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Abstract

In this paper, a new resampling procedure, called the wild tapered block bootstrap, is intro-
duced as a means of calculating standard errors of estimators and constructing confidence regions
for parameters based on dependent heterogeneous data. The method consists in tapering each
overlapping block of the series first, then applying the standard wild bootstrap for independent
and heteroscedastic distributed observations to overlapping tapered blocks in an appropriate way.
It preserves the favorable bias and mean squared error properties of the tapered block bootstrap,
which is the state-of-the-art block-based method in terms of asymptotic accuracy of variance esti-
mation and distribution approximation. For stationary time series, the asymptotic validity, and the
favorable bias properties of the new bootstrap method are shown in two important cases: smooth
functions of means, and M-estimators. The first-order asymptotic validity of the tapered block
bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution
of the sample mean is also established when data are assumed to satisfy a near epoch dependent
condition. The consistency of the bootstrap variance estimator for the sample mean is shown to be
robust against heteroskedasticity and dependence of unknown form. Simulation studies illustrate
the finite-sample performance of the wild tapered block bootstrap. This easy to implement alter-
native bootstrap method works very well even for moderate sample sizes.

JEL Classification: C15, C22
Keywords: Block bootstrap, Near epoch dependence, Tapering, Variance estimation.

1 Introduction

The bootstrap of Efron (1979) is a powerful nonparametric method to approximate the sampling
distribution and the variance of complicated statistics based on i.i.d. observations. The failure of
the i.i.d. resampling scheme to give a consistent approximation to the true limiting distribution of a
statistic when observations are not independent has motivated the development of alternative bootstrap
methods in the context of dependent data. As an extension of Efron’s i.i.d. bootstrap to dependent
observations, the moving block bootstrap (MBB) of Kiinsch (1989) and Liu and Singh (1992) can

be used to approximate the sampling distributions and variances of statistics in time series. In order
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to capture temporal dependence nonparametrically, the MBB samples the overlapping blocks with
replacement and then pastes the resampled blocks together to form a bootstrap sample. Based on the
idea of resampling blocks, a few variants of the MBB have been developed, such as the nonoverlapping
block bootstrap (NBB) (Carlstein (1986)), and the stationary bootstrap (SB) (Politis and Romano
(1994)), among others.

For variance estimation in the smooth function model, the MBB and its variants (the so-called
“first generation” block bootstrap methods) yield the same convergence rate of the mean squared error
(MSE), albeit with a different constant in the leading term of the bias and variance expansions; see, e.g.,
Lahiri (1999, 2003) and Nordman (2009). In an attempt to reduce the bias and MSE, Carlstein et al.
(1998) proposed the matched block bootstrap whereas Paparoditis and Politis (2001, 2002) proposed the
tapered block bootstrap (TBB) (one of the so-called “second generation” bootstrap methods). The TBB
involves tapering each overlapping block of the series first, then a resampling of those tapered blocks.
The TBB offers a superior convergence rate in the bias and MSE compared to the “first generation”
block bootstrap methods. The data tapering of the blocks used in the TBB is designed to decrease the
bootstrap bias, and has, as a result, an increased accuracy of estimation of sampling characteristics for
linear and approximately linear statistics. See also Shao (2010a, 2010b) who developed the extended
tapered block bootstrap (ETBB) and the dependent wild bootstrap (DWB) for stationary time series.
The ETBB and DWB can preserve the favorable bias and mean squared error properties of the TBB.

The performance of these bootstrap methods in the presence of nonstationarity is not well under-
stood in the literature. Recently, Nordman and Lahiri (2012) have investigated the properties of some
block bootstrap methods under a specific form of nonstationarity, with data generated by a linear
regression model with weakly dependent errors and non stochastic regressors. In contrast to the sta-
tionarity case, Nordman and Lahiri (2012) show that the MBB, SB, and TBB variance estimators often
turn out to be invalid with general nonrandom regressors. As a remedy, they propose an additional
block randomization step in order to balance out the effects of nonuniform regression weights.

In this paper, we introduce a new resampling method, called the wild tapered block bootstrap
(WTBB), that is generally applicable for dependent heterogeneous arrays. As in Gongalves and White
(2002), the data are assumed to satisfy a near epoch dependent (NED) condition, which includes
the more restrictive mixing assumption as a special case. NED processes also allow for considerable
heterogeneity.

In the case of the sample mean, we found that the WTBB is robust against heteroskedasticity and
dependence of unknown form. We also show that Paparoditis and Politis’s TBB enjoys this robustness
property to heteroskedasticity in this heterogeneous NED context. To the best of our knowledge,
the validity of the TBB method has not yet been studied in heterogeneous context, and with the
degree of dependence considered here. Our results broaden considerably the scope for application
of the new WTBB as well as the TBB in economics and finance, where the homogeneity of data

and the mixing assumption are often a concern. For instance, as shown in Hounyo, Gongalves and



Meddahi (2013) in the context of noisy diffusion models, due to the heterogeneity of high-frequency
financial data, a direct application of the "blocks of blocks" bootstrap method suggested by Politis
and Romano (1992) and further studied by Bithlmann and Kiinsch (1995) fails. To handle both the
dependence and heterogeneity of the data (most often in the form of heteroskedasticity), Hounyo,
Gongalves and Meddahi (2013) propose the wild blocks of blocks bootstrap (WBBB), which combine
the wild bootstrap with the blocks of blocks bootstrap. This procedure relies on the fact that the
heteroskedasticity can be handled elegantly by use of the wild bootstrap, and a block-based bootstrap
can be used to treat the serial correlation in the data. In this paper we used a similar approach.
The WTBB combine the wild bootstrap with the TBB. The WBBB split a pre-specified blocks of
observations into non-overlapping blocks with no tapering. The WTBB differs by using overlapping
blocks and tapering. Our bootstrap method constitutes an alternative to the existing methods. Similar
to the TBB, the WI'BB method involves tapering each overlapping block of the demeaned data first,
then a resampling of those tapered blocks. Unlike the TBB, the WTBB does not resample overlapping
tapered blocks independently with replacement, but apply the standard wild bootstrap to overlapping
tapered blocks in an appropriate way. Our WTBB is intimately related to Paparoditis and Politis’s
(2001) TBB in the same way that Wu’s (1986) wild bootstrap is intimately related to Efron’s (1979)
bootstrap. The favorable bias and mean squared error properties of the TBB over the MBB are also
well preserved by the WT'BB. There are two different interpretations of the WT'BB method, both valid.
One is that the WT'BB can be view as a simple variant of the traditional wild bootstrap. The main
difference from the traditional wild bootstrap is that the data are first tapered in the blocks in an
appropriate way before applying the traditional wild bootstrap on the transformed data. The other
interpretation is that the WI'BB method is akin to the DWB of Shao (2010b). As the DWB, the
WTBB extends the traditional wild bootstrap of Wu (1986) to the time series setting by allowing a
transformation of the auxilliary variables involved in the wild bootstrap to be dependent, hence, the
WTRBB is capable of mimicking the dependence in the original series nonparametrically.

We also generalize the WTBB methodology to cover the case of approximately linear statistics,
and M-estimators. The first order asymptotic validity and the favorable asymptotic properties of the
WTBB are established in these cases for stationary and weakly dependent time series, as in Paparoditis
and Politis (2002).

The remainder of this paper is organized as follows. Section 2 describes the WTBB and its con-
nection to various block-based methods in the context of variance estimation as well as distribution
estimation, and states the consistency of this method under the framework of a smooth function model,
and M-estimators. Section 3 establishes the consistency of the TBB as well as the WTBB for both
variance estimation and distribution approximation of the sample mean when data are assumed to
satisfy a NED condition. The results from simulation studies are reported in Section 4. Section 5
concludes. Technical details are relegated to the Appendix.

A word on notation. In this paper, and as usual in the bootstrap literature, P* (E* and Var*)



denotes the probability measure (expected value and variance) induced by the bootstrap resampling,

d»

conditional on a realization of the original time series. In addition, let “—%" and “—*” denote conver-

gence in distribution and in probability, respectively, and let Op (1) and op (1) denote being bounded

in probability and convergence to zero in probability, respectively. Finally, for o = (aq, ... ,ozd)l e N¢,
let D denote the differentiable operator D% = % on R,
10Ty

2 The wild tapered block bootstrap

In this section, to facilitate a comparison between the WTIBB and other block-based methods, we
restrict our attention to stationary (not heterogeneous) and weakly dependent time series. The more
general setting, which allows for dependent heterogeneous arrays is adopted in Section 3. Suppose
X1,...,Xn are observations from the strictly stationary real-valued sequence {X;},., taking value in
R™ and having mean u = E (X;). Let F' denote the marginal distribution of X;. Suppose the quantity
of interest is T'(F') . Given the observations Xi,..., Xy, the goal is to make inferences about T (F')
based on some estimator Ty = Ty (X1,...,Xyn). In particular, we are interested in constructing a
confidence region for T (F) or constructing an estimate of the variance o3, = Var (\/N TN>, or its
asymptotic limit o2, = A}iinooa?\,. Typically, an estimate of the sampling distribution of T is required,
and the WTBB method proposed here is developed for this purpose.

To define the WIBB, we follow substantially Paparoditis and Politis (2001, 2002). We need to
introduce a sequence of data-tapering windows w, () for n = 1,2,...; the weights w, (¢) are value
in [0,1], with w, (t) = 0 for t ¢ {1,2,...,n}. From the above, it is immediate that [w,|; < n
and wnll, < n'/2, where [[wall, = 3 |wn (8)] and [wnll, = (iuﬂ (t)>1/2. The idea behind the
(multiplicative) application of a tape;i:ég window to data is to gti?/é reduced weight to data near the
end-points of the window. The notion of tapering for time series especially in connection to spectral

estimation is well-studied; see, for example, Brillinger (1975), Priestley (1981) and Kiinsch (1989). Tt

is customary to obtain the sequence of data-tapering windows wy, (-) by means of dilations of a single

wn(t):w<t_0‘5>. (1)

n

function w : R — [0, 1], so that

We will generally follow Paparoditis and Politis (2001, 2002) and assume that the function wy, ()

satisfies the following assumptions.

Assumption 1. We have wy, (t) € [0,1] for all t € R, w,, (t) =01if ¢ ¢ [0,1], and w,, (t) > 0 for ¢ in a
neighbourhood of %

Assumption 2. The function wy, (t) is symmetric about ¢ = 1 and nondecreasing for ¢ € [0, 3] .

Assumption 3. The self-convolution is twice continously differentiable at the point ¢ = 0, where

(wxw) () = 1w (@) w ( + |t]) dz.



The WT'BB algorithm is defined as follows.

Step 1. First, set a block size [, s.t. [ =y € Nand 1 <! < N. Let denote by

N
(t—j+1
X“’:czzznwu 1 = ZZleIIszII X0 Y an ()X

J=11i=1 t=1 j=1

=an(t)
the tapered moving (overlapping) block sample mean, where Q@ = N — [ 4+ 1. Note that
Ei\;la]v(t): 1. Forj=1,...,Q, let

Bjiw = {wl( ) (X — Xiw),

wi (1)
will (

Xjv1— Xiaw)seees
N T

Xjpi-1 — Xz,w)}
denote the jth centered tapered block of [ consecutive observations starting at Tw (”) (X X w) .

Step 2. Generate @) independent and identically distributed random variables whose distribution is
independent of the original sample u1, ..., ug with E (u;) =0 and E (u1)2 =1.Forj=1,...,Q,

multiply all observations within a given block Bj; by the same external random variable u;.

Step 3. Finally, the centered WTBB pseudo-time series {Xt* — Xy, t=1,2,..., N} is the result of
taking the sum of elements of the @) overlapping blocks By of size [ that have the same indices.

This amounts to generate the WTBB pseudo-time series as follows, for t =1,2,..., N, let

Q l .
X — Xy = Z Z <wl (0 (Xi+j—1 - Xl,w)) Lin(i+7—1) )y (2)
2\ 2 il
Q .
- -z (S “W 3)
j=1
= (Xt - Xl,w) N, (4)

where 1{_} is the indicator function.

The WTBB algorithm’s describes above with a general data-tapering function wy, (+) is quite com-
pact. It is helpful to focus on some particular cases of this algorithm in order to gain further under-

standing.

Remark 1. If we let w (t) = 1oy (i.e. no tapering) and [ = 1, then the WTBB boils down to the wild
bootstrap of Wu (1986) exactly as the MBB method of Kiinsch (1989) coincides with Efron’s
bootstrap when the bootstrap block size [ = 1. However we will let [ tend to infinity as N — oo,
since in this way we will asymptotically able to mimick the (weak) dependence in the original
series nonparametrically. The WTBB is intimately related to Paparoditis and Politis’s (2001,
2002) TBB in the same way that Efron’s bootstrap is intimately related to Wu’s (1986) wild



bootstrap. When w (t) = 1)) with 1 <1 < N, given (4) the centered wild untapered block

bootstrap pseudo-time series are generated as follows, for t =1,2,..., N,
(Xt—XLw)%Zz:luj, if te{l,...,1},
X;—Xn={ (Xi—X1u) % 2221 U4 j, it te{l+1,...,Q}, (5)

(Xt_)_(l:w)%zyzilt+lu@*j+lﬂ it te {Q+177N}7
where here X, = & E?:l 22:1 Xiyj-1, since w (t) = 1jg 1.

Remark 2. Obviously we could also use nonoverlapping subseries as in Carlstein (1986). This ap-
proach will correspond to nonoverlapping WTBB. For the convenience of presentation, we as-
sume here that N = kl. Consequently, in step 1 we will consider only k centered tapered
nonoverlapping block of [ consecutive observations, with the main difference that observations
inside the blocks are not centered around th (the tapered moving overlapping block sam-
ple mean) but centered around the tapered nonoverlapping block sample mean th, where
f(hw = Z?Zl 2221 %Xi-i-(j—l)l- Whereas in step 2, we only need to generate k i.i.d. ran-
dom variables uq,...,ur with E(u;) = 0 and FE (u1)2 = 1. Then for j = 1,...,k, we multiply
all observations within the jth centered tapered nonoverlapping block by the same external
random variable u;. This preserves the dependence within each block. Finally, for step 3, the
centered nonoverlapping WTBB pseudo-time series are generated as follows, for j = 1,2,...,k

and i =1,2,...,1,

. B . l1/2 ~

Note that in (6) the “inflation” factor % is necessary to compensate for the decrease of the
2

*

i+(j—1)1
by the window w; (for further details see Paparoditis and Politis (2001)).

variance of the nonoverlapping WTBB observations X 's effected by the shrinking caused

Also note that if we let w (t) = 1jp ;) (i.e. no tapering), the nonoverlapping WTBB is equivalent
to the blockwise wild bootstrap method studied by Shao (2011) in the context of approximation of
the sampling distribution of the Cramer-von Mises test statistic. Recently, Hounyo, Gongalves, and
Meddahi (2013) have proposed a wild blocks of blocks bootstrap method, in the context of noisy
diffusion models. In their setting, observations are not stationary, they are heterogeneous. As a result,
due to some “mean heterogeneity problem” of high-frequency financial data, they propose to center

observations not around the sample mean, but around the blocks sample mean. In particular, their

bootstrap method amounts to resample as follows, for j =1,...,k,and i =1,...,1,
o { Xjrrn+ (Koo — Xjurg) vy, if1<5<k—1, o
FOEDET L X+ (K- — Xja) s if j =k,

where X = 17130 Xy (o

It is well-known that the nonoverlapping blocks based-method is less efficient than the full-overlap



block. In the sequel, we will focus on the (overlapping) WTBB method.
Because in the next subsection we discuss and also link the DWB of Shao (2010b) to the WTBB
method, here we briefly introduce the DWB procedure. Given the observations {Xt}ii 1, the DWB

generates the bootstrap observations according to the equation

X;PVB _ g~ (X, — Xn)nPVE) i 12, N, (8)

N
where the random variables {nlSDWB)} are independent of {Xt}i\i | with E (nt(DWB)> = 0 and

Var <17§DWB)> =1fort = 1,2,...,N. In addition, ngDWB) is a stationary process such that

cov <17t(DWB), nlf,DWB)) =7 <<t - t') /l) , where 7 (+) is a kernel function with [*°_~ (u) e”"*dz > 0

for x € R, and [ is a bandwidth parameter. Here and throughout, we use the superscript (DW B) in
X*(DWB)
t

and nt(DWB) to denote the bootstrap samples and the random variable, respectively obtained
by the DWB.

2.1 The sample mean

In this subsection, to elucidate the connection between the WTBB and other block-based methods,
we investigate the properties of our bootstrap method for the sample mean first. This corresponds to
Ty = Xy and the bootstrap estimator Ty analogue of Ty is given by T, = X}'{, =N-! Zi\il X A

closer inspection of X% suggests that, we can also write the centered bootstrap sample mean as

Q Q
vk v 1 1 * 7%
Xi—Xn=2=) Ziuj=—=> Z; =7, (9)
Q= Q =
J= J=
here 7 — Q (5~ wli) x % lwily
where Pi= N Z; ”wl”2 i+j—1 — NMw leHg , Or as
1 N
Xy —Xn = ¥ ; (X¢ — X)) mts (10)

see Lemma 5.1 in the Appendix for further details. Thus, there are two interpretations of the bootstrap
sample mean, both valid. One is that the bootstrap sample mean X}(, is an average of @) independent
but not necessarily identically distributed components (see equation (9)). According to this viewpoint,
the WTBB is a simple variant of the traditional wild bootstrap (Wu (1986), Liu (1988), Mammen
(1993)), which was originally proposed in the context of cross-section linear regression models subject
to unconditional heteroskedasticity in the error term. The main difference from the traditional wild
bootstrap is that the data are first tapering in the blocks in an appropriate way before applying the
traditional wild bootstrap on the transformed data. {Z; };‘.’2:1 are not independent because they rely on
many common observations of the original data {Xt}ii 1- However, each observation Z; is a particular
linear combination of all of the original data, as we show, it contains all the relevant information

on data dependency required for inference on Xpy. The advantages of tapering were pointed out in



detail in Kiinsch (1989) in connection with his proposal of a tapered block jackknife. Paparoditis and
Politis (2001) introduce the TBB method in the bootstrap literature. As in Paparoditis and Politis
(2001), the values towards the block endpoints are downweighted in the WTBB procedure. The defined
above incorporates the same notion of tapering. Also note that when w (t) = 1j9 1], then the centered
bootstrap sample mean as defined in (9) shares with Inoue’s (2001) simulation based-method, the
fact that the same draws of the random variables {ut}fQ: , are used for all observations within each
overlapping block of size [. This preserves the dependence within each block, in order to properly
mimic the long-run variance.

The other interpretation is that the centered bootstrap sample mean is the average of N dependent
and heteroscedastic distributed components (see equation (10)). According to this viewpoint, the
WTBB is akin to the DWB, which is recently proposed by Shao (2010b) for stationary time series. As
the DWB, the WTBB extends the traditional wild bootstrap of Wu (1986) to the time series setting
by allowing the auxilliary variables {nt}t]\; 1 (which are a transformation of {ut}?: 1) involved in the
wild bootstrap (see equation (4)) to be dependent, hence, the WTBB is capable of mimicking the
dependence in the original series nonparametrically. Similar to the DWB, the dependence between
neighboring observations X; and X,/ are not only preserved when the indices ¢ and t are in the same
block as the block-based methods. Whenever |t —t

common undesirable feature of block-based bootstrap methods is that if the sample size N is not a

<l, X} and Xt*, are conditionally dependent. A

multiple of the block size [, then one must either take a shorter bootstrap sample or use a fraction of
the last resampled block. This could lead to some inaccuracy when the block size is large. In contrast,
for the WTBB, the size of the bootstrap sample is always the same as the original sample size. It is
worth emphasising that despite the fact that the DWB shares some appealing features with the WITBB,
the latter is not a particular case of the DWB method. For instance, unlike the DWB, the random
variables {Wt}iip here are not stationary even in the simple case of no tapering (i.e. w(t) = 1[071]),
and observations are centered around X, and not around Xy, (see the RHS of (4) and (8)). The
WTBB is very easy to implement, and require only as external random variable a simple draw from
an i.i.d. distribution as for the plain wild bootstrap.

Let 6ZWT pp denote the WTBB estimate of the asymptotic variance o2, based on block size I. A

straightforward analytical calculation (see Lemma 5.1 in the Appendix for details) shows that

-2 Q .o

GwTBB = NOULTBB (11)
) L et . N\ . .
where 67 rpp = oa ng <ZZI wy (1) Xipj—1 — |lwilly XLw) is the TBB estimate of the asymptotic

variance o2, given by Paparoditis and Politis (2001). This implies that the WTBB method preserves the
favorable bias and mean squared error properties of the TBB. These favorable asymptotic properties of

the WT'BB are quantified in the following subsection of a large class of approximately linear statistics.



2.2 Smooth function model

Our aim in this subsection is to show the asymptotic properties of the WIT'BB under the framework of
smooth function model. In particular we derived the favorable bias and mean squared error properties
of the WTBB, and establish its consistency distribution approximation. Recall that the applicability
of the block-based bootstrap methods is limited to linear or approximately linear statistics that are
root-IN consistent and asymptotically normal (see for e.g. Shao (2010a)). Tn = Tn (X1,...,XnN) is

said to be approximately linear in a neighborhood of F, if it admits the expansion

N
Ty =T(F)+ N> IF (X, F)+ Ry,
t=1

where the remainder term Ry is appropriately small and IF (X¢, F') is the influence function defined

as follows

1 (o) — i LU= F o) ~T(F)

e—0 €

where J, representing a unit mass on point x (see e.g. Kiinsch (1989)). In practice, IF (X, F) is
unknown, but can be replaced by its empirical counterpart IF (X, pn), where py = Zi\; 0x, is the

empirical measure. Under suitable conditions, we have

N
Var (\/NTN> = N"War (Z IF (Xt,pN)) +o(l).

t=1
Then we can estimate Var (\/NTN> by applying the WTBB procedure to IF (X, pn). In fact,
Paparoditis and Politis (2002) proposed to apply the TBB to I F (X}, pn). However, as pointed out by
Shao (2010a), this implicitly assumed that IF (X3, py) is known once we observe the data. This is not
necessarily the case in practice. As a remedy, Shao (2010a) propose to taper the random weights in the
bootstrap empirical measure. Here, to see whether the WTBB is applicable to the approximately linear
statistics, we follow Hall and Mammen (1994) and interpret the WI'BB in terms of the generation of
random measures. The bootstrapped measure p}, (corresponding to the WTBB) can be considered as
a random distribution with weights at the points X1,..., Xx. Specifically, we can write

N
1 _
PN = NZ(UH’ 1 —an (t)7n) 6,
t=1

where iy = N~ SOy, with {n;}Y| are random variables satisfying equation (3), ay (t) = Z?:l %,
1

and note that SN ay (t) = 1. Hence in the case where T (F) = [ xdF, the foregoing formulation
amountsto Ty = Xy and T (pn) = N1 Zi\il (e +1—ayn (t)7n) Xy = Xy+N1 Zi\il (Xt — th) N,
which coincides with the bootstrapped sample mean under the definition in (10). Note that, for more
general nonlinear statistics, it may be difficult to obtain bootstrap samples, because p}; is not a valid
probability measure. However, for a large class of statistics, such as smooth functions of means, the

empirical influence function is known. In this case we can apply the WIBB to IF (X, pn) . For this



reason, we follow Hall (1992) and Lahiri (2003) and we restrict our attention to the “smooth function
model”. This framework is sufficiently general to include many statistics of practical interest, such as
autocovariance, autocorrelation, the generalized M-estimators of Bustos (1982), the Yule-Walker esti-
mator, and other interesting statistics in time series. Consider the general class of statistics obtained

by functions of linear statistics, i.e. let

N
Ty = f (N—l > ¢ (Xt>> : (12)
t=1

for some functions f : R — R, and ¢ : R™ — R?. Let V (z) = {0f (z) /Ox1,0f (z) /Oxa,...,0f (v) /Gacd}/
be the vector of first-order partial de;rivatives of f at . Note that the empirical influence function
IF (X, pn) =V (N_l SN (Z)(Xt)) (gf) (X)) - NIV, qb(Xt)) , and is known once the data are

observed. Consider now the new series
Yi=I1F (X4, pn) fort =1,2,... N,

note that a more correct notation for Y; would be Y; x but no confusion arises with the simpler notation
Y;. Our proposal is to apply the WTBB algorithm to Y;. Let denote by {Y;*,t =1,2,..., N} and Y3 =
N1 th\il Y;* the corresponding WTBB pseudo-time series and WTBB sample mean, respectively.
Recall that under some suitable conditions, we have VN (I'y — T (F)) =% N (0,02). The sampling
distribution of v/N (Ty — T (F)) can be approximated by using, N1/2 (Y —E*(YR)).

To state our results we need a smoothness assumption on the function f.

Assumption 4. The function f is differentiable in a neighborhood of E (¢ (X;)) that is, Ny =
{zeR?: ||z — E(¢(Xy))|y < €} for some e > 0, D lal=1 IDf (E (¢ (X¢)))| # 0, and the first

partial derivatives of f satisfy a Lipschitz condition of order s > 0 on Ny.

As usual, we let ax (k) = supgero BeFX) |P (AN B)— P(A)P (B)|, be the strong mixing coeffi-
cients, where }'900,

(see e.g. Rosemblatt (1985)).

and F° are the o-algebras generated by {X,,,n < 0} and {X,,,n > k}, respectively

Theorem 2.1. Assume that the function f satisfies the smoothness Assumption /. Also assume that
equation (1), Assumptions 1-8 hold and for some 6 > 0, E (|IF (X, pN)\6+5> <00, Y kKlax (k)é/(ﬁw) <
0, E(|¢j (Xt)\2+‘5) < o0 forj =1,2,....d, and iy, = E* (|u1\2+5) < o0; recall that ¢ (z) =

(61 (x),..., P (1:))/ Ifly — 00 as N — oo such that Iy = o (N/3), then,

a) The bias and the variance of &Z%WTBB are respectively given by

E (6twrpp) — 0% =T/ +0(1/1?), and (13)
o Q) - l
Var (6iwrpp) = N Var (67rpp) = AN +o(l/N), (14)

10



where the asymptotic variance of Ty is given by

+o00o
ol =Y Rir(k),
k=—oc0
and Rip (k) = cov(IF (X, F),IF (Xy, F)). The bias and variance constants are calculated to
be
” 00 1 2
T = (wxw) (0) Z k2Rrp (k), and A = 201010/ (U)L)Z(x)dx.
2(wxw)(0) £~ -1 (w*w) (0)
b) In addition if % > 0, we have that
sup |P* (VI (Vi — B (V) < ) = P (VN (Ty = T (F)) < x)| P, (15)

zeR

Part a) of Theorem 2.1 shows that the WTBB method shares with the TBB its favorable bias
and mean squared error properties. The bias of &fWT pp is of order O (1 / l2), whereas the untapered
block bootstrap results is an estimator of o2, of bias O (1/1) . Tt also follows that the MSE of estimator
6£WTBB is of order O (1/1*) + O (I/N). To minimize it, one should pick ! proportional to N5 in
which case MSE (&ﬁWTBB) =0 (N_4/5) which is a significant improvement over the O (N_2/3) rate
of the “first generation” block bootstrap methods. Part b) provides a theoretical justification for using
the bootstrap distribution of VN (Y3 — E* (Y)) to estimate the distribution of VN (T — T (F)).

2.3 M-Estimator

M-estimation is a widely used technique for statistical inference. In econometrics, M-estimators are
a broad class of estimators, which are obtained as the minima of sums of functions of the data. The
aim of this subsection is to show the asymptotic validity, the favorable bias and mean squared error
properties of the WT'BB for M-estimators. These statistics are often approximately linear and are

defined implicitly as solutions of an equation such as

N
Y W (XyTn) =0, (16)
t=1
where the function v satisfies conditions strong enough to ensure that
VN (T — T (F)) =% N (0,62, (17)

a prime example of an M-estimator is the maximum likelihood estimator (MLE). To get some results
on the order of magnitude of the bias and variance of the WTBB in the case of M-estimators, we
require some technical conditions; to state them, let K be a positive constant, and U a (fixed) open
neighborhood of T' (F).

Y (r;u) < K and ‘wl (m,u)‘ < Kforallz e Rand u e U, (18)
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where ¢ (z;u) = % (x;u).

/

O (ziur) — (m;uz)‘ < K |ug — ug| for all z € R™ and uy,uz € U, (19)

E (v (Xs T (F))) #0. (20)

Under the above conditions as in Paparoditis and Politis (2002) the following theorem holds true.

Theorem 2.2. Assume the set-up of equation (16) where the function v is such that equations (17)-
(20) are satisfied. Also assume that the function f satisfies the smoothness assumption 4. Also
assume that equation (1), Assumptions 1-3 hold and for some § > 0, E (|IF (Xt,pN)\6+5> < 0,
% kax (k) < oo and pf = E* (yu1|3) < oo Ifly — o0 as N — oo but with | = o (N'/3),
then, equations (13)-(15) hold true.

3 Dependent heterogeneous arrays

In practice, econometricians used data that are typically quite complicated, mixing is too strong a
dependence condition to be broadly applicable (see, e.g., Andrews (1984) for an example of a simple
AR(1) process that fails to be strong mixing). In this section we adopt the framework of Gongalves
and White (2002), which allows for general dependence conditions and also heterogeneity in data.
Suppose {Xn¢, N,t =1,2...} is a double array of not necessarily stationary (can be heterogeneous)
random variables defined on a given probability space (2, F, P) and NED on a mixing process {V;}.
Let unt = E(Xn¢) fort =1,2,--- , N, and let jiy = N~! th\il 1yt be the parameter of interest to be
estimated using the sample mean Xy (in the sequel, we will focus on the mean). Following Gongalves
and White (2002) we have established the conditions ensuring the validity of the TBB as well as the
WTBB for the sample mean of (possibly heterogeneous) NED functions of mixing processes. We define
Xne = B F (X, =
0 as k — oo. Here, || Xpnefl, = (E|XneP)Y? is the L, norm and EFF () = F (\ffj’:), where
ffi’,]: =0 (Vik, ..., Virk) is the o-field generated by Vi, ..., Vigg. If v = O (k*a*‘s) for some 6 > 0,

we say {Xn¢} is NED of size —a. We assume {V;} is strong mixing. The strong mixing coefficients

{Xn:} to be NED on a mixing process {V;} if E (X7,) < oo and vy = supy, ‘

are ay = Supy, SUP{aerm  BeFe, ) |P(ANB)— P (A)P(B)|, and we require o, — 0 as k — oo at an
appropriate rate.

Because in this section we also establish the validity of the TBB method for the sample mean
when data are assumed to satisfy a NED condition, here we briefly introduce the TBB procedure of
Paparoditis and Politis (2001). For a fixed block size [, s.t. | =y € Nand 1 <1 < N, let denote
by Bj; = {Xnj,..., XN jti—1} be the jth block, j = 1,...,Q = N — 1+ 1. The number of blocks
in the bootstrap sample is denoted by k = |N/I]. For the convenience of presentation, we assume

that N = lk. The TBB consists of two steps: (1) let Io,...,Ir—1 be ii.d. random variables uniformly
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distributed on the set {1,2,...,Q}; and (2) for m =0,1,...,k — 1, let
l1/2

«(TBB) .
.
) Tl

N,ml+i — (XN,Im+i—1 — XN) ,i=1,...,L (21)

Here and throughout, we use the superscript (T'BB) in X;(Zfﬁ)

obtained by the TBB. When w (t) = 1jg 1}, the TBB reduces to the MBB. Note that the TBB uses the
same block resampling scheme as for the MBB method, but each resampled MBB block is replaced by

to denote the bootstrap samples

a tapered version. In order to state our results, we follow Gong¢alves and White (2002) and make the
following assumption to establish the validity of the TBB and the WTBB methods in this heterogeneous
NED context:

Assumption 5.
a) For some r > 0, [ Xn¢ll5, <A <ooforall Nt =1,2,...

b) {Xn:} is near epoch dependent (NED) on {V;} with NED coefficients oy, of size —%; {V;} is

an a-mixing sequence with oy of size _7«2_77«2.

As Gongalves and White (2002) pointed out, we also found in Theorem 3.1 below that under
arbitrary heterogeneity in { X} the TBB variance estimator 62T pp is not consistent for o%;, but for
012\, + Up. The bias term Uy is related to the heterogeneity in the means {un:} and can be interpreted
as the TBB variance estimate of the scaled sample mean \/N,a’;éTBB) = N-1/2 21{\;1 M}k\gBB) that
would result if we could resample the vector time series {un:}. We follow Gongalves and White (2002)
and call {,u}‘étTBB)} the “resampled version” of {yin+} . The variance o%; can be easily obtained by using
the TBB variance &Z%T pp under some homogeneity condition. The following Lemma and its corollary

provide the theoretical justification.

Theorem 3.1. Assume {Xn¢} satisfies Assumptions 1-8 and Assumption 5. If Iy — o0 as N — oo
such that Iy = o (Nl/Q), then,

a) &ZTBB — (0% +Un) 5 0, where Uy = Var* (N_1/2 Zi\il ,uj\;;rBB))

-1

N—|7|
b) Uy = Z%; > Bnr (Nt — ) (BN g4ir) — Fiw)
T=—I+1 t t=1

where vy (1) = SN wy (i) wy (6 + 7)), e = SN an (8) pve, and

Brtr = st gt i (t = + 1) wy (t = j + 14 |7]) with 7 < j.
~9 9 P .
c) Girpg —on — 0, aslimy oo Uy = 0.

Thus, the condition limy_,oc Uy = 0 is the homogeneity condition on the mean, analogous condi-
tions is given by Liu (1988) and by Gongalves and White (2002). To ensure this condition, one can for

example suppose that
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Assumption 6 N~! Zi\il (Nt — ﬂN)2 =o0 (l&l) where [y = o (NI/Q) .

Assumption 6 amounts to Assumption 2.2 in Gongalves and White (2002). As they explain, this
assumption is rather general allowing for breaks in mean. See Gongalves and White (2002) for particular
examples of processes that satisfy Assumption 6.

The following consistency result holds under Assumptions 1-3, Assumptions 5-6 and is an immediate

consequence of the previous Theorem 3.1.

Corollary 4.1. Assume {Xy;} satisfies Assumptions 1-3, Assumptions 5-6. If [y — oo as N — oo
such that [y = o (NI/Q), then,

) 9 P
a) Sirpp — ON — 0.
52 2 £ . 52 _ Qp2 Q
b) 6} wrpp — on — 0; recall that 67y rpp = F0ippp and § — 1 as N — ooc.

This result extends the previous consistency results on &%T g by Paparoditis and Politis (2001) as
well as our new estimator &£WT pp (when the statistics of interest is the sample mean), for stationary
mixing observations to the case of NED functions of a mixing process. In particular, Corollary 4.1
contains a version of Theorem 1 and Theorem 2 of Paparoditis and Politis (2001) and our Theorem
2.1 as a special case, when {X,} is a stationary a-mixing sequence, under the same moment conditions
and weaker a-mixing conditions, but under the stronger requirement that [y = o (N 1/ 2) instead of
INn = o(N). Here we show that the variance of &zTBB and 6127WTBB are O (%), instead of the previous
sharper result O (%) when data are stationary, which explains the loss of Iy = o (V).

The next theorem establishes the first order asymptotic validity for the TBB and the WTBB under
general dependence conditions. As in Gongalves and White (2002), we require a slightly stronger

dependence condition than Assumption 5.b). Specifcally, we impose:

Assumption 5.b’) For some small § > 0,{Xxy¢} is Loys-NED on {V;} with NED coefficients vy of

2(r—1) . (240)r
r—2 7 r—2 °

size — {V4} is an a-mixing sequence with ay, of size —
The next theorem states the consistency results for the TBB as well as the WITBB.

Theorem 3.2. Assume {Xni} satisfies Assumption 5-6, strengthened by Assumption 5.b°). Also

assume equation (1), and Assumptions 1-8. If Iy — oo as N — oo such that Iy = o (Nl/z), then
a) Sup,cx ‘P* (Nl/2 (XjéTBB) _ B (X]*V(TBB))) < x) — P(NY2(Xy — iy) < x)‘ —op(1).

b) sup,cr ’P* (N1/2 (Xy—E*(Xy)) <a)-P (Nl/2 (Xn —in) < x)} = op (1), if for any 6 > 0,
E*‘Uj‘QJr(S < 00

Theorem 3.2 justifies using the TBB as well as the WTBB to build asymptotically valid confidence

intervals for (or test hypotheses about) fiy, even though there may be considerable heterogeneity.
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Part al) of Theorem 3.2 is an extension of Theorem 3 of Paparoditis and Politis (2001) to the case of
dependent heterogeneous double arrays of random variables, where the stationary mixing assumption
is replaced by the more general assumption of a (possibly heterogeneous) double array near epoch
dependent on a mixing process. Thus here, we allow for more dependence and heterogeneity in the
data. Even if part a) of Theorem 3.2 states results under the same assumptions as Gongalves and
White (2002), note that this result also can be seen as a generalisation of Gongalves and White’s
(2002) results for the MBB method. Since, the MBB is a particular case of the TBB method.

Up to this point, we have justified the consistency of the WTBB for distribution and variance
approximation under the framework of the smooth function model for stationary (not heterogeneous)
and weakly dependent time series. Whereas for the sample mean we show the consistency of the TBB
as well as the WTBB for distribution and variance approximation under a wide class of data generating
processes, the processes near epoch dependent on a mixing process.

A natural question is whether the WTBB distribution can offer the second-order correctness, that
is better than normal approximation. If the external random variables {ut}tQ:l, in addition to having
mean 0 and variance 1, also has its third central moment equal to 1, we conjectured that the WITBB
would share with the Wu’s wild bootstrap and block-based bootstrap methods the property of higher-
order accuracy after studentization/ standardisation and under some additional regularity conditions,
although a rigorous proof is well beyond the scope of this paper. The proof of this claim requires the
development of valid Edgeworth expansions for the WI'BB distribution (see for example Lahiri (1991)
or Gotze and Kiinsch (1996)). Here we follow Paparoditis and Politis (2001, 2002) and merely give
an informal justification of the superiority of the unstudentised WTBB distribution estimator over its
block bootstrap counterpart.

Note that the Berry-Essen bound (25) given in the proof of part b) of Theorem 2.1 reveals that not
only equation (15) is true, but in addition, choosing [ proportional to N1/5 it follows that

sup | P* (m (Vi — B* (V})) < x) _p (\/N (Ty — T (F)) < a:)\ — Op (N_1/2> L 22

z€R

Recall that the untapered block bootstrap analog of (22) would have a RHS of order Op (N_1/3) which
is must worse. More interessing the TBB analog of (22) (cf. equation (16) of Paparoditis and Politis
(2002)) would have a RHS of order Op (N~2/%) which is must worse than Op (N~/2) for the new
WTBB method.

4 Simulation studies

In this section, we study via simulations the finite-sample performance of the WIBB compared to the
MBB, TBB, and DWB methods for the sample mean. Performance is measured in terms of coverage
probability of two-sided 95% level intervals. In the simulation studies, we considered two different

models generating the observations, namely:
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Model 1. Nonlinear autoregressive model, NAR,
X = psin (Xy—1) + v,
for t € Z, where {v;} i.i.d. N (0,1), with p € {0.2,0.6}.
Model 2. Heteroskedastic autoregressive AR(1),
Xy = pXi_1+v, and vy = 540,

for t € Z, where {v;} ii.d. N (0,1), with p € {0.2,0.8}. Here {s;} denotes a sequence of real
numbers that might be regarded as seasonal effects. Throughout, we choose {s;} to be the infinite

repetition of the sequence {1,1,1,2,3,1,1,1,1,2,4,6}.

Note that, among the block-based bootstrap methods, the theoretical advantage of the TBB over
the MBB has been confirmed for model 1, (in particular, with p = 0.6) through simulation studies
by Paparoditis and Politis (2001). For this reason, it seems natural to study the new WTBB method
in this case. We also consider model 2, in order to investigate the performance of the WI'BB when
there are dependent "strongly" heterogeneous data. This model is used by Politis Romano and Wolf
(1997) in another context for heteroskedastic times series. Note that in this model, the innovations are
independent but heteroskedastic. Then model 2 generates a weakly dependent, heteroskedastic time
series.

We generate repeated trials of length N = 200 from these processes. The block sizes range from
I =1tol = 40. In order to generate the TBB as well as the WT'BB observations we need a data-tapering

window function w (-). We define the following family of trapezoidal functions as

[
1, if telel—
trap _ ) ) )
we ™ (1) = toif pel—el], (23)
0, if t¢]0,1],

where ¢ is some fixed constant in (0,1/2]. To make the comparison fair, in our simulation, we took
¢ = 0.43, since it was found in Paparoditis and Politis (2001) that w (t) = wg 4 (t) offers the optimal
(theoretical) MSE provided we fix the covariance structure of a time series. We also use 7 (t) =
<w6fg xwy ¥ ) (t)/ (wéﬁlg x wh P ) (0), where ~ (-) is the covariance function of the external random
variable n(PW5) used to generate the DWB observations. With this choice of the kernel function for
the DWB, the favorable bias and MSE properties of the TBB variance estimator over other block-

N

based counterparts in the mean case automatically carries over to the DWB. We used {nt(DWB)}
t=1

multivariate normal as in Shao (2010b), whereas to generate the WIBB data we use three different
external random variables.

WTBB1 u; ~ i.id. N (0,1), implying that E*(u;) = 0, E*(u3) = 1, E*(u3) = 0 and E*(u]) = 3.
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WTBB2 A two point distribution u; ~ i.i.d. suggested by Mammen (1993) such that:

{ L5 with prob p= V51
uj =

2V
with prob 1—p

for which E*(u;) =0, E*(U§) = E*(Uj) =1and E*(u?‘) = 2.

WTBB3 The so-called Rademacher, i.e. the two point distribution u; ~ i.i.d. proposed by Liu (1988)

such that:

e 1, with prob p:%
77| -1, with prob 1—-p ’

for which we have E*(u;) = 0, E*(u?) =1, E*(U?) =0 and E*(U?) =1

Note that all three choices of u; are asymptotically valid when used to construct the unstudentized
bootstrap intervals or to estimate o4, since the conditions E*(u;) = 0 and E*(ujz) = 1 are satisfied. In
the case of independent but not necessarily identically distributed observations, the further condition
E* (uj) = 1 (satisfied by WTBB2) is often added as a necessary condition for refinement for the tradi-
tional wild bootstrap. The Rademacher distribution (WTBB3) also satisfies the necessary conditions
for refinements in the case of unskewed disturbances. Davidson and Flachaire (2007) advocated the
use of the Rademacher distribution.

For each time series and each block size, we generated 999 MBB, TBB, DWB and WTBB pseudo-
series to obtain the bootstrap-based critical values. Then we repeated this procedure 1000 times and
plotted the empirical coverage of nominal 95% symmetric confidence intervals as a function of block
size in Figure 1. For all bootstrap methods, finite sample performance is far from perfect (especially
for model 2) and gets worse as the degree of dependence in the data increases. Model 2 exhibits overall
larger coverage distortions than model 1. For the WI'BB method, in our simulations, none of the three
resampling schemes (i.e., WTBB1, WTBB2 and WTBB3) clearly dominates the others.

Starting with model 1, as a first observation (cf. Figure 1 (a) and (b)), it is striking how close all
bootstrap methods (MBB, TBB, DWB and WTBB) analyzed here are in terms of empirical coverage
rate for small block size (for N = 200, with [ < 8). As [ increases, the difference may be considerable
between the WTBB and the MBB. But the two methods DWB and WTBB are still close, the difference
is less than 2.5 percentage point in most cases, with the WI'BB noticeably superior to the TBB. For
p = 0.6, the largest coverage rate of the WIBB is 93.2% given by the block size | = 9, whereas it
is 91.3% for the MBB with the block size | = 11, instead of the desired nominal 95%. The empirical

coverage distortions seem to increase with increases in [ for [ > 15.
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Turning now to the analysis of model 2, Figure 1 (¢) and (d) shows that finite-sample coverage
distortions are slightly larger. It appears that the advantage of "tapering" over "no-tapering" methods
is noticeable for moderately large block sizes. Indeed, the MBB seems to perform very poorly compared
to bootstrap schemes using tapering (i.e., TBB, DWB, and WTBB). In particular, for p = 0.8, the
MBB-based intervals undercover consistently for large [. It turns out that this kind of heteroskedasticity,
generated by model 2, had moderate impact on the performance of bootstrap methods (i.e., MBB, TBB,
DWB, and WTBB) studied here. The performance of the WTBB is slightly better than that of the
DWB, for large block size. Based on the foregoing simulations results, the WI'BB, DWDB and the TBB
are the three best bootstrap methods we would recommend in the case of "strongly" heteroskedastic
times series. No formal theoretical results exist that may justify the use of DWB in this context.

In the foregoing simulation studies, we do not consider the issue of bandwidth selection, which is very
important in practice. In view of the connection between the TBB and WTBB, in particular &ZQ’WT BB =
%&Z%TB p» for MSE-optimal block size, the practical block size choice suggested by Paparoditis and
Politis (2002) is expected to work for the WTBB. However, the optimal block size for MSE may be
suboptimal for the purpose of distribution estimation; see Hall, Horowitz and Jing (1995). We will not

pursue this approach further here. We leave this analysis to future work.

5 Concluding remarks

This paper proposes a new bootstrap method for time series, the WTBB, that is generally applicable to
variance estimation and sampling distribution approximation for the smooth function model. Within
the framework of the smooth function model, we show that the WTBB is asymptotically equivalent to
the TBB, which outperforms all other block-based methods in terms of the bias and MSE. Computa-
tionally, it is very convenient to implement the new WTBB method. In particular, the choice of the
external random variable is very flexible, as for the plain wild bootstrap.

In the case of the sample mean of dependent heterogeneous data, we establish the first order asymp-
totic validity of the WTBB as well as the TBB. In particular, we show that the WTBB and the TBB
variance estimators for the sample mean are consistent under a wide class of data generating processes,
the processes near epoch dependent on a mixing process. Finally, simulation studies demonstrate that
the WTBB performs well even for moderate sample sizes and in most cases outperforms other bootstrap
procedures that take autocorrelation into account. It merits considerable further study.

Simulation evidence also indicates that the DWB seems to be valid for dependent heterogeneous
data. We did not attempt to show the theoretical validity of the DWB for dependent heterogeneous
arrays. We plan on investigating this issue in future work. Another promising extension is to study
the higher-order accuracies of the TBB, DWB, and WTBB methods.
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Appendix
Lemma 5.1. Let {X/,t=1,2,...,N} be a sequence of the WTBB pseudo-time series, we have that

a) X;{, — Xy = % Zi\il (Xt — lew) ne, where ny = Z Mu]

lTwill

ok v 1 _ 1 * — 7% \ J|wi ]
b) Xy = Xn =g 2 Zjuj = g 3. Z = Zg, where Zj = <Z Tl Xits—1 = Xlwﬁi)

n—l+1 / 1 B 2
where a-l2,TBB = NO_?]ack = %lelﬂg Zl (lel (Z) XiJrj*l - leHl Xl,w) -
j=1 \i=

Proof of Lemma 5.1 part a). Result follows directly given equation (4) and the definition of X}.
Proof of Lemma 5.1 part b). Given equation (4) and the definition of X%, we have that

N
_ _ 1 _
Xy—Xn = =) (Xe—Xiw)m

Given that w; (j) =01if j ¢ {1,2,...,1}, we can write

Q l .
- 1 wy (1) -
G-y = 3 (S a5
j=1 \i=1 ""tl2
! . I .
1 wy (4) 5 wy (4)
N ; (; lwilly ™ w; lwlly )
Q l .
1 wy (i) o llwilly
= _ X+_1 - ){l7 u‘,
N; (; il wnlly )

it follows that

Q l .
Xt X = 1 Q wl(l)X_ X [[wily
N N = QZN Z i+j—1 l,w Uj
i=

= < [Jwll [l
=Z;
12 .
= Q;Zuj ZZ
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Proof of Lemma 5.1 part c¢). Given part b) of Lemma 5.1, we can write

Var* (\/NXX,) = Var® (\/NZ};)

N & N &
= — ZV@T* (Zjuj) = =5 ZZJZVa'r* (uj)
Q& QL
j= j=
C (g Y

=1

Q l 2
Q1 1 . ~
=N 3O D wn() Xiwjr = llwnlly X | (24)

N2 A2
=No3, k=% BB

!
where |Jwy||; Xiw = Q Z Z 1 (i) Xitj—1, and 02, is the tapered jackknife variance estimator defined
1:=1

in Kiinsch (1989, p. 1220)
Proof of Theorem 2.1 Part a). Results follow respectively from Theorem 2.1 of Paparoditis and

Politis (2002) in conjunction with part ¢) of our Lemma 5.1 since 67755 = %&l TBB> % — 1 and
N

under our assumed conditions the variance of the linearized statistic N=! >~ I'F (X4, py) approximates
i=1

well the variance of the nonlinear statistic Tl .

Proof of Theorem 2.1 Part b). The proof of this result follows closely that of equation (10)

of Theorem 2.1 of Paparoditis and Politis (2002). First note that the assumed conditions are suffi-

N
cient to ensure that the statistic N1 Y ¢ (X;) is asymptotically normal at rate v/ N. Thus a Tay-

lor expansion of f around E (¢ (X;)) confirms that /N (Ty — T (F)) —¢ N (0,0%). Therefore,
to prove part b) of Theorem 2.1, we just need to show that the WTBB distribution is approxi-

mately close to ® (z/0), where @ () denotes the standard normal distribution function. Note that

_ _ Q
N1/2 (Y —E*(Y})) = Zl ', where 27 = NQ/2 (Zju; — E* (Zjuj)) . Also note that E* (zj) =0 and
J:

> z | = al WTBBR A o2, by part a) of Theorem 2.1. Moreover, since 27, ... ,2¢ are condi-

tionally independent, by the Berry-Esseen bound, for some small § > 0 and for some constant K > 0

(which changes from line to line),

Q
sup [P* (N2 (V5 = B (V) < @) ~@ (/o) < K3 B |27
z€R j=1

*

To check the Berry-Esseen conditions, we can bound Z E* |2*| 3 which converges to zero in probability

Jj=
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as | — 0o, N = oo such that [ = o N1/3). Indeed, we have that

Q
Y B =
j=1

~—~

3

N1/2 .
(Zju; — E* (Zjuy))

Q

N32 Q . N3/2 @ \ ,
< 2 ZE*\ZW 25 ZE*\Z\ E* Juy®,

E*

H'M@

7j=1

where the inequality follows from the Cr and the Jensen inequalities. Given the definition of Z; =

(Z mlL i1 — Yiw H ll) , and the fact that by assumption E* |u;|3 < oo, we can write
s N |
2T < K g Zuw o T
< Q<>1/2 sz ) 1 3 MB
= Aylw My, 97 07 fa
Also note that, we can write
3

1 2

1 8 1 3 1 @ !
@Z Z Yipj—1| = @Z Z i+j—1
j=1 =1 Jj=1 =1

In the above we follow the proof of Theorem 3 of Paparoditis and Politis (2001) and used the facts that
() < 1, and 1Y/2/|Jw||, = O (1); the latter follows because equation (1) implies that |wy|, /I —

fo t)dt > 0 by assumption 1. Thus we have
I 3 Q l 3
, l1/2 1 1
zl 1| = 70 z e 2 Y| | =0r (157)-
: 1=
Q l 5
where we used the fact that %Z ll% >.Yiii—1| = Op(1) under the assumed conditions, see
j=1 i=1

for instance the proof of Theorem 2 of Paparoditis and Romano (1992, p. 1994). It follows that

Q ! ~ 71/2 5

g 2 |1 2w () g Yirs
7= 1=

of Paparoditis and Politis (2001), we have that

lwilly Yigw _ ¢ -0 <l)
M lly — 2 uwrlly AN

= Op <13%> . Similarly by using the result of the proof of Theorem 3
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where we used the fact that C = ||wi||, Vi = O, (%) and W = Oy (1). Then it follows that
2

Q 3\ 1/2 3
* B C? l 1 l
2l v (5) (@(mm) ()

ol 1 1 /3\%?

- = Wop(1)+W<N> 0p(1) | =0, (1). (25)
< | ~—~ —A ,
=1 \ =o(1) =o(1)  =o(1)

Thus sup,eg |[P* (TN < 2) —® (z/0x)| = 0p (1). Finally, our conclusion follows from the argument in
the proof of Theorem 4.1 of Lahiri (2003). We omit the details here.

Proof of Theorem 2.2. The proof is similar to the proof of Theorem 2.1 in conjunction with Corollary
4.1 of Kiinsch (1989).

Proof of Theorem 3.1 part a). Here, we follow essentially Gongalves and White (2002) in our

proof. Recall that from part c¢) of Lemma 5.1 we have &ﬁTBB No? . next using Theorem 3.1 of

jack>
Kiinsch (1989), it follows that
-1 T PJ |7
GirpE = Z o (0) Z B (Xne — Xiw) (XNt — Xiw) - (26)
T=—[+1

Given (26), the rest of the proof contains two steps. In (1) we show that 53 — 0% LA 0, and in (2) we
show that (TiTBB — (6]2\, + UN) LS 0, where 6]2\, is an infeasible estimator which is identical to 612’TBB

except it replaces Xy — th with Xy — pne in (26). In particular, we defined 6]2\, as follows

N il
Z B (Xne — pne) (XNt pr| — BN eti]) - (27)

For step 1, we also have two steps.
i) We show that limy_, ‘E (&12\,) -0 =0.
ii) We show that Var (6%) — 0.

Define Zny = Xnt — pne and Ryt (1) = E(ZntZNg+-). Given the definitions of 5]2\, and 012\,, we

can write
N v 7_ FV—T
E (53 R 2 ! R d
(%) = tz;ﬁfv,t,o N (0) + Zvl 0) ;51\/,@ Nt (T), an

-1 N-— ~1N-—

N 9 -1 T 9 N T

2 _

N_NZ +NTZ:1 1RN’t(T)+NZ:l 1RN,t(7')
=1 - —

t= t=
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Then using the triangle inequality we have,

‘E(UN ‘ meo— ' Ry (0 +Z‘5N,t,0— N7 Ry (0)
-1
23,

N‘r

n—1 n—r
7_
~—NYR 2y Nt R
0) tl/BNt N (T) + Z: ; N (T)

where we used the same argument like Gongalves and White (2002) to bound the terms in their equation

(A.3). Specifically it is due to the assume size conditions on «y and v and because, |Ry¢ (7)| <

11
A <5aff] ) + UH> (see Gallant and White, 1988, pp. 109-110).
4

To show that Var (O'JQV) — 0, define RNO (1) = Zi\SlTl BNt ZNtZ N p4|r|, and write Var (&]2\,) =

-1 -1 .
DYDY (UB(O)( D Cou (R (), Rno (V). We show that Var (Rao (7)) = O (%), which by
-1 -1
Cauchy-Schwarz inequality implies that Var (6%) = O (%), since we have > C (52)(”5)()‘) =2
T=—I+1A=—1+1 !
Note that we can write,
N—|7|
Var (RMO (T)) = Z B?V’tJVar (ZNtZN,t+|T\)
t=1
N—|r| N—|r|
+2 Z Z BN,t,T/BN,S,TCOU (ZNtZN,t+|T|7ZNSZN,S—HT\)
t=1 s=t+1
1 Nl N—|r| N=|7|
< 0 > Var (ZniZn i) + o2 Y > Cov(ZniZniiir)s Zns D siir|)
t=1 t=1 s=t+1
2 N—|r| N-|r|

Q2 Z Z Cov (ZNtZNt—HT\ ZNSZNS—HT|)
t=1 s=t+|7|+1

given that By, < é for all ¢ and 7.

vor (o) = ”{A“;am%“+;vf§a‘“}

Thus, using argument similar to that of Gongalves and White (2002) to bound the terms in their
)

equation (A.4), it follows that Var (RNO (T )) < K% Hence, Var (]?Np (T ) O(%).
-1 N—||
For step 2, define Sy1 = > szO) E BNt XNt XN 47|, thus given (26) and (27), it follows
T=—I4+1
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that

N |7l
7' _ _ _
6irpp = Sni+ Z 0 Z Bt (—XiwXnt = XiwXneqir) + Xiy) » and
T*—l—i—l
N |T|
5 (1)
G = Sni+ Z 0 Z BNtr (— 1N o XNt — BNeX N 7| T BNEN 47 -
T—*lJrl

Then we have é-lz,TBB — (5]2\, + UN) = An1+ Ano + Ans + ANy, where

-1 (7) N || —X1wZNnt — Xiwhine — XtwZn 47|
5l2,TBB — oy = Z (0) Z BNt — X1 whN A7 T HN || ZNt ;
S FUNEZN e + Xiy BN || N

by adding and substracting appropriately, we can write

6irpp — 0n = ANt + An2 + Ans + Ana,

where
) -1 () N |7|

Avi = = (Xiw — fiw) T_ZZH v (0) Z B (Zne+ Znatirl)
An2 = vy (0) Z BNt (Nt = [iw) ZN g7

T=—I+1 t=1
s = 3 BELS  Goveor ~ne) Zve

T==Il+1 t=1

-1 (1) N 7|
z _

Ay = Z ) Z BNt (Xiw = (vt + v i) Xiw + NN 47])

T=—I+1

with i, = Zi\il ay (t) pne. We have that

-1 7_ N I7| (Xl,w - ﬁlﬂu) +2 (Xl w — M w) f, w
Ane = Z o1 (0) Z Bt | = (vt + v i) (Xiw = Arw) + Ay,
T=—I+1 L - (MNt + MN,t+|T|) Hiw + UNEN 7|
-1 N I7|
= Un+ (Xl,w - /?Ll,w)2 Z Ul Z BNtT
T=—I+1 Ul
-1 ( N—|r|
+ (Xiw — Hiw) Z Zi (g) Z B (20w — (Nt + BN p17)))
T=—I+1
= Un+ Ay,

= N-|7|
where Uy = 5 Z%g 21 Bt (Nt = Fitw) (I8 et1r) = Ftw)-
+ i=

T=—1

The rest of the proof follows closely that for the Theorm 2.1 of Gongalves and White (2002), however

for completeness, we present the relevent details. We now show that Xl,w — [ = Op (l_l). Define
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Q _

ont () = wne, where wyy = %, and note that ¢y (+) is uniformly Lipschitz continuous.
j=1 !

Next, write X — figw = N7t Zivzl Ynt, where Yy = édnt (Zne) is a mean zero NED array on {V;}

of the same size as Zn; by Theorem 17.12 of Davidson (1994), satisfying the same moment conditions.

Hence, results follow by using the same argument as in Gongalves and White (2002). In particular,

by Lemma A.1 of Gongalves and White (2002) {YNt,ﬁ} is a Lo-mixingale of size —3?(”” 3 and thus

of size —1/2, with uniformly bounded constants, and by Lemma A.2 of Gongalves and White (2002)
4 2 _
E (max1<j<N (Z{_l YNt> > = O(N). By Chebyshev’s inequality, for e, P [l (lew — ﬂl,w) > 0] <

EQQQ (Zt IYNt> =0 (12N> = 0(1), if | = o(NY2). This implies Ay = op (1) ans similarly

-1 N—|7|
An1 = op (1), given that we have ) Zi(T) > Byir (Zne+ Zngyir) = Op (1).
T=—I+1 t=1
To prove that Ays = op (1), define Ynir = wnir (1w it ir| — Biw) ZNt = ONir (Zn,), where wyr =
Q
UZ%T) Sw(t—j+Dw (t—j+1+|7]) with 7 < j, and ¢n (+) is uniformly Lipschitz continous.
j=1

Arguing as in Gongalves and White (2002), {yNtT, ]:"t} is a Lo-mixingale of size —1/2, with uniformly,

with mixingale constants c%tT < K max {||w]5, , 1} which are bounded uniformly in N, ¢, and 7. Thus,

=1 v (1) 1 Nl 1 =1 vy (1) Nl
P d>el < = .
RO R R b I RO P
, 1 N-|r] oy 1/2
’Ul 7'
S -~ E yN’T
Qe ZlJrl v (0) ; t
1/2
N—|7| 1/2
1 (1) INY
< — K o T K
Qe zl: 0 Z Nt Q
= 0(1)

where the first inequality holds by Markov’s inequality, the second inequality holds by Jensen’s inequal-
ity, the third inequality holds by Lemma A.2 of Gongalves and White (2002) applied to {Vn¢-} for
each 7, and the last inequality holds by the uniform boundedness of c%tT. The proof of Ano = op (1)
follows similarly.

Proof of Theorem 3.1 part b) Immediate from the proof of part a) of Theorem 3.1.

Proof of Theorem 3.1 part ¢) Immediate from the proof of part a) of Theorem 3.1.

Proof of Theorem 3.2 part a) The proof follows exactly the proof of Theorem 2.2 in Gongalves and
white (2002), and therefore we omit the details.

Proof of Theorem 3.2 part b) First note that the assumed conditions are sufficient to ensure
that VN (Iy — T (F)) =4 N (0,0%) (see part (i) of Theorem 2.2 of Gongalves and White (2002)).
Therefore, to prove part b) of Theorem 3.2, we just need to show that the WIBB distribution is
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approximately close to ® (/o). Note that, we can write

NY2(X3 — E* (X%)) = NV2(Zy — E* (Zy))

H M@

* 1/2 B _
where Zy, = X}~y and ziy; = Y= (Znjuj — B* (Znjuy)), with Zyj = § (z ‘w” ZNivj-1 — Ziw

[wi]

Also note that E* <z}‘vj> = (0 and that

* _ Va2 P 2
E ZNj _aal,TBB_)Uoov

by part a2) of Corollary 4.1. Moreover, since zy, ... , 2y are conditionally independent, by the
Berry-Esseen bound, for some small § > 0 and for some constant K > 0 (which changes from line to

line),
Q

sup | P* <N1/2 (Zy — E* (Zy)) < a:) —® (x/aoo>\ <K Y B[
z€R j=1

which converges to zero in probability as | — co, N — oo such that [ = o (Nl/z). We have

Q ois Q N1/2 246
ZE* ‘Z}k\f]‘ = ZE* Q (ZNjuj — E* (ZNjUj))
i=1 j=1
Nit/2 @ . 5
j=1
N1+§/2 Q * O x )
= QW FE |ZNJ‘2+ FE |uj|2+
j=1
N1t+s/2 @ .
< KW E*|Zn,| >, (28)
j=1

where the first inequality follows from the C,. and the Jensen inequalities, whereas the second inequality

uses the fact that by assumption E* |u;| 210 < 00. Next, note that

N1t+d/2 @ . 5 Ni+6/2 @ . 5
Q2 E*|Zn;|*7) < oz E‘E |ZNj’2+‘
=1 =1
246
N1+5/2 Q 246
= Q2+0 <N> [y H2+5Z ZNH—J 1—le||1le
N—(145/2 e
= 7”101“?6 sz i) ZNivi—1 — [lwilly Ziw
246
N-(1+6/2) B
T sz D Zvi| Nl Zals ) @0
246
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where the first inequality follows from the triangle inequality, whereas the second inequality uses the

Minkowski inequality. Under our assumptions,

< maxw; (7)
1<i<l

! !
Z wy (1) ZNigj—1 Z ZN,itj—1
i—1 =1

2446 246
<1

-1 -1 1/2

< max ZNi <K S < KI1Y?
= i<t Z N - Z N - ’
i=j 246 i=j

by Lemmas A.3 and A.4 of Gongalves and White (2002), given that cpy; are uniformly bounded.

. 246 1
5[ =0(sk)-

_ Q
Similarly, |||willy Ziw|,,; = O (I/?), which from (28) and (29) implies Y- E*
j=1

o (1), since 12/ |Jw|l, = O (1).
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