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Abstract

In this paper, a new resampling procedure, called the wild tapered block bootstrap, is intro-
duced as a means of calculating standard errors of estimators and constructing con�dence regions
for parameters based on dependent heterogeneous data. The method consists in tapering each
overlapping block of the series �rst, then applying the standard wild bootstrap for independent
and heteroscedastic distributed observations to overlapping tapered blocks in an appropriate way.
It preserves the favorable bias and mean squared error properties of the tapered block bootstrap,
which is the state-of-the-art block-based method in terms of asymptotic accuracy of variance esti-
mation and distribution approximation. For stationary time series, the asymptotic validity, and the
favorable bias properties of the new bootstrap method are shown in two important cases: smooth
functions of means, and M -estimators. The �rst-order asymptotic validity of the tapered block
bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution
of the sample mean is also established when data are assumed to satisfy a near epoch dependent
condition. The consistency of the bootstrap variance estimator for the sample mean is shown to be
robust against heteroskedasticity and dependence of unknown form. Simulation studies illustrate
the �nite-sample performance of the wild tapered block bootstrap. This easy to implement alter-
native bootstrap method works very well even for moderate sample sizes.

JEL Classi�cation: C15, C22
Keywords: Block bootstrap, Near epoch dependence, Tapering, Variance estimation.

1 Introduction

The bootstrap of Efron (1979) is a powerful nonparametric method to approximate the sampling

distribution and the variance of complicated statistics based on i.i.d. observations. The failure of

the i.i.d. resampling scheme to give a consistent approximation to the true limiting distribution of a

statistic when observations are not independent has motivated the development of alternative bootstrap

methods in the context of dependent data. As an extension of Efron's i.i.d. bootstrap to dependent

observations, the moving block bootstrap (MBB) of Künsch (1989) and Liu and Singh (1992) can

be used to approximate the sampling distributions and variances of statistics in time series. In order
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funded by the Danish National Research Foundation, as well as support from the Oxford-Man Institute of Quantitative
Finance.
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to capture temporal dependence nonparametrically, the MBB samples the overlapping blocks with

replacement and then pastes the resampled blocks together to form a bootstrap sample. Based on the

idea of resampling blocks, a few variants of the MBB have been developed, such as the nonoverlapping

block bootstrap (NBB) (Carlstein (1986)), and the stationary bootstrap (SB) (Politis and Romano

(1994)), among others.

For variance estimation in the smooth function model, the MBB and its variants (the so-called

��rst generation� block bootstrap methods) yield the same convergence rate of the mean squared error

(MSE), albeit with a di�erent constant in the leading term of the bias and variance expansions; see, e.g.,

Lahiri (1999, 2003) and Nordman (2009). In an attempt to reduce the bias and MSE, Carlstein et al.

(1998) proposed the matched block bootstrap whereas Paparoditis and Politis (2001, 2002) proposed the

tapered block bootstrap (TBB) (one of the so-called �second generation� bootstrap methods). The TBB

involves tapering each overlapping block of the series �rst, then a resampling of those tapered blocks.

The TBB o�ers a superior convergence rate in the bias and MSE compared to the ��rst generation�

block bootstrap methods. The data tapering of the blocks used in the TBB is designed to decrease the

bootstrap bias, and has, as a result, an increased accuracy of estimation of sampling characteristics for

linear and approximately linear statistics. See also Shao (2010a, 2010b) who developed the extended

tapered block bootstrap (ETBB) and the dependent wild bootstrap (DWB) for stationary time series.

The ETBB and DWB can preserve the favorable bias and mean squared error properties of the TBB.

The performance of these bootstrap methods in the presence of nonstationarity is not well under-

stood in the literature. Recently, Nordman and Lahiri (2012) have investigated the properties of some

block bootstrap methods under a speci�c form of nonstationarity, with data generated by a linear

regression model with weakly dependent errors and non stochastic regressors. In contrast to the sta-

tionarity case, Nordman and Lahiri (2012) show that the MBB, SB, and TBB variance estimators often

turn out to be invalid with general nonrandom regressors. As a remedy, they propose an additional

block randomization step in order to balance out the e�ects of nonuniform regression weights.

In this paper, we introduce a new resampling method, called the wild tapered block bootstrap

(WTBB), that is generally applicable for dependent heterogeneous arrays. As in Gonçalves and White

(2002), the data are assumed to satisfy a near epoch dependent (NED) condition, which includes

the more restrictive mixing assumption as a special case. NED processes also allow for considerable

heterogeneity.

In the case of the sample mean, we found that the WTBB is robust against heteroskedasticity and

dependence of unknown form. We also show that Paparoditis and Politis's TBB enjoys this robustness

property to heteroskedasticity in this heterogeneous NED context. To the best of our knowledge,

the validity of the TBB method has not yet been studied in heterogeneous context, and with the

degree of dependence considered here. Our results broaden considerably the scope for application

of the new WTBB as well as the TBB in economics and �nance, where the homogeneity of data

and the mixing assumption are often a concern. For instance, as shown in Hounyo, Gonçalves and
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Meddahi (2013) in the context of noisy di�usion models, due to the heterogeneity of high-frequency

�nancial data, a direct application of the "blocks of blocks" bootstrap method suggested by Politis

and Romano (1992) and further studied by Bühlmann and Künsch (1995) fails. To handle both the

dependence and heterogeneity of the data (most often in the form of heteroskedasticity), Hounyo,

Gonçalves and Meddahi (2013) propose the wild blocks of blocks bootstrap (WBBB), which combine

the wild bootstrap with the blocks of blocks bootstrap. This procedure relies on the fact that the

heteroskedasticity can be handled elegantly by use of the wild bootstrap, and a block-based bootstrap

can be used to treat the serial correlation in the data. In this paper we used a similar approach.

The WTBB combine the wild bootstrap with the TBB. The WBBB split a pre-speci�ed blocks of

observations into non-overlapping blocks with no tapering. The WTBB di�ers by using overlapping

blocks and tapering. Our bootstrap method constitutes an alternative to the existing methods. Similar

to the TBB, the WTBB method involves tapering each overlapping block of the demeaned data �rst,

then a resampling of those tapered blocks. Unlike the TBB, the WTBB does not resample overlapping

tapered blocks independently with replacement, but apply the standard wild bootstrap to overlapping

tapered blocks in an appropriate way. Our WTBB is intimately related to Paparoditis and Politis's

(2001) TBB in the same way that Wu's (1986) wild bootstrap is intimately related to Efron's (1979)

bootstrap. The favorable bias and mean squared error properties of the TBB over the MBB are also

well preserved by the WTBB. There are two di�erent interpretations of the WTBB method, both valid.

One is that the WTBB can be view as a simple variant of the traditional wild bootstrap. The main

di�erence from the traditional wild bootstrap is that the data are �rst tapered in the blocks in an

appropriate way before applying the traditional wild bootstrap on the transformed data. The other

interpretation is that the WTBB method is akin to the DWB of Shao (2010b). As the DWB, the

WTBB extends the traditional wild bootstrap of Wu (1986) to the time series setting by allowing a

transformation of the auxilliary variables involved in the wild bootstrap to be dependent, hence, the

WTBB is capable of mimicking the dependence in the original series nonparametrically.

We also generalize the WTBB methodology to cover the case of approximately linear statistics,

and M -estimators. The �rst order asymptotic validity and the favorable asymptotic properties of the

WTBB are established in these cases for stationary and weakly dependent time series, as in Paparoditis

and Politis (2002).

The remainder of this paper is organized as follows. Section 2 describes the WTBB and its con-

nection to various block-based methods in the context of variance estimation as well as distribution

estimation, and states the consistency of this method under the framework of a smooth function model,

and M -estimators. Section 3 establishes the consistency of the TBB as well as the WTBB for both

variance estimation and distribution approximation of the sample mean when data are assumed to

satisfy a NED condition. The results from simulation studies are reported in Section 4. Section 5

concludes. Technical details are relegated to the Appendix.

A word on notation. In this paper, and as usual in the bootstrap literature, P ∗ (E∗ and V ar∗)
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denotes the probability measure (expected value and variance) induced by the bootstrap resampling,

conditional on a realization of the original time series. In addition, let �→d� and �→P � denote conver-

gence in distribution and in probability, respectively, and let OP (1) and oP (1) denote being bounded

in probability and convergence to zero in probability, respectively. Finally, for α = (α1, . . . , αd)
′
∈ Nd,

let Dα denote the di�erentiable operator Dα = ∂α1+...+αd

∂x
α1
1 ,...,∂x

αd
d

on Rd.

2 The wild tapered block bootstrap

In this section, to facilitate a comparison between the WTBB and other block-based methods, we

restrict our attention to stationary (not heterogeneous) and weakly dependent time series. The more

general setting, which allows for dependent heterogeneous arrays is adopted in Section 3. Suppose

X1, . . . , XN are observations from the strictly stationary real-valued sequence {Xt}t∈Z taking value in

Rm and having mean µ = E (Xt). Let F denote the marginal distribution of Xt. Suppose the quantity

of interest is T (F ) . Given the observations X1, . . . , XN , the goal is to make inferences about T (F )

based on some estimator TN = TN (X1, . . . , XN ). In particular, we are interested in constructing a

con�dence region for T (F ) or constructing an estimate of the variance σ2N = V ar
(√

NTN

)
, or its

asymptotic limit σ2∞ = lim
N→∞

σ2N . Typically, an estimate of the sampling distribution of TN is required,

and the WTBB method proposed here is developed for this purpose.

To de�ne the WTBB, we follow substantially Paparoditis and Politis (2001, 2002). We need to

introduce a sequence of data-tapering windows wn (·) for n = 1, 2, . . . ; the weights wn (t) are value

in [0, 1] , with wn (t) = 0 for t /∈ {1, 2, . . . , n} . From the above, it is immediate that ‖wn‖1 ≤ n

and ‖wn‖2 ≤ n1/2, where ‖wn‖1 =
n∑
t=1
|wn (t)| and ‖wn‖2 =

(
n∑
t=1

w2
n (t)

)1/2

. The idea behind the

(multiplicative) application of a tapering window to data is to give reduced weight to data near the

end-points of the window. The notion of tapering for time series especially in connection to spectral

estimation is well-studied; see, for example, Brillinger (1975), Priestley (1981) and Künsch (1989). It

is customary to obtain the sequence of data-tapering windows wn (·) by means of dilations of a single

function w : R→ [0, 1], so that

wn (t) = w

(
t− 0.5

n

)
. (1)

We will generally follow Paparoditis and Politis (2001, 2002) and assume that the function wn (·)
satis�es the following assumptions.

Assumption 1. We have wn (t) ∈ [0, 1] for all t ∈ R, wn (t) = 0 if t /∈ [0, 1] , and wn (t) > 0 for t in a

neighbourhood of 1
2 .

Assumption 2. The function wn (t) is symmetric about t = 1
2 and nondecreasing for t ∈

[
0, 12
]
.

Assumption 3. The self-convolution is twice continously di�erentiable at the point t = 0, where

(w ∗ w) (t) =
∫ 1
−1w (x)w (x+ |t|) dx.
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The WTBB algorithm is de�ned as follows.

Step 1. First, set a block size l, s.t. l = lN ∈ N and 1 ≤ l < N. Let denote by

X̄l,w =
1

Q

Q∑
j=1

l∑
i=1

wl (i)

‖wl‖1
Xi+j−1 =

N∑
t=1

Q∑
j=1

wl (t− j + 1)

Q ‖wl‖1︸ ︷︷ ︸
≡aN (t)

Xt =

N∑
t=1

aN (t)Xt,

the tapered moving (overlapping) block sample mean, where Q ≡ N − l + 1. Note that∑N
t=1 aN (t) = 1. For j = 1, . . . , Q, let

Bj,l,w =

{
wl (1)

‖wl‖2

(
Xj − X̄l,w

)
,
wl (2)

‖wl‖2

(
Xj+1 − X̄l,w

)
, . . . ,

wl (l)

‖wl‖2

(
Xj+l−1 − X̄l,w

)}
denote the jth centered tapered block of l consecutive observations starting at wl(1)

‖wl‖2

(
Xj − X̄l,w

)
.

Step 2. Generate Q independent and identically distributed random variables whose distribution is

independent of the original sample u1, . . . , uQ with E (u1) = 0 and E (u1)
2 = 1. For j = 1, . . . , Q,

multiply all observations within a given block Bj,l by the same external random variable uj .

Step 3. Finally, the centered WTBB pseudo-time series
{
X∗t − X̄N , t = 1, 2, . . . , N

}
is the result of

taking the sum of elements of the Q overlapping blocks Bt,l of size l that have the same indices.

This amounts to generate the WTBB pseudo-time series as follows, for t = 1, 2, . . . , N, let

X∗t − X̄N =

Q∑
j=1

(
l∑

i=1

(
wl (i)

‖wl‖2

(
Xi+j−1 − X̄l,w

))
1{t} (i+ j − 1)

)
uj (2)

=
(
Xt − X̄l,w

) Q∑
j=1

wl (t− j + 1)

‖wl‖2
uj


︸ ︷︷ ︸

≡ηt

(3)

=
(
Xt − X̄l,w

)
ηt, (4)

where 1{·} is the indicator function.

The WTBB algorithm's describes above with a general data-tapering function wn (·) is quite com-

pact. It is helpful to focus on some particular cases of this algorithm in order to gain further under-

standing.

Remark 1. If we let w (t) = 1[0,1] (i.e. no tapering) and l = 1, then the WTBB boils down to the wild

bootstrap of Wu (1986) exactly as the MBB method of Künsch (1989) coincides with Efron's

bootstrap when the bootstrap block size l = 1. However we will let l tend to in�nity as N →∞,
since in this way we will asymptotically able to mimick the (weak) dependence in the original

series nonparametrically. The WTBB is intimately related to Paparoditis and Politis's (2001,

2002) TBB in the same way that Efron's bootstrap is intimately related to Wu's (1986) wild
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bootstrap. When w (t) = 1[0,1] with 1 ≤ l < N , given (4) the centered wild untapered block

bootstrap pseudo-time series are generated as follows, for t = 1, 2, . . . , N,

X∗t − X̄N =


(
Xt − X̄l,w

)
1√
l

∑t
j=1 uj , if t ∈ {1, . . . , l} ,(

Xt − X̄l,w

)
1√
l

∑l
j=1 ut−l+j , if t ∈ {l + 1, . . . , Q} ,(

Xt − X̄l,w

)
1√
l

∑N−t+1
j=1 uQ−j+1, if t ∈ {Q+ 1, . . . , N} ,

(5)

where here X̄l,w = 1
Ql

∑Q
j=1

∑l
i=1Xi+j−1, since w (t) = 1[0,1].

Remark 2. Obviously we could also use nonoverlapping subseries as in Carlstein (1986). This ap-

proach will correspond to nonoverlapping WTBB. For the convenience of presentation, we as-

sume here that N = kl. Consequently, in step 1 we will consider only k centered tapered

nonoverlapping block of l consecutive observations, with the main di�erence that observations

inside the blocks are not centered around X̄l,w (the tapered moving overlapping block sam-

ple mean) but centered around the tapered nonoverlapping block sample mean X̃l,w, where

X̃l,w =
∑k

j=1

∑l
i=1

wl(i)
‖wl‖1

Xi+(j−1)l. Whereas in step 2, we only need to generate k i.i.d. ran-

dom variables u1, . . . , uk with E (u1) = 0 and E (u1)
2 = 1. Then for j = 1, . . . , k, we multiply

all observations within the jth centered tapered nonoverlapping block by the same external

random variable uj . This preserves the dependence within each block. Finally, for step 3, the

centered nonoverlapping WTBB pseudo-time series are generated as follows, for j = 1, 2, . . . , k

and i = 1, 2, . . . , l,

X∗i+(j−1)l − X̄N = wl (i)
l1/2

‖wl‖2

(
Xi+(j−1)l − X̃l,w

)
uj . (6)

Note that in (6) the �in�ation� factor l1/2

‖wl‖2
is necessary to compensate for the decrease of the

variance of the nonoverlapping WTBB observations X∗i+(j−1)l's e�ected by the shrinking caused

by the window wl (for further details see Paparoditis and Politis (2001)).

Also note that if we let w (t) = 1[0,1] (i.e. no tapering), the nonoverlapping WTBB is equivalent

to the blockwise wild bootstrap method studied by Shao (2011) in the context of approximation of

the sampling distribution of the Cramer-von Mises test statistic. Recently, Hounyo, Gonçalves, and

Meddahi (2013) have proposed a wild blocks of blocks bootstrap method, in the context of noisy

di�usion models. In their setting, observations are not stationary, they are heterogeneous. As a result,

due to some �mean heterogeneity problem� of high-frequency �nancial data, they propose to center

observations not around the sample mean, but around the blocks sample mean. In particular, their

bootstrap method amounts to resample as follows, for j = 1, . . . , k, and i = 1, . . . , l,

X∗i+(j−1)l =

{
X̄j+1,l +

(
Xi+(j−1)l − X̄j+1,l

)
uj , if 1 ≤ j ≤ k − 1,

X̄j,l +
(
Xi+(j−1)l − X̄j,l

)
uj , if j = k,

(7)

where X̄j,l = l−1
∑l

i=1Xi+(j−1)l.

It is well-known that the nonoverlapping blocks based-method is less e�cient than the full-overlap
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block. In the sequel, we will focus on the (overlapping) WTBB method.

Because in the next subsection we discuss and also link the DWB of Shao (2010b) to the WTBB

method, here we brie�y introduce the DWB procedure. Given the observations {Xt}Nt=1, the DWB

generates the bootstrap observations according to the equation

X
∗(DWB)
t − X̄N =

(
Xt − X̄N

)
η
(DWB)
t , t = 1, 2, . . . , N, (8)

where the random variables
{
η
(DWB)
t

}N
t=1

are independent of {Xt}Nt=1 with E
(
η
(DWB)
t

)
= 0 and

V ar
(
η
(DWB)
t

)
= 1 for t = 1, 2, . . . , N . In addition, η

(DWB)
t is a stationary process such that

cov
(
η
(DWB)
t , η

(DWB)

t′

)
= γ

((
t− t′

)
/l
)
, where γ (·) is a kernel function with

∫∞
−∞ γ (u) e−iuxdx ≥ 0

for x ∈ R, and l is a bandwidth parameter. Here and throughout, we use the superscript (DWB) in

X
∗(DWB)
t and η

(DWB)
t to denote the bootstrap samples and the random variable, respectively obtained

by the DWB.

2.1 The sample mean

In this subsection, to elucidate the connection between the WTBB and other block-based methods,

we investigate the properties of our bootstrap method for the sample mean �rst. This corresponds to

TN = X̄N and the bootstrap estimator T ∗N analogue of TN is given by T ∗N = X̄∗N = N−1
∑N

t=1X
∗
i . A

closer inspection of X̄∗N suggests that, we can also write the centered bootstrap sample mean as

X̄∗N − X̄N =
1

Q

Q∑
j=1

Zjuj =
1

Q

Q∑
j=1

Z∗j ≡ Z̄∗Q, (9)

where Zj = Q
N

(
l∑

i=1

wl(i)
‖wl‖2

Xi+j−1 − X̄l,w
‖wl‖1
‖wl‖2

)
, or as

X̄∗N − X̄N =
1

N

N∑
t=1

(
Xt − X̄l,w

)
ηt, (10)

see Lemma 5.1 in the Appendix for further details. Thus, there are two interpretations of the bootstrap

sample mean, both valid. One is that the bootstrap sample mean X̄∗N is an average of Q independent

but not necessarily identically distributed components (see equation (9)). According to this viewpoint,

the WTBB is a simple variant of the traditional wild bootstrap (Wu (1986), Liu (1988), Mammen

(1993)), which was originally proposed in the context of cross-section linear regression models subject

to unconditional heteroskedasticity in the error term. The main di�erence from the traditional wild

bootstrap is that the data are �rst tapering in the blocks in an appropriate way before applying the

traditional wild bootstrap on the transformed data. {Zj}Qj=1 are not independent because they rely on

many common observations of the original data {Xt}Nt=1. However, each observation Zj is a particular

linear combination of all of the original data, as we show, it contains all the relevant information

on data dependency required for inference on X̄N . The advantages of tapering were pointed out in

7



detail in Künsch (1989) in connection with his proposal of a tapered block jackknife. Paparoditis and

Politis (2001) introduce the TBB method in the bootstrap literature. As in Paparoditis and Politis

(2001), the values towards the block endpoints are downweighted in the WTBB procedure. The de�ned

above incorporates the same notion of tapering. Also note that when w (t) = 1[0,1], then the centered

bootstrap sample mean as de�ned in (9) shares with Inoue's (2001) simulation based-method, the

fact that the same draws of the random variables {ut}Qt=1 are used for all observations within each

overlapping block of size l. This preserves the dependence within each block, in order to properly

mimic the long-run variance.

The other interpretation is that the centered bootstrap sample mean is the average of N dependent

and heteroscedastic distributed components (see equation (10)). According to this viewpoint, the

WTBB is akin to the DWB, which is recently proposed by Shao (2010b) for stationary time series. As

the DWB, the WTBB extends the traditional wild bootstrap of Wu (1986) to the time series setting

by allowing the auxilliary variables {ηt}Nt=1 (which are a transformation of {ut}Qt=1) involved in the

wild bootstrap (see equation (4)) to be dependent, hence, the WTBB is capable of mimicking the

dependence in the original series nonparametrically. Similar to the DWB, the dependence between

neighboring observations Xt and Xt′ are not only preserved when the indices t and t
′
are in the same

block as the block-based methods. Whenever
∣∣∣t− t′∣∣∣ < l, X∗t and X∗

t′
are conditionally dependent. A

common undesirable feature of block-based bootstrap methods is that if the sample size N is not a

multiple of the block size l, then one must either take a shorter bootstrap sample or use a fraction of

the last resampled block. This could lead to some inaccuracy when the block size is large. In contrast,

for the WTBB, the size of the bootstrap sample is always the same as the original sample size. It is

worth emphasising that despite the fact that the DWB shares some appealing features with the WTBB,

the latter is not a particular case of the DWB method. For instance, unlike the DWB, the random

variables {ηt}Nt=1, here are not stationary even in the simple case of no tapering (i.e. w (t) = 1[0,1]),

and observations are centered around X̄l,w, and not around X̄N , (see the RHS of (4) and (8)). The

WTBB is very easy to implement, and require only as external random variable a simple draw from

an i.i.d. distribution as for the plain wild bootstrap.

Let σ̂2l,WTBB denote the WTBB estimate of the asymptotic variance σ2∞ based on block size l. A

straightforward analytical calculation (see Lemma 5.1 in the Appendix for details) shows that

σ̂2l,WTBB =
Q

N
σ̂2l,TBB, (11)

where σ̂2l,TBB = 1
Q

1
‖wl‖22

n−l+1∑
j=1

(
l∑

i=1
wl (i)Xi+j−1 − ‖wl‖1 X̄l,w

)2

is the TBB estimate of the asymptotic

variance σ2∞ given by Paparoditis and Politis (2001). This implies that the WTBBmethod preserves the

favorable bias and mean squared error properties of the TBB. These favorable asymptotic properties of

the WTBB are quanti�ed in the following subsection of a large class of approximately linear statistics.
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2.2 Smooth function model

Our aim in this subsection is to show the asymptotic properties of the WTBB under the framework of

smooth function model. In particular we derived the favorable bias and mean squared error properties

of the WTBB, and establish its consistency distribution approximation. Recall that the applicability

of the block-based bootstrap methods is limited to linear or approximately linear statistics that are

root-N consistent and asymptotically normal (see for e.g. Shao (2010a)). TN = TN (X1, . . . , XN ) is

said to be approximately linear in a neighborhood of F , if it admits the expansion

TN = T (F ) +N−1
N∑
t=1

IF (Xt, F ) +RN ,

where the remainder term RN is appropriately small and IF (Xt, F ) is the in�uence function de�ned

as follows

IF (x, F ) = lim
ε→0

T ((1− ε)F + εδx)− T (F )

ε
,

where δx representing a unit mass on point x (see e.g. Künsch (1989)). In practice, IF (Xt, F ) is

unknown, but can be replaced by its empirical counterpart IF (Xt, ρN ), where ρN =
∑N

t=1 δXt is the

empirical measure. Under suitable conditions, we have

V ar
(√

NTN

)
= N−1V ar

(
N∑
t=1

IF (Xt, ρN )

)
+ o (1) .

Then we can estimate V ar
(√

NTN

)
by applying the WTBB procedure to IF (Xt, ρN ). In fact,

Paparoditis and Politis (2002) proposed to apply the TBB to IF (Xt, ρN ). However, as pointed out by

Shao (2010a), this implicitly assumed that IF (Xt, ρN ) is known once we observe the data. This is not

necessarily the case in practice. As a remedy, Shao (2010a) propose to taper the random weights in the

bootstrap empirical measure. Here, to see whether the WTBB is applicable to the approximately linear

statistics, we follow Hall and Mammen (1994) and interpret the WTBB in terms of the generation of

random measures. The bootstrapped measure ρ∗N (corresponding to the WTBB) can be considered as

a random distribution with weights at the points X1, . . . , XN . Speci�cally, we can write

ρ∗N =
1

N

N∑
t=1

(ηt + 1− aN (t) η̄N ) δXt ,

where η̄N = N−1
∑N

t=1 ηt, with {ηt}
N
t=1 are random variables satisfying equation (3), aN (t) =

∑Q
j=1

wl(t−j+1)
Q‖wl‖1

,

and note that
∑N

t=1 aN (t) = 1. Hence in the case where T (F ) =
∫
xdF , the foregoing formulation

amounts to TN = X̄N and T (ρ∗N ) = N−1
∑N

t=1 (ηt + 1− aN (t) η̄N )Xt = X̄N+N−1
∑N

t=1

(
Xt − X̄l,w

)
ηt,

which coincides with the bootstrapped sample mean under the de�nition in (10). Note that, for more

general nonlinear statistics, it may be di�cult to obtain bootstrap samples, because ρ∗N is not a valid

probability measure. However, for a large class of statistics, such as smooth functions of means, the

empirical in�uence function is known. In this case we can apply the WTBB to IF (Xt, ρN ) . For this
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reason, we follow Hall (1992) and Lahiri (2003) and we restrict our attention to the �smooth function

model�. This framework is su�ciently general to include many statistics of practical interest, such as

autocovariance, autocorrelation, the generalized M -estimators of Bustos (1982), the Yule-Walker esti-

mator, and other interesting statistics in time series. Consider the general class of statistics obtained

by functions of linear statistics, i.e. let

TN = f

(
N−1

N∑
t=1

φ (Xt)

)
, (12)

for some functions f : Rd → R, and φ : Rm → Rd. Let∇ (x) = {∂f (x) /∂x1, ∂f (x) /∂x2, . . . , ∂f (x) /∂xd}
′

be the vector of �rst-order partial derivatives of f at x. Note that the empirical in�uence function

IF (Xt, ρN ) = ∇
(
N−1

∑N
t=1 φ (Xt)

)′ (
φ (Xt)−N−1

∑N
t=1 φ (Xt)

)
, and is known once the data are

observed. Consider now the new series

Yt ≡ IF (Xt, ρN ) for t = 1, 2, . . . , N,

note that a more correct notation for Yt would be Yt,N but no confusion arises with the simpler notation

Yt. Our proposal is to apply the WTBB algorithm to Yt. Let denote by {Y ∗t , t = 1, 2, . . . , N} and Ȳ ∗N =

N−1
∑N

t=1 Y
∗
i the corresponding WTBB pseudo-time series and WTBB sample mean, respectively.

Recall that under some suitable conditions, we have
√
N (TN − T (F )) →d N

(
0, σ2∞

)
. The sampling

distribution of
√
N (TN − T (F )) can be approximated by using, N1/2

(
Ȳ ∗N − E∗

(
Ȳ ∗N
))
.

To state our results we need a smoothness assumption on the function f .

Assumption 4. The function f is di�erentiable in a neighborhood of E (φ (Xt)) that is, Nf ={
x ∈ Rd : ‖x− E (φ (Xt))‖2 ≤ ε

}
for some ε > 0,

∑
|α|=1 |Dαf (E (φ (Xt)))| 6= 0, and the �rst

partial derivatives of f satisfy a Lipschitz condition of order s > 0 on Nf .

As usual, we let αX (k) ≡ sup{A∈F0
−∞,B∈F∞k }

|P (A ∩B)− P (A)P (B)|, be the strong mixing coe�-

cients, where F0
−∞, and F∞k are the σ-algebras generated by {Xn, n ≤ 0} and {Xn, n ≥ k}, respectively

(see e.g. Rosemblatt (1985)).

Theorem 2.1. Assume that the function f satis�es the smoothness Assumption 4. Also assume that

equation (1), Assumptions 1-3 hold and for some δ > 0, E
(
|IF (Xt, ρN )|6+δ

)
<∞,

∑∞
k=1 k

2αX (k)δ/(6+δ) <

∞, E
(
|φj (Xt)|2+δ

)
< ∞ for j = 1, 2, . . . , d, and µ∗2+δ = E∗

(
|u1|2+δ

)
< ∞; recall that φ (x) =

(φ1 (x) , . . . , φd (x))
′
. If lN →∞ as N →∞ such that lN = o

(
N1/3

)
, then,

a) The bias and the variance of σ̂2l,WTBB are respectively given by

E
(
σ̂2l,WTBB

)
− σ2∞ = Γ/l2 + o

(
1/l2

)
, and (13)

V ar
(
σ̂2l,WTBB

)
=

(
Q

N

)2

V ar
(
σ̂2l,TBB

)
= ∆

l

N
+ o (l/N) , (14)
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where the asymptotic variance of TN is given by

σ2∞ =
+∞∑

k=−∞
RIF (k) ,

and RIF (k) = cov (IF (X0, F ) , IF (Xk, F )) . The bias and variance constants are calculated to

be

Γ =
(w ∗ w)

′′
(0)

2 (w ∗ w) (0)

∞∑
k=−∞

k2RIF (k) , and ∆ = 2σ4∞

∫ 1

−1

(w ∗ w)
2

(x)

(w ∗ w)
2

(0)
dx.

b) In addition if σ2∞ > 0, we have that

sup
x∈R

∣∣∣P ∗ (√N (Ȳ ∗N − E∗ (Ȳ ∗N)) ≤ x)− P (√N (TN − T (F )) ≤ x
)∣∣∣→P 0. (15)

Part a) of Theorem 2.1 shows that the WTBB method shares with the TBB its favorable bias

and mean squared error properties. The bias of σ̂2l,WTBB is of order O
(
1/l2

)
, whereas the untapered

block bootstrap results is an estimator of σ2∞ of bias O (1/l) . It also follows that the MSE of estimator

σ̂2l,WTBB is of order O
(
1/l4

)
+ O (l/N) . To minimize it, one should pick l proportional to N1/5, in

which caseMSE
(
σ̂2l,WTBB

)
= O

(
N−4/5

)
which is a signi�cant improvement over the O

(
N−2/3

)
rate

of the ��rst generation� block bootstrap methods. Part b) provides a theoretical justi�cation for using

the bootstrap distribution of
√
N
(
Ȳ ∗N − E∗

(
Ȳ ∗N
))

to estimate the distribution of
√
N (TN − T (F )).

2.3 M-Estimator

M -estimation is a widely used technique for statistical inference. In econometrics, M -estimators are

a broad class of estimators, which are obtained as the minima of sums of functions of the data. The

aim of this subsection is to show the asymptotic validity, the favorable bias and mean squared error

properties of the WTBB for M -estimators. These statistics are often approximately linear and are

de�ned implicitly as solutions of an equation such as

N∑
t=1

ψ (Xt;TN ) = 0, (16)

where the function ψ satis�es conditions strong enough to ensure that

√
N (TN − T (F ))→d N

(
0, σ2∞

)
, (17)

a prime example of an M -estimator is the maximum likelihood estimator (MLE). To get some results

on the order of magnitude of the bias and variance of the WTBB in the case of M -estimators, we

require some technical conditions; to state them, let K be a positive constant, and U a (�xed) open

neighborhood of T (F ).

ψ (x;u) ≤ K and
∣∣∣ψ′ (x;u)

∣∣∣ ≤ K for all x ∈ R and u ∈ U, (18)
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where ψ
′
(x;u) = d

duψ (x;u) .∣∣∣ψ′ (x;u1)− ψ
′
(x;u2)

∣∣∣ ≤ K |u1 − u2| for all x ∈ Rm and u1, u2 ∈ U, (19)

E
(
ψ
′
(Xt;T (F ))

)
6= 0. (20)

Under the above conditions as in Paparoditis and Politis (2002) the following theorem holds true.

Theorem 2.2. Assume the set-up of equation (16) where the function ψ is such that equations (17)-

(20) are satis�ed. Also assume that the function f satis�es the smoothness assumption 4. Also

assume that equation (1), Assumptions 1-3 hold and for some δ > 0, E
(
|IF (Xt, ρN )|6+δ

)
< ∞,∑∞

k=1 k
2αX (k)δ/(6+δ) < ∞ and µ∗3 = E∗

(
|u1|3

)
< ∞. If lN → ∞ as N → ∞ but with l = o

(
N1/3

)
,

then, equations (13)�(15) hold true.

3 Dependent heterogeneous arrays

In practice, econometricians used data that are typically quite complicated, mixing is too strong a

dependence condition to be broadly applicable (see, e.g., Andrews (1984) for an example of a simple

AR(1) process that fails to be strong mixing). In this section we adopt the framework of Gonçalves

and White (2002), which allows for general dependence conditions and also heterogeneity in data.

Suppose {XNt, N, t = 1, 2 . . .} is a double array of not necessarily stationary (can be heterogeneous)

random variables de�ned on a given probability space (Ω,F , P ) and NED on a mixing process {Vt}.
Let µNt ≡ E(XNt) for t = 1, 2, · · · , N , and let µ̄N = N−1

∑N
t=1 µNt be the parameter of interest to be

estimated using the sample mean X̄N (in the sequel, we will focus on the mean). Following Gonçalves

and White (2002) we have established the conditions ensuring the validity of the TBB as well as the

WTBB for the sample mean of (possibly heterogeneous) NED functions of mixing processes. We de�ne

{XNt} to be NED on a mixing process {Vt} if E
(
X2
Nt

)
<∞ and υk ≡ supN,t

∥∥∥XNt − Et+kt−k (XNt)
∥∥∥
2
→

0 as k → ∞. Here, ‖XNt‖p ≡ (E |XNt|p)1/p is the Lp norm and Et+kt−k (·) ≡ E
(
·|F t+kt−k

)
, where

F t+kt−k ≡ σ (Vt−k, . . . , Vt+k) is the σ-�eld generated by Vt−k, . . . , Vt+k. If υk = O
(
k−a−δ

)
for some δ > 0,

we say {XNt} is NED of size −a. We assume {Vt} is strong mixing. The strong mixing coe�cients

are αk ≡ supm sup{A∈Fm−∞,B∈F∞m+k}
|P (A ∩B)− P (A)P (B)|, and we require αk → 0 as k →∞ at an

appropriate rate.

Because in this section we also establish the validity of the TBB method for the sample mean

when data are assumed to satisfy a NED condition, here we brie�y introduce the TBB procedure of

Paparoditis and Politis (2001). For a �xed block size l, s.t. l = lN ∈ N and 1 ≤ l < N, let denote

by Bj,l = {XNj , . . . , XN,j+l−1} be the jth block, j = 1, . . . , Q = N − l + 1. The number of blocks

in the bootstrap sample is denoted by k = bN/lc. For the convenience of presentation, we assume

that N = lk. The TBB consists of two steps: (1) let I0, . . . , Ik−1 be i.i.d. random variables uniformly
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distributed on the set {1, 2, . . . , Q}; and (2) for m = 0, 1, . . . , k − 1, let

X
∗(TBB)
N,ml+i = wl (i)

l1/2

‖wl‖2

(
XN,Im+i−1 − X̄N

)
, i = 1, . . . , l. (21)

Here and throughout, we use the superscript (TBB) in X
∗(TBB)
N,ml+i to denote the bootstrap samples

obtained by the TBB. When w (t) = 1[0,1], the TBB reduces to the MBB. Note that the TBB uses the

same block resampling scheme as for the MBB method, but each resampled MBB block is replaced by

a tapered version. In order to state our results, we follow Gonçalves and White (2002) and make the

following assumption to establish the validity of the TBB and the WTBB methods in this heterogeneous

NED context:

Assumption 5.

a) For some r > 0, ‖XNt‖3r ≤ ∆ <∞ for all N, t = 1, 2, . . .

b) {XNt} is near epoch dependent (NED) on {Vt} with NED coe�cients αk of size −2(r−1)
(r−2) ; {Vt} is

an α-mixing sequence with αk of size − 2r
r−2 .

As Gonçalves and White (2002) pointed out, we also found in Theorem 3.1 below that under

arbitrary heterogeneity in {XNt} the TBB variance estimator σ̂2l,TBB is not consistent for σ2N , but for

σ2N +UN . The bias term UN is related to the heterogeneity in the means {µNt} and can be interpreted

as the TBB variance estimate of the scaled sample mean
√
Nµ̄
∗(TBB)
N = N−1/2

∑N
t=1 µ

∗(TBB)
Nt that

would result if we could resample the vector time series {µNt}. We follow Gonçalves and White (2002)

and call
{
µ
∗(TBB)
Nt

}
the �resampled version� of {µNt} . The variance σ2N can be easily obtained by using

the TBB variance σ̂2l,TBB under some homogeneity condition. The following Lemma and its corollary

provide the theoretical justi�cation.

Theorem 3.1. Assume {XNt} satis�es Assumptions 1-3 and Assumption 5. If lN → ∞ as N → ∞
such that lN = o

(
N1/2

)
, then,

a) σ̂2l,TBB −
(
σ2N + UN

) P→ 0, where UN ≡ V ar∗
(
N−1/2

∑N
t=1 µ

∗(TBB)
Nt

)
.

b) UN =
l−1∑

τ=−l+1

vl(τ)
vl(0)

N−|τ |∑
t=1

βN,t,τ (µNt − µ̄l,w)
(
µN,t+|τ | − µ̄l,w

)
,

where vl (τ) =
∑l−|τ |

i=1 wl (i)wl (i+ |τ |) , µ̄l,w =
∑N

t=1 aN (t)µNt, and

βN,t,τ = 1
vl(τ)

1
Q

∑Q
j=1wl (t− j + 1)wl (t− j + 1 + |τ |) with τ < j.

c) σ̂2l,TBB − σ2N
P→ 0, as limN→∞ UN = 0.

Thus, the condition limN→∞ UN = 0 is the homogeneity condition on the mean, analogous condi-

tions is given by Liu (1988) and by Gonçalves and White (2002). To ensure this condition, one can for

example suppose that
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Assumption 6 N−1
∑N

t=1 (µNt − µ̄N )2 = o
(
l−1N
)
where lN = o

(
N1/2

)
.

Assumption 6 amounts to Assumption 2.2 in Gonçalves and White (2002). As they explain, this

assumption is rather general allowing for breaks in mean. See Gonçalves andWhite (2002) for particular

examples of processes that satisfy Assumption 6.

The following consistency result holds under Assumptions 1-3, Assumptions 5-6 and is an immediate

consequence of the previous Theorem 3.1.

Corollary 4.1. Assume {XNt} satis�es Assumptions 1-3, Assumptions 5-6. If lN → ∞ as N → ∞
such that lN = o

(
N1/2

)
, then,

a) σ̂2l,TBB − σ2N
P→ 0.

b) σ̂2l,WTBB − σ2N
P→ 0; recall that σ̂2l,WTBB = Q

N σ̂
2
l,TBB and Q

N → 1 as N →∞.

This result extends the previous consistency results on σ̂2l,TBB by Paparoditis and Politis (2001) as

well as our new estimator σ̂2l,WTBB (when the statistics of interest is the sample mean), for stationary

mixing observations to the case of NED functions of a mixing process. In particular, Corollary 4.1

contains a version of Theorem 1 and Theorem 2 of Paparoditis and Politis (2001) and our Theorem

2.1 as a special case, when {Xt} is a stationary α-mixing sequence, under the same moment conditions

and weaker α-mixing conditions, but under the stronger requirement that lN = o
(
N1/2

)
instead of

lN = o (N). Here we show that the variance of σ̂2l,TBB and σ̂2l,WTBB are O
(
l2

N

)
, instead of the previous

sharper result O
(
l
N

)
when data are stationary, which explains the loss of lN = o (N).

The next theorem establishes the �rst order asymptotic validity for the TBB and the WTBB under

general dependence conditions. As in Gonçalves and White (2002), we require a slightly stronger

dependence condition than Assumption 5.b). Specifcally, we impose:

Assumption 5.b') For some small δ > 0, {XNt} is L2+δ-NED on {Vt} with NED coe�cients υk of

size −2(r−1)
r−2 ; {Vt} is an α-mixing sequence with αk of size − (2+δ)r

r−2 .

The next theorem states the consistency results for the TBB as well as the WTBB.

Theorem 3.2. Assume {XNt} satis�es Assumption 5-6, strengthened by Assumption 5.b'). Also

assume equation (1), and Assumptions 1-3. If lN →∞ as N →∞ such that lN = o
(
N1/2

)
, then

a) supx∈R

∣∣∣P ∗ (N1/2
(
X̄
∗(TBB)
N − E∗

(
X̄
∗(TBB)
N

))
≤ x

)
− P

(
N1/2

(
X̄N − µ̄N

)
≤ x

)∣∣∣ = oP (1) .

b) supx∈R
∣∣P ∗ (N1/2

(
X̄∗N − E∗

(
X̄∗N
))
≤ x

)
− P

(
N1/2

(
X̄N − µ̄N

)
≤ x

)∣∣ = oP (1) , if for any δ > 0,

E∗ |uj |2+δ <∞.

Theorem 3.2 justi�es using the TBB as well as the WTBB to build asymptotically valid con�dence

intervals for (or test hypotheses about) µ̄N , even though there may be considerable heterogeneity.
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Part a1) of Theorem 3.2 is an extension of Theorem 3 of Paparoditis and Politis (2001) to the case of

dependent heterogeneous double arrays of random variables, where the stationary mixing assumption

is replaced by the more general assumption of a (possibly heterogeneous) double array near epoch

dependent on a mixing process. Thus here, we allow for more dependence and heterogeneity in the

data. Even if part a) of Theorem 3.2 states results under the same assumptions as Gonçalves and

White (2002), note that this result also can be seen as a generalisation of Gonçalves and White's

(2002) results for the MBB method. Since, the MBB is a particular case of the TBB method.

Up to this point, we have justi�ed the consistency of the WTBB for distribution and variance

approximation under the framework of the smooth function model for stationary (not heterogeneous)

and weakly dependent time series. Whereas for the sample mean we show the consistency of the TBB

as well as the WTBB for distribution and variance approximation under a wide class of data generating

processes, the processes near epoch dependent on a mixing process.

A natural question is whether the WTBB distribution can o�er the second-order correctness, that

is better than normal approximation. If the external random variables {ut}Qt=1, in addition to having

mean 0 and variance 1, also has its third central moment equal to 1, we conjectured that the WTBB

would share with the Wu's wild bootstrap and block-based bootstrap methods the property of higher-

order accuracy after studentization/ standardisation and under some additional regularity conditions,

although a rigorous proof is well beyond the scope of this paper. The proof of this claim requires the

development of valid Edgeworth expansions for the WTBB distribution (see for example Lahiri (1991)

or Gotze and Künsch (1996)). Here we follow Paparoditis and Politis (2001, 2002) and merely give

an informal justi�cation of the superiority of the unstudentised WTBB distribution estimator over its

block bootstrap counterpart.

Note that the Berry-Essen bound (25) given in the proof of part b) of Theorem 2.1 reveals that not

only equation (15) is true, but in addition, choosing l proportional to N1/5, it follows that

sup
x∈R

∣∣∣P ∗ (√N (Ȳ ∗N − E∗ (Ȳ ∗N)) ≤ x)− P (√N (TN − T (F )) ≤ x
)∣∣∣ = OP

(
N−1/2

)
. (22)

Recall that the untapered block bootstrap analog of (22) would have a RHS of order OP
(
N−1/3

)
which

is must worse. More interessing the TBB analog of (22) (cf. equation (16) of Paparoditis and Politis

(2002)) would have a RHS of order OP
(
N−2/5

)
which is must worse than OP

(
N−1/2

)
for the new

WTBB method.

4 Simulation studies

In this section, we study via simulations the �nite-sample performance of the WTBB compared to the

MBB, TBB, and DWB methods for the sample mean. Performance is measured in terms of coverage

probability of two-sided 95% level intervals. In the simulation studies, we considered two di�erent

models generating the observations, namely:

15



Model 1. Nonlinear autoregressive model, NAR,

Xt = ρ sin (Xt−1) + υt,

for t ∈ Z, where {υt} i.i.d. N (0, 1), with ρ ∈ {0.2, 0.6}.

Model 2. Heteroskedastic autoregressive AR(1),

Xt = ρXt−1 + υt, and υt = stυ̃t,

for t ∈ Z, where {υ̃t} i.i.d. N (0, 1), with ρ ∈ {0.2, 0.8}. Here {st} denotes a sequence of real

numbers that might be regarded as seasonal e�ects. Throughout, we choose {st} to be the in�nite
repetition of the sequence {1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 6} .

Note that, among the block-based bootstrap methods, the theoretical advantage of the TBB over

the MBB has been con�rmed for model 1, (in particular, with ρ = 0.6) through simulation studies

by Paparoditis and Politis (2001). For this reason, it seems natural to study the new WTBB method

in this case. We also consider model 2, in order to investigate the performance of the WTBB when

there are dependent "strongly" heterogeneous data. This model is used by Politis Romano and Wolf

(1997) in another context for heteroskedastic times series. Note that in this model, the innovations are

independent but heteroskedastic. Then model 2 generates a weakly dependent, heteroskedastic time

series.

We generate repeated trials of length N = 200 from these processes. The block sizes range from

l = 1 to l = 40. In order to generate the TBB as well as the WTBB observations we need a data-tapering

window function w (·). We de�ne the following family of trapezoidal functions as

wtrapc (t) =


t
c , if t ∈ [0, c] ,
1, if t ∈ [c, 1− c] ,

1−t
c , if t ∈ [1− c, 1] ,
0, if t /∈ [0, 1] ,

(23)

where c is some �xed constant in (0, 1/2]. To make the comparison fair, in our simulation, we took

c = 0.43, since it was found in Paparoditis and Politis (2001) that w (t) = wtrap0.43 (t) o�ers the optimal

(theoretical) MSE provided we �x the covariance structure of a time series. We also use γ (t) =(
wtrap0.43 ∗ w

trap
0.43

)
(t) /

(
wtrap0.43 ∗ w

trap
0.43

)
(0), where γ (·) is the covariance function of the external random

variable η(DWB) used to generate the DWB observations. With this choice of the kernel function for

the DWB, the favorable bias and MSE properties of the TBB variance estimator over other block-

based counterparts in the mean case automatically carries over to the DWB. We used
{
η
(DWB)
t

}N
t=1

multivariate normal as in Shao (2010b), whereas to generate the WTBB data we use three di�erent

external random variables.

WTBB1 uj ∼ i.i.d. N (0, 1), implying that E∗(uj) = 0, E∗(u2j ) = 1, E∗(u3j ) = 0 and E∗(u4j ) = 3.
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WTBB2 A two point distribution uj ∼ i.i.d. suggested by Mammen (1993) such that:

uj =

{
1+
√
5

2 , with prob p =
√
5−1
2
√
5

1−
√
5

2 , with prob 1− p
,

for which E∗(uj) = 0, E∗(u2j ) = E∗(u3j ) = 1 and E∗(u4j ) = 2.

WTBB3 The so-called Rademacher, i.e. the two point distribution uj ∼ i.i.d. proposed by Liu (1988)

such that:

uj =

{
1, with prob p = 1

2
−1, with prob 1− p ,

for which we have E∗(uj) = 0, E∗(u2j ) = 1, E∗(u3j ) = 0 and E∗(u4j ) = 1.

Note that all three choices of uj are asymptotically valid when used to construct the unstudentized

bootstrap intervals or to estimate σ2N , since the conditions E
∗(uj) = 0 and E∗(u2j ) = 1 are satis�ed. In

the case of independent but not necessarily identically distributed observations, the further condition

E∗(u3j ) = 1 (satis�ed by WTBB2) is often added as a necessary condition for re�nement for the tradi-

tional wild bootstrap. The Rademacher distribution (WTBB3) also satis�es the necessary conditions

for re�nements in the case of unskewed disturbances. Davidson and Flachaire (2007) advocated the

use of the Rademacher distribution.

For each time series and each block size, we generated 999 MBB, TBB, DWB and WTBB pseudo-

series to obtain the bootstrap-based critical values. Then we repeated this procedure 1000 times and

plotted the empirical coverage of nominal 95% symmetric con�dence intervals as a function of block

size in Figure 1. For all bootstrap methods, �nite sample performance is far from perfect (especially

for model 2) and gets worse as the degree of dependence in the data increases. Model 2 exhibits overall

larger coverage distortions than model 1. For the WTBB method, in our simulations, none of the three

resampling schemes (i.e., WTBB1, WTBB2 and WTBB3) clearly dominates the others.

Starting with model 1, as a �rst observation (cf. Figure 1 (a) and (b)), it is striking how close all

bootstrap methods (MBB, TBB, DWB and WTBB) analyzed here are in terms of empirical coverage

rate for small block size (for N = 200, with l ≤ 8). As l increases, the di�erence may be considerable

between the WTBB and the MBB. But the two methods DWB and WTBB are still close, the di�erence

is less than 2.5 percentage point in most cases, with the WTBB noticeably superior to the TBB. For

ρ = 0.6, the largest coverage rate of the WTBB is 93.2% given by the block size l = 9, whereas it

is 91.3% for the MBB with the block size l = 11, instead of the desired nominal 95%. The empirical

coverage distortions seem to increase with increases in l for l ≥ 15.
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Turning now to the analysis of model 2, Figure 1 (c) and (d) shows that �nite-sample coverage

distortions are slightly larger. It appears that the advantage of "tapering" over "no-tapering" methods

is noticeable for moderately large block sizes. Indeed, the MBB seems to perform very poorly compared

to bootstrap schemes using tapering (i.e., TBB, DWB, and WTBB). In particular, for ρ = 0.8, the

MBB-based intervals undercover consistently for large l. It turns out that this kind of heteroskedasticity,

generated by model 2, had moderate impact on the performance of bootstrap methods (i.e., MBB, TBB,

DWB, and WTBB) studied here. The performance of the WTBB is slightly better than that of the

DWB, for large block size. Based on the foregoing simulations results, the WTBB, DWB and the TBB

are the three best bootstrap methods we would recommend in the case of "strongly" heteroskedastic

times series. No formal theoretical results exist that may justify the use of DWB in this context.

In the foregoing simulation studies, we do not consider the issue of bandwidth selection, which is very

important in practice. In view of the connection between the TBB andWTBB, in particular σ̂2l,WTBB =
Q
N σ̂

2
l,TBB, for MSE-optimal block size, the practical block size choice suggested by Paparoditis and

Politis (2002) is expected to work for the WTBB. However, the optimal block size for MSE may be

suboptimal for the purpose of distribution estimation; see Hall, Horowitz and Jing (1995). We will not

pursue this approach further here. We leave this analysis to future work.

5 Concluding remarks

This paper proposes a new bootstrap method for time series, the WTBB, that is generally applicable to

variance estimation and sampling distribution approximation for the smooth function model. Within

the framework of the smooth function model, we show that the WTBB is asymptotically equivalent to

the TBB, which outperforms all other block-based methods in terms of the bias and MSE. Computa-

tionally, it is very convenient to implement the new WTBB method. In particular, the choice of the

external random variable is very �exible, as for the plain wild bootstrap.

In the case of the sample mean of dependent heterogeneous data, we establish the �rst order asymp-

totic validity of the WTBB as well as the TBB. In particular, we show that the WTBB and the TBB

variance estimators for the sample mean are consistent under a wide class of data generating processes,

the processes near epoch dependent on a mixing process. Finally, simulation studies demonstrate that

the WTBB performs well even for moderate sample sizes and in most cases outperforms other bootstrap

procedures that take autocorrelation into account. It merits considerable further study.

Simulation evidence also indicates that the DWB seems to be valid for dependent heterogeneous

data. We did not attempt to show the theoretical validity of the DWB for dependent heterogeneous

arrays. We plan on investigating this issue in future work. Another promising extension is to study

the higher-order accuracies of the TBB, DWB, and WTBB methods.
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Appendix

Lemma 5.1. Let {X∗t , t = 1, 2, . . . , N} be a sequence of the WTBB pseudo-time series, we have that

a) X̄∗N − X̄N = 1
N

∑N
t=1

(
Xt − X̄l,w

)
ηt, where ηt =

∑Q
j=1

wl(t−j+1)
‖wl‖2

uj.

b) X̄∗N − X̄N = 1
Q

Q∑
j=1

Zjuj = 1
Q

Q∑
j=1

Z∗j ≡ Z̄∗Q, where Zj = Q
N

(
l∑

i=1

wl(i)
‖wl‖2

Xi+j−1 − X̄l,w
‖wl‖1
‖wl‖2

)
.

c) V ar∗
(√

NX̄∗N

)
= Q

N

(
Nσ2Jack

)
= Q

N σ̂
2
l,TBB,

where σ̂2l,TBB = Nσ2Jack = 1
Q

1
‖wl‖22

n−l+1∑
j=1

(
l∑

i=1
wl (i)Xi+j−1 − ‖wl‖1 X̄l,w

)2

.

Proof of Lemma 5.1 part a). Result follows directly given equation (4) and the de�nition of X̄∗N .

Proof of Lemma 5.1 part b). Given equation (4) and the de�nition of X̄∗N , we have that

X̄∗N − X̄N =
1

N

N∑
t=1

(
Xt − X̄l,w

)
ηt

=
1

N

N∑
t=1

 Q∑
j=1

wl (t− j + 1)

‖wl‖2
uj

(Xt − X̄l,w

)
=

1

N

N∑
t=1

 Q∑
j=1

(
wl (t− j + 1)

‖wl‖2

(
Xt − X̄l,w

))
uj

 .

Given that wl (j) = 0 if j /∈ {1, 2, . . . , l} , we can write

X̄∗N − X̄N =
1

N

Q∑
j=1

(
l∑

i=1

wl (i)

‖wl‖2

(
Xi+j−1 − X̄l,w

))
uj

=
1

N

Q∑
j=1

(
l∑

i=1

wl (i)

‖wl‖2
Xi+j−1 − X̄l,w

l∑
i=1

wl (i)

‖wl‖2

)
uj

=
1

N

Q∑
j=1

(
l∑

i=1

wl (i)

‖wl‖2
Xi+j−1 − X̄l,w

‖wl‖1
‖wl‖2

)
uj ,

it follows that

X̄∗N − X̄N =
1

Q

Q∑
j=1

Q

N

(
l∑

i=1

wl (i)

‖wl‖2
Xi+j−1 − X̄l,w

‖wl‖1
‖wl‖2

)
︸ ︷︷ ︸

≡Zj

uj

=
1

Q

Q∑
j=1

Zjuj =
1

Q

Q∑
j=1

Z∗j ≡ Z̄∗Q.
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Proof of Lemma 5.1 part c). Given part b) of Lemma 5.1, we can write

V ar∗
(√

NX̄∗N

)
= V ar∗

(√
NZ̄∗Q

)
=

N

Q2

Q∑
j=1

V ar∗ (Zjuj) =
N

Q2

Q∑
j=1

Z2
j V ar

∗ (uj)

=
1

N

Q∑
j=1

(
l∑

i=1

wl (i)

‖wl‖2
Xi+j−1 − X̄l,w

‖wl‖1
‖wl‖2

)2

V ar (uj)︸ ︷︷ ︸
=1

=
Q

N

1

Q

1

‖wl‖22

Q∑
j=1

(
l∑

i=1

wl (i)Xi+j−1 − ‖wl‖1 X̄l,w

)2

︸ ︷︷ ︸
=Nσ2

jack=σ̂
2
l,TBB

, (24)

where ‖wl‖1 X̄l,w = 1
Q

Q∑
j=1

l∑
i=1

wl (i)Xi+j−1, and σ
2
Jack is the tapered jackknife variance estimator de�ned

in Künsch (1989, p. 1220).

Proof of Theorem 2.1 Part a). Results follow respectively from Theorem 2.1 of Paparoditis and

Politis (2002) in conjunction with part c) of our Lemma 5.1 since σ̂2l,WTBB = Q
N σ̂

2
l,TBB,

Q
N → 1 and

under our assumed conditions the variance of the linearized statistic N−1
N∑
t=1

IF (Xt, ρN ) approximates

well the variance of the nonlinear statistic TN .

Proof of Theorem 2.1 Part b). The proof of this result follows closely that of equation (10)

of Theorem 2.1 of Paparoditis and Politis (2002). First note that the assumed conditions are su�-

cient to ensure that the statistic N−1
N∑
t=1

φ (Xt) is asymptotically normal at rate
√
N. Thus a Tay-

lor expansion of f around E (φ (Xt)) con�rms that
√
N (TN − T (F )) →d N

(
0, σ2∞

)
. Therefore,

to prove part b) of Theorem 2.1, we just need to show that the WTBB distribution is approxi-

mately close to Φ (x/σ∞), where Φ (·) denotes the standard normal distribution function. Note that

N1/2
(
Ȳ ∗N − E∗

(
Ȳ ∗N
))

=
Q∑
j=1

z∗j , where z
∗
j = N1/2

Q (Zjuj − E∗ (Zjuj)) . Also note that E∗
(
z∗j

)
= 0 and

V ar∗

(
Q∑
j=1

z∗j

)
= σ̂2l,WTBB

P→ σ2∞ by part a) of Theorem 2.1. Moreover, since z∗1 , . . . , z
∗
Q are condi-

tionally independent, by the Berry-Esseen bound, for some small δ > 0 and for some constant K > 0

(which changes from line to line),

sup
x∈R

∣∣∣P ∗ (N1/2
N

(
Ȳ ∗N − E∗

(
Ȳ ∗N
))
≤ x

)
−Φ (x/σ∞)

∣∣∣ ≤ K Q∑
j=1

E∗
∣∣z∗j ∣∣2+δ .

To check the Berry-Esseen conditions, we can bound
Q∑
j=1

E∗
∣∣∣z∗j ∣∣∣ 3 which converges to zero in probability
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as l→∞, N →∞ such that l = o
(
N1/3

)
. Indeed, we have that

Q∑
j=1

E∗
∣∣z∗j ∣∣ 3 =

Q∑
j=1

E∗

∣∣∣∣∣N1/2

Q
(Zjuj − E∗ (Zjuj))

∣∣∣∣∣
3

≤ 2
N3/2

Q3

Q∑
j=1

E∗ |Zjuj | 3 = 2
N3/2

Q3

Q∑
j=1

E∗ |Zj | 3E∗ |uj | 3,

where the inequality follows from the Cr and the Jensen inequalities. Given the de�nition of Zj =

Q
N

(
l∑

i=1

wl(i)
‖wl‖2

Yi+j−1 − Ȳl,w
‖wl‖1
‖wl‖2

)
, and the fact that by assumption E∗ |uj | 3 <∞, we can write

Q∑
j=1

E∗
∣∣z∗j ∣∣ 3 ≤ K

N3/2

Q3

Q∑
j=1

Q3

N3

∣∣∣∣∣
l∑

i=1

wl (i)

‖wl‖2
Yi+j−1 − Ȳl,w

‖wl‖1
‖wl‖2

∣∣∣∣∣
3

≤ K
Q

N

(
l3

N

)1/2
 1

Q

Q∑
j=1

∣∣∣∣∣1l
l∑

i=1

wl (i)
l1/2

‖wl‖2
Yi+j−1

∣∣∣∣∣
3

+

∣∣∣∣‖wl‖1 Ȳl,wl1/2 ‖wl‖2

∣∣∣∣3
 .

Also note that, we can write

1

Q

Q∑
j=1

∣∣∣∣∣1l
l∑

i=1

wl (i)
l1/2

‖wl‖2
Yi+j−1

∣∣∣∣∣
3

= O

 1

Q

Q∑
j=1

∣∣∣∣∣1l
l∑

i=1

Yi+j−1

∣∣∣∣∣
3
 .

In the above we follow the proof of Theorem 3 of Paparoditis and Politis (2001) and used the facts that

wl (i) ≤ 1, and l1/2/ ‖wl‖2 = O (1) ; the latter follows because equation (1) implies that ‖wl‖2 /l →∫ 1
0 w

2 (t) dt > 0 by assumption 1. Thus we have

1

Q

Q∑
j=1

∣∣∣∣∣1l
l∑

i=1

wl (i)
l1/2

‖wl‖2
Yi+j−1

∣∣∣∣∣
3

=
1

l3/2
O

 1

Q

Q∑
j=1

∣∣∣∣∣ 1

l1/2

l∑
i=1

Yi+j−1

∣∣∣∣∣
3
 = OP

(
1

l3/2

)
,

where we used the fact that 1
Q

Q∑
j=1

∣∣∣∣ 1
l1/2

l∑
i=1

Yi+j−1

∣∣∣∣3 = OP (1) under the assumed conditions, see

for instance the proof of Theorem 2 of Paparoditis and Romano (1992, p. 1994). It follows that

1
Q

Q∑
j=1

∣∣∣∣1l l∑
i=1

wl (i)
l1/2

‖wl‖2
Yi+j−1

∣∣∣∣3 = OP

(
1
l3/2

)
. Similarly by using the result of the proof of Theorem 3

of Paparoditis and Politis (2001), we have that

‖wl‖1 Ȳl,w
l1/2 ‖wl‖2

=
C

l1/2 ‖wl‖2
= Op

(
l

N

)
,
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where we used the fact that C ≡ ‖wl‖1 Ȳl,w = Op

(
l2

N

)
and 1

l1/2‖wl‖2
= Op (l). Then it follows that

Q∑
j=1

E∗
∣∣z∗j ∣∣ 3 =

Q

N

(
l3

N

)1/2(
Op

(
1

l3/2

)
+Op

(
l3

N3

))

=
Q

N︸︷︷︸
→1

 1

N1/2︸ ︷︷ ︸
=o(1)

Op (1) +
1

N1/2︸ ︷︷ ︸
=o(1)

(
l3

N

)3/2

︸ ︷︷ ︸
=o(1)

Op (1)

 = op (1) . (25)

Thus supx∈R |P ∗ (T ∗N ≤ x)−Φ (x/σ∞)| = op (1). Finally, our conclusion follows from the argument in

the proof of Theorem 4.1 of Lahiri (2003). We omit the details here.

Proof of Theorem 2.2. The proof is similar to the proof of Theorem 2.1 in conjunction with Corollary

4.1 of Künsch (1989).

Proof of Theorem 3.1 part a). Here, we follow essentially Gonçalves and White (2002) in our

proof. Recall that from part c) of Lemma 5.1 we have σ̂2l,TBB = Nσ2jack, next using Theorem 3.1 of

Künsch (1989), it follows that

σ̂2l,TBB =
l−1∑

τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
XNt − X̄l,w

) (
XN,t+|τ | − X̄l,w

)
. (26)

Given (26), the rest of the proof contains two steps. In (1) we show that σ̃2N − σ2N
P→ 0, and in (2) we

show that σ̂2l,TBB −
(
σ̃2N + UN

) P→ 0, where σ̃2N is an infeasible estimator which is identical to σ̂2l,TBB

except it replaces XNt − X̄l,w with XNt − µNt in (26). In particular, we de�ned σ̃2N as follows

σ̂2l,TBB =
l−1∑

τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ (XNt − µNt)
(
XN,t+|τ | − µN,t+|τ |

)
. (27)

For step 1, we also have two steps.

i) We show that limN→∞

∣∣∣E (σ̃2N)− σ2N ∣∣∣ = 0.

ii) We show that V ar
(
σ̃2N
)
→ 0.

De�ne ZNt ≡ XNt − µNt and RN,t (τ) = E (ZNtZN,t+τ ). Given the de�nitions of σ̃2N and σ2N , we

can write

E
(
σ̃2N
)

=
N∑
t=1

βN,t,0RN,t (0) + 2
l−1∑
τ=1

υl (τ)

υl (0)

N−τ∑
t=1

βN,t,τRN,t (τ) , and

σ2N =
1

N

N∑
t=1

RN,t (0) +
2

N

l−1∑
τ=1

N−τ∑
t=1

RN,t (τ) +
2

N

N−1∑
τ=l

N−τ∑
t=1

RN,t (τ) .
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Then using the triangle inequality we have,∣∣∣E (σ̃2N)− σ2N ∣∣∣ ≤ N∑
t=1

∣∣βN,t,0 −N−1∣∣RNt (0) +
N∑
t=1

∣∣βN,t,0 −N−1∣∣RNt (0)

+2

l−1∑
τ=1

∣∣∣∣∣vl (τ)

vl (0)

N−τ∑
t=1

βN,t,τ −N−1
∣∣∣∣∣RN,t (τ) + 2

n−1∑
τ=l

N−1
n−τ∑
t=1

|RN,t (τ)|

= o (1) ,

where we used the same argument like Gonçalves and White (2002) to bound the terms in their equation

(A.3). Speci�cally it is due to the assume size conditions on αk and υk and because, |RN,t (τ)| ≤

∆

(
5α

( 1
2
− 1
r )

[ τ4 ]
+ υ[ τ4 ]

)
(see Gallant and White, 1988, pp. 109-110).

To show that V ar
(
σ̃2N
)
→ 0, de�ne R̃N,0 (τ) =

∑N−|τ |
t=1 βN,t,τZNtZN,t+|τ |, and write V ar

(
σ̃2N
)

=
l−1∑

τ=−l+1

l−1∑
λ=−l+1

vl(τ)vl(λ)
v2l (0)

Cov
(
R̃N,0 (τ) , R̃N,0 (λ)

)
. We show that V ar

(
R̃N,0 (τ)

)
= O

(
1
N

)
, which by

Cauchy-Schwarz inequality implies that V ar
(
σ̃2N
)

= O
(
l2

N

)
, since we have

l−1∑
τ=−l+1

l−1∑
λ=−l+1

vl(τ)vl(λ)
v2l (0)

= l2.

Note that we can write,

V ar
(
R̃N,0 (τ)

)
=

N−|τ |∑
t=1

β2N,t,τV ar
(
ZNtZN,t+|τ |

)
+2

N−|τ |∑
t=1

N−|τ |∑
s=t+1

βN,t,τβN,s,τCov
(
ZNtZN,t+|τ |, ZNsZN,s+|τ |

)
≤ 1

Q2

N−|τ |∑
t=1

V ar
(
ZNtZN,t+|τ |

)
+

2

Q2

N−|τ |∑
t=1

N−|τ |∑
s=t+1

Cov
(
ZNtZN,t+|τ |, ZNsZN,s+|τ |

)
+

2

Q2

N−|τ |∑
t=1

N−|τ |∑
s=t+|τ |+1

Cov
(
ZNtZN,t+|τ |, ZNsZN,s+|τ |

)
given that βN,t,τ ≤ 1

Q for all t and τ .

Q2V ar
(
R̃N,0 (τ)

)
≤ KN

{
∆2 +

∞∑
k=1

α
1
2
− 1
r

[ k4 ]
+

∞∑
k=1

υ[ k4 ] +

∞∑
k=1

υ
r−2

2(r−1)

[ k4 ]

}

+ KN

(
|τ |α2( 1

2
− 1
r )[

|τ |
4

] + |τ | v2[ |τ |
4

] + 2 |τ |α
1
2
− 1
r

[ k4 ]
υ

[
|τ |
4

])
.

Thus, using argument similar to that of Gonçalves and White (2002) to bound the terms in their

equation (A.4), it follows that V ar
(
R̃N,0 (τ)

)
≤ K N

Q2 . Hence, V ar
(
R̃N,0 (τ)

)
= O

(
1
N

)
.

For step 2, de�ne SN,1 =
l−1∑

τ=−l+1

υl(τ)
υl(0)

N−|τ |∑
t=1

βN,t,τXNtXN,t+|τ |, thus given (26) and (27), it follows
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that

σ̂2l,TBB = SN,1 +

l−1∑
τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
−X̄l,wXNt − X̄l,wXN,t+|τ | + X̄2

l,w

)
, and

σ̃2N = SN,1 +

l−1∑
τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
−µN,t+|τ |XNt − µNtXN,t+|τ | + µNtµN,t+|τ |

)
.

Then we have σ̂2l,TBB −
(
σ̃2N + UN

)
= AN1 +AN2 +AN3 +AN4, where

σ̂2l,TBB − σ̃2N =
l−1∑

τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ

 −X̄l,wZNt − X̄l,wµNt − X̄l,wZN,t+|τ |
−X̄l,wµN,t+|τ | + µN,t+|τ |ZNt

+µNtZN,t+|τ | + X̄2
l,w + µN,t+|τ |µNt

 ,

by adding and substracting appropriately, we can write

σ̂2l,TBB − σ̃2N = AN1 +AN2 +AN3 +AN4,

where

AN1 = −
(
X̄l,w − µ̄l,w

) l−1∑
τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
ZNt + ZN,t+|τ |

)
,

AN2 =
l−1∑

τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ (µNt − µ̄l,w)ZN,t+|τ |,

AN3 =
l−1∑

τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
µN,t+|τ | − µ̄l,w

)
ZN,t,

AN4 =
l−1∑

τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
X̄2
l,w −

(
µNt + µN,t+|τ |

)
X̄l,w + µNtµN,t+|τ |

)
,

with µ̄l,w =
∑N

t=1 aN (t)µNt. We have that

AN4 =

l−1∑
τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ

 (
X̄l,w − µ̄l,w

)2
+ 2

(
X̄l,w − µ̄l,w

)
µ̄l,w

−
(
µNt + µN,t+|τ |

) (
X̄l,w − µ̄l,w

)
+ µ̄2l,w

−
(
µNt + µN,t+|τ |

)
µ̄l,w + µNtµN,t+|τ |


= UN +

(
X̄l,w − µ̄l,w

)2 l−1∑
τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ

+
(
X̄l,w − µ̄l,w

) l−1∑
τ=−l+1

υl (τ)

υl (0)

N−|τ |∑
t=1

βN,t,τ
(
2µ̄l,w −

(
µNt + µN,t+|τ |

))
= UN +A

′
N4,

where UN =
l−1∑

τ=−l+1

vl(τ)
vl(0)

N−|τ |∑
t=1

βN,t,τ (µNt − µ̄l,w)
(
µN,t+|τ | − µ̄l,w

)
.

The rest of the proof follows closely that for the Theorm 2.1 of Gonçalves and White (2002), however

for completeness, we present the relevent details. We now show that X̄l,w − µ̄l,w = oP
(
l−1
)
. De�ne
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φNt (x) = ωNt, where ωNt ≡
Q∑
j=1

wl(t−j+1)
‖wl‖1

, and note that φNt (·) is uniformly Lipschitz continuous.

Next, write X̄l,w − µ̄l,w = N−1
∑N

t=1 YNt, where YNt = φNt (ZNt) is a mean zero NED array on {Vt}
of the same size as ZNt by Theorem 17.12 of Davidson (1994), satisfying the same moment conditions.

Hence, results follow by using the same argument as in Gonçalves and White (2002). In particular,

by Lemma A.1 of Gonçalves and White (2002)
{
YN,t, F̄ t

}
is a L2-mixingale of size − 3r−2

3(r−2) , and thus

of size −1/2, with uniformly bounded constants, and by Lemma A.2 of Gonçalves and White (2002)

E

(
max1≤j≤N

(∑j
t=1 YNt

)2)
= O (N) . By Chebyshev's inequality, for ε, P

[
l
(
X̄l,w − µ̄l,w

)
> 0
]
≤

l2

ε2Q2E
(∑N

t=1 YNt

)2
= O

(
l2N
Q2

)
= o (1), if l = o

(
N1/2

)
. This implies A

′
N4 = oP (1) ans similarly

AN1 = oP (1), given that we have
l−1∑

τ=−l+1

υl(τ)
υl(0)

N−|τ |∑
t=1

βN,t,τ
(
ZNt + ZN,t+|τ |

)
= OP (l).

To prove that AN3 = oP (1), de�ne YNtτ = ωNtτ
(
µN,t+|τ | − µ̄l,w

)
ZN,t = φNtτ (ZN,t), where ωNtτ ≡

1
vl(τ)

Q∑
j=1

wl (t− j + 1)wl (t− j + 1 + |τ |) with τ < j, and φNtτ (·) is uniformly Lipschitz continous.

Arguing as in Gonçalves and White (2002),
{
YNtτ , F̄ t

}
is a L2-mixingale of size −1/2, with uniformly,

with mixingale constants cYNtτ ≤ K max {‖wl‖3r , 1} which are bounded uniformly in N, t, and τ . Thus,

P

∣∣∣∣∣∣
l−1∑

τ=−l+1

υl (τ)

υl (0)

1

Q

N−|τ |∑
t=1

YNtτ

∣∣∣∣∣∣ ≥ ε
 ≤ 1

Qε

 l−1∑
τ=−l+1

υl (τ)

υl (0)
E

∣∣∣∣∣∣
N−|τ |∑
t=1

YNtτ

∣∣∣∣∣∣


≤ 1

Qε

 l−1∑
τ=−l+1

υl (τ)

υl (0)
E

N−|τ |∑
t=1

YNtτ

21/2


≤ 1

Qε

 l−1∑
τ=−l+1

υl (τ)

υl (0)

K N−|τ |∑
t=1

(
cYNtτ

)21/2
K lN1/2

Q

= o (1)

where the �rst inequality holds by Markov's inequality, the second inequality holds by Jensen's inequal-

ity, the third inequality holds by Lemma A.2 of Gonçalves and White (2002) applied to {YNtτ} for
each τ , and the last inequality holds by the uniform boundedness of cYNtτ . The proof of AN2 = oP (1)

follows similarly.

Proof of Theorem 3.1 part b) Immediate from the proof of part a) of Theorem 3.1.

Proof of Theorem 3.1 part c) Immediate from the proof of part a) of Theorem 3.1.

Proof of Theorem 3.2 part a) The proof follows exactly the proof of Theorem 2.2 in Gonçalves and

white (2002), and therefore we omit the details.

Proof of Theorem 3.2 part b) First note that the assumed conditions are su�cient to ensure

that
√
N (TN − T (F )) →d N

(
0, σ2∞

)
(see part (i) of Theorem 2.2 of Gonçalves and White (2002)).

Therefore, to prove part b) of Theorem 3.2, we just need to show that the WTBB distribution is
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approximately close to Φ (x/σ∞). Note that, we can write

N1/2
(
X̄∗N − E∗

(
X̄∗N
))

= N1/2
(
Z̄∗N − E∗

(
Z̄∗N
))

=

Q∑
j=1

z∗Nj ,

where Z∗Nt ≡ X∗Nt−µ∗Nt, and z∗Nj = N1/2

Q (ZNjuj − E∗ (ZNjuj)), with ZNj ≡ Q
N

(
l∑

i=1

wl(i)
‖wl‖2

ZN,i+j−1 − Z̄l,w
‖wl‖1
‖wl‖2

)
.

Also note that E∗
(
z∗Nj

)
= 0 and that

V ar∗

 Q∑
j=1

z∗Nj

 =
N

Q
σ̂2l,TBB

P→ σ2∞,

by part a2) of Corollary 4.1. Moreover, since z∗N1, . . . , z
∗
NQ are conditionally independent, by the

Berry-Esseen bound, for some small δ > 0 and for some constant K > 0 (which changes from line to

line),

sup
x∈R

∣∣∣P ∗ (N1/2
(
Z̄∗N − E∗

(
Z̄∗N
))
≤ x

)
−Φ (x/σ∞)

∣∣∣ ≤ K Q∑
j=1

E∗
∣∣z∗Nj∣∣2+δ ,

which converges to zero in probability as l→∞, N →∞ such that l = o
(
N1/2

)
. We have

Q∑
j=1

E∗
∣∣z∗Nj∣∣2+δ =

Q∑
j=1

E∗

∣∣∣∣∣N1/2

Q
(ZNjuj − E∗ (ZNjuj))

∣∣∣∣∣
2+δ

≤ 2
N1+δ/2

Q2+δ

Q∑
j=1

E∗ |ZNjuj | 2+δ

= 2
N1+δ/2

Q2+δ

Q∑
j=1

E∗ |ZNj | 2+δE∗ |uj | 2+δ

≤ K
N1+δ/2

Q2+δ

Q∑
j=1

E∗ |ZNj | 2+δ, (28)

where the �rst inequality follows from the Cr and the Jensen inequalities, whereas the second inequality

uses the fact that by assumption E∗ |uj | 2+δ <∞. Next, note that

E

∣∣∣∣∣∣N
1+δ/2

Q2+δ

Q∑
j=1

E∗ |ZNj | 2+δ
∣∣∣∣∣∣ ≤ N1+δ/2

Q2+δ

Q∑
j=1

E
∣∣∣E∗ |ZNj | 2+δ∣∣∣

=
N1+δ/2

Q2+δ

(
Q

N

)2+δ 1

‖wl‖2+δ2

Q∑
j=1

E

∣∣∣∣∣
l∑

i=1

wl (i)ZN,i+j−1 − ‖wl‖1 Z̄l,w

∣∣∣∣∣
2+δ

=
N−(1+δ/2)

‖wl‖2+δ2

Q∑
j=1

E

∣∣∣∣∣
l∑

i=1

wl (i)ZN,i+j−1 − ‖wl‖1 Z̄l,w

∣∣∣∣∣
2+δ

≤ N−(1+δ/2)

‖wl‖2+δ2

Q∑
j=1

∥∥∥∥∥
l∑

i=1

wl (i)ZN,i+j−1

∥∥∥∥∥
2+δ

+
∥∥‖wl‖1 Z̄l,w∥∥2+δ

2+δ

,(29)
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where the �rst inequality follows from the triangle inequality, whereas the second inequality uses the

Minkowski inequality. Under our assumptions,∥∥∥∥∥
l∑

i=1

wl (i)ZN,i+j−1

∥∥∥∥∥
2+δ

≤ maxwl (i)
1≤i≤l︸ ︷︷ ︸
≤1

∥∥∥∥∥
l∑

i=1

ZN,i+j−1

∥∥∥∥∥
2+δ

≤

∥∥∥∥∥∥max
1≤t≤l

∣∣∣∣∣∣
j+t−1∑
i=j

ZN,i

∣∣∣∣∣∣
∥∥∥∥∥∥
2+δ

≤ K

j+l−1∑
i=j

c∈Ni

1/2

≤ Kl1/2,

by Lemmas A.3 and A.4 of Gonçalves and White (2002), given that cNi are uniformly bounded.

Similarly,
∥∥‖wl‖1 Z̄l,w∥∥2+δ = O

(
l1/2
)
, which from (28) and (29) implies

Q∑
j=1

E∗
∣∣∣z∗Nj∣∣∣2+δ = O

(
1

Nδ/2

)
=

o (1), since l1/2/ ‖wl‖2 = O (1) .
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