thus supporting our choices for the behavioral agent’s utility. We note that,

partially in contrast with the above–mentioned references, estimates from the specification based

on an S-shaped value function with pro-cyclical risk aversion better account for the evolution

of the S&P 500 than estimates from a reverse-S-shaped specification with countercyclical risk

aversion. Such a preliminary finding will be further analyzed in future researches.

The analysis presented here can be extended at least in two directions. The first is focusing

on the comparison of endogenous market sentiment indices across financial markets (Europe

and Asia compared to North America), or within a given market by considering different market

segments (large versus small, or other partitions of a given market). A second research direction

is analyzing the potential implications of τ∗t for asset pricing, beginning from the preliminary

insight we provided at the market index level.
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Crisis Start date End Date

The 1973 Oil Crisis 29-Oct-73 03-Oct-74
The 1987 Stock Market Crash 19-Oct-87 30-Dec-88

The 2000 Dotcom Bubble Burst 10-Mar-00 16-Apr-01
The 2001-9-11 Terrorist Attack 11-Sep-01 09-Oct-02

The Subprime Crisis 03-Dec-07 09-Mar-09

Table 1: The table provides the crisis list for the U.S. market according Kindleberger and Aliber
(2011).

Quarterly dates are in parentheses DURATION IN MONTHS

December 1969(IV) November 1970 (IV) 11
November 1973(IV) March 1975 (I) 16

January 1980(I) July 1980 (III) 6
July 1981(III) November 1982 (IV) 16
July 1990(III) March 1991(I) 8
March 2001(I) November 2001 (IV) 8

December 2007 (IV) June 2009 (II) 18

Table 2: The table provides the crisis list for the U.S. economic recessions according NBER
available at http://www.nber.org/cycles.html.

Period 1962-1970 1971-1980 1981-1990 1991-2000 2001-2012 All-Sample

Mean 0.0035 0.0043 0.0086 0.0124 0.0015 0.0060
Std 0.0384 0.0457 0.0474 0.0385 0.0466 0.0437

Skewness -0.2874 0.1588 -0.6839 -0.5130 -0.5711 -0.4108
Kurtosis 2.9520 4.2453 6.5393 4.4303 3.7890 4.7155

Min -0.0905 -0.1193 -0.2176 -0.1458 -0.1694 -0.2176
Max 0.1016 0.1630 0.1318 0.1116 0.1077 0.1630

Table 3: Descriptive statistics for the S&P500 index returns for the period January 1962 - April
2012.

year 1962-1970 1971-1980 1981-1990 1991-2000 2001-2012 All-Sample

c 1.0038 1.3851 1.1955 1.0109 1.0388 1.1408
s.e 0.0665 0.1543 0.1236 0.0266 0.0762 0.0303

pValue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewness -0.0696 0.0503 0.5803 0.0002 0.0308 1.0816
Kurtosis 2.1024 1.8382 1.7605 1.9997 1.8031 3.2658

Min 0.8869 1.1180 1.0632 0.9636 0.9127 0.8869
Max 1.1178 1.6505 1.4258 1.0632 1.1619 1.6505

Table 4: Results from the TOBIT regression and the descriptive statistics for the filtered τ for
the S-shaped utility function in different periods.
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Dependent S&P500 S&P100

Intercept 0.0037 0.0025 -0.0001 -0.0004
(0.0009) (0.0007) (0.0009) (0.0011)

rτ 0.9049 0.7830
(0.0175) (0.0172)

rGSR 0.883 0.6476
(0.0121) (0.0182)

R̄2 0.8322 0.8976 0.8142 0.8104

Table 5: Regressions between one equity market index returns, either S&P500 equally weighted
or the S&100 value weighted, and the returns from the selection of assets associated with the
optimal τ∗ or with the highest levels of GSR (note the selected assets change in each period).
Coefficients robust standard errors are reported in parentheses.

28



∆τ100

(Intercept) 0.0006* 0.0006* 0.0006* 0.0006* 0.0010*** 0 .0000 -0.0002 0.0006* -0.0001
(0.0004) (0.0004) (0.0003) (0.0003) (0.0004) (0.0004) (0.0003) (0.0004) (0.0004)

∆BW⊥ -0.0004
(0.0003)

∆BW 0.0000
(0.0003)

∆STLFSI 0.0040***
(0.0013)

∆KCFSI 0.0037*** 0.0033***
(0.0013) (0.0009)

INDPRO -0.0027*** -0.0013**
(0.0006) (0.0006)

LIQ1 -0.0191*** -0.0090**
(0.0060) (0.0044)

NBER 0.0064*** 0.0047***
(0.0016) (0.0011)

∆VIX 0.0141*
(0.0121)

R-squared 0.0088 0.0001 0.0702 0.0668 0.1161 0.0821 0.1774 0.015 0.2842
Adjusted-R-squared 0.0039 0.0001 0.0656 0.0622 0.1117 0.0776 0.1733 0.0101 0.2698

AIC -1566.0575 -1564.284 -1579.039 -1578.3084 -1589.3132 -1581.6601 -1603.8963 -1567.3307 -1626.1488
BIC -1559.4311 -1557.6576 -1572.4126 -1571.6819 -1582.6868 -1575.0337 -1597.2699 -1560.7043 -1609.5828

Sample 199402 199402 199402 199402 199402 199402 199402 199402 199402
201012 201012 201012 201012 201012 201012 201012 201012 201012

Table 6: Results from regressing ∆τ100 with k = 100 on different economic, financial and sentiment indicators. The considered common sample is
from February 1994 to December 2010 (203 obs).
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rmkt

(Intercept) 0.0060* 0.0110*** 0.0059***
(0.0031) (0.0024) (0.0022)

∆τ100 -1.9375*** -1.1889***
(0.7658) (0.5093)

∆BW⊥

∆BW 0.0074*** 0.0068***
(0.0020) (0.0027)

∆STLFSI

∆KCFSI

INDPRO

LIQ 0.0828***
(0.0287)

NBER -0.0250***
(0.0065)

∆VIX -0.6928*** -0.6922***
(0.0492) (0.0612)

R-squared 0.0461 0.5694 0.5273
Adjusted-R-squared 0.0413 0.5607 0.5201

AIC -680.536 -835.938 -819.0185
BIC -673.909 -819.371 -805.7657

Table 7: Results from regressing the S&P500 market returns (rmkt) on ∆τ100 and other economic,
financial and sentiment indicators. The considered common sample is from February 1994 to
December 2010 (203 obs).
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Market

Rational investor

GSR ratio

Behavioral investor

Z-ratio

Figure 1: The model framework: blending the rational and behavioral rankings to explain the
market evolution.

Figure 2: Log–level of the S&P500 index from January 1962 to April 2012 with bands for
financial crisis. Source: Kindleberger and Aliber (2011)).

Figure 3: Log–level of the S&P500 index from January 1962 to April 2012 with bands for
Economic Recessions. Source: NBER.
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Figure 4: The filtered τ∗. The bands represent the Economic Recessions according NBER.

Figure 5: The filtered τ∗. The bands represent the Financial Crisis in the US based on Kindle-
berger and Aliber (2011).
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Web Appendix

Appendix A: Derivation and Estimation of the Generalized Sharpe Ratio

In this section, we review the derivation of the Sharpe Ratio and the non-parametric estimation
of the Generalized Sharpe Ratio (GSR) following Zakamouline (2014).

The expected utility associated with an investment in asset X is given as the convex com-
bination of the utilities associated with a collection of different and alternative outcomes xi,
each corresponding to the realization of a given state of the world (state i). Each realization is
weighted by its respective probability, thereby leading to following characterization of expected
utility.

E [U (X)] =

∫

u(x)f(x)dx, (17)

where f(x) is the probability density function associating a given probability with each state of
the world. In this case, the utility is expressed as a function of the risky asset X to highlight
their relations. However, the wealth of the investor, not explicitly appearing, also plays a role.
In fact, the wealth W is always allocated between a risky and a risk-free asset.

According to the maximum principle, the performance measure is strictly related to the level
of maximum expected utility originated from a given financial activity.23 In fact, the higher the
value of the performance measure, the higher is the maximum expected utility provided to the
investor.

A first possible utility function is the power utility. The latter belongs to the class of Constant
Relative Risk Aversion (CRRA) utility functions and, notably, as proved by Zakamouline and
Koekebakker (2009b), the CRRA utility functions lead to the identification of a performance
measure which is coherent with market equilibrium. Thus, the utility function of the rational

agent can be defined in the following manner:

U(W ) =

{

1
ρW

1−ρ, if ρ > 0, , ρ 6= 1

lnW if ρ = 1
(18)

where W is the agent’s wealth and ρ measures the degree of relative risk aversion.
The power utility function has been extensively used in empirical studies, some of those aiming
at identifying the value of ρ. The results of Mehra and Prescott (1985) indicate a value of around
30 to ensure consistency with the observed market equity premium. As reported in Zakamouline
and Koekebakker (2009b), for high values of ρ, the relative preferences across the moments of
the distributions are similar to those of a second possible choice for the utility function, the
Constant Absolute Risk Aversion (CARA) utility functions.

For computational convenience, we use the CARA function.24 Namely, preferences of the
rational agents are described by the following negative exponential utility. The utility of the
decision-maker is defined over his/her total wealth, while the performance measure is defined
over return. Therefore, to be consistent with the expected utility theory, the utility function
that threat returns identically must be independent from wealth.

This is a well-known result in the mean–variance approach by Markowitz (1952), a particular
case of the expected utility theory when the returns are normally distributed. In the Markowitz

23The axiomatization approach is an alternative method for defining the performance measure. See De Giorgi
(2005) and Cherny and Madan (2009).

24The choice is merely computational but, as reported in Zakamouline and Koekebakker (2009b), for high values
of the relative risk aversion coefficient, a power utility function (a Constant Relative Risk Aversion — CRRA
utility function), provides relative preferences across the moments of the risky returns distributions, which is
similar to those of CARA utility functions.
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model, the Sharpe Ratio is the optimal solution for the maximization of the expected utility
(the latter being the CARA negative exponential utility function).

Let us consider a decision-maker with wealth W at the begin of a period t0. Moreover, a
denotes the amount of wealth allocated in a risky asset, while W − a is the wealth allocated in
the riskfree asset rf . At the end of period, t1 the wealth of the investor will be,

W̃ = a× (1 + x) + (W − a)× (1 + rf ) = a× (x− rf ) + w × (1 + rf ), (19)

where x is the return provided by the risky asset. In this framework, the aim of the investor
is to maximize the expected utility with respect to the amount invested in the risky asset, a.
Hence, the optimal problem corresponds to a utility maximization with respect to a,

max
a

E[U(w̃)]. (20)

Given the CARA function and the Gaussianity assumption, the maximized expected utility will
be

E[U∗(W̃ )] = E[−e−λ[a(x−rf )+W (1+rf )]] = E[−e−λ[a(x−rf )] × e−λW (1+rf )], (21)

where the last term within parentheses is a deterministic quantity.
By setting x0 = W (1 + rf ) as in Zakamouline (2014), we can approximate the expected

utility using Taylor’s expansion,

E[U(W̃ )] = −1 + aλE(x− rf )−
λ2

2
a2E(x− rf )

2 +O(W̃ ). (22)

From the first-order condition (FOC),

∂E[U(w̃)]

∂a
= λE(x− rf )− λ2E(x− rf )

2a = 0 (23)

we obtain the Sharpe Ratio as the quantity that maximizes the expected utility function,

a∗ =
1

λ

µ− rf
σ2

=
1

λ

SR

σ
. (24)

However, a second well-known result, is that the Sharpe ratio begins to be biased both in the
measurement of optimal allocations and in the ranking across a collection of assets when there is
a departure from the normal distribution assumption (for the risky asset returns). This has been
empirically demonstrated in Gatfaoui (2009), among others. To overcome this issue and still
remaining within the expected utility maximization framework, Zakamouline and Koekebakker
(2009b), among others, suggested the introduction of the Generalized Sharpe Ratio (GSR). Such
a quantity would be sensitive to higher order moments, and can be evaluated with a parametric
or non-parametric methodology. In the non-parametric estimation, by following the Hodges
(1998) conjecture, Zakamouline and Koekebakker (2009b) derived what they called GSR.

The problem is solved through a numerical optimization by computing the maximum ex-
pected utility E[U∗(w̃)],

E[U(w̃)] = E
[

− e−λ(x−rf )
]

= max
a

∫ ∞

−∞

−e−λa(x−rf )f̂h(x)dx, (25)

where f̂h(x) is the estimated kernel density function.
The numerical optimization of the expected utility considers all the empirical moments of the
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probability distributions,

E[U∗(w̃)] = −e−
1
2
GSR2

,

1

2
GSR2 = − log(−E[U∗(w̃)]),

GSR =
√

−2 log(−E[U∗(w̃)]).

(26)

Note that, by resorting to the GSR, all moments of the risky asset returns play a role; thus,
we are not constraining ourselves to the evaluation of the mean and variance. Notably, the GSR
approaches to standard Sharpe ratio when the underlying distribution of the risky asset returns
is close to the Gaussian. Given the well-known deviations from Gaussianity of asset returns, we
consider GSR as the performance measure adopted by the rational investor to rank risky assets.
The rational investor would prefer assets with higher GSR to assets with lower values of the
performance measure.
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Appendix B: The Derivation of the Z-ratio

In this section, we report the derivation of the Z-ratio obtained with the maximum principle in
the same manner as the Sharpe Ratio.

For major details, see Zakamouline and Koekebakker (2009a).
Let us consider an investor with a piecewise linear plus power utility function,

U(W ) =

{

1+(W −W0)× (W −W0)− (γ+/α)(W −W0)
α, if W ≥ W0,

−λ(1−(W0 −W )× (W −W0) + (γ−/β)(W0 −W )β), if W < W0,
(27)

where , 1+ (·) and 1− (·) are the indicator functions in {0, 1} which define the linear part of
the utility, and assume unit value for positive or negative arguments, respectively, and zero
otherwise.
Moreover, γ+ and γ− are real numbers that affect the shape of the utility and, finally, the
additional parameters λ > 0, α > 0 and β > 0 are real numbers. The utility function is
continuous and increasing in wealth, and with proved existence of the first and second derivatives
with respect to the wealth of the investor W .
This type of utility function models different types of investor behavior (risk-aversion, risk
neutral and risk seeking) above or below the reference point.
The purpose of the investor is to optimize the capital allocation problem,

E(U∗(W (x))] = max
a

E[U(W (x))], (28)

with
W (x) = a(x− r) +W0(1 + r), (29)

where W0 is the investor’s initial wealth and a is the part allocated in the risky asset and the
remaining W0 − a in the risk-free asset.
Therefore, the investor’s utility of W (x) is

U(W (x)) =

{

1+a(x− r)− (γ+/α)a
α(x− r)α, if x ≥ r,

−λ(1−a(r − x) + (γ−/β)a
β)(r − x)β , if r < τ,

(30)

where r is usually set to the risk-free rate.
The utility function can be rewritten in terms of lower and partial moments introduced by
Fishburn (1977):

LPMn(x, r) =

∫ r

−∞

(r − x)ndFx(x),

UPMn(x, r) =

∫ ∞

r
(x− r)ndFx(x),

where n is the order of the partial moment of x and Fx(·) is the cumulative distribution function
of x. The investor’s expected utility can be rewritten as,

E[U(W (x))] =1+aUPM1(x, r)−
γ+
α

aαUPMα(x, r)

− λ

(

1aLPM1(x, r) +
γ−
β

αβLPMβ(x, r)

)

.
(31)

36



Therefore, the capital allocation to solve is,

max
a

a(1+UPM(x, r)− 1λLPM1(x, r))

− aα
(

γ+
α

aαUPMα(x, r) + aβ−αλ
γ−
β

LPMβ(x, r)

)

,
(32)

subject to a ≥ 0.
The FOC for the optimal a,

(1+UPM1(x, r)− 1λLPM1(x, r))− aα−1(γ+UPMα(x, r)

+ aβ−αλγ−LPMβ(x, r)) = 0.

As observed in Zakamouline and Koekebakker (2009a) there is no closed-form solution for a,
given all the possible values of α and β however, under some additional assumptions, 1+ = 1
(linearity) and α = β > 1, there exists a closed form solution.
In this case, the FOC for the optimal a becomes

(UPM1(x, r)− 1λLPM1(x, r))− aβ−1(γ+UPMβ(x, r) + λγ−LPMβ(x, r)) = 0.

The existence of the local maximum with an interior solution holds when β > 1.
Therefore, the solution for the optimal a,

a =

(

UPM1(x, r)− 1−λLPM1(x, r)

γ+UPMβ)x, r) + λγ−LPMβ(x, r)

)1/(β−1)

, (33)

and by inserting it in the investor’s expected utility, we obtain

E[U∗(W (x))] =

=
β − 1

β

(

UPM1(x, r)− 1λLPM1(x, r)
β
√

γ+UPMβ(x, r) + λγ−LPMβ(x, r)

)β/(β−1)

.
(34)

We can write,
E[U∗(W (x))] = f(Zγ−,γ+,λ,β,1−),

where f(z) = [(β − 1)/β]zβ/(β−1) is a strictly increasing function in z.
Consequently, the performance measure, the Z-ratio, can be expressed as

Zγ−,γ+,λ,β,1−(x) =
E(x)− r − (1−λ− 1)LPM1(x, r

β
√

γ+UPMβ(x, r) + λγ−LPMβ(x, r)
, (35)

where E(x) − r = UPM1(x, r)− LPM1(x, r).
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Appendix C: Complementary Results
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∆τ200

(Intercept) 0.0029 0.0031 0.003 0.0028 0.0067 -0.0006 -0.0052 0.0029 0.0000
(0.0045) (0.0045) (0.0044) (0.0044) (0.0043) (0.0048) (0.0044) (0.0044) (0.0048)

∆BW⊥ -0.0039
(0.0045)

∆BW 0.0028
(0.0040)

∆STLFSI 0.0481*** 0.0491***
(0.0167) (0.0122)

∆KCFSI 0.0432*** -0.0188**
(0.0176) (0.0077)

INDPRO -0.0292*** 0.0423***
(0.0068) (0.0147)

LIQ -0.1123*
(0.0656)

NBER 0.0640***
(0.0148)

∆VIX 0.2407**
(0.1486)

R-squared 0.0046 0.0022 0.0638 0.0562 0.0842 0.018 0.1119 0.0275 0.1935
Adjusted-R-squared 0.0046 0.0022 0.0591 0.0515 0.0797 0.0131 0.1075 0.0227 0.1813

AIC -537.248 -536.773 -549.701 -548.056 -554.181 -540 -560.412 -541.987 -575.978
BIC -530.622 -530.147 -543.075 -541.429 -547.554 -533.374 -553.786 -535.361 -562.726

Table 8: Results from regressing ∆τ200 with k = 200 on different economic, financial and sentiment indicators. The considered common sample is
from February 1994 to December 2010 (203 obs).
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∆τ inv100

(Intercept) 0.0000 -0.0004 0.0005 0.0002 0.0023 -0.0079 -0.0044 0.0000
(0.0179) (0.0180) (0.0177) (0.0179) (0.0192) (0.0191) (0.0183) (0.0174)

∆BW⊥ -0.0229
(0.0119)

∆BW -0.0273
(0.0130)

∆STLFSI 0.1130**
(0.0561)

∆KCFSI 0.0982*
(0.0567)

INDPRO -0.0141
(0.0258)

LIQ -0.2642
(0.2290)

NBER 0.0384
(0.0668)

∆VIX 1.4653***
(0.3937)

R-squared 0.0097 0.013 0.0222 0.0184 0.0012 0.0063 0.0025 0.0644
Adjusted-R-squared 0.0048 0.0081 0.0174 0.0135 0.0012 0.0013 0.0025 0.0598

AIC 22.3637 21.6801 19.7838 20.5862 24.0953 23.0672 23.8302 10.8243
BIC 28.9902 28.3065 26.4102 27.2127 30.7217 29.6936 30.4567 17.4507

Table 9: Results from regressing ∆τ100 with k = 100 obtained from the inverse-S-shaped utility function on different economic, financial and
sentiment indicators. The considered common sample is from February 1994 to December 2010 (203 obs).
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rmkt

(Intercept) 0.0054* 0.0110*** 0.0108*** 0.0048 0.0110*** 0.0124***
(0.0031) (0.0024) (0.0023) (0.0031) (0.0024) (0.0025)

∆τ200 -0.2257*** -0.1152***
(0.0481) (0.0349)

∆τ inv100 -0.0560*** -0.0209**
(0.0162) (0.0107)

∆BW⊥ 0.0075***
(0.0027)

∆BW 0.0074*** 0.0081*** 0.0074***
(0.0020) (0.0020) (0.0020)

∆STLFSI

∆KCFSI

INDPRO -0.0065
(0.0043)

LIQ 0.0828*** 0.0963*** 0.0828*** 0.0873***
(0.0287) (0.0284) (0.0287) (0.0290)

NBER -0.0250*** -0.0167** -0.0250*** -0.0285***
(0.0065) (0.0066) (0.0065) (0.0083)

∆VIX -0.6928*** -0.3727*** -0.6928*** -0.6475***
(0.0492) (0.1139) (0.0492) (0.0543)

R-squared 0.0989 0.5694 0.6063 0.0962 0.5694 0.585
Adjusted-R-squared 0.0944 0.5607 0.5942 0.0917 0.5607 0.5723

AIC -692.103 -835.938 -850.18 -691.498 -835.938 -839.382
BIC -685.476 -819.371 -826.987 -684.871 -819.371 -816.19

Table 10: Results from regressing the S&P500 market returns (rmkt) on ∆τ200, ∆τ inv100 and other economic, financial and sentiment indicators. The
considered common sample is from February 1994 to December 2010 (203 obs).
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year 1962-1970 1971-1980 1981-1990 1991-2000 2001-2012 All-Sample

Mean 0.7781 1.7586 0.5576 0.3068 0.5613 0.7876
s.e 0.1039 0.1036 0.0304 0.0211 0.0270 0.0352

pValue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Skewness 1.1849 0.2916 1.9085 0.8835 1.4800 2.0073
Kurtosis 2.8534 1.7187 6.4377 2.4280 5.2108 6.4150

Min 0.1879 0.1810 0.1422 0.0476 0.2026 0.0476
Max 2.4935 4.0520 1.6790 0.8266 1.6969 4.0520

Table 11: Results from the TOBIT regression and the descriptive statistics for the filtered τ for
the inverse S-shaped utility function in different periods.
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∆τ100

(Intercept) 0.0004 0.0004 0.0006* 0.0001 0.0006** -0.0006* -0.0002 0.0001 0.0001 -0.0001 -0.0001
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004)

∆BW⊥ -0.0004 -0.0002
(0.0003) (0.0005)

∆BW -0.0007** -0.0001
(0.0003) (0.0005)

∆STLFSI 0.0036*** 0.0024
(0.0013) (0.0017)

∆KCFSI 0.0032*** 0.0021 0.0033***
(0.0014) (0.0018) (0.0009)

INDPRO -0.0018*** -0.0014** -0.0013**
(0.0006) (0.0006) (0.0006)

LIQ -0.0307*** -0.0105** -0.0090**
(0.0055) (0.0045) (0.0044)

NBER 0.0040*** 0.0044*** 0.0047***
(0.0010) (0.0011) (0.0011)

∆ VIX 0.0085 -0.0360*
(0.0109) (0.0205)

VIXrv 0.0074 0.0475**
(0.0104) (0.0235)

R-squared 0.0031 0.0103 0.0567 0.0445 0.016 0.0774 0.0416 0.0057 0.0031 0.3049 0.2842
Adjusted-R-squared 0.0012 0.0084 0.0524 0.0409 0.0142 0.0757 0.0399 0.0019 0.0031 0.2725 0.2698

AIC -3709.7 -3713.5 -1708.84 -2092.6 -3841.84 -3844.56 -3856.16 -2090.58 -2089.88 -1622.11 -1626.15
BIC -3701.17 -3704.97 -1702.06 -2085.44 -3833.25 -3835.99 -3847.57 -2083.4 -2082.71 -1588.97 -1609.58

Sample 196703 196703 199402 199003 196703 196703 196703 199002 199002 199402 199402
201012 201012 201204 201204 201204 201112 201204 201204 201204 201012 201012

Obs 526 526 219 266 542 538 542 267 267 203 203

Table 12: Results from regressing ∆τ100 with k = 100 on different economic, financial and sentiment indicators, with a regression-specific sample.
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∆τ200

(Intercept) 0.0001 0.0000 0.0056 0.0039 0.0033 -0.0028 -0.0049 0.004 0.004 0.0002 0.0000
(0.0029) (0.0029) (0.0042) (0.0037) (0.0029) (0.0032) (0.0030) (0.0038) (0.0038) (0.0053) (0.0048)

∆BW⊥ -0.0056* -0.003
(0.0030) (0.0064)

∆BW -0.0081*** 0.0048
(0.0030) (0.0063)

∆STLFSI 0.0515*** 0.0315 0.0491***
(0.0152) (0.0232) (0.0122)

∆KCFSI 0.0438*** 0.0204
(0.0164) (0.0243)

INDPRO -0.0175*** -0.0191** -0.0188**
(0.0063) (0.0085) (0.0077)

LIQ -0.1138** 0.0033
(0.0456) (0.0598)

NBER 0.0406*** 0.0417*** 0.0423***
(0.0078) (0.0149) (0.0147)

∆ VIX 0.2371*** -0.1605
(0.1258) (0.2749)

VIXrv 0.2153** 0.3576
(0.1293) (0.3148)

R-squared 0.0072 0.0149 0.0687 0.051 0.0168 0.012 0.0487 0.0263 0.0155 0.211 0.1935
Adjusted-R-squared 0.0053 0.013 0.0644 0.0474 0.0149 0.0102 0.047 0.0227 0.0118 0.1742 0.1813

AIC -1365.66 -1369.75 -591.3 -734.177 -1409.65 -1396.69 -1427.57 -730.695 -727.745 -568.438 -575.9784
BIC -1357.13 -1361.22 -584.522 -727.01 -1401.06 -1388.12 -1418.98 -723.521 -720.571 -535.305 -562.7255

Sample 196703 196703 199402 199003 196703 196703 196703 199002 199002 199402 199402
201012 201012 201204 201204 201204 201112 201204 201204 201204 201012 201012

Obs 526 526 219 266 542 538 542 267 267 203 203

Table 13: Results from regressing ∆τ200 with k = 200 on different economic, financial and sentiment indicators, with a regression-specific sample.
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∆τ inv

100

(Intercept) -0.0006 -0.0011 0.0016 0.001 -0.0022 -0.0134 -0.0031 0.0013 0.0013 -0.004 -0.0001
(0.0229) (0.0230) (0.0166) (0.0145) (0.0241) (0.0203) (0.0200) (0.0141) (0.0141) (0.0224) (0.0173)

∆BW⊥ -0.0185 0.0044
(0.0176) (0.0273)

∆BW -0.0336 -0.0295
(0.0223) (0.0267)

∆STLFSI 0.1166** 0.1404
(0.0550) (0.0987)

∆KCFSI 0.0917** -0.0713
(0.0526) (0.1032)

INDPRO 0.0198 -0.026
(0.0506) (0.0363)

LIQ -0.4145 -0.2093
(0.3302) (0.2546)

NBER 0.0213 -0.0003
(0.0960) (0.0635)

∆ VIX 1.4339*** -0.1997
(0.3274) (1.1696)

VIXrv 1.6000*** 2.0399 1.8780***
(0.4107) (1.3394) (0.4946)

R-squared 0.0012 0.004 0.0239 0.0152 0.0004 0.0026 0.0002 0.0654 0.0582 0.0977 0.0669
Adjusted-R-squared 0.0012 0.0021 0.0194 0.0115 0.0004 0.0007 0.0002 0.0619 0.0547 0.0556 0.0623

AIC 816.8832 815.4069 8.4226 -8.597 826.8399 823.3871 826.9127 -23.6133 -21.5629 19.4814 10.2826
BIC 825.4138 823.9375 15.2007 -1.43 835.4304 831.9628 835.5032 -16.4388 -14.3884 52.6134 16.909

Sample 196703 196703 199402 199003 196703 196703 196703 199002 199002 199402 199402
201012 201012 201204 201204 201204 201112 201204 201204 201204 201012 201012

Obs 526 526 219 266 542 538 542 267 267 203 203

Table 14: Results from regressing ∆τ100 with k = 100 obtained from the inverse-S-shaped utility function on different economic, financial and
sentiment indicators, with a regression-specific sample.
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