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Abstract

We develop novel methods for estimation and filtering of continuous-time models
with stochastic volatility and jumps using so-called Approximate Bayesian Compu-
tation which build likelihoods based on limited information. The proposed estima-
tors and filters are computationally attractive relative to standard likelihood-based
versions since they rely on low-dimensional auxiliary statistics and so avoid com-
putation of high-dimensional integrals. Despite their computational simplicity, we
find that estimators and filters perform well in practice and lead to precise estimates
of model parameters and latent variables. We show how the methods can incorpo-
rate intra-daily information to improve on the estimation and filtering. In particular,
the availability of realized volatility measures help us in learning about parameters
and latent states. The method is employed in the estimation of a flexible stochastic
volatility model for the dynamics of the S&P 500 equity index. We find evidence of
the presence of a dynamic jump rate and in favor of a structural break in parameters
at the time of the recent financial crisis. We find evidence that possible measurement
error in log price is small and has little effect on parameter estimates. Smoothing
shows that, recently, volatility and the jump rate have returned to the low levels of
2004-2006.
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1 Introduction

Continuous-time models are widely used in finance to describe the dynamics of asset
prices since this framework gives researchers access to stochastic calculus as toolbox
when deriving solutions to the models. In particular, this class of models allows for sim-
ple representations of prices of a variety of contingent claims. At the same time, densities
and moments of most continuous-time processes used in theoretical finance cannot be
expressed in closed-form thereby making implementation and estimation difficult. Ad-
ditional complications arise from the fact that many of the important factors entering
realistic asset pricing models are unobserved and so information about these have to be
extracted using filtering methods.

One particular important class of asset pricing models is stochastic volatility (SV)
diffusion models with jumps. These capture two important stylized facts of asset re-
turns: First, because of changing beliefs and risk assessments amongst market partici-
pants, volatility of returns exhibit strong time-variation. Second, prices jump frequently
due to news arrivals and other market surprises; see, for example, Barndorff-Nielsen and
Shephard (2006) and Broadie, Chernov and Johannes (2009). The incorporation of these
stylized facts into asset pricing models leads to the development of stochastic volatility
jump-diffusion models in the pricing of options and other financial derivatives. An early
example is the Heston (1993) model which has since been extended in a number of di-
rections; see Bates (1996), Duffie et al. (2000) and Fang (2000). In econometrics, however,
SV models tend to be formulated and estimated in a discrete-time setting at a daily fre-
quency due to the aforementioned statistical and computational complexities associated
with the continuous-time versions; see, e.g., Eraker, Johannes and Polson (2003), Kim,
Shephard and Chib (1998). Unfortunately, it is unclear how estimated discrete-time mod-
els map into continuous-time equivalents, and so there seems to be a disconnect between
the asset pricing and econometrics literature.

We propose a novel limited information method to estimate general continuous-time
models and learn about latent states. The method allows for augmentation of daily re-
turns data by so-called realized volatility (RV) measures in the estimation, leading to
more precise estimates of parameters and better forecasts of future volatility and jumps.
It also enables researchers to take into account first-step (intra-daily) estimation errors
in the RV measures. The proposed method utilizes tools developed in the field of Ap-
proximate Bayesian Computation (ABC) to obtain computationally simple, yet precise
estimators and filters. The main idea of ABC is to base inference on the likelihood of a set
of sample statistics chosen by the researcher, thereby avoiding having to compute the full
likelihood of all available data. This in general implies that not all information contained
in data is used in the estimation, and so ABC estimators are limited information estima-
tors (unless the researcher is so lucky as to choose a set of statistics that are sufficient for

2



the model in question).
ABC was originally developed in biostatistics for the Bayesian estimation of high-

dimensional models as employed in, e.g., genetics; see Marin et al. (2012) for a review
of this literature. It has since then been introduced to econometrics by, amongst others,
Creel and Kristensen (2013) who referred to ABC estimators as indirect likelihood estima-
tors. However, very little work has been done on the application of ABC in the estimation
of dynamic models; some recent work in this direction include Calvet and Czellar (2012)
and Dean, Singh, Jasra and Peters (2011). We complement these papers by showing how
the ideas of ABC can be employed in the estimation and filtering of continuous-time
models. We here focus on its implementation within the class of SV jump-diffusion mod-
els, but the methodology is applicable to many other classes of continuous-time models.
By directly targeting continuous-time models and allowing for fast estimation of param-
eters and filtering and smoothing of spot volatility and jump intensity, our procedure can
be used, for example, to perform on-line pricing of options and other derivatives.

There is a large, existing literature on estimation of continuous-time SV models. The
early literature focused on estimation of these using only daily information (returns) and
GMM-type or full likelihood-based estimators. GMM estimators were typically based on
on Indirect Inference (II) methods and simulated method of moments (SMM); see Ander-
sen, Benzoni, and Lund (2002), Carrasco, Chernov, Florens, and Ghysels (2007), Chernov,
Gallant, Ghysels, and Tauchen (2003), and Monfardini (1998) for applications of these
methods to asset pricing models. The advantages of ABC over II and SMM were demon-
strated in Creel and Kristensen (2013) who showed that ABC estimators have, in general,
smaller finite-sample variances when compared to the corresponding II and SMM es-
timators based on the same set of statistics. Moreover, ABC is computationally more
efficient than these methods. Full likelihood inference were pursued by, amongst others,
Johannes, Polson and Stroud (2009) and Jones (2003). The former employs particle filter
algorithms to approximate the exact, unknown likelihood, while the latter advocates the
use of MCMC methods. These algorithms require experience and fine-tuning, and are not
guaranteed to deliver good estimates of the exact likelihood. This is particularly an issue
for long data trajectories and high-dimensional state variables. Moreover, how to com-
bine data observed at different frequencies in particle filters, e.g., daily and intra-daily
observations, is not obvious. In contrast, our method is very simple to implement, can
handle data at mixed frequencies, has no convergence issues, takes little time to run, and
is fully parallelizable, so that it may easily be implemented using GPU computing (Creel
and Zubair, 2012). This is of particular importance in the context of financial models,
where there is a premium on obtaining an answer more or less in real time.

Neither of the above cited papers use intra-daily information in the estimation. In
recent years, so-called realized volatility (RV) measures have become increasingly popu-
lar in the analysis of asset return dynamics. Realized volatility measures are model-free
measures of daily integrated volatility computed using intra-daily returns. These mea-
sures are noisy and potentially biased estimators of the actual daily volatility due to,
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for example, finite intra-daily sampling, jumps, and market microstructure noise. These
have been used for a number of different purposes such as learning about features of
daily volatility, but also forecasting future volatility and estimation of continuous-time
SV models; see, for example, Andersen and Bollerslev (1998), Andersen et al. (2003),
and Barndorff-Nielsen and Shephard (2002, 2006). However, most estimation methods
using RV tends to ignore or side-step the fact that RV measures are noisy estimates of
exact integrated volatility; see, amongst others, Bollerslev and Zhou (2002), Corradi and
Distaso (2006), Kanaya and Kristensen (2010) and Todorov (2009). To be specific, their
asymptotic results are developed in a setting where the intra-daily sampling error is as-
sumed to vanish sufficiently fast so that the integrated volatility can be treated as directly
observed. In practice, only a finite number of intra-daily observations are available, and
so the intra-daily sampling error in the RV measures should ideally be accounted for.
Moreover, these papers do not provide estimators of the latent states of the models, only
the parameters. Dobrev and Szerszen (2009), Hansen, Huang and Shek (2012), Koopman
and Scharth (2013) and Takahashi, Omori and Watanabe (2009) are exceptions in that
they incorporate measurement errors and allow for filtering of latent states. However,
they formulate their models in discrete time, and their model specifications tend to be
quite simple in order for them to be able to numerically compute the likelihood.

While ABC has been widely used in empirical work, a number of questions regard-
ing its implementation remain: First, for a given model, how should one choose the set
of auxiliary statistics used for estimation? Second, how should the bandwidth parameter
used in the computation of the simulated version be chosen? Third, can ABC, or related
ideas, be used in filtering of dynamic latent variable models? We contribute to all three
issues. First, we show how the idea of auxiliary models as introduced in II can straight-
forwardly be carried over to ABC; this method for selecting statistics complements ex-
isting ones as proposed in Fernhead and Prangle (2012). Second, we demonstrate that
standard bandwidth selection methods developed for nonparametric kernel regression
can be employed in selecting the bandwidth parameter in ABC. Third, we develop a
simple-to-implement, fast filter and smoother that can be used to track latent variables
over time.

As an empirical application, we use the estimators to learn about the returns dynam-
ics of the S&P 500 index and show how our filter allows us to track stochastic volatility
and jump intensity over time. We find evidence of the presence of jumps and support
for a structural break in parameters at the beginning of 2008. In particular, during the
recent financial crisis, volatility has a higher mean and variance, and the probability of
jumps more than doubles, compared to the pre-crisis level. We find evidence that possi-
ble measurement error in log price is small and has little effect on parameter estimates.
Our filtering and smoothing methods identify well trends in volatility and jumps asso-
ciated with historic events. Smoothing shows that, recently, volatility and the jump rate
have returned to the low levels of 2004-2006.

The remainder of the paper is organized as follows: Section 2 introduces a general
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class of jump-diffusion process with stochastic volatility together with the basic concepts
and tools of realized volatility estimation. In Section 3, we present a general class of para-
metric jump-diffusion SV models and show how realized volatility measures can be used
to augment the number of measurement equations at a daily frequency and thereby pro-
viding more information regarding the model parameters. The limited information like-
lihood estimator of the resulting model is introduced in Section 4 where we also discuss
choice of statistics and bandwidth. The limited information filter is presented in Section
5. Section 6 discusses the practical implementation of the proposed method, while Sec-
tion 7 and 8 contain a simulation study and the empirical application, respectively. We
conclude in Section 9.

2 Jump-Diffusions and Realized Volatility Measures

We will throughout assume that the log-price of a given asset, pt = log (Pt), can be de-
scribed by the following continuous-time jump-diffusion model,

pt = p0 +

t∫
0

µtdt +
t∫

0

σtdW1,t +
Nt

∑
i=1

Ji, (1)

where µt is the time-varying drift, σt is the volatility process, W1,t is a standard Brownian
motion, Ji is the size of jumps, and Nt is a Poisson process with jump intensity λt. This
is a highly general model where the only real restriction is the assumption of finite jump
activity. We could allow for more general specifications of the jump component and, for
example, model it in terms of a Poisson random measure with compensator; see, e.g.
Todorov (2009). All subsequent methods and results remain correct for this more general
model. However, in the simulation study and empirical study we focus on the above
Poisson specification and so maintain this for notational simplicity.

We measure time in days so that our unit of measurement will be one day. In the (un-
realistic) case of continuous price record, we can directly observe the so-called quadratic
variation (QV) of the diffusive and discontinuous components of the price process within
a given day. The quadratic variation over day t is defined as the sum of squared log-
returns within that day observed over an increasingly fine time grid,

QVt+1 = lim
M→∞

M

∑
i=1

r2
t+i/M (i/M) , rt (δ) := pt − pt−δ.

Under general conditions, QVt+1 can be expressed as the sum of the quadratic variation
of the diffusive and jump component,

QVt+1 =

t+1∫
t

σ2
t dt +

Nt+1

∑
i=Nt

J2
i . (2)
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We will refer to the continuous component as the integrated volatility (IV), IVt+1 =∫ t+1
t σ2

t dt, and let JVt+1 = ∑Nt+1
i=Nt

J2
i denote the variation due to jumps.

In practice, we only observe prices at discrete time points within the day and so QVt+1

is not directly observable. However, we can estimate it from the discretely observed
prices,

RVM,t+1 =
M

∑
i=1

r2
t+i/M (i/M) , (3)

where for notational simplicity we have assumed that M ≥ 1 prices are observed at
equidistant time points within each day. Under weak regularity conditions (see Barndorff-
Nielsen et al, 2006), as the sampling frequency M→ ∞, RVt+1 is asymptotically normally
distributed and centered around QVt+1,

√
M(RVM,t+1 −QVt+1)→d N

(
0, VQV

t

)
,

where VQV
t is the asymptotic variance. If one is interested in separately estimating IVt+1,

a number of alternative estimators are available such as so-called bipower estimators
(Barndorff-Nielsen and Shephard, 2004), threshold estimators (Mancini, 2009) and near-
est neighbor truncation estimators (Andersen, Dobrev, and Schaumburg, 2011). Let ˆIVM,t+1

be any of these estimators, and let ˆJVM,t+1 = RVM,t+1 − ˆIVM,t+1 be the associated es-
timator of the jump component of the over-all realized volatility. We can then obtain
consistent estimators of both the diffusive and jump component of QV,

ˆIVM,t+1 = IVt+1 + uIV
M,t, ˆJVM,t+1 = JVM,t+1 + uJV

M,t, (4)

where uIV
M,t and uJV

M,t capture the estimation errors. As M→ ∞, uIV
M,t and uJV

M,t will vanish,
but for finite number of intra-daily observations, they will affect the RV measures.

Asset prices in general suffer from market microstructure noise due to discreteness of
the price, and properties of the trading mechanism. In this case, we only observe a noisy
measure p̂t,i of the true, efficient price,

p̂t,i = pt+i/M + εt,i, (5)

where εt,i captures the market microstructure noise. In this case, the above measures will
be biased such that

ˆIVM,t+1 = BIV
M,t + IVt+1 + uIV

M,t, ˆJVM,t+1 = BJV
M,t + JVt+1 + uJV

M,t, (6)

where BIV
M,t and BJV

M,t capture the biases while uIV
M,t and uJV

M,t contain the remaining intra-
daily sampling errors, c.f. Zhang (2006). If the market microstructure noise is i.i.d. and
independent of the efficient price then, for large M, BIV

M,t ' BIV
M and BJV

M,t ' BJV
M are time-

invariant and only depend on the intra-daily sampling frequency and so are approxi-
mately constant across different days. One can remove these biases using noise-robust
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estimators as developed in the literature; see, for example, Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2008), Podolskij and Vetter (2009), and Zhang (2006).

All of the above-cited realized volatility and jump-size measures are model-free since
they impose no parametric assumptions on the drift, volatility and jump process. They
are also robust to intra-daily seasonalities in the volatility and jump processes which are
integrated out since we work with daily measures. Thus, supposing we are not willing
to take a stand on intra-daily seasonalities and the particular nature of the market micro-
structure noise, these provide useful daily statistics carrying information about the diffu-
sive and the jump component. On the other hand, these measures are backward-looking
and are on their own not informative about future volatility and (size and probability of)
jumps. For the purpose of of forecasting volatility, jumps or other risk measures and for
computing derivative prices, we have to impose additional structure on the price pro-
cess. The next section introduces a general class of parametric jump-diffusion models
that achieves this goal.

3 A Class of Parametric Jump-Diffusion Models

We here impose additional parametric restrictions on the volatility and jump compo-
nents. This will allow us to forecast volatility and jumps. First, we assume that the jump
size sequence Ji is independent of past price and volatility movements and follows some
distribution known up to some unknown parameter θ, Ji ∼ F(J; θ); this could be weak-
ened to allow for the jump distribution to depend on st and pt as in, for example, Chan
and Maheu (2002). We assume that the Poisson process Nt has jump intensity λt which
is allowed to be time-varying. The drift, volatility and intensity processes are driven by
some underlying process st, (µt, σt, λt) = v (st; θ) for some function v (s; θ); for exam-
ple, st = (ht, λt) and(µt, σt, λt) = (µ0 + µ1 exp (ht) , exp (ht) , λt), where ht is the log-spot
volatility. To close the model, we model st as a Markov diffusion process solving

dst = a (st; θ) dt + b (st; θ) dW2,t, (7)

for some (vector) Brownian motion W2,t which is potentially correlated with W1,t to allow
for leverage effects. Here, the drift, a (st; θ), and the volatility, b (st; θ), of st are known up
to some parameter θ. We could in principle also have jumps in st but again maintain eq.
(7) for simplicity. The complete model is fully parametric with all components specified
up to the unknown parameter θ ∈ Θ. This is a very general set-up and covers most
known asset price models found in the asset pricing literature, including the ones found
in Broadie, Chernov and Johannes (2009), Bates (1996), Duffie et al (2000) and Heston
(1993) which focus on affine versions.

The aim is to estimate the unknown parameter θ from observed log-prices. We will
consider two sampling scenarios: (i) Only low-frequency, daily observations of pt is
available, p1, p2, ...., pn, or (ii) high-frequency, intra-daily, observations are available from
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which we construct daily measures of realized quadratic variation and integrated volatil-
ity
(

RVt, ˆIVt
)
, i = 1, ..., n. In the first case (i), we have only one measurement equation,

pt ∼ fp (pt|pt−1, st−1; θ) ,

where fp (pt|pt−1, st−1; θ) is the transition density induced by eq. (1) together with the
parametric restrictions above, and the state equation, st ∼ fs (st|st−1; θ), where fs (st|st−1; θ)

is the transition density induced by eqs. (7). In the second case (ii), the measurement
equation for pt is augmented by the two additional ones for the realized measures as
given in either eq. (4), if noise is not present or noise-robust estimates are used, or eq. (6)
if noise is present and not controlled for. These two additional measurement equations
provide information about st and Ji and so can be used to obtain more precise estimates
of the components of θ that concern the features of st and Ji.

Whether we are under observation scheme (i) or (ii), the estimation of the SV model
is complicated by two facts: First, the conditional densities fp and fs are, in general, not
available on closed form. Second, we do not observe st and so face a dynamic latent vari-
able problem. This means that full-information likelihood inference is computationally
very challenging. Finally, under observation scheme (ii), full likelihood-based methods
require precise specification of the measurement equation for the realized volatility mea-
sures that leads to a Markov structure in order to employ existing methods for filtering
and computation of likelihood. We instead develop a simpler estimation method in the
next section that avoids these complications.

Given access to intra-daily returns, one could try to utilize all the information con-
tained in these instead of, as we do, summarize this in terms of the chosen RV measures.
This should in principle provide better estimates of the model parameters. However, at
the same time, this would require us to specify intra-daily seasonalities in the volatility
(see, e.g., Hasbrouck, 1999), the precise nature of the market microstructure noise, and
other intra-daily features in data. By only using RV measures at daily frequencies, we to
some extent can sidestep these issues: First, we avoid having to model intra-daily season-
alities (this does however create biases in the RV measures; see, .e.g., Andersen, Dobrev
and Schaumburg, 2011). Second, we expect that the correct specification of the market
microstructure noise is less important since this is averaged out in the computation of
the RV measures and so, by the central limit theorem, will be approximately normally
distributed.

4 Estimation by ABC

Due to the aforementioned challenges of full likelihood inference in continuous-time SV
models, we choose to base inference on ABC. For convenience, we let yM,t denote the tth
observation given M intra-daily observations in both of the two sampling scenarios intro-
duced in the previous section. That is, either (i) yM,t := p̂t or (ii) yM,t =

(
p̂t, RVM,t, ˆIVM,t

)
8



for t = 1, ..., n, where n ≥ 1 is the number of days that we have followed the given asset.
Given data for, we choose a set of statistics for inferential purposes; these should sum-
marize the relevant information in data regarding the jump-diffusion model. At the most
general level, the set of statistics is a vector mapping taking data into a set, say d ≥ 1,
new variables, ZM,n = Zn (yM,1, ..., yM,n) ∈ Rd. Given the chosen set of sample statistics,
we then estimate the parameters through the posterior mean obtained from the likeli-
hood of ZM,n as implied by the model, fM,n(ZM,n|θ), together with some prior π (θ) on
the parameter space Θ. Formally, the estimator takes the form

θ̂ =
∫

Θ
θ fM,n (θ|ZM,n) dθ, (8)

where fM,n (θ|ZM,n) is the posterior distribution,

fM,n (θ|ZM,n) =
fM,n (ZM,n, θ)

fM,n (ZM,n)
=

fM,n(ZM,n|θ)π (θ)∫
Θ fM,n(ZM,n|θ)π (θ) dθ

.

One can choose to interpret θ̂ as a Bayesian estimator, as is frequently done in the ABC
literature, or as a frequentist estimator, as done in Creel and Kristensen (2013). In the
latter case, Creel and Kristensen (2013) show that if the chosen statistic satisfies a cen-
tral limit theorem,

√
n (ZM,n − ZM (θ)) →d N (0, ΩM (θ)), for some limit ZM (θ) that

uniquely identifies θ and some asymptotic variance ΩM (θ), both depending on the true
data-generating parameter value θ ∈ Θ, then, under additional, weak regularity condi-
tions, θ̂ is consistent and asymptotically normally distributed:

√
n(θ̂ − θ)→d N

(
0, I−1

M (θ)
)

, (9)

where IM (θ) = ŻM (θ)′Ω−1
M (θ) ŻM (θ) and ŻM (θ) = ∂ZM (θ) / (∂θ′). Observe here that

we here keep the number of intradaily observations (M) fixed, and only let the number
of long-span observations (n) diverge. This reflects the empirical application in the pa-
per, where M = 96 is relatively small compared to n = 3027. In particular, the above
asymptotics take into account the particular intra-daily sampling used to compute the
RV measures. This is in contrast to the existing literature, where inference is based on the
assumption that M diverges fast enough relative to n so that intra-daily sampling errors
can be ignored; see, for example, Corradi and Distaso (2006) and Todorov (2009).

The two main assumptions for eq. (9) to hold is that (i) ZM,n is
√

n-asymptotically nor-
mally distributed, and (ii) ZM (θ) identifies θ. One sufficient condition for (i) to hold is
that (RM,t, EM,t), where RM,t = (rt+1/M (1/M) , ...., rt+1 (1/M)) and EM,t = (εt,1, ..., εt,M)

contain the noise-free intra-daily returns and measurement errors during day t, respec-
tively, is a stationary and mixing sequence with suitable moments, and that ZM,n are
functions of sample moments of (RM,t, EM,t). If this is the case, we can appeal to CLT’s
for stationary and mixing sequences to obtain the desired result. Stationarity and mix-
ing of (RM,t, EM,t) is in turn implied by, for example, the continuous-time stochastic
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process{st : t ≥ 0} and the discrete-time process {EM,t : t = 1, 2, ...} being mutually in-
dependent and each of them being stationary and mixing. Most standard specifications
of σt and λt have stationary solutions under suitable restrictions on the parameters; these
restrictions are normally satisfied in data. The assumption of market microstructure noise
being stationary also seems plausible. To formally model dependence between st and the
market microstructure noise seems difficult since the former is a continuous time process
while the latter is a discrete time one. Regarding the identification condition (ii), we show
through simulations that for the model estimated in the empirical application our chosen
statistics indeed do identify model parameters.

In the following, we very often suppress any dependence on M for notational simplic-
ity since we treat it as given by the particular intra-daily sampling scheme that generated
our sample, and so is considered fixed.

Similar to full-likelihood based Bayesian estimators, θ̂ is only available on closed form
in a few special cases and in general we have to compute a simulation-based version of
it. However, in contrast to full likelihood estimators, the computation of a simulated
version of the BIL estimator is extremely simple due to the fact that it is based on a low-
dimensional statistic, Zn, instead of the full sample. We here follow the ABC literature
and Creel and Kristensen (2013) and combine simulations and nonparametric regression
techniques to obtain an approximate version of θ̂: First, obtain a swarm of i.i.d. draws
(θs, Zs

n), s = 1, ...S, from fn (Zn, θ), and then compute the following kernel regression
estimator,

θ̂S = ÊS [θ|Zn] =
∑S

s=1 θsKh (Zs
n − Zn)

∑S
s=1 Kh (Zs

n − Zn)
, (10)

where Kh (z) := K (z/h) /h, K : Rd 7→ R is a so-called kernel function, for example,
a standard normal density, and h > 0 is a bandwidth; see Li and Racine (2007) for an
introduction. The draws can be obtained by following three steps:

1. Draw θ from π (θ).

2. Given the draw θ, simulate a trajectory {y1 (θ) , ...., yn (θ)} from the jump-diffusion
model evaluated at θ.

3. Compute Zn (θ) = Zn (y1 (θ) , ..., yn (θ)).

Repeating above steps 1-3 S times, we obtain the desired swarm (θs, Zs
n), s = 1, ...S, where

Zs
n = Zn (θs). The main challenge is the second step of the above algorithm since this

requires simulating from a continuous-time model. We resolve this issue by simulating
from the corresponding Euler discretization: Choose a discretization step size M ≥ 1,
and then compute iteratively, for any given draw of θ from π (θ), intra-daily log-prices
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and latent states recursively using the Euler scheme,

pt+(i+1)/M̄ = pt+i/M̄ + µ
1
M

+ v
(
st+i/M̄

) 1√
M

ε1,t,i + Jt,i∆Nt+i/M,

st+(i+1)/M̄ = st+i/M̄ + a
(
st+i/M̄; θ

) 1
M

+ b
(
st+i/M̄;θ

) 1√
M

ε2,t,i,

where εt,i = (ε1,t,i, ε2,t,i), i = 1, ...., M̄ and t = 1, ..., n, is a double-indexed sequence of i.i.d.
random variables drawn from a bivariate Normal distribution; the pair (ε1,t,i, ε2,t,i) is po-
tentially mutually correlated in order to capture leverage effects, Ji is i.i.d. and drawn
from the jump-size distribution , and ∆Nt+i/M is drawn from a Poisson distribution with
intensity λt+i/M. We have here suppressed the simulated values’ dependence on θ for no-
tational simplicity. Under sampling scheme (ii), once we have computed an approximate
trajectory, pt+i/M̄, , i = 1, ...., M̄, we obtain the corresponding realized measures using the
formulae for RVt and ˆIVt based on the intra-daily sampling frequency M that the actual
data was observed at. The Euler discretization implies a bias, but this can be controlled
by choosing the step size M̄ large enough. Note that M̄ should be chosen at least as large
as M under sampling scheme (ii) in order for the simulated versions of RVt and ˆIVt to
match the sampling frequency used to compute their sample versions.

Using standard results for kernel regression estimators, we find that the simulated
version satisfies, conditional on Zn,

E
[
θ̂S|Zn

]
= θ̂ + h2B (Zn) + o

(
h2) , (11)

Var
[
θ̂S|Zn

]
=

1
Shd
‖K‖2 V (Zn)

f (Zn)
+ o

(
1

Shd

)
, (12)

where d = dim (Zn), V (Zn) = Var [θ|Zn], f (Zn) is the density of Zn, and B (Zn) =

∑d
j=1 Bj (Zn) with

Bj (Zn) =
1
2

∂2E [θ|Zn] /
(
∂2Zn,j

)
+ f (Zn)

−1 ∂E [θ|Zn] /
(
∂Zn,j

)
∂ f (Zn) /

(
∂Zn,j

)
;

see, e.g. Li and Racine (2007, Section 2.1). This highlights two important features of the
ABC (SBIL) estimator: First, the bandwidth h has to be chosen to balance the bias and
variance due to simulations and smoothing. Second, the simulated version suffers from
a curse-of-dimensionality with, for a given number of simulations S, the variance due to
simulations blowing up as d increases. In particular, the simple simulator proposed here
does not work when Zn is chosen as the full sample since in this case d is of the same
order as n and so the curse of dimensionality becomes very severe. Instead, we wish to
choose a moderate number of informative statistics in the estimation. One consequence
of the above bias-variance expansion is that, as h → 0 and Shd+2 → ∞ and conditional
on Zn,

√
Shd(θ̂S − θ̂)→d N

(
0,
‖K‖2 V (Zn)

f (Zn)

)
, (13)

11



That is, the simulated version converges towards the exact BIL estimator as the number
of simulations diverges and the bandwidth sequence converges to zero at a suitable rate.
The performance of the above estimator obviously depends on the choice of Zn and the
bandwidth h. Below, we discuss in turn methods for choosing these two.

4.1 Choice of statistics

Ideally one would like to choose Zn as a sufficient statistic that fully summarizes all the
relevant information contained in the sample. If such is used in the estimation, there is no
efficiency loss and the ABC estimator is fully efficient. Unfortunately, to our knowledge,
such are only available on closed form when data comes from a distribution within the
exponential family (see, e.g., Grelaud, Robert, Marin, Rodolphe, and Taly, 2009). Outside
this class, one can at most hope to find a set of statistics that approximate the sufficient
statistic. The search for a suitable statistic can be done either in a model-specific man-
ner or in a non-model based way. One can potentially mix the approaches, using some
statistics motivated by the features of the model supplemented with Fourier-type terms.

4.1.1 Non-model based statistics

In the non-model based approach, the researcher uses (a relatively large number of) test
functions that (approximately) span the unknown score function. Examples of test func-
tions within this approach are Hermite polynomials (Bansal et al, 1994) and Fourier series
(Carrasco et al, 2007); see also Fernhead and Prangle (2012) for some results on how this
approach works together with ABC. We here discuss how this approach can be employed
within the framework of continuous-time SV models. First note that the stochastic differ-
ential equation for the log-price process at a daily frequency can be rewritten as

rt = µ +
√

IVtε1,t +
Nt

∑
i=Nt−1

Ji, (14)

where, rt = rt (1) = pt − pt−1 is the daily log-return, IVt is the integrated volatility lead-
ing up to day t, and Nt−Nt−1 is the number of jumps within the t− 1th day. In particular,
it should be possible to learn about the volatility dynamics and jump-dynamics from the
sequence of realized volatility measures, c.f. eq. (4). We therefore distinguish between
the two sampling cases where realized volatility measures are available or not.

Consider first the case of sampling scheme (i): We here only have available daily re-
turns to learn about the volatility dynamics. If jumps are not present, E

[
r2

t |It−1
]
= IVt

where in turn IVt should be informative about the dynamics of the spot volatility pro-
cess. Thus, a natural choice is therefore to base the ABC on the autocorrelation structure
that we observe in squared daily returns, r2

t . When jumps are present, we need to de-
compose this autocorrelation function into its continuous and jump component. One
could follow Barndorff-Nielsen and Shephard (2004) and choose as test functions differ-
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ent powers of absolute returns, |rt|p |rt−1|q for different values of p, q > 0 since these
will allow us to get a rough measure of the diffusive and jump components. To formally
show that these power moments identify the jump component, Barndorff-Nielsen and
Shephard (2004) consider in-fill asymptotics where the time distance between observed
prices shrinks. We here look at a fixed daily frequency, where to our knowledge there
is no formal result showing that bipower moments of the form E

[
|rt|p |rt−1|q

]
identify

relevant jump characteristics for suitable choices of p and q. However, Barndorff-Nielsen
and Shephard’s asymptotic results indicate that, even if time distance between observa-
tions is fixed, bipower moments should be informative about jumps. Alternatively, one
can use cosine functions as in, amongst others, Creel and Kristensen (2012).

In the case (ii) when, in addition to daily returns, we also have access to realized
volatility measures, we can directly use these to learn about the volatility dynamics. In
the case of no jumps, we can use sample moments of log RVt to learn about the parameters
governing the dynamics of st. When jumps are present, we combine sample moments of
RVt and ˆIVt.

4.1.2 Model-based statistics

In the model-specific procedure for choosing the statistics, which is used in the simu-
lation and empirical application, the researcher bases the choice of Zn on the particular
features of the model in question. For a given model, one chooses (a small number of)
test functions that are believed to identify the parameters of interest. These should reflect
the particular features of model and data. One particularly fruitful method for finding a
suitable statistic originates from the literature on II. We here describe how this method
can be employed within our setting.

We take as starting point a so-called auxiliary model. This should generate data that
have the same main features as the model of interest, but at the same time should be
simpler to work with from a computational point of view. Suppose that such a model
has been chosen and, given data, can be represented by a (quasi-)likelihood function
gn (Yn|ψ) = gn (y1, ..., yn|ψ) where ψ contains the parameters of the auxiliary model. We
can then choose Zn as the MLE of the auxiliary model,

Zn = arg max
ψ∈Ψ

gn (Yn|ψ) , (15)

with Yn being the data generated by the original model. The auxiliary model should be
chosen with an eye on the model of interest. In our case, we wish to choose an auxiliary
model that generates time series data with features that are similar to those of a SV jump-
diffusion model. Take as starting point the equation describing the evolution of prices at
a daily frequency as given in eq. (14): In the case of no jumps, a natural approximation
of this continuous-time model is a GARCH-type model,

rt = µ +
√

vtε1,t, ε1,t ∼ N (0, 1) , (16)

13



where vt plays the role of IVt. We would then like to build a simple model for vt that
mimics the exact one for IVt, but is simpler. The precise approximate model depends on
the specification of the spot volatility dynamics implied by eq. (7) and its implications for
the dynamics of IVt. Here, Bollerslev and Zhou (2002) provide some helpful guidelines.
For example, in the case of a Heston model, a reasonable auxiliary specification would
be a GARCH-type model,

vt = ω + αε2
1,t−1 + βvt−1,

while in the case of log-volatility being a Gaussian process, an EGARCH model would
be a good auxiliary model,

log vt = ω + α |ε1,t−1|+ γε1,t−1 + β log vt−1. (17)

If jumps are included in the model, this could be captured by adding a jump component
to eq. (16):

rt = µr +
√

vtε1,t + JtNt, (18)

where Jt has the distribution as given by the jump-diffusion model and Nt is a Bernoulli
variable with jump probability λt. Again, the specification of the dynamics of the auxil-
iary jump probability λt should be guided by the specified dynamics of the jump inten-
sity. For example, if it is specified as a CIR-type process, a good auxiliary model would
be

λt = a + br2
t−1 + cλt−1. (19)

Finally, if we are under sampling scheme (ii), we can add equations to the above aux-
iliary model to describe the realized volatility measures. One would of doing so would
be to use the realized GARCH model of Hansen et al (2012). For example,

vt = ω + αε2
1,t−1 + βvt−1 + γRVt−1, (20)

RVt = a + bRVt−1 + cvt−1 + ε2,t.

Similarly, we can extend eq. (19) to incorporate the information contained in JVt about the
jump sizes and their probabilities. Collecting the parameters appearing in the auxiliary
model outlined in eqs. (18)-(20) in ψ, we can compute the pseudo-MLE of ψ given data
of daily returns and RV measures and use this as Zn, c.f. eq. (15).

The above choice of Zn involves numerical optimization. Recall that the simulated
version of BIL takes the form given in eq. (10). For the computation of the ABC estimator,
this requires computation of Zs

n = Zn (θs) for each draw θs from the posterior, where

Zn (θ) = arg max
ψ∈Ψ

gn (Yn (θ) |ψ) .

This can be computationally burdensome. Instead, one may replace the maximization
step with an integration step and choose Zn(θ) as the Bayesian posterior mean of the
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auxiliary model,

Zn (θ) =
∫

Ψ
ψĝn (ψ|Yn (θ)) dψ =

∑N
i=1 ψign

(
Yn (θ) |ψi)

∑N
i=1 gn (Yn (θ) |ψi)

,

where ψi are i.i.d. draws from the chosen auxiliary prior on Ψ.

4.1.3 Reducing the number of statistics

Whether the statistics have been chosen using the model-based or non-model based ap-
proach, or a combination of the two, it may be the case that the initial collection of
statistics is high-dimensional, which may lead to difficulties when performing the non-
parametric fit upon which the ABC estimator is based. As shown in Creel and Kristensen
(2013), the ABC estimator is first-order equivalent to the efficient GMM estimator based
on Zn. Thus, when the dimension of Zn is large, the ABC estimator suffers from the
same issues as GMM estimators with a large number of moment restrictions: The use of
(too) many moment conditions can lead to poor finite sample performance of the GMM
estimator. In addition, recognizing that nonparametric regression is needed to compute
the ABC estimator, it is well known that nonparametric regression has biases and vari-
ances, the latter increasing with the dimension of the conditioning variables, c.f. equation
(12). In the context of ABC, the number of simulations, S, serves as the sample size for
the nonparametric fitting step, and so these additional biases and variances can be con-
trolled by increasing the number of simulations. However, to control the computational
requirements, it may be desirable to limit the dimension of Zn, so that good results may
be obtained with a reasonably small number of simulations. This again entails finding
a means of selecting a “good” set of auxiliary statistics out of a larger body of possible
statistics.

Given the first-order equivalence to GMM, the same methods that are used to select
moment conditions for GMM estimation can be used to select statistics for ABC estima-
tion. We here follow the recent literature on shrinkage-type GMM estimators (see, e.g.,
Caner and Zhang, 2014) and propose to use shrinkage to reduce the dimension of the ini-
tial set of statistics: Let δ be d× 1 vector of zeros and ones, where a zero indicates that the
corresponding auxiliary statistic is not used, and a one indicates that it is, and let Zn(δ)

be the corresponding vector of selected statistics. Let ∆ be the set of all possible values of
δ. This set as 2d elements, a number which can be very large when a number of statistics
are under consideration. The cross-validated set of statistics, with a penalty function to
further encourage a parsimonious choice, is given by

δ̂ = arg min
δ∈∆

CV (δ) , CV (δ) =
S

∑
s=1

∥∥θs − Ê−s [θ|Zs
n(δ)]

∥∥2
+ w ‖δ‖ (21)

where w > 0 determines the penalty associated with an increase in the dimension of the
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selected set, and Ê−s [θ|Zs
n(δ)] is the so-called leave-one-out estimator

Ê−s [θ|Zs
n(δ)] :=

∑t 6=s θtKh
(
Zt

n(δ)− Zs
n(δ)

)
∑t 6=s Kh (Zt

n(δ)− Zs
n(δ))

,

using only the selected statistics. This is a non-differentiable minimization problem over
many possible combinations. As simulated annealing is known to be able to solve the
conceptually similar traveling salesman problem (Černý, 1985), we obtain an approxi-
mately optimal set of statistics by applying simulated annealing to approximately mini-
mize the cross validation score.

Alternative methods for selecting statistics has received a good amount of attention
in the ABC literature. Blum et al. (2013) provides a review of this work, with some new
results based on use of regularization methods. The methods that have been used fall
into two classes: best subset selection, and projection methods that define new statis-
tics by combining statistics in some way to reduce dimension. Among papers that use
projection, Fearnhead and Prangle (2012) explore using a training set of simulated ob-
servations, regressing parameters drawn from the prior on statistics computed using the
simulated data, and then using the fitted values (a weighted index of the initial statistics
that is an approximation of the posterior mean of the parameter) as a single statistic for
ABC estimation, for each parameter in turn. This approach reduces to one the dimen-
sion of the initial large set of statistics. This may lead to an excessive loss of informa-
tion, in that there may exist no single linear index that captures the information in the
large body of initial statistics. A further limitation is the use of linear regression, which
may perform poorly if the true relationship between the parameter and the informative
statistics is nonlinear. Fearnhead and Prangle (2012) address this by using methods to
endogenously choose the training set from a region of reasonably high posterior mass.
Representative of papers that select a subset of statistics, Joyce and Marjoram (2008) pro-
pose an algorithm to determine whether a new statistic should be added to a previously
selected set of statistics, based on approximations of the posterior odds ratio, computed
using rejection-based ABC. If the new statistic is added, then removal of the previously
selected statistics is contemplated. This proceeds until all statistics have been considered.
This proposal appears to be complex and costly to implement if the number of initial
statistics is large.

Some comments: First, it is not necessary to achieve the exact solution to the above
optimization problem, a solution close to the minimum is adequate for the purpose of
achieving dimension reduction. For this reason, rapid cooling and a limited number of
trials may be used. Second, for the purpose of choosing which statistics to retain, we
may use a relatively small subset of the simulations to do cross validation, as the infor-
mativeness of the statistics does not depend on the number of simulations. Third, cross
validation uses ABC estimation in the same way as it is used for actual estimation, using
nonparametric regression. This approach does not suffer from a potential loss of infor-
mation due to use of linear regressions. Fourth, the output of the algorithm is the vector
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of indices of the selected statistics. We retain the statistics for which the corresponding
element of δ is one. We do not form a weighted index of the statistics. One can poten-
tially run the above cross-validation for each parameter so that the selected statistics are
specific to each parameter. In this case, the final selected set for estimation of the entire
parameter vector can be defined as the union of the selected statistics for each parameter.
Last, this algorithm is somewhat computationally demanding, but is is conceptually very
simple and easy to program. It simply involves doing many ABC fits, and minimizing
out of sample RMSE over the set of statistics, using simulated annealing.

4.2 Bandwidth selection

Standard implementations of ABC-type estimators tend to choose the bandwidth in a
rather ad hoc fashion. However, as is well-known from the literature on nonparametric
regression, kernel regression estimators are quite sensitive to the choice of h . In the
context of computing the simulated BIL estimator given in eq. (10), we saw in eqs. (11)-
(12) that there is a bias-variance trade-off in choosing h; choosing h too large or too small
will lead to large biases and/or variances in θ̂S relative to the exact, but unknown ABC
estimator, θ̂. Thus, there may be benefits to choosing h carefully.

Given that our implementation of the BIL estimator is simply a kernel regression es-
timator, we can use existing methods developed in this literature for selecting the band-
width. Again, we propose to use cross-validation, where h is chosen as

ĥ = arg min
h>0

CV (h) , CV (h) =
S

∑
s=1

∥∥θs − Ê−s [θ|Zs
n]
∥∥2

where Ê−s [θ|Zs
n] is the leave-one-out estimator,

Ê−s [θ|Zn] :=
∑t 6=s θtKh

(
Zt

n − Zs
n
)

∑t 6=s Kh (Zt
n − Zs

n)
.

It can be shown that, as S→ ∞, ĥ ' hopt where hopt is the bandwidth sequence that min-
imizes the mean-square error (MSE) of the kernel regression estimator, see Li and Racine
(2007, Theorem 2.3). One may use different bandwidths for the different components of
θ̂SBIL. This can be done by computing a cross-validated bandwidth for each individual
parameter; that is, we minimize CVk (h) = ∑S

s=1
(
θs

k − Ê−s [θk|Zs
n]
)2, for k = 1, ..., dim (θ).

The above selection method is global in the sense that it minimizes the integrated
MSE (IMSE). The IMSE is defined as the average MSE over all potential outcomes of Zn,
IMSE =

∫
MSE (Zn) f (Zn) dZn, where

MSE (Zn) = E
[∥∥θ̂S − θ̂

∥∥2
∣∣∣ Zn

]
.

Since we are only interested in obtaining a good estimate of θ̂ = E [θ|Zn], as evaluated at
the particular value of Zn that we have observed in data, there are potential gains from
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using so-called local bandwidth selection methods. These are designed to choose the
bandwidth to minimize the pointwise MSE at any given value of Zn, MSE (Zn), and so
should provide a better estimate of θ̂; see, e.g., Fan and Gijbels (1992, 1995), Schucany
(1995), Fan et al. (1996), and Prewitt and Lohr (2006).

5 Limited Information Filtering and Smoothing

Once the model parameters θ have been estimated, it is often of interest to learn about
the realized in-sample trajectories of the latent variables and to do forecasting. We pro-
pose a novel, simple method that, similar to the estimation procedure, relies on limited
information. Collecting the state variables in wt = (pt, st, λt), suppose we wish to learn
about gt+m := g (wt+m) for some given function g (w) and some forecast/filtering hori-
zon m ≥ 0. For example, if the goal is to forecast spot volatility m periods ahead, we
choose gt+m = σt+m. Alternatively, one may be interested in forecasting daily integrated
volatility m periods ahead in which case gt+m = IVt+m. We wish to do so given the in-
formation available to us at time t, {y1, ...., yt}. Suppose we know the data-generating
parameter value θ. We then propose to forecast gt+m by

gt+m|t := Eθ [gt+m|Ft] ,

where Ft = F (yt, ...., y1) ∈ RdF is some function of data and Eθ [·|Ft] denotes expectations
under the model evaluated at θ. Ideally, one would use all information and so choose
Ft = (yt, ...., y1), but, as t→ ∞, this becomes a high-dimensional computational problem.
Instead, we propose to use only a smaller fixed subset, e.g., Ft =

(
yt, ...., yt−q

)
, for some

finite, fixed number of lags q ≥ 1. Here, q should be chosen such that the dimension of
the forecast information variable remains moderate, but at the same time large enough
that the most relevant information in data is contained in Ft. This is similar to our limited
information estimator, where a moderate sized statistic was used in place of the full data
set, but this should still convey most of the relevant information in data. We discuss
below “data-driven” method for choosing q.

The computation of gt+m|t is done by combining simulations and kernel regression
methods, similar to the implementation of the ABC estimator: First, obtain a swarm of
i.i.d. draws (pr

t (θ) , sr
t (θ) , λr

t (θ) , RVr
t (θ) , IVr

t (θ)), r = 1, ...R, from the model evaluated
at the estimated parameter value, θ = θ̂ - these draws are obtained in a similar fashion
as for the computation of the BIL - compute the corresponding simulated values of the
forecast variable and conditioning variable, (gr

t+m(θ̂), Fr
t (θ̂)), r = 1, ...R, and feed these

into a kernel regression,

ĝt+m|t = Êθ̂ [gt+m|Ft] =
∑R

r=1 gr
t+m(θ̂)Kb

(
Fr

t (θ̂)− Ft
)

∑R
r=1 Kb

(
Fr

t (θ̂)− Ft
) . (22)

for some bandwidth b > 0; this should in general be chosen different from the one, h,
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used in the computation of the SBIL. Under standard regularity conditions for kernel
regression estimators, as h→ 0 and RhdF+2 → ∞, we have, conditional on Ft and θ̂BIL,

√
RbdF(ĝt+m|t − gt+m|t)→d N

(
0,
‖K‖2 V

(
Ft|θ̂

)
f
(

Ft|θ̂
) )

, (23)

where dF = dim (Ft), V (Ft|θ) = Varθ [gt+h|Ft] and f (Ft|θ) is the density of Ft when θ is
the true parameter value; see Li and Racine (2007, Theorem 2.2). Instead of simulating
R trajectories of length n, one could simulate one “long” trajectory of length R in order
to construct the forecast gt+m|t. If the fitted model is stationary and mixing, then the
simulated forecast based on this long trajectory will still satisfy eq. (23), see Li and Racine
(2007, Sec. 18.2). This method has some conceptual similarities to the reprojection method
proposed by Gallant and Tauchen (1998), which involves evaluation of the moments of an
estimated semi-nonparametric density. We believe that our proposed method is simpler
to use in practice, as it is simply a kernel regression estimator.

The above method can also be used to construct confidence bands for the forecast
(or provide median-based point forecasts). This can, for example, be done using kernel
quantile regression,

q̂t+m|t (τ) = arg min
g

R

∑
r=1

Kb
(

Fr
t (θ̂)− Ft

)
ρτ

(
gr

t+m(θ̂)− g
)

, (24)

where ρτ (·) is the so-called check-function as known from quantile regression, see Koenker
and Bassett (1978). In particular,

[
q̂t+m|t (0.025) , q̂t+m|t (0.975)

]
will provide a consistent

95% forecast interval, while q̂t+m|t (0.5) will be the median forecast of gt+h. This corre-
sponds to doing density forecasting since there is a one-to-one correspondence between
the quantile range and the cumulative distribution function. The forecast interval can be
adjusted to take into account the simulation error by using standard errors for nonpara-
metric quantile regression estimators found in . One can also take into account additional
errors contained in the forecast ĝt+m|t due to the sampling and simulation error in θ̂BIL

along the lines of Hansen (2006). Finally, one can also generalize the above idea to gener-
ate density forecasts of gt+m = g :

f̂ (g|Ft) =
∑R

r=1 Kb
(

gr
t+m(θ̂)− g

)
Kb
(

Fr
t (θ̂)− Ft

)
∑R

r=1 Kb
(

Fr
t (θ̂)− Ft

) .

This could in turn be used for Value-at-Risk computations.
The method can be adjusted to do smoothing. In this case, we simply choose Ft =

F (y1, ...., yn) as a function of all data, not just observations up to time t. For example,
we could choose Ft to include the first q leads and lags together with the concurrent
observation, Ft =

(
yt−q, ...., yt, ...., yt+q

)
.

An important user choice for the above filter is the set of predictors Ft. One “data-
driven” approach for choosing Ft is to use variable selection methods as used in nonpara-
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metric regression; for example, Zhang (1991) advocates the use of cross-validation to in-
form the researcher about the choice of predictors: Consider for the sake of clarity the case
where the set of potential candidate predictors takes the form Ft,q =

(
yt, ...., yt−q

)
, q =

0, 1, 2, ... and so we wish to choose q. To this end, for a given choice of forecast variable gt,

define the simulated cross-validation criterion CVg (b, q) = ∑R
r=1

∥∥∥gr
t+m − Ê−r

[
gt+m||Fr

q,t

]∥∥∥2
,

where Ê−r

[
gt+m||Fr

q,t

]
is the leave-one-out version of the kernel regression estimator in

eq. (22), which implicitly depends on the bandwidth b and Zhang (1991) then shows that
the following method for choosing (b, q) is consistent(

b̂, q̂
)
= arg min

h>0,q≥0
CVg (b, q) .

As a computationally simpler alternative to the above kernel filter and smoother, we
also consider a linear forecasting model,

gLIN
t+m|t = β′tFt,

where βt ∈ RdF is chosen to minimize the mean-square error. Similar to before, βt can be
learned through simulations: Simulate (gr

t+m(θ̂), Fr
t (θ̂)), r = 1, ...R, and compute

β̂ =

[
R

∑
r=1

Fr
t (θ̂)Fr

t (θ̂)
′
]−1 R

∑
r=1

Fr
t (θ̂)gr

t+m(θ̂).

As in linear regression models estimated by OLS, gLIN
t+m|t is the best linear predictor in the

mean-square-error sense.
In the case where gt is chosen as gt = log QVt, gLIN

t+m|t is similar to the HAR-RV-J
forecasting model proposed by Andersen, Bollerslev and Diebold (2007) for forecasting
volatility when jump variation measures are available. The HAR-RV-J model takes the
form

log RVt,t+h = β0 + β1 log RVt + βW log RVt,t−5 + βM log RVt,t−22 + β J log(jumpst + 1)+ et,
(25)

where RVt,t+h := (RVt+1 + RVt+2 + · · ·+ RVt+h) /h. Here, β0, β1, βW , βM and β J can be
learned directly from data without the need of simulations and so the HAR-RV-J model
allows for reduced-form forecasting without the need of specifying the dynamics of the
the underlying latent states. On the other hand, the HAR-RV-J model only allows fore-
casting of observed variables, while the proposed non-linear and linear smoothers and
filters can be used to learn about latent states. In particular, note that the HAR-RV-J
model in general only provides a forecast of the log-quadratic variation over the chosen
time horizon h and ignores that RVt is a noisy measure of the quadratic variation.The
HAR_RV-J model can also be used to forecast the diffusive or the jump component of
the quadratic variation by simple replacing log RVt,t+h with log ˆIVt,t+h and log ˆJVt,t+h,
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respectvely. In the case where σ2
t is close to being constant, no jumps are present and a

large number of intra-daily observations are available, the HAR-RV-J model should pro-
vide a reasonably good forecast of the spot volatility. However, when the volatility is
time-varying, the sampling error in RVt is large and/or jumps are present, we in general
expect the HAR-RV-J model to do a poor job in forecasting integrated volatility and spot
volatility.

6 Implementation in Practice

Next we turn to use of the above described methods, in the context of both Monte Carlo
and empirical work with data on the S&P 500 equity index.

6.1 Specific model

The specific model used in the Monte Carlo study and the empirical application is a con-
tinuous time stochastic volatility model which potentially contains all of the following
elements: non-constant drift, leverage, jumps with dynamic jump intensity, and mea-
surement error. The true log price pt = log (Pt) solves the model

dpt = (µ0 + µ1(ht − α)/σ) dt +
√

exp (ht)dW1,t + JtdNt. (26)

In this equation, ht is log volatility, Jt is jump size, and Nt is a Poisson process with time-
varying jump intensity λt. If market microstructure noise is present, pt is latent and we
only observe p̂t as given in equation (5), where we here assume the measurement errorsεi,
i = 1, ..., n, are i.i.d. N

(
0, σ2

ε

)
. Log-volatility is specified to follow a Vasicek model (and

so is a Gaussian process),

dht = ht + κ(α− ht)dt + σ

(
ρdW1,t +

√
1− ρ2dW2,t

)
, (27)

where W1,t and W2,t are two independent standard Brownian motions. Finally, the jump
intensity process λt is modelled as

λt = 1(λ∗t > 0) where λ∗t = λ0 + λ0λ1(ht − α)/σ.

Thus, the jump intensity is a non-negative censoring of a latent process. This model is
similar to the well-known log-Normal volatility model of Wiggins (1987); see also Ches-
ney and Scott (1989), but with jumps similar to, for example, Andersen, Benzoni and
Lund (2002). We here model the jump intensity in a different way compared to Andersen
et al (2002) though. The parameters are interpreted as follows. Mean drift in log price
is given by µ0, to account for a general trend in prices. Drift is allowed to depend on
volatility through µ1, which is the marginal effect of log volatility as measured in units
of standard deviation from its mean, which is α. This parameterization is intended to
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ease interpretation of µ1. It has the additional benefit of reducing the interaction effect of
parameters upon statistics used to identify parameters, which helps for their individual
identification. The standard deviation of the shock to log volatility is σ, and κ is the mean
reversion parameter. The leverage parameter is ρ, which affects the correlation between
returns and log volatility. The latent process λ∗t has mean λ0, and λ0λ1 is the marginal
effect of log volatility, again in standard deviations from its mean, on the jump intensity.
Thus, when log volatility is one standard deviation above its mean, jump intensity is
1 + λ1 times the intensity when log volatility is at its mean. Again, this parameterization
is intended to allow for ease of interpretation of λ0 and λ1. It allows the jump intensity to
be zero at times, when log volatility is low, and also to increase when volatility increases.
We give some additional comments regarding the parameterization following the pre-
sentation of the estimation results. Jump sizes, conditional on the occurrence of a jump,
are independent and conditionally normally distributed: Jt ∼ N(µJ , σ2

J ). We collect the
11 parameters of the model in the vector θ = (µ0, µ1, α, κ, σ, ρ, λ0, λ1, µJ , σJ , σε).

6.2 Data

Our data for the S&P 500 index is taken from the Oxford-Man Institute’s realized library
version 0.2 (see Heber, Lunde, Shephard and Sheppard, 2009) which includes daily mea-
sures of returns (r) in percentage terms, two measures of RV (RV5 and RV10), computed
using returns at the 5 minute and 10 minute frequencies, and realized bipower variation
(BV) (Barnsdorff-Nielsen and Shepard, 2006), computed using returns at the five minute
frequency. The latter is the particular choice for ˆIV used in the following. The use of two
RV measures are meant to improve on estimation when market microstructure noise as
explained earlier. At the time we downloaded the data, stock index returns and the real-
ized measures were available from Jan. 03, 2000 through Jun. 03, 2014. This data source
does not include the high frequency intra-day returns that were used to compute RV and
BV, only daily measures are available.

The returns series (in percentage terms) is plotted in Figure 1a, and a kernel density
plot for returns is given in Figure 1b. The typical volatility clusters and leptokurtosis
are apparent, as is the financial crisis of the later part of 2008. Figure 1c plots realized
volatility (RV5), and Figure 1d plots the measure of jump activity, RV5t − BVt. We can
see that jumps are an important factor in overall volatility. The clusters of jump activity
apparent in Figure 1d suggest that a model with dynamic jump intensity may be needed
to accurately account for jump activity.

To investigate the effects of the recent financial crisis and to have data for out-of-
sample forecasting evaluation, we split the data into 3 portions. The first two portions,
2000-2007 (n = 1988 observations) and 2008-2011 (1002 observations) are used to fit the
parameters of the models, while the portion Jan. 2012-Apr., 2014 (n = 581 observations)
is reserved for out-of-sample forecasting purposes.
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Figure 1: S&P 500 data

(a) Daily returns, rt (b) Kernel density, daily returns, rt
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(c) Daily realized volatility, RV5t (d) Daily Jumps, RV5t − BVt

6.3 Simulation of the model

The trading period for the S&P 500 index is 6.5 hours per day. To simulate data from the
model, we use the Euler approximation method. For the Monte Carlo work, the Euler
approximation is done directly using a discrete time interval of 5 minutes, which is the
frequency that is used to compute realized measures for the real data. For the estimation
work, we simulate using a discrete time interval of 1 minute, recording every fifth point,
so that our simulated variables are also computed using 5 minute observations of log
price. To allow for the non-trading period each day, we simulate the model over 24 hour
days, of which 6.5 hours are the trading period. Daily returns (r) are computed using the
closing price at the end of each trading period. The realized measures RV5t, RV10t and
BVt are computed using the 5 minute observations, only during the trading period. The
non-trading period portions of the simulations are discarded, to allow for the overnight
effect. We do not use intra-day returns in the estimation, only end of day returns and real-
ized volatility measures. An initial burnin period of 200 days of simulations is discarded
from the simulations.

6.4 Implementation of the ABC estimator

This section discusses the specific details of implementation of the ABC estimator as used
for the simulation study and the empirical application.
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Table 1: Bounds of parameter space

Parameter True Value Lower Bound Upper Bound Bias RMSE
µ0 -0.01 -0.1 0.1 0.010 0.059
µ1 0.01 -0.1 0.1 -0.010 0.059
α 0.5 -3 3 -0.500 1.803
κ 0.05 0 0.5 0.200 0.247
σ 0.2 0 1 0.300 0.416
ρ -0.7 -1 0 0.200 0.351

λ0 0.02 0 0.1 0.005 0.015
λ1 1 0 3 0.500 1.000
µJ -0.005 -0.05 0.05 0.005 0.029
σJ 1 0 5 1.500 2.082
σε 0/0.004 0 0.02

6.4.1 Parameter space, Monte Carlo design point, and pseudo-prior

The pseudo-prior π (θ) was chosen as a uniform density over the parameter space Θ,
which was defined as the Cartesian product of the line segments given by the lower
and upper bounds for each parameter as presented in Table 1. The chosen limits are
intended to be relatively uninformative for the parameters, given the widely accepted
characteristics of data on equity returns and volatility. Below, we present an estimation
algorithm that deals effectively with a pseudo prior that is very uninformative. The true
parameter values for the Monte Carlo experiment are given in the second column of the
Table. These values were chosen to be similar to the estimated values when using the
2000-2007 data (reported below). The last two columns give the bias and the RMSE if the
mean of pseudo prior were used as an estimator of the true parameters, so that we can
measure the reduction in bias and gains in efficiency due to applying our ABC estimator
to the sample data. The true value for σε in the last row varies depending on whether or
not the DGP contains measurement error.

6.4.2 Selection of statistics

The initial set of auxiliary statistics was determined using the model-based approach de-
scribed in the previous section, combined with experimentation. A crude indicator of
jump activity in period t is a test for jumpt ≡ RV5t − BVt being larger than 2.5 stan-
dard deviations of the jumpt series. Based upon this, we created a new returns series, r2,
where r2t is set to zero if the jump indicator detects a jump. This is intended to give a se-
ries that is informative about returns more or less net of jump activity. Another variable,
RVdi f f ≡ RV5 − RV10 was created with the expectation that is would be helpful for
identification of σε, when the model includes that parameter, following the argument in
the final part of Section 2. The initial pool of statistics include means, standard deviations
and correlations between r, RV5, RV10, BV and r2, or their logarithms, and descriptive
statistics for RVdi f f . To this we add parameter estimates from several auxiliary models.
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These include a simple EGARCH model fit to the r2 series, and linear regression models
that regress r2, BV and jumpt on their own and cross lags. Because a complete verbal de-
scription would be tedious, we include the source code of the function that computes the
auxiliary statistics the Appendix. This code is commented and is quite self-explanatory.
Once this initial pool of statistics is computed, we select the set of statistics to use for
estimation using the cross validation method described in Section 4.1.3.

6.4.3 An adaptive algorithm for sampling

The ABC estimator presented in Creel and Kristensen (2013) uses simple sampling from
the pseudo prior, and nonparametric estimation. When the prior and the posterior are not
similar, direct sampling from the prior can be computationally inefficient, because many
draws of the parameter θs lead to simulated statistics Zs

n that are always so far away from
the observed statistic, Zn, so that the associated parameter draw is never retained as one
of the neighbors that affects the estimated value. Recognizing this problem, methods of
computing estimators using likelihood-free Markov chain Monte Carlo and sequential
Monte Carlo have been studied in some detail in the ABC literature (among others, see
Marjoram et al., 2003; Sisson, Fan and Tanaka, 2007; Beaumont et al. 2009; Del Moral,
Doucet and Jasra, 2012). This work treats the prior as a real Bayesian prior that is to be
respected, and the goal is to sample from the posterior associated with the prior. For
the sequential Monte Carlo methods, this is achieved by properly weighting the particles
using importance sampling weights, so as to preserve the original prior. We, on the other
hand, treat the pseudo prior as a tool which allows us to compute a point estimator
which we interpret from the classical perspective. As such, we omit the weighting that
preserves the original prior, because this prior is not especially meaningful to us, except
that it provides a means of initiating the simulations. The following algorithm adapts
the original pseudo prior iteratively to create a series of pseudo priors such that the final
pseudo prior is close to the posterior associated with itself. Then the ABC estimator
proposed in Creel and Kristensen (2013) is applied to a final sample drawn from the
final pseudo prior. As long as the true parameter value is within the support of the final
pseudo prior, the theoretical results of Creel and Kristensen (2013) apply to the estimator
that is computed using the final sample of particles. A summary of our algorithm is:

Step 0. generate S0 particles from pseudo prior and compute the associated statistics
Zs

n. Set the iteration counter i to 01.
Iterations:
Step 1. Set iteration counter to i + 1
Step 2. select the best αi% of particles based on proximity of Zs

n to Zn

Step 3. from the selected particles, randomly draw, with replacement, Si particles
Step 4. perturb the particles by adding a mean zero shock to each particle

1This initial sample of particles is also used for the cross validation selection of statistics from the large
pool of statistics
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Step 5. allow recombination of a proportion of the particles by randomly interchang-
ing their elements

Step 6. stop if a stopping criterion is met, otherwise, go to step 1
Step 7. draw a relatively large final set of particles by sampling with replacement

from the last iteration particles, perturb each of them, and generate the associated Zs
n

Step 8. apply the basic ABC method of Creel and Kristensen (2013) to compute the
final estimate

Our experience is that algorithm is very effective in restricting attention to the portion
of the parameter space that has non-negligible mass. This allows one to specify initially
broad bounds on the parameter space, as in Table 1, because the algorithm quickly fo-
cuses attention on the region which can generate auxiliary statistics that are close to the
observed Zn. The only drawback to setting a very uninformative pseudo prior is that S0

in Step 0 may need to be increased to compensate for excessive dispersion of the initial
statistics, Zs

n.

6.5 Implementation of Filter and Smoother

The model contains latent variables about which we may wish to learn, in particular, the
non-jump component of volatility, ht, and the jump intensity, λt. The limited information
approach to filtering is implemented as explained in Section 5 using the long-trajectory
simulator and with

Ft−1 =
(
rt−1, ..., rt−p, log BVt−1, ...logBVt−q

)
(28)

for some lag lengths p, q ≥ 1.The steps are:
1. Given the estimated parameter vector θ̂, simulate a long series from the model of

equations 1-27, retaining end of day returns, realized volatility, the robust measure of
volatility, actual log volatility, and total jump size for the day:

{(
r̃t, B̃Vt, h̃t, λ̃t

)}
, t = 1, 2, ..., R. (29)

2. Use the simulated data together with nonparametric regression to learn about the
filtering function M in gt = M(Ft−1) + et, where M (Ft−1) = Eθ [gt|Ft−1], et is the smooth-
ing error, and Ft−1 is chosen as above, according to the variable being filtered.

3. Filter by applying the nonparametric estimate of M obtained in Step 2 to the real
data:ĝt|1:t−1 = M̂(Ft−1).

The smoother is implemented in much the same way as limited information filtering,
with the only difference being that instead of using only lags of the observable variables,
we may also use the contemporaneous values and leads to smooth the latent variables.
The method proceeds as outlined in Section 5 with the conditioning variables chosen
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depending on which variable we are smoothing:

F̄t =
(
rt, rt±1, ..., rt±p, log BVt, log BVt±1, ... log BVt±q

)
(30)

Given gt and F̄t, we then proceed as follows:

1. Simulate data from model evaluated at θ = θ̂, as in equation 29 (or reuse the simu-
lations computed for the filtering)

2. Use the simulated data together with nonparametric regression to learn about the
smoothing function M in gt = M(F̄t) + et, where M (F̄t) = Eθ [gt|F̄t], et is the
smoothing error, and F̄t chosen as above.

3. Smooth by applying the nonparametric estimate of M obtained in Step 2 to the real
data:ĝt|1:T = M̂(Ft).

For both the filter and smoother, the number of lags, p and q, and the number of neigh-
bors, k, can be chosen using cross-validation: Minimize out of sample mean squared
forecast error, computed using out-of-sample simulated data.

In the case of the linear filter and smoother, one simply replaces the kernel regression
step with OLS estimation as described earlier.

7 Monte Carlo and empirical results

This section collects all of the simulation, estimation, and filtering and smoothing results.
We consider two versions of the model, with and without measurement error.

7.1 Monte Carlo estimation results

In Table 2 we report the Monte Carlo results for the ABC estimator. The first block of
results are for the case where neither the model nor the DGP contains measurement er-
ror. These are followed by a second block, where the DGP contains measurement error,
which is not accounted for in the model. The third block gives the results for the case
of measurement error in the DGP that is accounted for in the model. The true value of
the standard deviation of measurement error, when applicable, is set to σε = 0.004, a
value close to the estimated value using the S&P 500 data, reported in the next Section.
The Monte Carlo samples were generated using the true values given in Table 1, using a
sample size of 2000 observations, which is similar to the size of the pre-crisis (2000-2007)
period of our sample for the S&P 500 index, discussed in the next subsection.

Considering a well specified model when the DGP has no measurement error, we see
that bias contributes to RMSE in an important way only for λ1 and µJ . The standard devi-
ations of the drift parameters are large in comparison to their true values. The parameters
that affect the non-jump portion of volatility are all estimated with good precision and
little bias. Considering jumps, the base rate of jumps when volatility is at its mean, λ0,

27



is estimated with small bias and good precision. The marginal effect of volatility on the
jump rate, λ1, is less well identified than other parameters, it seems. The same is true
for the standard deviation of jump size, σJ , which is has a comparatively large standard
deviation. However, overall, we may say that the parameters of the model are estimated
quite well.

Next, considering the effect of measurement error that exists in the DGP, but which
is ignored by the model, in the second block, it is perhaps surprising to observe that its
presence has very little effect on the estimation of the other parameters of the model.
The biases and RMSEs of the second block are very similar to those of the first block.
For the magnitude of measurement error we consider (which was determined by the
estimated value using the real data), and for the frequency of observation that is used
to compute the realized measures (5 minutes), there seems to be no need to use a model
that accounts for possible existence of measurement error: a model that ignores it gives
essentially identical results.

Finally, the third block contains the results for estimation of a model that includes
measurement error, when the DGP also does so. Biases and RMSEs are in general slightly
greater than for model that ignores measurement error, but we believe that it is fair to say
that this model also does a good job of estimating the parameters. One may note that
the standard deviation of measurement error, σε, is estimated with an upward bias. The
true value is 0.004, but the mean of the Monte Carlo replications is 0.007. This suggests
that attempting to account for measurement error may make it seem more important
than it really is. This, plus the fact that its actual importance is little, makes an even
stronger case for simply ignoring its possible presence. Even when it is present, one
obtains better estimates of the other parameters by ignoring it, rather than accounting
for it. This conclusion is subject to the caveat that for notably higher frequency data,
measurement error would be expected to have a more important effect.

7.2 S&P 500 estimation results

Next, Table 3 presents the parameters estimates when the model is fitted to the S&P 500
data set, assuming that there is no measurement error. We give results for the precri-
sis period 2000-2007 (1988 observations), for the post-crisis period 2008-2011 (1002 ob-
servations), and using the entire estimation sample, 2000-2011 (2990 observations). The
reported standard error estimates have been computed using 100 bootstrap replications.
To assess the reliability of the bootstrap standard errors, one may compare them to the
Monte Carlo standard errors of Table 2, which used a sample design close to the param-
eter estimates for the 2000-2007 period, and which used a very similar sample size (2000
observations). We see that the bootstrap standard errors are very similar to the Monte
Carlo standard errors, which leads us to conclude that the bootstrap standard errors are
reliable indicators of the precision of the parameter estimates.

Considering the parameters in the order given in the Table, the drift parameters are
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Table 2: Monte Carlo results, DGP with and without measurement error (ME), model
with and without ME

DGP no M.E. DGP with M.E.
Model no ME Model no ME Model with ME

Param. True Bias St. Dev. RMSE Bias St. Dev. RMSE Bias St. Dev. RMSE
µ0 -0.01 -0.001 0.028 0.028 -0.001 0.028 0.028 -0.001 0.028 0.028
µ1 0.01 0.005 0.012 0.013 0.004 0.012 0.013 0.004 0.012 0.013
α 0.5 -0.002 0.091 0.090 -0.005 0.090 0.090 -0.041 0.098 0.106
κ 0.05 0.005 0.010 0.011 0.005 0.010 0.012 0.006 0.010 0.012
σ 0.2 0.008 0.015 0.017 0.007 0.015 0.017 0.015 0.015 0.022
ρ -0.7 0.019 0.063 0.066 0.022 0.065 0.068 0.040 0.057 0.070

λ0 0.02 -0.001 0.004 0.004 -0.001 0.004 0.004 -0.000 0.004 0.004
λ1 1 0.313 0.182 0.362 0.3202 0.185 0.370 0.347 0.174 0.388
µJ -0.005 0.005 0.006 0.008 0.005 0.006 0.008 0.005 0.007 0.008
σJ 1 0.033 0.341 0.342 0.037 0.315 0.317 -0.046 0.264 0.268
σε 0/0.004 - - - -0.004 0.000 0.004 0.003 0.003 0.004

not significantly different from zero. Mean log volatility, α, shows a very important in-
crease between the pre- and post-crises periods, which is not at all surprising given the
increase in volatility that is obvious in Figure 1a. The mean reversion parameter, κ, is
quite stable across the two periods, and it indicates that shocks to log volatility are quite
persistent, as is well known. The standard deviation of shocks to log volatility, σ, shows
a small but probably insignificant increase across the two periods. Leverage, ρ, is quite
strong in the 2000-2007 period, and declines somewhat in magnitude in the post-crisis pe-
riod. The parameter related to the baseline probability of a jump, λ0, more than doubles
in the post-crisis period, compared to its level during the pre-crisis period. These values
would give about two expected jumps per year in the pre-crisis period, and a little more
than four expected jumps in the post crisis period. On the other hand, the marginal effect
of log volatility on the jump rate, λ1, is significantly different from zero, and is quite sta-
ble across the two periods. Our parameterization of the jump rate is somewhat different
that that of Andersen, Benzoni and Lund (2002) in that ours depends on the log of spot
volatility, while theirs depends on its level, and in that our parameterization allows the
jump rate to decline to zero at times, whereas theirs has a positive minimum value for
the jump rate. It is interesting to note that we detect a significant role for dynamics in
the jump rate, while their estimated effect is not significant. Mean jump size, µ0, is not
significantly different from zero in either period, while the standard deviation of jump
size, σJ , increases somewhat in the post-crisis period. We also present a block of results
for a model that imposes parameter constancy over the entire 2000-2011 period, but we
believe that the evidence of change in the α and λ1 parameters is strong enough so that
these last results should be discounted. The overall story is one of both the non-jump and
the jump components of volatility increasing in the post-crisis period, leverage declining
in magnitude, and the remaining parameters being more or less stable.
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Table 3: Estimation results, model without measurement error

2000-2007 2008-2011 2000-2011
Parameter Estimate St. Err. Estimate St. Err. Estimate St. Err.

µ0 -0.021 0.022 -0.021 0.039 -0.012 0.026
µ1 0.003 0.009 -0.013 0.019 -0.008 0.009
α 0.181 0.107 0.785 0.179 0.458 0.098
κ 0.035 0.008 0.036 0.012 0.032 0.006
σ 0.162 0.011 0.204 0.024 0.173 0.010
ρ -0.851 0.054 -0.713 0.079 -0.842 0.045

λ0 0.007 0.004 0.016 0.004 0.011 0.005
λ1 1.235 0.178 1.152 0.167 1.165 0.209
µJ 0.002 0.006 -0.002 0.006 -0.002 0.007
σJ 1.201 0.237 1.472 0.367 1.893 0.435

Table 4 gives estimation results for the model that allows for measurement error, again
using the three sample periods. The overall results are very similar to those for the model
without measurement error: α, σ, λ0 and σJ all increase in the post-crisis period, indi-
cating an increase in both the jump and non-jump components of volatility. Leverage
declines, and the drift parameters remain insignificantly different from zero. The most
notable difference is that λ1 appears to increase somewhat notably when measurement
error is included, compared to the small decline when measurement error is ignored. Of
interest is the estimated value of the standard deviation of measurement error, σε. The
estimated value is 0.003 or 0.004, depending on the period. The bias in estimation of this
parameter that was found in the Monte Carlo results (last line of Table 2, third column
from the right) is 0.003. It is possible to perform bias reduction by subtracting bootstrap
estimates of the bias from the estimated values (see Efron and Tibshirani, 1986, equation
4.4). Because the Monte Carlo design is quite similar to the estimated parameter values,
a rough bias correction could be done by subtracting the biases found in Table 2 from
the estimated values in Table 4. If we did that for the σε parameter, the estimated value
would be almost zero. This fact, combined with the previous remarks regarding the pos-
sibility of simply ignoring the possible presence of measurement error for data similar
to ours, leads us to prefer the results given in Table 3 over those of Table 4. This choice,
however, is not of too much importance, as the results are quite similar in the two cases.
However, given these considerations, for the filtering and smoothing exercises discussed
below, we will use the results for the model without measurement error.

7.3 Monte Carlo results for filtering and smoothing

Next we present filtering and smoothing results for both the non-jump component of
volatility, ht, and the jump intensity, λt, using the limited information procedure dis-
cussed in Section 5. For filtering, we use our proposed method based on a long simula-
tion of the model at the estimated parameter values, using two lags of rt and four lags of
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Table 4: Estimation results, model with measurement error

2000-2007 2008-2011 2000-2011
Parameter Estimate St. Err. Estimate St. Err. Estimate St. Err.

µ0 -0.022 0.026 -0.009 0.043 -0.014 0.032
µ1 -0.005 0.010 -0.032 0.018 -0.011 0.010
α 0.146 0.105 0.794 0.197 0.358 0.010
κ 0.036 0.008 0.036 0.010 0.036 0.006
σ 0.165 0.013 0.216 0.022 0.184 0.012
ρ -0.825 0.057 -0.659 0.076 -0.781 0.048

λ0 0.012 0.004 0.018 0.004 0.016 0.005
λ1 0.925 0.195 1.454 0.199 1.141 0.208
µJ -0.006 0.006 0.007 0.005 -0.002 0.007
σJ 0.894 0.234 2.231 0.524 2.256 0.456
σε 0.003 0.002 0.004 0.003 0.004 0.002

Table 5: Filtering and smoothing results, simulated data (root mean squared error).

h λ

Nonparametric filter 0.259 0.018
Linear filter 0.263 0.025

Nonparametric smoother 0.139 0.010

log BVt (see equation 28). We give results for both the nonparametric version as well as
the linear regression version. As noted above, we use the model without measurement
error for filtering and smoothing, using the parameter estimates for the postcrisis period
(2008-2011), both for the simulated results, in this section, and for the real data results, in
the next section. With these parameter values, we generate a simulation of length 2×106

observations. We use the last 2×104 observations for one-step ahead forecasting (they are
used to obtain Ft−1 in equation 28). The simulation, excluding this last part, gives the set
defined in equation 29. That is, in that equation, R = 2× 106 − 2× 104. The filtering and
smoothing results given in this section do not take into account parameter uncertaintly:
the parameter values have been taken as given, and so we only explore the accuracy of
the limited information filtering and smoothing methods. This is due to the fact that a
joint Monte Carlo exploration of parameter estimation and filtering/smoothing accuracy
would be computationally very demanding.

The first two rows of Table 5 give the results. We see that the nonparametric filter
gives an overall better forecast than does the linear filter that uses the same condition-
ing information, but that the difference is not very large. Given that the linear filter is
computationally much faster, it may be adequate for many purposes uses. Figures 2a
and 2b plot the first 500 of the 20000 forecasts (for visual clarity) of the nonparametric
filter results, along with the realized value, for h and λ, respectively. We see that the filter
forecasts are quite accurate.

For smoothing, we use the current value and one lag and lead of rt, and the current
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Figure 2: Filtering and smoothing results, simulated data

(a) True and filtered log spot volatility, ht. l
(b) True and filtered jump rate, λt.

(c) True and smoothed log spot volatility, ht. (d) True and smoothed jump rate, λt.

value and two lags and leads of BVt as the conditioning information (see equation 30).
The results are given in the last line of Table 5. The RMSE of the nonparametric smoother
is lower than that of the nonparametric filter, as is expected. Figures 2c and 2d plot the
first 500 of the 20000 smoothed observations, for h and λ, respectively. We see that the
smoothed variables are very accurate.

7.4 Filtering and smoothing of the S&P500 data

Having seen, using simulated data, that the filtering and smoothing methods are reliable,
we next turn to filtering and smoothing results for the S&P 500 data. Again, we use the
parameter estimates for the model without measurement error, for the 2008-2011 sample
period. First, Figure 3a gives the one step ahead forecasts of log spot volatility, ht, for the
out of sample period, 2012-2014. Figure 3b does the same for the jump rate, λt. There is a
notable overall downward trend in log volatility over the period, and likewise, the jump
rate shows a moderation. The peak of both ht and λt occurs on June 25, 2013. Shortly
after, on July 26, 2013, Mario Draghi made his famous “whatever it takes” comments.
The filtered results show that an extensive period of low volatility and low jump rate
followed these remarks, until early 2014, when volatility and the jump rate climbed a bit,
again.

We also filter the observable variable log RV5, using our procedure and the HAR-RV-J
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method, using as conditioning variables those of equation 25. This serves as a check on
the reliability of the parametric model that is used to generate the long simulation which
underlies the filtering and smoothing results, as the HAR-RV-J method does not rely on
the parametric model. Figures 3c and 3d plot the filtering results using the proposed
procedure and the HAR-RV-J filter of equation 25, respectively. The results using the
two methods are very similar. In both cases, the out of sample root mean forecast error
is 0.672. The fact that the two methods give essentially the same results for filtering the
observable variable log RV5 leads us to conclude that the parametric model that underlies
our procedure is adequate for the purpose of filtering. This, plus the reliability that was
observed in the previous section using simulated data, lends support to the reliability of
the filtering results for the latent variables.

Finally, we present smoothing results for the entire sample, 2000-2014. Figure 3e gives
the smoothed log spot volatility, and Figure 3f gives the smoothed jump rate. The high
volatility and jump rate of the 2008-2011 period is plain to see. Perhaps most interesting
is the observation that both volatility and the jump rate have recently returned to pre-
crisis levels of 2004-early 2007. We remark that these smoothing results were obtained
using the coefficient estimates from the post-crisis period, using the 2008-2011 data.

If one wished to compute confidence intervals for the filter and/or smoothing results
that take into account parameter uncertainty, a conceptually straightforward procedure
would be to repeat the filtering and/or smoothing procedure using each of the bootstrap
parameter values that were used to compute the standard error estimates of the estimated
parameters, in Section 7.2. This would be somewhat computationally demanding, but
simple to implement.

8 Conclusion

We have here shown how Approximate Bayesian Computation, a particular type of lim-
ited information estimation method, can fruitfully be employed in the estimation and
analysis of asset pricing models - both for estimation of parameters and filtering of latent
states. The method is simpler to implement compared to full likelihood-based estimators,
but still delivers precise estimates of parameters and latent state variables. The method
is somewhat computationally demanding, but it is very amenable to parallelization us-
ing MPI or GPU computing, as in Creel and Zubair (2012), so that it would be possible
to obtain estimation and filtering/smoothing results in near real time. We implemented
the method using a daily data of returns and realized volatility measures of the S&P 500
index. We found strong evidence of structural breaks in the data around 2007-2008 with
the jump and volatility dynamics changing radically around this period. Nevertheless,
the smoothing results for the entire sample indicate that volatility and the jump rate have
recently returned to the low levels of the 2004-2006 period. Our results indicate that pos-
sible measurement error in log price is of a very low level for this data, and it has no
significant effect on parameter estimates, at least when realized measures are based on 5
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Figure 3: Filtering and smoothing results, S&P 500 data

(a) Filtered log spot volatility, ht, 2012-2014
l

(b) Filtered jump rate, λt, 2012-2014

(c) Filtered log RV5, 2012-2014 (d) HAR_RV-J filtered log RV5, 2012-2014

(e) Smoothed log spot volatility, ht, 2000-
2014 (f) Smoothed jump rate, λt, 2000-2014
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minute observations of log price.
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APPENDIX

Below is the listing of the GNU Octave function that computes the entire pool of auxiliary
statistics. Not all statistics are used, the selection method chooses which statistics to use
from the set generated by this function.

1 function Z = aux_stat(data)

2 bad_data = false;

3 % check for bad inputs

4 if (sum(any(isnan(data)))||sum(any(isinf(data)))||sum(any(std(data)

==0)))

5 Z = -1000*ones(60,1);

6 else

7 rets = data(:,1);

8 RV5 = data(:,2);

9 RV10 = data(:,3);

10 BV = data(:,4);

11 MedRV = data(:,5);

12 jumps1 = RV5 - BV;

13 jumps2 = RV5 - MedRV;

14 RV5= RV5.*(RV5>0);

15 RV10= RV10.*(RV10>0);

16 BV= BV.*(BV>0);

17 MedRV = MedRV.*(MedRV>0);

18 jumps1 = jumps1.*(jumps1>0);

19 jumps2 = jumps2.*(jumps2>0);
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20

21 % bound data

22 test = rets > 1000;

23 rets = test*1000+ (1-test).*rets;

24 test = rets < -1000;

25 rets = test*(-1000)+ (1-test).*rets;

26 test = RV5 > 10000;

27 RV5 = test*10000+ (1-test).*RV5;

28 test = RV10 > 10000;

29 RV10 = test*10000+ (1-test).*RV10;

30 test = BV > 10000;

31 BV = test*10000+ (1-test).*BV;

32 test = MedRV > 10000;

33 MedRV = test*10000+ (1-test).*MedRV;

34 test = jumps1 > 10000;

35 jumps1 = test*10000+ (1-test).*jumps1;

36 test = jumps2 > 10000;

37 jumps2 = test*10000+ (1-test).*jumps2;

38

39 % select

40 RVs = RV5;

41 rob = BV;

42 jumps = jumps1;

43 RVdiff = log(RV5)-log(RV10); % magnitude of measurement error

44

45 % detect jumps

46 test1 = abs(jumps);

47 s = std(test1);

48 test1 = test1 < 2.5*s;

49 test2 = abs(log(jumps));

50 s = std(test2);

51 test2 = test2 < 2.5*s;

52 test = test1 | test2;

53 rets2 = rets.*test; % if jump, sets to zero

54 RVdiff = RVdiff.*test; % if jump, sets to zero

55 test = 1-test;

56 Z = mean(test); % good for lam0

57 m = moving(lag(test,1),10); % to detect clustering

58 temp = [test, m];

59 temp = temp(11:end,:);

60 y = temp(:,1);

61 x = [ones(size(y)), temp(:,2)];

62 z = ols(y,x);

63 Z = [Z; z];

64

65 % use logs
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66 rob = log(rob);

67 RVs = log(RVs);

68

69 % detrend rets and regress on lag (captures drift: mu0 and mu1)

70 t = 1:rows(rets2);

71 t = t’;

72 temp = [rets2 t lags(rets2,1)];

73 temp = temp(2:end,:);

74 y = temp(:,1);

75 x = [ones(rows(y),1) temp(:,2:end)];

76 z = ols(y,x);

77 rets2 = y-x*z;

78 rets2 = [0; rets2]; % keep conformable

79 Z = [Z; z];

80

81 % basic stats

82 data = [rets rets2 RVs rob jumps];

83 z = dstats(data, 0, true);

84 z = z(:,1:4);

85 z = z(:);

86 z = z([1,3:end],:); % drop mean of rets2, which is above

87 Z = [Z; z]; % means, sd, skew + kurt

88

89 % correlations

90 c = corr(data);

91 c = triu(c,1);

92 c = vec(c);

93 c = c(c !=0);

94 Z = [Z; c];

95

96 % demean, so constants not needed (they are in dstats, above)

97 data = st_norm(data);

98

99 if (sum(any(isnan(data)))||sum(any(isinf(data)))||sum(any(std(data)

==0)))

100 bad_data = true;

101 else

102 rets = data(:,1);

103 rets2 = data(:,2);

104 RVs = data(:,3);

105 rob = data(:,4);

106 jumps = data(:,5);

107

108 % jump robust: rate of decline of coefs should be good for kappa

109 temp = [rob lags(rob, 4) lags(jumps,1)];

110 temp = temp(5:end,:);
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111 y = temp(:,1);

112 x = [sum(temp(:,2:3),2)/2 sum(temp(:,4:end-1),2)/2 temp(:,end)] ;

113 [z, junk, junk, ess, rsq] = mc_ols(y,x,"", true);

114 z = [z; z(3,:)/z(2,:)];

115 sig = sqrt(ess/(rows(x)-columns(x)));

116 Z = [Z; z; sig; rsq];

117

118 % jumps

119 temp = [jumps lags(rob, 10)];

120 temp = temp(11:end,:);

121 y = temp(:,1);

122 x = [sum(temp(:,2:end),2)/10];

123 [z, junk, junk, ess, rsq] = mc_ols(y,x,"", true);

124 sig = sqrt(ess/(rows(x)-columns(x)));

125 Z = [Z; z; sig; rsq];

126

127 % for kappa and sig

128 temp = [rob lags(rob,1) lag(rets2,1)];

129 temp = temp(2:end,:);

130 y = temp(:,1);

131 x = temp(:,2:end);

132 x = [x x.*x];

133 [z, junk, e_rob, ess, rsq] = mc_ols(y,x,"", true);

134 sig = sqrt(ess/(rows(x)-columns(x)));

135 Z = [Z; z; sig; rsq];

136

137 % egarch RETS

138 y = st_norm(rets2);

139 params =[0; 0.2; 0.9];

140 % use SA for estimation of egarch

141 ub = [0.2; 0.8; 1];

142 lb = [-0.2; 0; 0];

143 nt = 3;

144 neps = 3;

145 ns = 1;

146 rt = 0.5;

147 maxevals = 10000;

148 functol = 1e-5;

149 paramtol = 1e-3;

150 verbosity = 0;

151 minarg = 1;

152 control = { lb, ub, nt, ns, rt, maxevals, neps, functol, paramtol,

verbosity, 1};

153 [z junk converge] = mle_estimate(params, y, ’egarch_small’, ’’,

control, 0);

154 %% finish with BFGS
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155 %control = {100,2,0,1,0,1e-8,1e-6,1e-6};

156 %[z junk converge] = mle_estimate(params, y, ’egarch’, ’’, control

, 0);

157 if (converge == 2) converge = 1; endif

158 if (!(converge==1))

159 bad_data = true;

160 endif

161 Z = [Z; z];

162

163 % rets

164 temp = [rets2 lag(rets2,1) lag(rob,1)] ;

165 temp = temp(2:end,:); % keep obs lined up

166 y = temp(:,1);

167 x = temp(:,2:end);

168 x = [x x.*x];

169 [z, junk, e_ret, ess, rsq] = mc_ols(y,x,"", true);

170 sig = sqrt(ess/(rows(x)-columns(x)));

171 Z = [Z; z; sig; rsq];

172 z = corr(e_ret, e_rob); % capture rho

173 Z = [Z; z];

174 endif

175 if (sum(any(isnan(Z)))||sum(any(isinf(Z))))

176 Z = -1000*ones(60,1);

177 endif

178 if bad_data

179 "egarch no converge"

180 Z = -1000*ones(60,1);

181 endif

182 endif

183 endfunction
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