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Abstract

Persistence and unpredictable large increments characterize the volatility of financial returns.
We propose the Multiplicative Error Model with volatility jumps (MEM-J) to describe and
predict the probability and the size of these extreme events. The probabilistic properties of
the MEM-J model are studied. Under the MEM-J, the conditional density of the realized mea-
sure is a countably infinite mixture of Gamma and Kappa distributions, and the conditional
moments can be derived in closed form. Stationarity conditions and the asymptotic theory for
the maximum likelihood estimation are also derived. The MEM-J is fitted to the daily bipower
measures of 7 stock indexes and 16 individual NYSE stocks. Estimates of the volatility jump
component confirm that the probability of jumps dramatically increases during the financial
crises. Compared to other realized volatility models with fat tails, the introduction of the
volatility jump component provides a sensible improvement in the fit of the volatility tail.
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1 Introduction

A great deal of the recent literature on volatility modeling exploits realized volatility measures

as ex-post estimates of the return variation over a given horizon. Realized volatility series are

characterized by large variations, often associated with news arrival, thus challenging existing

volatility models (see e.g. Caporin et al., 2014b). Such an evidence is further confirmed by the

empirical analysis presented in this paper; indeed, currently available models, mostly designed

to fit the dynamics of realized volatility sequences, fail in explaining the probability and the

occurrence of volatility bursts. The inclusion of jumps in the volatility process, in addition to

jumps in prices, is a step forward a more appropriate description of the volatility features. Several

works, adopting a continuous-time framework, focus on the interactions between jumps in prices

and volatility showing the importance of both components in fitting the observed dynamics of

returns, see e.g. Chernov et al. (2003), Duffie et al. (2000), Pan (2002), Eraker (2004), Eraker

et al. (2003), Jones (2003), Broadie et al. (2007), Jacod and Todorov (2010), Todorov and Tauchen

(2011), Andersen et al. (2012b), Bandi and Renò (2012, 2015), Jacod et al. (2013a), Jacod et al.

(2013b), and Ait-Sahalia and Jacod (2014), which discuss a direct test for volatility jumps based

on high frequency returns, and therein cited references. Alternatively to the continuous time

framework, where a jump is a discontinuity in the trajectory of price and/or volatility, a jump

in discrete time takes the form of an extreme event, for example a very large value of the daily

volatility. So far, the analysis in a discrete-time setting has focused on the role that jumps

in prices have in predicting the future volatility. For example, Andersen et al. (2007), Corsi

et al. (2010) and Caporin et al. (2014a) extend the Heterogeneous Autoregressive (HAR) model

of Corsi (2009) to include past price jumps, i.e. the HAR-RV-J model. Differently, Caporin

et al. (2014b) explicitly model the probability of volatility jumps in a HAR setup, leading to a

significant increase in the model fit on the right tail. We note that the use of the HAR model

calls for a linear and additive specification of volatility jumps, that is more appropriate under

a log-transformation of the realized volatility series, see Caporin et al. (2014b). However, in

this case obtaining the forecasts distribution of the volatility level can be problematic in non-

Gaussian cases. In order to jointly model both the continuous and the jump component present

in the daily volatility process, we propose the Asymmetric HAR-Multiplicative Error Model with

jumps (AHAR-MEM-J) that extends the multiplicative error model (MEM) by Engle (2002) and

Engle and Gallo (2006). The purpose of the model is to assign a probability to volatility boosts

at each point in time. This is possible by the inclusion of a latent process labeled volatility

jump, that generates infrequent large moves in the volatility. We can think of the AHAR-MEM-J

as a three-factor model: first, a persistent factor, modeled by the Asymmetric HAR (AHAR),

which accounts for the long-run dependence of volatility and improves the fit compared to less

persistent GARCH-type specifications; second, a short-run factor, which represents the transitory

component of the volatility process; and third, the volatility jump factor, which is responsible

for realizations in the right tail of volatility distribution. Consequently, the MEM-J model allows

capturing the observed probability mass associated with large, or even extreme, realizations. The

model is analogous to the dynamic two-factor models of Russell (1999), Ghysels et al. (2004) and
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Bauwens and Veredas (2004) for durations. We carefully analyze the probabilistic properties of

the model. In order to obtain a closed-form expression for the conditional density, we assume

that both volatility innovations and jump sizes are Gamma-distributed with different degrees of

freedom. Despite the choice of a Gamma distribution may appear rather restrictive, the resulting

conditional density of volatility is instead very flexible. It is indeed a countably infinite mixture,

governed by a compound Poisson process, of two random variables: one distributed as a Gamma,

when volatility jumps are absent, and the second distributed as a Kappa, henceforth K, when

the number of volatility jumps is strictly positive. The K is a product distribution, known in

physics and radar applications, but never used in econometrics, to the best of our knowledge.

The K equals the product of two Gamma-distributed random variables with different degrees of

freedom. The main advantage of this distributional choice is that the conditional moments of the

dependent variable, the likelihood function and the quantiles can be obtained in closed-form, thus

avoiding to rely on simulation-based methods to estimate the parameters. Moreover, in order to

account for the empirical evidence of jump clustering, the intensity parameter, governing the jump

occurrence in the compound Poisson process, can be made time-varying with an autoregressive

specification, in the spirit of Hansen (1994) and Maheu and McCurdy (2004). Given that the

conditional density has a closed form expression, the AHAR-MEM-J parameters can be estimated

by maximum likelihood (ML). A number of theoretical results are derived to support the adequacy

of the ML approach. First, we derive stationarity conditions under the presence of jumps following

the approach of Bougerol and Picard (1992) and Franq and Zakoian (2010). Second, we prove that

the infinite mixture is bounded and identified, meaning that different values of the conditional

density of the innovations are always associated with distinct parameter values. Indeed, the

mixture is governed by a compound Poisson process which guarantees that the ML estimator

exists and is unique, see also Simar (1976). Finally, we derive the asymptotic properties of the

ML estimator, showing that the estimates are consistent and asymptotically normal. A number

of Monte Carlo simulations support the theoretical results and show that the ML estimates are

indeed unbiased and unimodal in finite samples also under over-specification of the conditional

density. We also propose a series of diagnostic tests, based on the moments of the infinite

mixture and on the dynamics in the jump innovations, to statistically evaluate the correctness of

the model specification. The empirical analysis is based on the high-frequency returns of 7 stock

indexes and 16 NYSE stocks. We estimate the AHAR-MEM-J on the bipower variation series,

which is an ex-post volatility measure robust to price jumps, thus disentangling the price jumps

from the volatility dynamics. A series of robustness checks confirms that the estimates of the

AHAR-MEM-J are not strongly affected by the choice of the ex-post volatility measure and by

the measurement error associated to it. The empirical application shows that the AHAR-MEM-J

with time-varying jump intensity allows for a great flexibility in accommodating the probability

of extremely large volatility realizations, dramatically improving the fit of the baseline MEM

and other more sophisticated models. Potential sources of jump innovations to volatility can be

important news, data releases, or unexpected events, which might induce market participants

to suddenly revise their portfolios, thus producing large variations in the volatility level. By

analogy to the Value-at-Risk (VaR), we introduce the Volatility-at-Risk (VolaR) which constitutes
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a natural measure of risk when designing volatility trading strategies. The evaluation of the VolaR

strongly supports the MEM-J specification against models without jumps. In summary, the

contributions of the paper are at least four. Firstly, we generalize the baseline MEM of Engle and

Gallo (2006) by including a volatility jump term, which captures the occasional boosts of volatility,

and a pseudo long-memory component which is able to account for the observed persistence.

Secondly, the conditional density of the dependent variable is derived in closed form. Thirdly

we discuss model stationarity conditions and the asymptotic properties of the ML estimator.

Fourthly, we provide empirical evidence on the relevance of jumps as a source of variation in

the realized volatility measures and on their contribution to a correct estimation of the VolaR.

We compare MEM-J to alternative specifications without jumps which turn out to be unable to

fit the right tail of the volatility density, especially in periods of market turmoil. Consequently,

the MEM-J model might turn out to be empirically relevant for the analysis of positive valued

series affected by the occurrence of spikes, such as trading volume, liquidity measures, inter-trade

durations and commodity prices. Outside the financial framework, the MEM-J can be adopted to

the model the wind speed, the barometric pressure or the concentration of gases and pollutants

in the atmosphere.

The paper is organized as follows. Section 2 sets the notation of the baseline MEM and

briefly review recent generalizations of the model. Section 3 describes the MEM-J and the in-

finite mixture distribution that characterizes the conditional density of the dependent variable

Xt. Conditional moments are also presented. Section 4 introduces model extensions with HAR

dynamics and time-varying parameters, and presents the conditions for stationarity. Section 5

discusses the model identification and provides theorems for consistency and asymptotic normal-

ity of the ML estimator. Moreover, it includes a Monte Carlo experiment and introduces three

diagnostic tests. Section 6 describes the dataset and illustrates the empirical results with stocks

indexes and individual S&P 500 stocks under different model specifications. In Section 7 the

results of the VolaR analysis are reported and discussed. Finally, Section 8 concludes. Proofs,

selected derivations of relevant quantities and additional theoretical details are included in Ap-

pendices A and B.1 Note that, in the rest of the paper, the term jumps, will be always referred

to volatility jumps, unless differently specified.

2 The baseline MEM

In this section, we briefly present the MEM in its simplest form, as introduced by Engle and

Gallo (2006), with the purpose of setting up the notation used throughout the rest of the paper.

Let Xt an almost surely (a.s.) strictly positive random variable, for instance an ex-post estimator

of daily integrated volatility at time t. The variable Xt follows a MEM model if

Xt = µtεt (1)

1An on-line web appendix containing further theoretical elements and additional results complements the paper.
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with

µt = ω + αXt−1 + βµt−1,

and ω > 0, α ≥ 0, β ≥ 0. The innovation εt is an i.i.d. random variable with strictly positive

support that can be assumed to be Gamma distributed, whose density in scale-shape is

fε(εt|Ft−1) =
1

εt
(εtν)

ν 1

Γ(ν)
e−νεt , εt ≥ 0 (2)

denoted Γ
(
1
ν , ν
)
where 1

ν is the scale and ν is the shape of the Gamma density, both driven

by the common parameter ν. Consequently, E [εt|Ft−1] = 1 and V [εt|Ft−1] =
1
ν , where Ft−1

is the information set at time t − 1 and εt is independent of Ft−1. If Xt follows a MEM with

a Gamma disturbance, its conditional density to Ft−1 is Γ(µt

ν , ν). Therefore, the conditional

mean and variance are E [Xt|Ft−1] = µt and V [Xt|Ft−1] = µ2
t ν

−1, respectively. Interestingly, the

conditional variance of Xt is function of µ2
t , thus making the MEM potentially able to account

for heteroskedastic effects that characterize many financial time series. With this purpose, the

parameter ν in the baseline MEM specification can be easily made time-varying according to a

GARCH-type law of motion, thus increasing the flexibility of the model in describing the higher

moments of Xt.

The form of µt is sufficiently flexible to include simple auto-regressive patterns, HAR terms as

in Corsi (2009), asymmetry, or predetermined variables. Examples of possible specifications for µt

are given, among others, in Engle and Gallo (2006) and Brownlees et al. (2012). Recently, Gallo

and Otranto (2012) extend the MEM to include time-varying parameters in the expression of µt

as in the case of regime-switching MEM. The latter specification allows for changing parameters

but requires to impose a priori structures on the form of the transition and on the number of

underlying regimes. Differently, Haerdle et al. (2015) propose to adaptively estimate the MEM

parameters based on a window of varying length thus providing updated parameter estimates

at each point in time. The literature on multiplicative models, in particular for applications on

realized volatility sequences, already includes several extensions of the distributional assumptions

of the baseline MEM. For example, Lanne (2006) proposes the mixture MEM to capture not only

the long-memory dynamics of the realized volatility, but also its heavy tail marginal distribution

as generated by the mixture of the two Gamma densities for the volatility innovations. Similarly,

the possibility of fat tails has been considered by Lunde (1999) and Andres and Harvey (2012)

that have adopted the generalized Gamma distribution in the ACD-MEM framework. Finally,

Hautsch et al. (2013) introduce a mixture in a multiplicative model to capture the probability

mass at zero, an empirical evidence in some high frequency series such as trading volumes.

As it will be shown in the empirical application, several of these distributional choices are not

able to assign the correct probability to the occurrence of the extremely high realizations that

characterize the volatility dynamics, as proxied by a realized volatility estimator. This further

confirms the need for a novel modeling setup explicitly designed to capture the occurrence of such

events. We also stress this model feature might be of relevant interest in other research areas

where the series of interest is positively valued characterized by sudden movements, i.e. jumps.
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3 A Multiplicative Error Model with Jumps

The baseline MEM with a Gamma distributed error term might be poorly designed to assign

the correct probability to the occurrence of large and abrupt movements, i.e. the jumps, that

characterize, for instance, the volatility dynamics. The presence and the effects of volatility

jumps have been already documented in the literature either in a continuous time framework, as

in Todorov and Tauchen (2011), among others, or in discrete time, see Caporin et al. (2014b).

We propose a generalization of the MEM of Engle and Gallo (2006), which we call MEM-J. The

new model introduces a multiplicative volatility jump term in the standard MEM of Engle and

Gallo (2006). We also generalize the dynamic features of the MEM with the inclusion of HAR

terms following Corsi (2009), we defer the discussion of this to Section 4. Under the MEM-J

specification, Xt equals the product of three stochastic elements

Xt = µtZtεt (3)

where µt is a function measurable with respect to Ft−1. Zt is the volatility jump component,

and the innovation εt|Ft−1 ∼ i.i.d.Γ
(
1
ν , ν
)
. Hereafter, to simplify the interpretation of the model

outcome, the Gamma density of the innovation term is expressed in the mean-shape form, i.e.

εt|Ft−1 ∼ i.i.d.Γ (1, ν), which is, by construction, equivalent to the scale-shape representation.

Hence, we require a number of assumptions on Zt and εt to identify and separate the two sources

of shocks. The jump term, Zt, is defined as

Zt =




dλ Nt = 0
∑Nt

j=1 Yj,t Nt > 0
(4)

where Nt is a discrete counting process governing the number of jumps that arrive between t− 1

and t. We model it as a Poisson process with intensity λ > 0,

P (Nt = m|Ft−1) =
e−λλm

m!
, m = 0, 1, 2, . . . (5)

The parameter λ is the expected number of jumps in the interval (t − 1, t]. The second charac-

terizing element of Zt defines the size of the jumps. We set it equal to the sum of independent

Gamma random variables, Yj,t ∼ Γ (dλ, ς) (in mean-shape form). Note that the jump density

does not depend on time and the parameter characterizing the jump size law is assumed to be

time-invariant. The scalar dλ is a scaling factor ensuring E [Ztεt|Ft−1] = 1, and it is a function

of the jump intensity λ:2

dλ :=
(
e−λ + λ

)−1
. (6)

In the following assumption we specify the elements which are needed to derive the conditional

density of Xt in closed form.

Assumption 1 In the MEM-J in (3), Xt = µtηt with ηt = Ztεt and

2The supplementary material provides a justification for this specific choice of the scaling factor.
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i. εt|Ft−1 ∼ i.i.d.Γ (1, ν);

ii. Nt|Ft−1 ∼ i.i.d.Poi (λ) with λ ≥ 0;

iii. Yj,t ∼ i.i.d.Γ (dλ, ς), for j = 1, ..., Nt;

iv. εt, Nt and the variables Yj,t, j = 1, 2, . . . , Nt, are assumed to be independent for any t.

By Assumption 1, it follows that Zt|(Nt = m > 0,Ft−1) is distributed as a Gamma with mean

mdλ and shape mς, with density given by

gZ(zt|Nt = m > 0,Ft−1; ς, λ) =
1

zt

(
ςzt
dλ

)mς e
− ςzt

dλ

Γ(mς)
. (7)

So far, all parameters are assumed to be time invariant. In Section 4 we discuss the possibility

of time-varying parameters in the jump process, as a way to increase the capability of the model

to adapt to the changing market conditions.

3.1 The conditional density of ηt

The conditional density of ηt = Ztεt depends on Nt through Zt. When Nt = 0, ηt = dλεt the

conditional density is

gη(ηt|Nt = 0,Ft−1; ν, λ) =
1

ηt

(
νηt
dλ

)ν e
− νηt

dλ

Γ(ν)
. (8)

with mean dλ. Differently, when Nt = m > 0, ηt|(Zt, Nt = m > 0,Ft−1) ∼ Γ (Zt, ν). Hence, to

derive the conditional density of ηt given Nt = m > 0 and Ft−1, we have to evaluate the following

integral: ∫ ∞

0
gη(ηt|Nt = m > 0, Zt,Ft−1; ν)gZ(zt|Nt = m > 0,Ft−1; ς, λ)dz, (9)

where gη(ηt|Nt = m > 0, Zt,Ft−1; ν) is the density of a Gamma random variable with mean Zt

and shape ν. In the following proposition we present the conditional density of ηt which includes

the closed-form solution to the integral in (9).

Proposition 1 Consider model (3) where ηt = Ztεt with Zt defined in (4). Under Assumption

1, it follows that

kη(ηt|Nt = m > 0,Ft−1; ν, ς, λ) =
2

ηt

(
ηt
ςν

dλ

)mς+ν
2

1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
ηt
ςν

dλ

)
, (10)

where: Ka (·) is the modified Bessel function of the second kind. Hence, the innovation term ηt,

conditional on Nt = m > 0 and Ft−1, has a Kappa, or K, distribution, see Redding (1999),

denoted as K
(
mdλ,mς, ν

)
. Conditional on Ft−1 the density of ηt is a countably infinite mixture

fη(ηt|Ft−1; ν, ς, λ) =P (Nt = 0|Ft−1;λ)gη(ηt|Nt = 0,Ft−1; ν, λ)

+

∞∑

m=1

P (Nt = m|Ft−1;λ) kη(ηt|Nt = m > 0,Ft−1; ν, ς, λ), (11)
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where P (Nt = 0|Ft−1;λ) = e−λ and P (Nt = m > 0|Ft−1;λ) = (e−λλm)/m!.

Proof in Appendix A.1.

The K density depends on three parameters which have specific meanings in the MEM-J. The

first parameter is the mean of the K density, and it depends on the realized number of jumps,

m. The second parameter depends on the shape of the jump component Zt, while the third is

the shape parameter of the innovation term εt. Interestingly, the conditional variance of ηt is

an increasing function of the number of jump arrivals, m. Hence, periods with a larger number

of jump arrivals are characterized by a higher volatility-of-volatility. When integrating out the

dependence of the mixing variable, that is the Poisson process Nt, the density of ηt conditional

on Ft−1 is a countably infinite mixture of Gamma and Kappa densities, whose weights depend

on λ. As λ increases, more weight is given to the kη’s in the infinite sum, while when λ = 0

the conditional density of ηt is gη and the MEM-J reduces to the MEM. Appendix B reports

additional details on the K distribution.

3.2 The conditional density of Xt

The conditional density of Xt, given Nt = m > 0 and Ft−1, follows from the conditional distri-

bution of ηt in equation (10). The following propositions present the density of Xt and introduce

its conditional moments.

Proposition 2 Consider model (3) where ηt = Ztεt with Zt defined in equation (4). Under

Assumption 1 and given Proposition 1, it follows that

gX(xt|Nt = 0,Ft−1; θ1, ν, λ) =
1

xt

(
νxt
dλµt

)ν e
− νxt

dλµt

Γ(ν)
(12)

kX(xt|Nt = m > 0,Ft−1; θ1, ν, ς, λ) =
2

xt

(xt
µt

ςν

dλ

)mς+ν
2 1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
xt
µt

ςν

dλ

)
, (13)

where θ1 contains the parameters of µt. Thus Xt, conditional on Nt = m > 0 and Ft−1, has a K

distribution, denoted as K
(
µtmdλ,mς, ν

)
. The first two conditional moments of Xt are

E [Xt|(Nt = 0,Ft−1)] = µtdλ, E [Xt|(Nt = m > 0,Ft−1)] = µtmdλ,

V [Xt|(Nt = 0,Ft−1)] =
µ2
td

2
λ

ν
, V [Xt|(Nt = m > 0,Ft−1)] = µ2

tm
2d2λ

mς + ν + 1

mςν
.

Proof in Appendix A.2.

As a result, both the conditional mean and variance of Xt are not only time-varying and driven

by µt, as in the MEM, but also dependent on the realized number of jumps, m. Integrating out

the dependence on the realized number of jumps, it follows that

Proposition 3 Under Assumption 1 and given Proposition 2, the density of Xt conditional on
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Ft−1 is a countably infinite mixture

fX(xt|Ft−1; θ) = e−λgX(xt; θ1, ν, λ) +

∞∑

m=1

e−λλm

m!
× kX(xt|m, θ1, ν, ς, λ), (14)

where gX(xt; θ1, ν, λ) ≡ gX(xt|Nt = 0,Ft−1; θ1, ν, λ), kX (xt|m, θ1, ν, ς, λ) ≡ kX(xt|Nt = m >

0,Ft−1; θ1, ν, ς, λ) and θ = (θ′1, ς, ν, λ)
′. It follows that the mean and variance of Xt conditional

on Ft−1 are

E [Xt|Ft−1] = µt, (15)

V [Xt|Ft−1] = µ2
t

{[
λ

ς
+ e−λ +

(
λ+ λ2

)]
d2λ
(
1 + ν−1

)
− 1

}
. (16)

Proof in Appendix A.3.

Notably, while the conditional mean of Xt is exactly equal to µt, the conditional variance of

Xt is the product between the squared conditional mean and a factor depending on the param-

eters of the mixture. By a straightforward extension of the conditional moments of ηt (see the

Supplementary material) it is possible to show that the parameters of the mixture also influence

the higher conditional moments of Xt. In the following, we generalize the model allowing for

a richer dynamic specification for µt, as opposed to the baseline case of the MEM model, and

introducing time-varying jump arrival intensity, λt.

4 A persistent MEM-J with time-varying parameters

In this section we provide generalizations of the MEM-J model aimed at capturing dynamic

and distributional features characterizing sequences of ex-post estimators of the daily integrated

volatility.

4.1 Specification of µt

Looking at the dynamics of the model residuals reveals the importance of a correct specification of

µt. Since time series like those of integrated volatility estimators are characterized by a slow and

hyperbolic decay of the autocorrelation function, it follows that a simple ARMA(1,1) specification,

as implied by the baseline MEM, is not enough to describe such a rich dynamic behaviour. A

parsimonious approach to account for the (pseudo) long-memory property of the volatility series

has been proposed by Corsi (2009) with the HAR model. The HAR is a long autoregressive

model, subject to linear constraints, designed to capture the persistence of the logarithm of

realized volatility. Building on the latter contribution, we consider two alternative specifications

for µt, the time-varying mean of Xt, an ex-post estimator of the daily integrated volatility for a

given asset:

• Asymmetric HAR-MEM (AHAR-MEM):

µt = ω + βµt−1 + α1Xt−1 + α2Xt−1:t−5 + α3Xt−1:t−21 + γX−

t−1
+ γ2X

−

t−1:t−5
+ γ3X

−

t−1:t−21
(17)
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where Xt−1:t−5 = 1
5

∑5
j=1Xt−j and Xt−1:t−21 = 1

21

∑21
j=1Xt−j , X

−
t ≡ Xt · I{rt < 0}, with

rt being the daily return of the asset whose daily integrated volatility is being analyzed,

X−
t−1:t−5 = 1

5

∑5
j=1X

−
t−j and X−

t−1:t−21 = 1
21

∑21
j=1X

−
t−j ; finally, all parameters are non-

negative. This specification allows for the leverage effect, i.e. an asymmetric response of

volatility to the sign of the returns (see Engle and Gallo, 2006). Within this specification, it

is possible to test whether the inclusion of the weekly and monthly volatility and asymmetry

terms provides a significant improvement in fitting the volatility dynamics.3

• Asymmetric MEM (A-MEM):

µt = ω + α1Xt−1 + βµt−1 + γ1X
−
t−1 (18)

where all parameters are non negative. This model is nested in AHAR-MEM with the

restriction α2 = α3 = γ2 = γ3 = 0. Further, the MEM is obtained simply setting γ1 = 0.

The inclusion of HAR dynamics into the specification of µt represents an alternative to the

more sophisticated ways to model the long-range dependence in the MEM framework, as those

in Lanne (2006) and Gallo and Otranto (2012). The main advantage of the HAR specification is

that, despite it imposes ad hoc restrictions on the autocorrelation structure, it is able to account

for the long memory behavior of the series with a limited number of free parameters and it has

been proven to be successful in the log-linear context by Andersen et al. (2007), Bollerslev et al.

(2009) and Ma et al. (2014). Recently, Audrino and Knaus (2014) has shown evidence, based on

a LASSO regressions, that the HAR structure with daily, weekly and monthly factors may be

subject to structural breaks during financial crises, but this issue is not addressed in the present

paper. Finally, note that the inclusion of lagged values of Xt makes the conditional mean µt

dependent on past jumps which are embedded in the past values of Xt. Further generalizations

might introduce additional covariates in µt, as in Caporin et al. (2014b).

4.2 Time-varying jump intensity

The specification of the AHAR-MEM-J is inherently limited given that the Poisson process gov-

erning the jumps arrival and the Gamma density characterizing the jump size are all driven

by time invariant parameters. To increase the model flexibility we introduce time variation in

the jump intensity parameter, λ, and define the AHAR-MEM-J-λt model. We first specify the

dynamic evolution of the parameter λt, for which we suggest the Auto Regressive Jump Inten-

sity (ARJI) specification of Chan and Maheu (2002), Maheu and McCurdy (2004), within the

GARCH-Jump context for stock returns, and Caporin et al. (2014b) for volatility jumps. We

show here that it is possible to adapt a similar modeling strategy also in the MEM framework.

Under time-varying jump intensity, the conditional variance of Xt in (16) evolves over time as a

function of both µt and λt. This allows for a great degree of flexibility in the MEM-J, making

the model capable of a flexible dynamic specification for high order moments. In particular, the

3If the asymmetry component is not present, we refer to the model as the HAR-MEM.

10



jump intensity is assumed to follow:

λt = φ1 + φ2λt−1 + φ3ξt−1, (19)

where

ξt = E [Nt|Ft]− λt =

∞∑

m=0

mP (Nt = m|Ft, θ2)− λt, (20)

and θ2 = (φ1, φ2, φ3)
′. The restrictions φ1 > 0 and φ2 > φ3 > 0 are sufficient to guarantee

the positiveness of λt as in Chan and Maheu (2002). As noted by Chan and Maheu (2002), ξt

represents the change in the econometrician’s conditional forecast of Nt−1, as the information set

is updated. Note from the definition in (20) we have that ξt is a real-valued martingale difference

sequence with respect to Ft−1, since E(ξt|Ft−1) = 0 so that E(ξt) = 0 and Cov(ξt, ξt−h) = 0 for

h > 0. We also assume that ξt is strictly stationary and ergodic. In particular, the innovation

term of the jump intensity depends on the conditional probabilities of observing m jumps given

Ft, and those are determined following the hypothesis of having a Poisson process governing the

number of jumps, see (5). However, as the conditioning set is different, those probabilities must

be appropriately updated by applying the Bayes rule as follows

P (Nt = m|Ft; θ2) =
fX (xt|Nt = m,Ft−1, θ)× P (Nt = m|Ft−1; θ2)

fX (xt|Ft−1, θ)
, m = 0, 1, 2, . . . (21)

where θ = (θ′1, θ
′
2, ν, ς)

′, the terms on the right hand side are functions of Ft−1, and the functional

expression of fX (xt|Nt = m,Ft−1, θ) is defined in (12) for m = 0, and in (13) for m > 0. From

a distributional point of view, letting the mixing parameter λ to be dynamic implies that the

conditional density of Xt in (14) has time-varying weights associated with the mixture. This

provides an extremely flexible specification of the density of Xt, which can be exploited to infer

a precise probability of occurrence of tail events, see Section 7. Moreover, the results outlined

in Propositions 1-3 on the densities of ηt and Xt conditional on Ft−1 are still valid under the

time-varying jump intensity specification, since also the dynamics of λt are conditional on Ft−1.
4

Finally, alternative specifications for µt and λt are viable but not covered in the present work.

For instance, the use of a log-linear specification for the jump intensity might be adopted to

avoid the positivity constraints on the parameters, or a Generalized Autoregressive Score (GAS)

representation, see Creal et al. (2013). Differently, even the jump size might be made dynamic,

similarly to Chan and Maheu (2002).

4.3 Stationarity

We first provide the stationarity condition for the simple case of time-invariant jump intensity

with µt specified as

µt = ω +

q∑

i=1

αixt−i +

p∑

i=1

βiµt−i. (22)

4Assumption 1.iii need a minor change as the density of Yi,t becomes conditional to Ft−1.
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with ω > 0, αi ≥ 0, i = 1, 2, . . . , q and βj ≥ 0, j = 1, 2, . . . , p to ensure the positivity of µt.

Theorem 1 Let Xt follow a strictly positive and covariance stationary MEM-J defined as in (3),

with µt defined in (22) and with ω > 0. Under E[εt|Ft−1] = 1 and Assumption 1.iv, then

q∑

j=1

αj +

p∑

i=1

βi < 1. (23)

Conversely, if (23) holds, the unique strictly stationary solution of the MEM-J model defined in

(3) and (22) is a second-order stationary solution.

Proof in Appendix A.4.

Deriving the stationarity conditions when the jump intensity is time-varying is more involved

compared to the constant λt specification. In this case, we provide a sufficient condition for the

stationarity of the MEM-J in (3) with density, conditional on ηt, defined in (13), where ηt is a

sequence of random variables with time-varying intensity parameter λt defined as in (19).

Theorem 2 Under Assumption 1 with the processes λt and µt specified as in (19) and (22)

respectively, a sufficient condition for the existence of a strictly stationary solution of the MEM-

J-λt, defined by (3), (19) and (22), is

ρ(A) < exp(−E[log [(p + q)(ηt + (p+ q)− 1)]])

where ρ(A) is the spectral radius of A (i.e. the greatest modulus of its eigenvalues), with

A =




α1 . . . αq−1 αq β1 . . . βp−1 βp

Iq−1 0(q−1)×(p+1)

α1 . . . αq−1 αq β1 . . . βp−1 βp

0(p−1)×q Ip−1 0(p−1)×1



,

where Im is an m−dimensional identity matrix and 0m×n is an m×n matrix of zeros. When the

strictly stationary solution exists, it is unique and ergodic.

Proof in Appendix A.5.

This second result is less intuitive than in the constant intensity case. Nevertheless, we stress

that the sufficient condition depends both on the number of the parameters in the process for µt

and on the expectation of the innovation ηt that combines the jump term and the error term ǫt.

5 Maximum Likelihood Estimation

The MEM-J-λt can be estimated by maximum likelihood. Under the maintained assumption

that Nt|Ft−1 ∼ Poisson(λt) with Nt and εt independent processes, the conditional density of

Xt, fX (xt|Ft−1; θ), can be computed in closed form as in (14). Indeed, the density of the K

distribution is known and it does not need to be simulated, so that the computation of the
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conditional log-likelihood function is straightforward. Let µt be specified as in (22) and θ =

(θ1, θ2, θ3) be the parameter vector of the MEM-J-λt model, with θ1 = (ω,α1, . . . , αq, β1, . . . , βp),

θ2 = (φ1, φ2, φ3) and θ3 = (ν, ς). The conditional density of Xt = µtZtεt is given by the infinite

countably mixture in (14) and the sample log-likelihood is

LT (θ) =

T∑

t=1

lt(θ)

where lt(θ) = log fX(xt|Ft−1; θ). In the following, we also suppress the dependence on Ft−1 in

the notation, so that fX(xt; θ) ≡ fX(xt|Ft−1; θ). The maximum likelihood estimator is defined

as the maximum of the the log-likelihood function computed conditional on some initial r.v’s

X̃0, . . . , X̃1−q, ξ̃0 and µ̃0, . . . , µ̃1−p, i.e.

θ̂T = argmax
θ∈Θ

L̃T (θ).

The identifiability of a mixture distribution is essential for parameter estimation. In the following

theorem we state that the MEM-J is identifiable.

Theorem 3 (Identifiability) Given a sample {xt}Tt=1 and assuming that gX(xt; θ1, θ2, ν) and

kX(xt;m, θ) are uniquely identified by a parameter vector θ, the MEM-J-λt model is identifiable,

that is
T∑

t=1

fX(xt; θ
(1)) =

T∑

t=1

fX(xt; θ
(2)) a.s. → θ(1) = θ(2).

Proof in Appendix A.6.

For the consistency of the MLE for the MEM-J-λt model, we assume:

Assumption 2 (Consistency)

i. {θ0} ∈ int(Θ) with Θ compact.

ii. The MEM-J is identifiable.

iii. The top Lyapounov exponent γθ0 at θ0 is strictly negative.

iv. E {supθ∈Θ[log fX(xt; θ)]} < ∞ and E[lt(θ)] has a unique maximizer at θ0.

v. E

{
supθ∈Θ |lt(θ)− l̃t(θ)|

}
= O

(
1
tv

)
for some v > 0, where l̃t(θ) is lt(xt; θ) with the initial value

x̃0.

Theorem 4 Under Assumption 2, the ML estimator θ̂
a.s.→ θ, as T → ∞.

Proof in Appendix A.7.

The crucial assumption for consistency is the identifiability of the model stated in Theorem

3. In addition to the assumptions for Theorem 4, we consider the following set of assumptions to

obtain the asymptotic normality of the MLE of the MEM-J-λt. Denote Xt the range of Xt where

Xt is a subset of a finite dimensional Euclidean space.
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Assumption 3 (Asymptotic Normality)

i. lt(θ) is twice continuously differentiable on Xt ×Θ.

ii. For each θ ∈ Θ, there exist functions

∣∣∣∣
∂fX(xt; θ)

∂θ

∣∣∣∣ ≤ hi(x),

∣∣∣∣
∂2fX(xt; θ)

∂θi∂θj

∣∣∣∣ ≤ hi,j(x),

∣∣∣∣
∂3fX(xt; θ)

∂θi∂θj∂θk

∣∣∣∣ ≤ hi,j,k(x) i, j, k = 1, . . . , p

(24)

where hi(x), hij(x) are integrable and hijk(x) satisfies

∫

X
hijk(x)fX(x; θ)dx < ∞

iii. H(θ0) ≡ limT→∞ T−1
∑T

t=1 E[−
∂2lt(θ0)
∂θ∂θ′ ] is positive definite.

iv.
∂2lt(θ)
∂θ∂θ′ satisfies the uniform weak law of large numbers (UWLLN).

v. the score {∂lt(θ0)/∂θ, t = 1, 2, . . .} satisfies the CLT with asymptotic variance given by

I(θ0) = lim
T→∞

Var

(
T−1/2

T∑

t=1

∂lt(θ0)

∂θ

)

vi. the score satisfies E[∂lt(θ0)∂θ
∂lt+j(θ0)

∂θ′ ] = 0, j 6= 0

Theorem 5 Under Assumption 3, the ML estimator of θ of the MEM-J-λt

√
T (θ̂T − θ0)

d→ N(0,J −1(θ0))

where J (θ0) = limT→∞
∑T

t=1 E[
∂lt(θ0)

∂θ
∂lt(θ0)
∂θ′ ], with J (θ0) = I(θ0) = H(θ0).

Proof in Appendix A.8.

This is a standard result given the characteristics of model (i.e. stationarity and ergodicity).

The differentiability of the Bessel function cannot be directly checked, but we provide some

simulation evidence in the following section.

5.1 Monte Carlo Simulations

We run a set of Monte Carlo simulations to show that the finite sample distributions of the ML

estimates of the MEM-J parameters, which involve numerical evaluations of the derivatives of the

modified Bessel function of the second kind with respect to its order, are centered on the true

values and they are unimodal, coherently with Theorem 5. We therefore simulate three different

specifications with the same µt as in (17) with no asymmetric effect: HAR-MEM (model in (1)),

HAR-MEM-J with constant λ (model in (3)) and HAR-MEM-J-λt. The algorithm to simulate
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pseudo-random variates from a K density is illustrated in Appendix B. The true parameter values

and the corresponding Monte Carlo average estimates are reported in Table 1. The simulated

sample size is set equal to 3000 observations. Due to the computational burden in estimating the

MEM-J the Monte Carlo replications are 500. We investigate the effects that the over-specification

of the jump component can have on the maximum likelihood estimates. This can be a typical

situation which arises when we have to specify nonlinear models with latent components. We

estimate over-specified models (upper and middle panel of Table 1), i.e. the HAR-MEM-J-λt,

when the data have been generated with either λ equal to zero (i.e. φ1 = φ2 = φ3 = 0) or

with a constant λ. The infinite sum of densities required to compute the likelihood, see (35), is

truncated at m̄ = 10. Indeed, any choice of m̄ larger than 10 leads to almost identical parameter

estimates since for λ = 0.25 (which is a realistic value for the jump intensity) the probability

of observing more than 10 jumps is of order 10−15. The same choice of m̄ is later adopted in

the empirical application. When the jumps are totally absent, the estimate of the unconditional

mean of λt, i.e. E[λt] = φ1/(1 − φ2), is almost equal to zero on average, meaning that there is a

very limited mixing effect in the conditional density of Xt due to the estimated jump term. This

means that the estimated model is very close to the HAR-MEM which is the DGP. Indeed, the

parameters governing µt are correctly estimated with a small RMSE. It should also be noted that

the parameter ς is not defined under the DGP, but it is estimated when fitting the HAR-MEM-

J-λt on the data as it determines the shape of the K distribution. This has no consequences

on the parameters in µt, as they are all located around the true values. Indeed, as noted by

Engle and Gallo (2006), the nuisance parameters governing the shape of the distribution of the

innovation term do not impact on the estimates of the parameters of µt. When jumps are absent

but the parameter ς is estimated, the bias and RMSE associated with this parameter are very

high, which is a consequence of the lack of identification. The average estimate of ς is large,

suggesting that the average size of the jumps is very small, as their expected size is the reciprocal

of ς. Concluding, when the jumps are absent, and a HAR-MEM-J-λt is fitted to the data (i.e.

over-specification), the estimates of the parameters in µt are very close to the true values while

the estimated jump component is negligible.

When λ is constant, but a HAR-MEM-J-λt is estimated, see the second panel of Table 1, the

distributions of the parameters in the DGP are centered on the true values, so that the impact

of the over-specification is again very limited. For instance, if we look at the estimates of the

HAR parameters, they seem unaffected by this over-specification. Moreover, the estimate of the

parameter φ3 is close to zero, meaning that the estimated variation in λt is almost absent as

implied by the DGP. In the third case considered, i.e. the correctly specified model, the ML

estimates have a very small finite sample bias and the RMSE’s of φ1/(1−φ2), φ2 and φ3 have the

same order of magnitude of the HAR parameters. Figure 1 displays the kernel density estimates

of the ML estimates based on the Monte Carlo simulations. The plots show that the finite sample

distributions for all parameters are centered on the true values. Furthermore, the ML estimates

of the HAR-MEM-J-λt model have Monte Carlo distributions that are well behaved with no

evidence of multimodality that may be an indication of the presence of multiple local maxima.

The Monte Carlo simulations confirm the validity of the ML estimation method, made pos-
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ω α1 α2 α3 β ν ς φ1

1−φ2

φ2 φ3

DGP: λ = 0
0.001 0.4 0.15 0.1 0.3 20 - - - -

Mean 0.001 0.399 0.148 0.097 0.302 20.106 38.010 0.009 0.599 0.254
RMSE 0.000 0.021 0.069 0.023 0.076 0.577 40.972 0.033 0.636 0.334

DGP: λ = 0.25
0.001 0.4 0.15 0.1 0.3 35 20 0.25 - -

Mean 0.001 0.400 0.152 0.099 0.296 34.957 20.625 0.250 0.479 0.019
RMSE 0.000 0.017 0.050 0.017 0.056 1.646 3.710 0.018 0.611 0.033

DGP: λt > 0
0.001 0.4 0.15 0.1 0.3 35 20 0.2 0.95 0.1

Mean 0.001 0.400 0.147 0.100 0.301 35.011 20.620 0.201 0.931 0.106
RMSE 0.000 0.018 0.056 0.018 0.062 1.394 4.051 0.027 0.060 0.034

DGP: Log-Normal
(µ = −2σ2, σ2 = 0.0625)

0.001 0.4 0.15 0.1 0.3 – – – – –

Mean 0.001 0.398 0.150 0.097 0.301 16.967 62.244 0.080 – –

RMSE 0.000 0.021 0.063 0.023 0.069 0.508 11.885 0.029 – –

Table 1: Monte Carlo results. The true parameter values used in simulation are in bold. Sample
mean and Root mean squared error (RMSE) of maximum likelihood estimates of simulated HAR-
MEM’s models. If the value of the true parameter is not defined under the DGP, the corresponding
RMSE is replaced by the Monte Carlo standard deviation.

sible by the knowledge of the closed-form expression of the K distribution, and show that the

results are also valid when the jumps are absent, i.e. when the density of the innovation term

is Gamma distributed. In the empirical application we rely on standard asymptotic results for

the computation of the standard errors, as in Engle and Gallo (2006). Finally, the bottom panel

of Table 1 reports the Monte Carlo mean and RMSE of the HAR-MEM-J estimates with con-

stant λ under misspecification, i.e. when the innovations follow a log-normal distribution. The

parameters µ and σ2 are calibrated to guarantee that innovations are centered around 1 with the

same variance of the HAR-MEM-J model with λ = 0.2, ν = 35 and ς = 20. Two interesting

clues emerge from the Monte Carlo estimates. First, the parameters of µt are not affected by

the misspecification and are centered around the true values. Second, the estimated mixture

parameters are such that there is limited mixing effect coming from the K distribution (λ ≈ 0.08

and ς ≈ 62), i.e. the jump component. The Monte Carlo results also show that in case of mis-

specification the parameter estimates of HAR-MEM-J mixture density are such that the presence

of jumps is unlikely. The mean of the ς̂ is three times larger those obtained under HAR-MEM-J

DGP cases of comparable variance which indicates that the jump size distribution is much more

concentrated and accompanied by a larger variability of the εt shock. This result suggests that,

when the HAR-MEM-J is fitted on leptokurtic time series, the estimated parameters seem to

exclude that the excess kurtosis is generated by jumps.
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Figure 1: Kernel densities of the Monte Carlo estimates of the HAR-MEM-J-λt, where λt varies
according to (19).

5.2 Diagnostic Tests

A direct test for a MEM model with jumps as opposed to a model without jumps cannot be

easily performed by a likelihood ratio test because the parameter ς is not defined under the

null hypothesis.5 Therefore, similarly to Richardson and Smith (1993) and Harvey (1995), we

define a test based on the idea that, the maintained model is the MEM with gamma distributed

disturbances, i.e. εt ∼ Γ(1, ν). The test statistics is computed as

JΓ = TM̂ ′
εΩ

−1
ε M̂ε (25)

5In this case simulation based approaches can be used to recover the critical values of the likelihood ratio test,
as suggested Hansen (1996). However, this strategy is subject to such a high computational burden that it would
nullify the practical usefulness of the MEM-J.
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where

M̂ε =
1

T

T∑

t=1

m̂t,ε

with m̂t,ε containing deviations between the observed values and the theoretical moments:

m̂t,ε =

(
ε̂3t − 2

ν̂2
− 3

ν̂ − 1

ε̂4t − 6
ν̂3

− 11
ν̂2

− 6
ν̂ − 1

)
.

For the weighting matrix Ωε we employ the Newey-West estimator

Ωε =
1

T

∑

t

m̂t,εm̂
′
t,ε +

bT∑

i=1

ωi(Ĉi + Ĉ ′
i)

with Cov(m̂t−j,ε, m̂t,ε) = Cj 6= 0, and ωi is a kernel, which must ensure consistency and positive

semi-definiteness. The Newey-West estimator normally adopts a Bartlett kernel, i.e. ωi = 1 −
i

bT+1 , with bT =
⌊
0.75T 1/3

⌋
, where the operator ⌊x⌋ rounds to the largest previous integer

value of x. Under the null hypothesis that the true model is a MEM with Gamma innovations,

or, alternatively, there are no jumps in the MEM model, the test statistic is asymptotically

distributed as a χ2 with two degrees of freedom. Clearly, the rejection of the null hypothesis

could signal either the possible presence of jumps or, more generally, the inappropriateness of the

Gamma distribution for the innovations.

A similar moment-based-test can be developed under the MEM-J model. In this case, we test

if the third and fourth moments of the MEM-J standardized residuals η̂t = Xt/µ̂t coincide with

those prescribed by the mixture of Gamma and Kappa distributions. In this case, the test is

Jmix = TM̂η
′
Ω−1
η M̂η (26)

M̂η =
1

T

T∑

t=1

m̂t,η

with

m̂t,η =

(
η̂3t − E(η3t )

η̂4t − E(η4t )

)
.

where the parametric expressions for E(η3t ) and E(η4t ) are provided in the Supplementary mate-

rial. The weighting matrix has the same form of the previous test, but with m̂t,η in place of m̂t,ε.

Again, under the null hypothesis of correct model specification, the true model is a MEM-J, the

test statistics equals, asymptotically, a χ2
2. The joint use of the two tests JΓ and Jmix allow ver-

ifying the appropriateness of the MEM-J model specification and, consequently, of the presence

of jumps in the modeled variable. Indeed, if we reject the null under MEM and we do not reject

the null under the MEM-J, we are implicitly validating the inclusion of jumps in the MEM.

Finally, we provide a diagnostic test for the jump specification of the MEM-J. If the jump

innovations ξt = E(Nt|Ft)− λt are serially dependent, then a proper dynamic specification of λt

is needed. Indeed, if the model is well specified, the ξt should be orthogonal to Ft−1, and should
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also display no serial correlation. Hence, given ξ̂t, the test of no autocorrelation is the test of the

null hypothesis H0 : δ1 = δ2 = . . . = δr = 0 in the following auxiliary regression

ξ̂t = δ0 + δ1ξ̂t−1 + . . .+ δmξ̂t−r + wt. (27)

We interpret the rejection of the null hypothesis as a consequence of a misspecification in the

jump intensity dynamic.

6 Empirical Results

The MEM-J aims at capturing the occurrence of large and unpredictable movements of the

dependent variable. This corresponds to one of the features of the realized volatility sequences, a

variable commonly analyzed in the literature dealing with multiplicative error models, see Engle

and Gallo (2006), Lanne (2006), and Andres and Harvey (2012) among many others.

6.1 Database and ex-post volatility estimation

Our purpose is to estimate the probability and the size of the volatility jumps once that price

jumps have been disentangled from the volatility dynamics. Indeed, when price jumps are present,

the total price variation, or quadratic variation, is equal to the sum of integrated variance plus

the squared price jumps. The daily quadratic variation can be estimated by the realized variance

(or realized volatility), as

RVt =
M∑

j=1

r2t,j t = 1, ..., T (28)

where rt,j ≡ pt,j − pt,j−1 is the j-th intraday log-return on a fixed length grid with M intradaily

observations. When M → ∞ and microstructure noise is absent, the RV converges to the

quadratic variation.

Disentangling the squared price jumps from the integrated variance is important when the

focus is on the volatility dynamics. Indeed, as it has been noted by Huang and Tauchen (2005),

jumps in prices account for approximately 7% of the total price variability. Barndorff-Nielsen and

Shephard (2004) propose as an ex-post estimator of the daily integrated variance, the bipower

variation, defined as

BPVt =
π

2

M∑

j=2

|rt,j ||rt,j−1| t = 1, . . . , T. (29)

BPV converges to the integrated variance as M diverges, also when the instantaneous volatility

process contains a jump component.

The empirical analysis reported in the following sections is conducted with the daily BPV

series of two sets of assets. The first dataset includes seven stock indexes: S&P500, FTSE 100,

DAX, DJIA, NASDAQ 100, CAC 40, Bovespa, sampled from January 3, 2000 through January

31, 2013, as made available by the Oxford-Man Institute’s Realised Library. The second dataset

consists of 16 large cap equities quoted on the New York market: Boeing, Bank of America,
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City Group, Caterpillar, Federal Express, Honeywell, Hewlett-Packard, IBM, JP Morgan, Kraft,

Pepsi, Procter & Gamble, AT&T, Time Warner, Texas Instruments, and Wells Fargo. Prices are

sampled at one minute frequency, from January 2, 2003 to June 30, 2012, and they are provided

by TickData. The BPV is estimated from the 1-minute prices. In both datasets, the realized

measure, RMt, is expressed as daily volatility, i.e. the square root of BPV, RMt =
√
BPVt. The

descriptive statistics of both datasets6 highlight well known stylized facts such as high kurtosis

and asymmetry, due to the long upper tail characterizing the empirical density of RMt, and the

presence of a strong serial correlation as suggested by the very high values of the auto-correlations

at the selected lags 1, 5 and 22.

Several alternative multiplicative specifications are considered for modelling RMt. We con-

sider two alternative specifications of µt: the AMEM and the AHAR-MEM, where the former is

nested in the latter. For what concerns the jump component, we consider the following cases:

• No jumps: φ1 = φ2 = φ3 = ς = 0;

• Constant jump intensity: from equation (19) we set λt = φ1 and φ2 = φ3 = 0;

• Time-varying jump intensity: with λt evolving as in equation (19).

Due to space constraints, only the estimates of the parameter of the AHAR-MEM-J-λt are

reported in the paper.7 To compare the alternative models we consider two different approaches.

Firstly, we pursuit a full-sample evaluation approach, where the MEM and MEM-J specifications

are compared with respect to their fit on the empirical data by using both parameter restrictions

tests and the diagnostic tests introduced in Section 5.2. Secondly, we evaluate model abilities

in fitting the upper tail of the realized measure both in-sample and out-of-sample. This is not

only crucial for risk-management purposes, but also consistent with the expected ability of the

MEM-J in capturing sudden and large increases in the volatility.

6.2 Estimation results

Alternative MEM specifications are first compared in terms of their ability in fitting the dynamics

of the series. To this end, we analyze the dynamic properties of the residuals8

ε̂t =
RMt

µ̂t
. (30)

Beside the tests of Section 5.2, we also make use of more traditional tests, in particular for the

detection of residual serial correlation. However, since the standard diagnostic Q statistic is

designed for residuals that are assumed normally distributed, we normalize the residuals with

6See Table 1 in the supplementary document.
7The parameter estimates of the other sub-models are in the Tables 2-4 in the supplementary document.
8As an alternative, model residuals might be computed by standardization of RMt with respect to its expected

value, involving the impact of µt and (when present) Zt. In this case, innovations are defined as Pearson’s residuals

RMt − E [RMt|Ft−1]

V [RMt|Ft−1]
1/2

.

20



ε̂∗t = F−1
N [FΓ(ε̂t)], for t = 1, . . . , T , where FN (·) and FΓ(·) are the cumulative density functions

of the standard normal and Gamma distributions, respectively. Table 2 reports the diagnostic

statistics and tests for the estimated models: the AMEM, AHAR-MEM, AHAR-MEM-J and

AHAR-MEM-J-λt. Note that for the models with asymmetry, preliminary estimates lead to the

exclusion of the HAR terms for asymmetry. Thus, the HAR applies only to the lagged values of

the realized volatility. We start by looking at the presence of residual correlation. The AMEM

does not account for the persistence present in RMt, as the Ljung-Box tests on the residuals

strongly reject the null hypothesis in nearly all cases. On the contrary, the Ljung-Box statistics

of the AHAR-MEM residuals do not reject the null of no residual autocorrelation in 4 out of

the 7 stock indexes considered, and only when we focus on lags up to the 22-nd. Looking at

the individual stocks, at the 5% confidence level we have only 4 out of the 16 equities with

some evidence of residual serial correlation, and only over 22 lags. The number of stocks with

autocorrelated residuals of the AHAR-MEM decreases to 1 at 1% significance level.

From the theoretical analysis in Section 3, the inclusion of jumps in the MEM specification

is designed to provide a high degree of flexibility to the conditional density of RMt while the

dynamic features of the model are not affected. This is confirmed by the the Ljung-Box statistics

that are mainly unaffected by the inclusion of the jump component in the AHAR-MEM model.

Indeed, the estimated parameters in µt of the AHAR-MEM-J are close to those of the AHAR-

MEM even though the parameters associated with the jumps, ς and λ are statistically significant

for all series considered.9 We also consider the tests of correct specification introduced in Section

5.2. Table 2 shows that, if we test for the appropriateness of the Gamma distribution for the

MEM innovations, the null is rejected in 16 out of 23 cases at 10% significance level. On the

contrary, the Jmix test, based on the AHAR-MEM-J residuals, leads to a rejection of the null

in only 7 cases. Moreover, the Dr test, based on the jump innovations of the AHAR-MEM-J

with constant λ, shows evidence of serial correlations for all series (with the exception of TXN).

Differently, when we adopt the AHAR-MEM-J-λt specification, the jump innovations with serial

dependence decrease to only 6 out of 23. Therefore, the diagnostic procedures provide a strong

support to the assumption that that the AHAR-MEM-J-λt is correctly specified.

Table 3 reports the parameter estimates of AHAR-MEM-J-λt model. The parameters in

µt are strongly significant in almost all cases, similarly to the estimates of AHAR-MEM and

AHAR-MEM-J. In particular, if we compare the estimated parameters of the stocks to those of

the indexes, we note that the stocks are characterized by a somewhat higher impact of previous

day RMt levels, i.e. coefficient α1. Differently, the impact of last week and last month average

of RMt is more heterogeneous across stocks, with some cases of reduced significance. Regarding

the estimates of the parameters in the jump component, the unconditional mean of λt is between

0.15 and 0.20 in most cases, and there are not relevant differences between stock indexes and

individual stocks. Notably, the unconditional values of λt are always significant and they are very

close to the estimates of λ obtained fitting the AHAR-MEM-J with constant intensity. Obtaining

significant coefficients for the jump intensity, either in the constant or in the dynamic specification,

is a first evidence that jumps in volatility are a significant component of the variability of RMt.

9See Tables 3 and 4 in the supplementary document.
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AMEM AHAR-MEM AHAR-MEM-J AHAR-MEM-J-λt

Q1 Q10 Q22 Q1 Q10 Q22 LR JΓ Q1 Q10 Q22 Jmix D5 Q1 Q10 Q22 D5

SP500 0.004 0.000 0.000 0.904 0.478 0.388 70.29a 7.46b 0.881 0.444 0.443 2.48 17.28a 0.795 0.347 0.417 5.08b

FTSE 0.001 0.000 0.000 0.911 0.646 0.012 60.46a 2.15 0.225 0.001 0.0000 1.15 37.00a 0.132 0.000 0.000 2.81
DAX 0.000 0.000 0.000 0.220 0.197 0.000 60.40a 13.83a 0.254 0.008 0.000 1.28 17.45a 0.184 0.003 0.000 0.97

DJIA 0.003 0.000 0.000 0.913 0.444 0.585 57.96a 6.05b 0.475 0.544 0.503 1.08 16.05a 0.618 0.290 0.305 1.59
NSDQ 0.001 0.000 0.000 0.734 0.107 0.094 99.88a 2.12 0.625 0.521 0.071 0.11 14.77a 0.744 0.583 0.069 1.48
CAC 0.000 0.000 0.000 0.317 0.089 0.000 53.05a 4.74c 0.228 0.000 0.000 4.69c 34.04a 0.079 0.000 0.000 2.51

BOVSP 0.007 0.000 0.000 0.759 0.623 0.225 80.81a 9.95a 0.420 0.110 0.089 39.51a 17.40a 0.792 0.082 0.068 3.87b

BA 0.039 0.000 0.000 0.798 0.773 0.045 37.44a 10.55a 0.445 0.077 0.030 28.13a 9.35a 0.968 0.090 0.038 0.19
BAC 0.083 0.000 0.001 0.712 0.696 0.689 59.75a 1.32 0.573 0.744 0.646 1.33 7.93a 0.314 0.741 0.700 0.07

C 0.037 0.000 0.001 0.697 0.713 0.252 47.02a 6.15b 0.623 0.372 0.274 6.39b 47.13a 0.213 0.378 0.225 5.98b

CAT 0.005 0.000 0.002 0.849 0.658 0.889 44.30a 4.22 0.577 0.687 0.477 2.38 7.72a 0.855 0.747 0.593 0.00

FDX 0.023 0.000 0.000 0.744 0.174 0.470 60.45a 11.67a 0.386 0.464 0.179 21.39a 7.503a 0.815 0.692 0.402 4.11b

HON 0.052 0.002 0.003 0.751 0.841 0.136 23.80a 10.92a 0.223 0.730 0.039 8.78b 12.58a 0.264 0.571 0.029 0.07

HPQ 0.039 0.000 0.000 0.768 0.451 0.424 56.44a 1.77 0.624 0.878 0.448 1.02 4.55b 0.693 0.979 0.591 1.05

IBM 0.097 0.007 0.026 0.989 0.964 0.521 22.40a 5.99b 0.288 0.686 0.373 1.57 13.96a 0.231 0.726 0.306 0.19
JPM 0.004 0.000 0.000 0.651 0.802 0.309 53.64a 4.71c 0.395 0.297 0.166 1.42 13.91a 0.230 0.197 0.122 0.94

KFT 0.003 0.000 0.000 0.634 0.596 0.916 59.10a 14.44a 0.065 0.033 0.195 1.01 3.95b 0.287 0.113 0.365 6.34b

PEP 0.386 0.023 0.000 0.625 0.384 0.005 13.83a 4.34 0.138 0.001 0.004 0.19 13.65a 0.424 0.000 0.001 0.88
PG 0.095 0.001 0.000 0.423 0.914 0.051 41.37a 5.19c 0.746 0.810 0.162 0.01 11.50a 0.781 0.764 0.178 0.28
T 0.023 0.000 0.000 0.862 0.668 0.033 34.94a 5.48c 0.456 0.198 0.000 0.25 20.67a 0.321 0.156 0.000 0.34
TWX 0.070 0.002 0.004 0.700 0.987 0.493 40.95a 9.68a 0.202 0.434 0.207 1.87 16.97a 0.518 0.504 0.287 0.01

TXN 0.053 0.002 0.001 0.401 0.892 0.156 40.59a 8.39b 0.719 0.640 0.138 9.88a 7.61 0.532 0.562 0.153 4.89b

WFC 0.488 0.000 0.000 0.083 0.406 0.355 65.20a 1.98 0.927 0.259 0.298 1.30 34.68a 0.837 0.352 0.390 1.22

Table 2: Residual Statistics and Tests. The upper part of the table reports the results for several stock indexes while the lower part refers to
16 NYSE stocks. a, b and c stand for significance at 1%, 5% and 10% respectively. Q1, Q10 and Q22 are the p-values of the Ljung-Box test
for absence of autocorrelation in the normalize residuals, where the latter are computed as ε̂∗t = F−1

N [FΓ(ε̂t)] with ε̂t =
RMt
µ̂t

. JΓ and Jmix

are the test statistics for the null hypotheses that the errors have a Gamma distribution and a mixture of Gamma and Kappa, respectively.
D5 denotes the test statistic for the null of no autocorrelation up to the 5-th lag in the jump innovations (both for the case of constant and
dynamic jump intensity).
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ω α1 α2 α3 β γ ν ς φ1

1−φ2

φ2 φ3

SP500 0.0003a 0.3041a 0.1727a 0.1098a 0.3235a 0.1087a 23.1069a 15.3934a 0.1739a 0.9379a 0.1275c

FTSE100 0.0002a 0.2814a 0.2082b 0.1383a 0.3130a 0.0590a 26.4544a 10.6540a 0.1448a 0.8550b 0.1919a

DAX 0.0003a 0.2985a 0.1476a 0.1179a 0.3749a 0.0721a 26.2707a 12.7932a 0.1691a 0.9391a 0.1303b

DJIA 0.0003a 0.2984a 0.1811a 0.0988a 0.3360a 0.0964a 22.4470a 14.0424a 0.1616a 0.9146a 0.2006a

NSDQ 0.0003a 0.3053a 0.1930a 0.1583a 0.2637a 0.0996a 23.8215a 10.7619a 0.1490a 0.9698a 0.1006
CAC 0.0002a 0.2809a 0.1377b 0.0978a 0.4192a 0.0799a 27.5802a 11.8415a 0.1581a 0.9064a 0.1655c

BOVESPA 0.0009a 0.3300a 0.1298b 0.1564a 0.2780a 0.0725a 22.1476a 20.9309a 0.2147a 0.8663a 0.1238b

BA 0.0006a 0.3882a 0.1106a 0.1299a 0.3183a 0.0243a 36.1310a 20.3827a 0.1999a 0.8179a 0.1686a

BAC 0.0002a 0.4837a 0.0942c 0.1256a 0.2614a 0.0384a 33.6480a 21.4976a 0.1779b 0.9719a 0.1053a

C 0.0002a 0.4469a 0.1037c 0.1004a 0.3231a 0.0253a 41.0615a 14.6146a 0.1034b 0.9826a 0.0823a

CAT 0.0008a 0.4082a 0.2305a 0.1206a 0.1712a 0.0407a 33.5859a 28.3271a 0.1849a 0.7187a 0.3344a

FDX 0.0005a 0.4009a 0.1516a 0.1593a 0.2402a 0.0364a 33.1796a 30.6452a 0.2181a 0.8652a 0.2091a

HON 0.0006a 0.3758a 0.1052 0.0892a 0.3625a 0.0491a 33.7423a 22.9547a 0.1654a 0.8150a 0.2750a

HPQ 0.0007a 0.3992a 0.1709a 0.1170a 0.2420a 0.0454a 34.2396a 20.3591a 0.1877a 0.7976a 0.2495a

IBM 0.0004a 0.3994a 0.1400a 0.0728a 0.3304a 0.0319a 36.8106a 17.9724a 0.1269a 0.9417 0.1669c

JPM 0.0004a 0.4373a 0.2076a 0.1199a 0.1949a 0.0343a 32.7366a 32.0963a 0.1820a 0.9544a 0.1001
KFT 0.0007a 0.3293a 0.2987a 0.1610a 0.1476a 0.0050a 30.9573a 29.4368a 0.2901a 0.8890a 0.1894b

PEP 0.0003a 0.3214 0.0752 0.0620c 0.4980a 0.0358a 33.7365a 37.9719a 0.1929a 0.8388a 0.3527a

PG 0.0006a 0.3773a 0.2128a 0.1070a 0.2269a 0.0320a 36.2161a 19.5642a 0.1655a 0.7994a 0.2869b

T 0.0004a 0.3720a 0.1480a 0.1078a 0.3226a 0.0264a 37.4439a 19.2182a 0.1364a 0.8306a 0.2834c

TWX 0.0005a 0.3894a 0.1668b 0.1220a 0.2714a 0.0264a 44.4043a 31.0669a 0.1638 0.8284a 0.2562a

TXN 0.0009a 0.3836a 0.2001b 0.1283a 0.2260b 0.0323a 33.0913a 35.8256b 0.1488a 0.7406a 0.4056a

WFC 0.0003a 0.4465a 0.1782a 0.1127a 0.2320a 0.0254a 34.6772a 21.6895a 0.2142 0.8912a 0.2072a

Table 3: Estimates of the Asymmetric HAR-MEM-J with time-varying λ, see (19). The upper part of the table reports the results for several
stock indexes while the lower part refers to 16 NYSE stocks. a, b and c stand for significance at 1%, 5% and 10% respectively.
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Interestingly, most markets and stocks, among those considered, display estimates of φ2 larger

than 0.8, suggesting persistence in jump arrivals. Indeed, out of 23 stocks and indexes, only

two present values of φ2 below 0.8 and only one below 0.75. The sensitivity to news arrivals,

measured by the parameter φ3, is statistically significant for most series. The only exceptions are

NASDAQ and JPM. This might challenge the appropriateness of the time-varying jump intensity

specification for those two cases. Looking at the shape parameter estimates, ν, they are much

larger for the AHAR-MEM-J-λt than for the AHAR-MEM model without jumps. Indeed, the

variance of εt, that is equal to 1
ν , sensibly reduces when jumps are included. As shown in (16),

for a given level of the conditional variance of ηt and a given arrival probability λt, there is an

inverse relationship between ν and ς.
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Figure 2: Expected jump intensity in the AHAR-MEM-J-λt model for S&P500 and CAC 40.
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Moreover, since ς is much smaller than ν in all cases, it follows that the variance of the jump

terms is several times larger than that of εt. Therefore variation in volatility can be attributed to

a combination of a component with relatively low variability, εt, and another one able to generate

potentially large increments, Zt. This is in accordance with the findings of Todorov and Tauchen

(2011) who show that volatility can be well approximated by a pure jump process with infinite

variation. Finally, the estimates of ν for the individual stocks are sensibly higher than those of

the indexes. This reflects differences in the volatility-of-volatility as that of the indexes is higher

than that of the individual stocks.

The plots in Figure 2 report two examples of estimated expected jump intensity, λ̂t. The

expected jump is very close to 0, when the markets experience no major shocks, e.g. from 2003

through 2007. Instead, it sharply increases during market turmoils, like: the end of technology

market bubble in 2001-2002, the sub-prime crisis in 2007-2008 and the European sovereign debt

crisis in 2011. Notably, the DAX crash on January 21, 2008 seem to be more relevant in France

compared to the US market, a somewhat expected result. This confirms the model reacts to the

occurrence of extreme events, this is clear for known and globally relevant facts, but is not limited

to them.
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Figure 3: Ex-ante (in black-dots) and ex-post (in red-diamonds) jump probabilities obtained from
the AHAR-MEM-J-λt for S&P500 on October 10, 2008 and for CAC 40 on January 22, 2008.

With the AHAR-MEM-J-λt, we can study the difference between the ex-ante and ex-post

probabilities of jumps during a given day. This can be done comparing P (Nt = m|Ft−1; θ) with

P (Nt = m|Ft; θ), where the latter is obtained by the Bayes law in (21). Figure 3 reports these

probabilities for different m values (i.e. the number of jumps) on days characterized by large

volatility increments such as on October 10, 2008 for S&P500 and on January 22, 2008 for CAC

40 (DAX crash). In particular, the ex-ante probability of observing at least one jump is 40% for
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S&P500 and 60% for CAC 40, while ex-post this probability increases to almost 100% in both

cases, since P (Nt = 0|Ft) ≈ 0 and the jump probability distribution is shifted to the right.

6.3 Robustness checks

A series of robustness checks have been carried out to evaluate to what extent the empirical results

are affected by the measurement error and by the potential low power of BPV in disentangling

jumps in prices from the volatility dynamics. For example, an obvious concern is whether the

results on the estimation of volatility jumps depend on the particular realized measure employed in

the analysis. Indeed, Christensen et al. (2014) show that BPV may be biased when the underlying

volatility process is characterized by high volatility-of-volatility, so that volatility jumps can be

easily confused as price jumps when sampling too sparsely. We have therefore estimated the

MEM-J model on another set of volatility series that is robust to price jumps. In particular, we

estimated AHAR-MEM-J-λt with RMt =
√
MedRVt, i.e. the median realized volatility computed

as follows ,

MedRVt =
π

6− 4
√
3 + π

(
M

M − 2

)
×

M−1∑

j=2

med(|rt,j−1|, |rt,j |, |rt,j+1|)2

where med(·) is the median. This is less efficient than BPV but more powerful in filtering

the price jumps, see Andersen et al. (2012a). Notably, this replacement does not lead to any

significant change in the estimates of the AHAR-MEM-J-λt parameters10 and in the estimates

of the dynamics of the volatility jump intensity. Finally, the significance in the jump intensity

could be influenced by possible misspecifications in µt. For example, Corsi et al. (2010) show

that lagged price jumps significantly affect future values of volatility. Therefore, we also consider

a model specification where lagged price jumps are included in the conditional dynamics of µt.

The document with Supplementary material presents the details abut this model specification

and Table 7 shows that the parameters driving the jump intensity are substantially unaffected

and the coefficients associated with the lagged price jumps in µt are often insignificant.

7 Volatility-at-Risk

In this section, we evaluate the ability of the MEM specifications considered in this study to

correctly predict the probability of tail events. The model with volatility jumps is expected

to provide a better description of tail events, i.e. extreme volatility realizations, as it is able to

generate large and sudden increases in the conditional volatility-of-volatility levels, thus providing

a better fitting of the upper tail. By analogy to the Value-at-Risk introduced for quantifying the

risk of extremely negative returns, we define the VolaR, i.e. the risk of extreme high volatility as

the value v(α) satisfying

Pr {RMt > v(α)|Ft−1} = α

10See Table 6 in the Supplementary document.
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where Pr{·|Ft−1} denotes the conditional distribution at date t of the one-step-ahead volatility.

Therefore, v(α) is the realized volatility level that may be exceeded with probability α. The

VolaR might be of interest for investors who trade in volatility, see Zhang et al. (2010), Euan

(2013) and therein cited references. In fact, the knowledge of the probability that volatility will

exceed a given threshold is useful both in designing volatility trading strategies based on options

(allowing for an optimal calibration of the option maturity as well as the option strike) and for

strategies based on volatility indices or exchange traded volatility products (having an impact on

the choice of the investment direction as well as on the size of the position). For example, VIX

options associated with large strikes (e.g. above 70%) are generally traded also in non-turbulent

periods, meaning that the market assigns a non-null probability to the occurrence of tail events

in volatility.

In addition, the evaluation of volatility risk might be of interest for options traders and market

makers to define optimal prices and order execution, and, finally, to portfolio managers willing

to determine the need and the amount of a volatility hedge.

In order to evaluate the estimation of the VolaR (i.e. the right tail coverage) obtained with

models with and without jumps, we consider the method introduced by Berkowitz (2001), which

allows to test for the adequacy of the proposed density with the realization of the modeled

variable. The test is flexible and can be applied to evaluate the fit of the entire density as well as

over specific segments of the density support. For our purposes, we apply the test over the upper

q% tail of the RMt density. In details, given the density of the RMt, we compute the conditional

CDF of RMt as

yt = F (RMt|Ft−1) =

∫ RMt

0
fX (xt|Ft−1) dxt,

where F (RMt|Ft−1) for the AHAR-MEM-J is given by the mixture of Gamma and K condi-

tional CDFs. Under correct model specification, the empirical CDF values should be distributed

according to the standard uniform, i.e. yt ∼ U (0, 1), which are further transformed as

st = Φ−1 (yt)

where Φ (·) is the standard normal CDF, so that st are distributed as a standardized normal. To

test the correct tail coverage, we choose a VolaR level of 1% (i.e. VolaR = 2.3263), and calculate

a new truncated variable

s∗t =




VolaR if st ≤ VolaR

st if st > VolaR.
(31)

A tail coverage test can be derived using the LR principle based on the censored normal density of

s∗t . Under the null of correct tail coverage the test statistic is distributed as χ2(2) as it corresponds

to a test for comparing the mean and variance estimated from the truncated likelihood of s∗t to

those expected under correct coverage, i.e. zero mean and unit variance. See Berkowitz (2001)

for further details on this test.

Table 4 reports the p-values of the Berkowitz test relative to the in-sample estimates of differ-

ent volatility model specifications. Beyond the MEM specifications seen so far, we also include in
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the comparison models which are based on more flexible innovation density specifications than the

Gamma distribution adopted in the baseline MEM. These are characterized by fatter right tail

than the Gamma distribution and are expected to accommodate extreme realizations observed

in the realized measures series. The models considered are:

• AHAR-MEM-GG: where ǫt follows a Generalized Gamma, as in Lunde (1999) and Andres

and Harvey (2012).

• AHAR-MEM-ν̄t: where the variance of εt, i.e. the parameter ν̄t =
1
νt
, follows a GARCH(1,1)

process. To the best of our knowledge, this is a new specification for the innovation term

in the MEM framework.

• M-AHAR-MEM: that is the mixture model of Lanne (2006) with AHAR dynamics in each

volatility component.

Due to space constraints, the specifications and the parameter estimates for these models

are reported in the Supplementary document.11 We also estimate the HAR-V-J of Caporin et al.

(2014b) to consider a model with jumps which is not based on a multiplicative structure. It clearly

emerges that the AHAR-MEM specifications with jumps outperform the corresponding models

without jumps in estimating the VolaR. Indeed, all the MEM specifications without jumps and

Gamma distribution for εt strongly reject the null hypothesis of correct specification of the upper

quantiles. Interestngly, also the AHAR-MEM-ν̄t model results to be poorly designed to capture

tail events. Letting the conditional variance of εt to be time varying is not sufficient for a proper

characterization of VolaR. This suggests a distinct role of the jumps from pure heteroskedastic

effects in εt. Interestingly, the M-AHAR-MEM of Lanne (2006) provides some evidence of correct

specification of the upper tail, as the Berkowitz test cannot reject the null hypothesis in 8 cases.

Conversely, the AHAR-MEM-GG model fails to give the correct probability mass on the right

tail. In other words, despite the generalized Gamma distribution provides a good fitting for the

entire distribution, it fails to properly account for the probability of tail events.

It is noteworthy that the introduction of jumps, with constant and time-varying λ, provides

a good fit of the VolaR. In only two cases, BOVESPA and BA, the presence of jumps with

time-invariant intensity does not succeed in correctly estimating the VolaR. The introduction of

the time-varying jump intensity decisively improves the performances for the CAC40 index, and

for BA, FDX, HPQ, JPM, PG and WFG; nevertheless, we also have a case with a decrease in

performances, TXN; we interpret this as a possible overfitting issue. Overall, only for BOVESPA,

a model without jumps seems to be appropriate. Figure 4 provides a possible explanation for the

good performance of the model with jumps. The model with jumps is able to generate large and

sudden spikes in the conditional variance of RMt, as generated by the jump component Zt. On

the contrary, the model with time-varying ν̄t can only generate smooth trajectories, and hence

it is not able to assign enough probability to extreme volatility events. Interestingly, also the

HAR-V-J model of Caporin et al. (2014b), which is a HAR specification with time-varying jump

11See Tables 7-9 in the Suppplementary document
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I II III IV V VI VII VIII

SP500 0.0000 0.0000 0.0000 0.0080 0.0000 0.5181 0.4046 0.3651
FTSE 0.0000 0.0000 0.0000 0.4882 0.0000 0.7394 0.2102 0.0586
DAX 0.0000 0.0000 0.0000 0.0241 0.0001 0.6660 0.1850 0.1601
DJIA 0.0000 0.0000 0.0000 0.0010 0.0000 0.4189 0.5941 0.7272
NSDQ 0.0000 0.0000 0.0000 0.6016 0.0000 0.6651 0.3885 0.8014
CAC 0.0000 0.0000 0.0000 0.0013 0.0004 0.0984 0.0657 0.3590
BVSP 0.0000 0.0000 0.0000 0.5952 0.0519 0.8380 0.0041 0.0013

BA 0.0000 0.0000 0.0000 0.0229 0.0000 0.5486 0.0423 0.2172
BAC 0.0000 0.0000 0.0000 0.0268 0.0000 0.0008 0.1048 0.9663
C 0.0000 0.0000 0.0000 0.0045 0.0000 0.0217 0.2208 0.4735
CAT 0.0000 0.0000 0.0000 0.0921 0.0000 0.5137 0.1771 0.2727
FDX 0.0000 0.0000 0.0000 0.8566 0.0000 0.5309 0.0564 0.2371
HON 0.0000 0.0000 0.0000 0.0013 0.0000 0.0369 0.2038 0.1456
HPQ 0.0000 0.0000 0.0000 0.5133 0.0000 0.0621 0.0753 0.7876
IBM 0.0000 0.0000 0.0000 0.0038 0.0000 0.5957 0.4022 0.2478
JPM 0.0000 0.0000 0.0000 0.0856 0.0000 0.0059 0.0740 0.4750
KFT 0.0000 0.0000 0.0000 0.0112 0.0000 0.6487 0.3190 0.1899
PEP 0.0000 0.0000 0.0000 0.0000 0.0000 0.6652 0.1531 0.7471
PG 0.0000 0.0000 0.0000 0.0123 0.0000 0.9482 0.0510 0.1457
T 0.0000 0.0000 0.0000 0.0078 0.0000 0.5549 0.5906 0.1448
TWX 0.0000 0.0000 0.0000 0.0023 0.0000 0.0487 0.4681 0.8184
TXN 0.0000 0.0000 0.0000 0.0001 0.0000 0.5385 0.2756 0.0164
WFC 0.0000 0.0000 0.0000 0.4959 0.0000 0.0128 0.0691 0.6529

Table 4: P -values of the Berkowitz (2001) test for the in-sample VolaR at 1% level, corresponding
to a value of 2.3263. The models considered are AMEM (I), AHAR-MEM (II), AHAR-MEM-
ν̄t (III), M-AHAR-MEM (IV), AHAR-MEM-GG (V), HAR-V-J (VI), AHAR-MEM-J (VII) and
AHAR-MEM-J-λt (VIII).

intensity on logRMt, provides a good fitting of the tails of the volatility distribution.12 In this

case, the null hypothesis cannot be rejected at 5% significance level for all indexes and for many

individual stocks.

12Due to space constraints, we do not report a complete discussion of the HAR-V-J model, which can be found in
Caporin et al. (2014b). It is however important to note that, since the HAR-V-J model is linear in the logarithms
of realized volatility, this implies a multiplicative structure for the latter, similar to that obtained under the
AHAR-MEM-J.

29



Year
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

×10-4

0

1

2

3

4

5 MEM-J-λ
t

MEM-ν
t

Figure 4: Conditional variance of RMt of S&P500 obtained with the AHAR-MEM-J-λt, dashed
line, and with the AHAR-MEM-νt, solid line.

Table 5 reports the p-values of the Berkowitz test based on the out-of-sample forecasts, for

a total of 1,000 observations (for the indexes the holdout sample starts on February 2, 2009,

while for the individual stocks it starts in July 14, 2008). The sample size of the rolling window

used to estimate the parameters in the cases of stock indexes is about 2,200 observations while

for the individual stocks is approximately 1,400 observations. Given the sample dimensions used

in the estimation, the uncertainty in the parameters estimates is expected to lead to a fairly

limited effect on the testing results. When the AMEM and AHAR-MEM are used, the null

hypothesis is always rejected at 5% significance level, with the exception of FTSE 100. The

AHAR-MEM-νt is similar, with no rejections of the null. Slightly better results are obtained

when the Generalized Gamma is adopted. In 4 out of 23 cases, the null hypothesis cannot be

rejected. A similar performance is also achieved with the M-AHAR-MEM. Things are partially

different when moving to the AHAR-MEM-J with constant λ. Indeed, by including the jumps

(with constant intensity) the null is not rejected in 11 cases. A slightly better performance is

achieved with the HAR-V-J model as the null hypothesis cannot be rejected in 12 out of 23

cases. An impressive improvement is instead associated with the full model with persistence and

time-varying jump intensity. For the AHAR-MEM-J-λt we observe only one rejection at the 1%

confidence level, 3 at the 5% level and 6 at the 10% level. The out-of-sample results confirm the

adequacy of AHAR-MEM-J-λt in predicting the presence of volatility jumps which turn out to

be of crucial importance in forecasting the VolaR.
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I II III IV V VI VII VIII

S&P500 0.0000 0.0000 0.0000 0.0035 0.0002 0.3503 0.0048 0.0811
FTSE 100 0.5577 0.1526 0.0000 0.0615 0.5078 0.0000 0.3551 0.6993
DAX 0.0010 0.0002 0.0000 0.0436 0.4529 0.1246 0.0171 0.5194
DJIA 0.0000 0.0000 0.0000 0.0009 0.0001 0.0260 0.0358 0.0381
NSDQ 0.0000 0.0000 0.0000 0.0025 0.0000 0.0010 0.0293 0.3157
CAC 0.0000 0.0000 0.0000 0.0696 0.1039 0.2384 0.0711 0.4844
BOVESPA 0.0279 0.0117 0.0000 0.3168 0.3036 0.8389 0.4567 0.7577

BA 0.0000 0.0000 0.0000 0.0477 0.0002 0.3503 0.2482 0.2336
BAC 0.0000 0.0000 0.0000 0.9360 0.0000 0.0010 0.0185 0.0745
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043 0.0111
CAT 0.0000 0.0000 0.0000 0.0231 0.0003 0.0631 0.0262 0.3305
FDX 0.0000 0.0000 0.0000 0.0362 0.0000 0.1076 0.1889 0.5233
HON 0.0000 0.0000 0.0000 0.0002 0.0006 0.6167 0.6935 0.0835
HPQ 0.0000 0.0000 0.0000 0.0416 0.0000 0.1246 0.0142 0.3798
IBM 0.0000 0.0000 0.0000 0.0000 0.0000 0.8587 0.7541 0.5032
JPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0260 0.0453 0.2990
KFT 0.0000 0.0000 0.0000 0.3501 0.0000 0.0007 0.7700 0.3471
PEP 0.0000 0.0000 0.0000 0.0356 0.0001 0.0010 0.5746 0.6757
PG 0.0000 0.0000 0.0000 0.0119 0.0000 0.0000 0.3249 0.7466
T 0.0000 0.0000 0.0000 0.0140 0.0000 0.2384 0.7679 0.1772
TWX 0.0000 0.0000 0.0000 0.1001 0.0000 0.0409 0.0117 0.1517
TXN 0.0000 0.0000 0.0000 0.0031 0.0069 0.8389 0.0000 0.1273
WFC 0.0000 0.0000 0.0000 0.0000 0.0000 0.5799 0.0121 0.0002

Table 5: P -values of the Berkowitz (2001) test for the out-of-sample VolaR at 1% level, corre-
sponding to a value of 2.3263. The out-of-sample forecasts are computed with a rolling window
starting in February 2, 2009 for the stock indexes and July 14, 2008 for the individual stocks.
The total number of forecasts is 1,000 for both data sets. The models considered are AMEM (I),
AHAR-MEM (II), AHAR-MEM-νt (III), M-AHAR-MEM (IV), AHAR-MEM-GG (V), HAR-V-J
(VI), AHAR-MEM-J (VII) and AHAR-MEM-J-λt (VIII).

8 Concluding remarks

We have introduced a new model for realized volatility measures, the AHAR-MEM-J. Our model

generalizes the MEM of Engle and Gallo (2006) by adding persistence (through HAR terms, see

Corsi, 2009) and multiplicative volatility jumps. A volatility jump takes the form of an extreme

event, for example a very large value of the daily volatility such as those observed in the last

years. By specifying the volatility process as a combination of a continuous volatility component

and a discrete compound Poisson random variable for the jumps, the conditional density of

RMt becomes a countably infinite mixture constituted by a Gamma random variable and a

weighted sum of K distributed random variables. We add further flexibility considering time-

varying jump intensity. This flexible parametrization of the dynamics of the realized measure

allow capturing the extreme or abnormal movements in the volatility level. We illustrate the

stationarity conditions and show that the maximum likelihood estimator of model’s parameters

is consistent and asymptotically normal. We also provide evidence of the performance in finite

samples and the effects of misspecification on maximum likelihood estimation by resorting to

Monte Carlo simulations. The empirical application shows that the AHAR-MEM-J-λt captures

the extreme moves registered in the last years in the volatilities of individual stocks and equity
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indexes. We provide statistical evidence that, for the sample period analyzed, the model correctly

predicts the probability of occurrence of abnormal volatility levels, i.e. of jumps. We compare

alternative models by means of a new measure called volatility-at-risk, i.e. the risk of extremely

high volatility. The empirical analysis highlights how models that cannot generate sudden and

large movements in the realized measures, i.e. without jumps, fail in fitting the extreme right tail

of the distribution. Moreover, the recent empirical evidence on the contemporaneous correlation

between jumps in price and volatility would suggest an extension of our set up to include the

presence of price jumps. This is left for future research. Finally, the potential application of

this model is not limited to the study of volatility but it can be employed in the analysis of any

positive time series that features persistence and sudden large variations, e.g. trading volume,

durations or energy prices.
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A Proofs and results

This Appendix contains the proofs of all Propositions and Theorems, together with Lemmas
summarizing further theoretical elements.

A.1 Proof of Proposition 1

Given εt|Ft−1 ∼ Γ(1, ν) and Zt|Nt = m > 0,Ft−1 ∼ Γ(mdλ,mς), integrating out Zt in (9) we
have the conditional density of ηt

fη(ηt|Nt = m > 0,Ft−1; ν, ς, λ) =
2

ηt

(
ηt
ςν

dλ

)mς+ν
2

1

Γ(mς)Γ(ν)
Kmς−ν

(
2

√
ηt
ςν

dλ

)
,

which is the K density, see Redding (1999). Ka (·) is the modified Bessel function of the second
kind. The moments of ηt, conditional on Nt = m > 0 and Ft−1, can derived from the moments of
the K density in (52). The countable infinite mixture of densities in (11) is obtained integrating
out the dependence on Nt, i.e. multiplying the density associated to each jump realization with
the corresponding probability of the Poisson distribution. �

A.2 Proof of Proposition 2

From equation (10), the conditional density of Xt is derived as

fX(xt|Nt = m > 0,Ft−1; ζ, ς) = fη

(xt
µt

|Nt = m > 0,Ft−1

)∣∣∣ 1
µt
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2µt
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ςν
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)

Similarly to the case of ηt, the moments of Xt conditional on Nt = m > 0 and Ft−1 are derived
from the moments function of the K density. �

A.3 Proof of Proposition 3

Similarly to the derivation of conditional density of ηt, the countable infinite mixture of densities
for Xt reported in (14) is obtained integrating out the dependence on Nt, i.e. multiplying the
density associated to each jump realization with the corresponding probability of the Poisson dis-
tribution. The expected value of Xt conditional on Ft−1 is obtained, noting that µt is measurable
w.r.t. Ft−1, so that

E [Xt|Ft−1] = µtE [ηt|Ft−1]

= µt

∞∑

m=0

E [ηt|(Nt = m,Ft−1)]× P (Nt = m|Ft−1)

= µtE [Zt|Ft−1] .

It follows that
E [Xt|Ft−1] = µtdλ, (32)
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where the conditional expected value of Zt is dλ, see the Supplementary material. The conditional
variance of Xt is obtained as

V [Xt|Ft−1] = E
[
X2

t |Ft−1

]
− E [Xt|Ft−1]

2

= µ2
t

{[
λ

ς
+ e−λ + (λ+ λ2)

]
(1 + ν−1)d2λ − 1

}
. (33)

�

Lemma A.1 When λ is constant in time, {ηt}t∈Z is an i.i.d. random sequence.

Proof Consider the conditional density of ηt in (35). Note that

P (Nt = m|Ft−1) =
e−λλm

m!
= P (Nt = m)

Replacing P (Nt = m) in (35), it follows that the conditional density of ηt is not a function of any
element of Ft−1, hence fη(ηt|Ft−1; θ) = f(ηt; θ), i.e. the marginal density of ηt.�

Lemma A.2 The process

λt = φ1 + φ2λt−1 + φ3ξt−1 t = 1, 2, . . . , T

with φ1 > 0, φ2, φ3 ≥ 0 and ξt a strictly stationary ergodic m.d.s. has a convergent (almost surely)
strictly stationary and ergodic solution, if φ2 < 1.

Proof Since the process for λt can be rewritten as

Xt = Bt +AtXt−1

where Xt = λt, At = φ2 and Bt = φ1 + φ3ξt−1, with E[logBt] = E[log(φ1 + φ3ξt−1)] < ∞. By
recursive substitutions, the process of λt can be written as

Xt = Bt +

∞∑

n=1

n∏

j=1

At−jBt−n−1

λt = (φ1 + φ3ξt−1) +

∞∑

n=1

φn
2

n∏

j=1

At−j(φ1 + φ3ξt−n−1) (34)

If 0 ≤ φ2 < 1 then the condition log(|At|) = log(φ2) < 0 is satisfied, see Brandt (1986),
then, λt converges almost surely and (34) is the unique strictly stationary causal solution,
since

∑∞
n=1 φ

n
2φ3ξt−n−1 is geometrically bounded. Furthermore, λt is a measurable function of

{ξn−1}n=t
n=−∞, hence from Franq and Zakoian (2010, Theorem A.1) the strictly stationary solution

in (34) is also ergodic.�

Lemma A.3 Given Assumption 1 with λt ≥ 0 a.s. and strictly stationary

ηt = Ztεt

is a strictly stationary and ergodic process.

Proof Since the conditional density of ηt
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fη(ηt|Ft−1; ν, ς, φ1, φ2, φ3) =P (Nt = 0|Ft−1;λt)gη(ηt|Nt = 0,Ft−1; ν, λt)

+

∞∑

m=1

P (Nt = m|Ft−1;λt) kη(ηt|Nt = m > 0,Ft−1; ν, ς, λt). (35)

is a function of λt, and λt has a strictly stationary and ergodic solution in (34), it follows that
ηt, that is a measurable function of λt, is a strictly stationary and ergodic process, see Billingsley
(1995, Theorem 36.4).

A.4 Proof of Theorem 1

Since {ηt} is a sequence of i.i.d. random variables, see Lemma A.1, the proof is identical to that
of Theorem 2.5 in Franq and Zakoian (2010).�

A.5 Proof of Theorem 2

The vector form of the process in (22) is

zt = bt +Atzt−1 (36)

where

zt =




Xt

Xt−1
...

Xt−q+1

µt
...

µt−p+1




, bt =




ωηt
...
0
ω
...
0




At is a (p+q)×(p+q) matrix with positive coefficients but not independent, since ηt is correlated
through λt. The matrix At can be written as the Hadamard product of two matrices, i.e.

At = A⊙ Et

with

A =




α1 . . . αq−1 αq β1 . . . βp−1 βp
1 . . . 0 0 0 . . . 0 0
0 . . . 0 0 0 . . . 0 0
...

. . . 1 0 0 . . . 0 0
α1 . . . αq−1 αq β1 . . . βp−1 βp
0 . . . 0 0 1 . . . 0 0
...

. . .
...

...
...

. . .
...

...
0 . . . 0 0 0 . . . 1 0




and a (p + q)× (p+ q) matrix

Et =




ηt ηt . . . ηt
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


 .
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Now, since ηt from Lemma A.3 is ergodic and strictly stationary, the sequence of matrices {At, t ∈
Z} is ergodic and strictly stationary. With a multiplicative norm, i.e. ‖A‖ =

∑ |aij |, ‖AB‖ ≤
‖A‖‖B‖ for all matrices A and B such that AB exists, then log ‖At‖ ≤ log ‖A‖+ log ‖Et‖, with
log ‖Et‖ = log [(p + q)(ηt + (p+ q)− 1)]. Given that the Lyapunov exponent γ is equal to, see
Franq and Zakoian (2010, Theorem 2.3),

γ = lim
t→∞

a.s.
1

t
log ‖AtAt−1 . . . A1‖ (37)

and

log (‖AtAt−1 . . . A1‖) ≤ log ‖At‖+
t∑

i=1

log ‖Ei‖,

since, limt→∞
1
t log ‖At‖ = log{ρ(A)}, γ < 0 if and only if

ρ(A) < exp (−E[log ‖Et‖]). (38)

Now, we turn to the proof of the existence of a stationary and ergodic solution if the condition
in (38) is satisfied, i.e. γ < 0. Since the random variable ηt has finite variance, the components
of the matrix At are integrable. Hence,

E[log+ ‖At‖] ≤ E‖At‖ < ∞.

With γ < 0 it follows from (37) that

z̃t(N) = bt +

N∑

n=0

AtAt−1 . . . At−nbt−n−1

converges a.s. when N goes to infinity, to some limit z̃t. Using the multiplicative norm

‖z̃t(N)‖ ≤ ‖bt‖+
∞∑

n=0

‖AtAt−1 . . . At−n‖‖bt−n−1‖

and

‖AtAt−1 . . . At−n‖1/n‖bt−n−1‖1/n = exp
[ 1
n
log ‖AtAt−1 . . . At−n‖+

1

n
log ‖bt−n−1‖

]

a.s.→ exp (γ) < 1.

To show that n−1 log ‖bt−n−1‖ → 0 we have used the result that for a sequence Xn of identically
distributed random variables admitting an expectation holds that Xn/n

a.s.→ 0 when n → ∞. In
our case this can be applied because E| log ‖bt−n−1‖| < ∞, see Franq and Zakoian (2010, Proof
of Theorem 2.4, p.31). By the Cauchy rule, z̃t is well defined in (R∗+)p+q. Let z̃q+1,t denote the
(q + 1)-th element of z̃t. Setting Xt = z̃q+1,tηt, we define a solution of model (3). This solution
is nonanticipative because Xt can be expressed as a measurable function of ηt, ηt−1, . . .. By the
ergodicity of ηt this solution is also strictly stationary and ergodic.

The proof of the uniqueness parallels the arguments in the proof of Theorem 2.4 of Franq and
Zakoian (2010). �
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A.6 Proof of Theorem 3

Proof Let θ(1) = (θ′1,1, θ
′
2,1, θ

′
3,1)

′ and θ(2) = (θ′1,2, θ
′
2,2, θ

′
3,2)

′. Suppose that

fX(xt; θ
(1)) = fX(xt; θ

(2))

then

e−λt(θ2,1)gX(xt; θ1,1, θ2,1, ν1) +

∞∑

m=1

e−λt(θ2,1)λt(θ2,1)
m

m!
× kX(xt;m, θ(1)) =

e−λt(θ2,2)gX(xt; θ1,2, θ2,2, ν2) +

∞∑

m=1

e−λt(θ2,2)λt(θ2,2)
m

m!
× kX(xt;m, θ(2))

this implies that

gX(xt; θ1,1, θ2,1, ν1) = eλt(θ2,1)e−λt(θ2,2)gX(xt; θ1,2, θ2,2, ν2)

+ eλt(θ2,1)e−λt(θ2,2)
∞∑

m=1

λt(θ2,2)
m

m!
× kX(xt;m, θ(1))

−
∞∑

m=1

λt(θ2,1)
m

m!
× kX(xt;m, θ(2)) (39)

where the equality is satisfied only if θ(1) = θ(2). To see this, recall that the RHS of (39) is
a mixture density if the weights are positive and sum to 1. The condition is satisfied only if
λt(θ2,1) = λt(θ2,2). Further, both sides of (39) must integrate to one, which in turn implies that

kX(xt;m, θ(1)) = kX(xt;m, θ(2)) ∀m. (40)

so that θ1,1 = θ1,2 and θ3,1 = θ3,2. We have shown that fX(xt; θ
(1)) = fX(xt; θ

(2)) implies
θ(1) = θ(2). �

A.7 Proof of Theorem 4

Proof The proof consists of the verification of Assumption 2. Given Theorem 3 which shows
that Assumption 2.ii is satisfied, Theorem 2 which for Assumption 2.iii and Lemma’s, A.5, A.7
below which prove that Assumptions 2.iv-v are satisfied, the theorem follows. �

Lemma A.4 Under Assumptions 2.i and 2.iii there exist two random variables Vµ and Vλ and
two constants ρµ, ρλ ∈ (0, 1) such that for all t

sup
θ1∈Θ1

|µt (θ1)− µ̃t (θ1) | ≤ Vµρ
t
µ (41)

sup
θ2∈Θ2

|λt (θ2)− λ̃t (θ2) | ≤ Vλρ
t
λ (42)

where µ̃t (θ1) replaces unavailable observations of the µt expansion with initial values and a similar
replacement applies to λ̃t(θ2).

Proof The proof is a consequence of Proposition 1 in Francq and Zaköıan (2004) and builds on
strict stationarity of both µt and λt.�

Assumption 2.v is then verified by the following lemma.
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Lemma A.5 Under Assumptions 2.i and 2.iii

lim
T→∞

sup
θ∈Θ

|LT (θ) /T − L̃t (θ) /T | = 0 a.s. (43)

Proof We adapt to the presence of a mixture of Gamma and K densities the proof of Lee and
Lee (2009). To this end we must prove the following convergence

sup
θ∈Θ

∣∣∣∣∣∣

fX (x;µt, λt; θ)− fX

(
x; µ̃t, λ̃t; θ

)

fX

(
x; µ̃t, λ̃t; θ

)

∣∣∣∣∣∣
→ 0 a.s. (44)

We can separately look at each summand of the infinite mixture in (13). Take the first component
of the mixture

P (Nt = 0|Ft−1) gX(xt|Nt = 0,Ft−1; θ1, θ2, ν) = e−λt
1

Γ (ν)

1

xt

(
ν

µt

(
e−λt + λt

)
xt

)ν

e
− ν

µt
(e−λt+λt)xt

(45)
First, we have to show that

∣∣∣∣∣∣
exp

(
λ̃t − λt

)
exp


νxt

µt

(
e−λ̃t + λ̃t

)
− µ̃t

(
e−λt + λt

)

µ̃tµt




 µ̃t

µt

(
e−λt + λt

)
(
e−λ̃t + λ̃t

)




ν

− 1

∣∣∣∣∣∣
(46)

is bounded over Θ. For simplicity we rewrite it as |A− 1|, and further decompose A into three
terms, A1, A2, A3 representing the two exponentials and the power. We first note that A is, by
construction, positive. In fact, the jump intensity and mean dynamic are constrained to assume
only positive values. Consequently,

sup
θ∈Θ

|A− 1| ≤ sup
θ∈Θ

(A− 1)+ , (47)

where (x)+ = max {x, 0}. We also have

sup
θ∈Θ

(A− 1)+ =

(
sup
θ∈Θ

A− 1

)+

=

(
sup
θ∈Θ

A1 sup
θ∈Θ

A2 sup
θ∈Θ

A3 − 1

)+

(48)

and now we separately consider the terms of A. For the first term,

sup
θ∈Θ

A1 = sup
θ∈Θ

exp
(
λ̃t − λt

)
= exp

(
sup
θ∈Θ

(
λ̃t − λt

))
≤ exp

(
Vλρ

t
λ

)

where we applied Lemma A.4 and the fact that supθ∈Θ
(
λ̃t − λt

)
≤ supθ∈Θ

∣∣∣λ̃t − λt

∣∣∣. For the
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second term we have

sup
θ∈Θ

A2 = exp



νxt

µt

(
e−λ̃t + λ̃t

)
− µ̃t

(
e−λt + λt

)

µ̃tµt





= exp

{
C1 sup

θ∈Θ

(
µt

(
e−λ̃t + λ̃t

)
− µ̃t

(
e−λt + λt

))}

= exp

{
C1 sup

θ∈Θ

(
(µt − µ̃t)

(
e−λ̃t + λ̃t

)
− µ̃t

(
e−λt + λt − e−λ̃t − λ̃t

))}

≤ exp

{
C1,a sup

θ∈Θ
(µt − µ̃t) + C1,b sup

θ∈Θ

(
λt − λ̃t + e−λt(1− eλt−λ̃t)

)}

≤ exp

{
C1,a sup

θ∈Θ
(µt − µ̃t) + C1,b sup

θ∈Θ

(
λt − λ̃t

)
+ C1,b sup

θ∈Θ
e−λt

(
1− eλt−λ̃t

)}

≤ exp

{
C1,a sup

θ∈Θ
(µt − µ̃t) + C1,b sup

θ∈Θ

(
λt − λ̃t

)
+ C1,c

(
1− esupθ∈Θ{λt−λ̃t)

)}

≤ exp
{
C1,aVµρ

t
µ + C1,bVλρ

t
λ + C1,c

(
1− exp

(
Vλρ

t
λ

))}
,

where we have used Lemma A.4, supθ∈Θ(λt − λ̃t) ≤ supθ∈Θ | λt − λ̃t|, and supθ∈Θ (µt − µ̃t) ≤
supθ∈Θ |µt − µ̃t|. Finally, for the third term

sup
θ∈Θ

A3 = sup
θ∈Θ


 µ̃t

µt

(
e−λt + λt

)
(
e−λ̃t + λ̃t

)




ν

= sup
θ∈Θ

(
exp

{
log

(
µ̃t

µt

e−λt + λt

e−λ̃t + λ̃t

)ν})

= exp

(
sup
θ∈Θ

ν log

(
µ̃t

µt

(
e−λt + λt

e−λ̃t + λ̃t

)))

≤ exp

(
C2 log

(
sup
θ∈Θ

µ̃t

µt
sup
θ∈Θ

(
e−λt + λt

e−λ̃t + λ̃t

)))

≤ exp

(
C2 log

(
sup
θ∈Θ

(
µ̃t − µt

µt
+ 1

)
sup
θ∈Θ

(
e−λt + λt − e−λ̃t − λ̃t

e−λ̃t + λ̃t

+ 1

)))

≤ exp

(
C2,a log

((
1 + C2,b sup

θ∈Θ
(µ̃t − µt)

)(
1 + C2,c sup

θ∈Θ

(
eλt + λt − eλ̃t − λ̃t

))))

≤ exp
(
C2,a log

((
1 + C2,bVµρ

t
µ

) (
1 + C2,cVλρ

t
λ + C2,d

(
1− exp

(
Vλρ

t
λ

)))))

Therefore, combining the previous results we can verify that (46) is bounded as follows

sup
θ∈Θ

|A− 1| ≤
(
exp

(
Vλρ

t
λ + C1,aVµρ

t
µ + C1,bVλρ

t
λ + C1,c

(
1− exp

(
Vλρ

t
λ

))
+

C2,a log
((
1 + C2,bVµρ

t
µ

) (
1 + C2,cVλρ

t
λ +C2,d

(
1− exp

(
Vλρ

t
λ

)))))
− 1
)+

.

By Proposition 1 of Francq and Zaköıan (2004), the bound converges almost surely to zero. We
move to the components of the mixture involving the K density. The proof corresponds to that
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of the previous case but with A taking the following value

A = exp(λ̃t − λt)

(
λt

λ̃t

)m
(
µt

µ̃t

e−λ̃t + λ̃t

e−λt + λt

)mζ−ν
2 Kmζ−ν

(
2
√

Xt
µt
ζν (e−λt + λt)

)

Kmζ−ν

(
2

√
Xt
µ̃t
ζν
(
e−λ̃t + λ̃t

))

Therefore we have

sup
θ∈Θ

A = sup
θ∈Θ

exp

{
λ̃t − λt +m log

(
λt

λ̃t

)
+

mζ − ν

2
log

(
µt

µ̃t

eλ̃t + λ̃t

eλt + λt

)

+ log
Kmζ−ν

(
2
√

Xt
µt
ζν (e−λt + λt)

)

Kmζ−ν

(
2

√
Xt
µ̃t
ζν
(
e−λ̃t + λ̃t

))





.

The last term involving the ratio of the Bessel functions simplifies only partially using the integral
representation of the Bessel function of the second kind. We rewrite the ratio as follows

Ka(b)

Ka(b̃)
=

− 2(0.5b)−a

√
πΓ(0.5−a)

∫∞
1

cos(bt)

(t2−1)a+0.5dt

− 2(0.5b̃)
−a

√
πΓ(0.5−a)

∫∞
1

cos(b̃t)
(t2−1)a+0.5dt

.

Then, we have

− 2(0.5b)−a
√
πΓ(0.5−a)

− 2(0.5b̃)
−a

√
πΓ(0.5−a)

=

(
b

b̃

)−a

=

(
µ̃t

µt

e−λt + λt

e−λ̃t + λ̃t

)−mζ−ν
2

=

(
µt

µ̃t

e−λt + λt

e−λ̃t + λ̃t

)mζ−ν
2

while for the ratio of integrals we rename it as B and numerically verify it is bounded. Therefore,
again using Lemma A.4 and Proposition 1 of Francq and Zaköıan (2004), we can verify the
following upper bound converges to 0 almost surely.

sup
θ∈Θ

|A− 1| ≤
(
exp

(
Vλρ

t
λ +C1,a log

(
1 + c1,bVλρ

t
λ

)
+

C2,a log
((
1 + C2,bVµρ

t
µ

) (
1 + C2,cVλρ

t
λ + C2,d

(
1− exp

(
Vλρ

t
λ

))))

+ logB)− 1)+ .

�

Lemma A.6 Given the MEM-J model, the mixture density satisfies

E[fX(xt|Ft−1; θ)] < ∞ ∀θ ∈ int(Θ)

Proof Given

fX(xt|Ft−1; θ) = e−λtgX(xt; θ1, θ2, ν) +
∞∑

m=1

e−λtλm
t

m!
× kX(xt;m, θ),

E[e−λtgX(xt; θ1, θ2, ν)] is finite since e−λt is finite for all λt > 0 a.s. and the gX(·) is finite for all
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(θ′1, θ
′
2, ν) ∈ int(Θ). Let

A(xt;m, θ) =
e−λtλm

t

m!
× kX(xt;m, θ)

E[A(xt;m, θ)|λt = λ] =
e−λλm

m!
E[kX(xt;m, θ)]

where E[kX(xt;m, θ)] is bounded in m, such that

E

[ ∞∑

m=1

e−λtλm
t

m!
× kX(xt;m, θ)

]
= O(1)

The Lemma follows.�

Lemma A.7 Under Assumptions 2.i-ii

Eθ0 [lt(θ0)] < ∞ and if θ 6= θ0, then Eθ0 [lt(θ)] < Eθ0 [lt(θ0)].

Proof To show that Eθ0 [lt(θ0)] < ∞, it is sufficient to note that

Eθ0 [log(fX(xt; θ0)] ≤ logEθ0 [fX(xt; θ0)]

and Lemma A.6. Note that

Eθ0 [lt(θ0)]− Eθ0 [lt(θ)] = Eθ0

[
log

fX(xt; θ0)

fX(xt; θ)

]

≥ 0

since for Theorem 3 Pr[(fX(xt; θ0)/fX(xt; θ)) 6= 1] > 0. Under global identification the inequality
is strict.�

Proof A.8 Proof of Theorem 5

The proof consists of the verification of Assumption 3. In the following we discuss the assumptions
for Theorem 5.

Assumptions i-ii The derivatives of the density of the mixture with respect to θ, are given by

∂fX(xt; θ)

∂θ1
=

∂µt(θ1)

∂θ1

[
e−λt × ∂gX(xt; θ1, θ2, ν)

∂µt
+

∞∑

m=1

e−λtλm
t

m!
× ∂kX(xt|m, θ)

∂µt

]
(49)

∂fX(xt; θ)

∂θ2
=

∂e−λtgX(xt; θ1, θ2, ν)

∂θ2
+

∞∑

m=1

∂
e−λtλm

t
m! kX(xt|m, θ)

∂θ2
(50)

∂fX(xt; θ)

∂θ3
= e−λt

∂gX(xt; θ1, θ2, ν)

∂θ3
+

∞∑

m=1

e−λtλm
t

m!

∂kX(xt|m, θ)

∂θ3
(51)
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In particular, the derivatives with respect to ω, α, β are

∂fX(xt; θ)

∂ω
= e−λt

[
∂gX(xt; θ1, θ2, ν)

∂µt
+

∞∑

m=1

λm
t

m!
· ∂kX (xt|m, θ)

∂µt

]

∂fX(xt; θ)

∂α
= e−λtxt−1

[
∂gX(xt; θ1, θ2, ν)

∂µt
+

∞∑

m=1

λm
t

m!
· ∂kX(xt|m, θ)

∂µt

]

∂fX(xt; θ)

∂β
= e−λtµt−1

[
∂gX(xt; θ1, θ2, ν)

∂µt
+

∞∑

m=1

λm
t

m!
· ∂kX(xt|m, θ)

∂µt

]

The terms ∂gX(xt;θ1,θ2,ν)
∂µt

and ∂kX(xt|m,θ)
∂µt

are finite (µt appears in the argument of the Bessel
function, which is bounded when its argument is larger than 0). The derivatives with respect
to φ1, φ2 and φ3 are

∂fX(xt; θ)

∂φ1
=

∂fX(xt; θ)

∂λt

∂fX(xt; θ)

∂φ2
= λt−1 ·

∂fX(xt; θ)

∂λt

∂fX(xt; θ)

∂φ3
= ξt−1 ·

∂fX(xt; θ)

∂λt

where

∂fX(xt; θ)

∂λt

=e−λt

(
∂gX(xt; θ1, θ2, ν)

∂λt

− gX(xt; θ1, θ2, ν)

)

+

∞∑

m=1

[
∂gm(λt)

∂λt

kX(xt|m, θ) + gm(λt)
∂kX(xt|m, θ)

λt

]

with gm(λt) =
e−λλm

t
m! . The terms ∂gX(xt;θ1,θ2,ν)

∂λt
and ∂kX(xt|m,θ)

∂λt
are finite (λt appears in the

argument of the Bessel function, which is bounded when its argument is larger than 0).

Finally, the first derivatives with respect to ν and ς are

∂fX(xt; θ)

∂ν
= e−λt

∂gX(xt; θ1, θ2, ν)

∂ν
+

∞∑

m=1

e−λtλm
t

m!

∂kX(xt|m, θ)

∂ν

∂fX(xt; θ)

∂ς
=

∞∑

m=1

λm
t

m!
· ∂kX(xt|m, θ)

∂ς

where ∂gX(xt;θ1,θ2,ν)
∂ν is surely bounded for ν larger than 0, while ∂kX(xt|m,θ)

∂ν and ∂kX(xt|m,θ)
∂ς

are bounded given the following assumption

Assumption 4 The modified Bessel function of the second type written as

Kmς−ν

(
2

√
ςνxt

µt(θ1)dλ(θ2)

)
= Kg(θ3,m)

(
2
√

h(θ2, θ3,m)
)

where
g(θ3,m) = mς − ν h(θ3,m) = m!ςνηt

is continuously differentiable with respect to θ3 and the derivatives are assumed to be finite
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up to the third order.

Therefore, Assumption 3.i is satisfied since

∂lt(θ)

∂θi
=
∂fX(xt; θ)

∂θi
· 1

fX(xt; θ)

∂2lt(θ)

∂θi∂θj
=

1

fX(xt; θ)
· ∂

2fX(xt; θ)

∂θi∂θj
− ∂fX(xt; θ)

∂θi
· ∂fX(xt; θ)

∂θj
· 1

fX(xt; θ)2
,

only involve quantities that are continuous for all θ ∈ Θ.

Similarly to the previous point, it remains to prove that ∂fX(xt;θ)
∂θi

, ∂2fX(xt;θ)
∂θi∂θj

and ∂3fX(xt;θ)
∂θi∂θj∂θk

are

finite for all θ ∈ Θ. Note that the first, second and third order derivatives of gX(xt; θ1, θ2, ν),
kX(xt|m, θ) and gm(λt) with respect to µt and λt are bounded under stationarity of µt and
λt. Moreover, the derivatives of kX(xt|m, θ) with respect to ν and ς are bounded under

assumption 4. Therefore ∂fX(xt;θ)
∂θi

, ∂2fX(xt;θ)
∂θi∂θj

and ∂3fX(xt;θ)
∂θi∂θj∂θk

are finite for all θ ∈ Θ.

Assumption iii. We know from Theorem 3 that lt(θ) is identified and from Lemma A.7 that

has only one maximum in θ0 ∈ Θ, so E

[
∂2lt(θ0)
∂θi∂θj

]
is negative definite in θ0, i.e. H(θ0) must

be positive definite.

Assumption iv. Given that xt is strictly stationary and ergodic, it follows that 1
T

∑T
t=1 xt

a.s.−→
E[xt] and V

[
1
T

∑T
t=1 xt

]
< ∞. Since the functions fX(xt; θ),

∂fX(xt;θ)
∂θ and ∂2fX(xt;θ)

∂θ are

continuous and their expected value is finite, then the results for xt can be extended to

fX(xt; θ),
∂fX(xt;θ)

∂θ and ∂2fX(xt;θ)
∂θ0

. Hence, ∂2lt(xt;θ)
∂θi∂θj

also follows the UWLLN, so that As-

sumption iv is satisfied.

Assumption v. To prove Assumption v, it is sufficient to show that

A T−1/2 ∂fX(xt;θ0)
∂θ is strictly stationary;

B 1
T

∑T
t=1

(
∂fX(xt;θ0)

∂θ · ∂fX(xt;θ0)
∂θ′

)
a.s.−→ E

[
∂fX(xt;θ0)

∂θ · ∂fX(xt;θ0)
∂θ′

]
.

For what concerns the strict stationarity of the score, note that ∂fX(xt;θ0)
∂θ in (49)-(51)

involve continuous functions of λt, µt, xt and ηt, that are all strictly stationary processes
by Lemma A.6. Therefore, given that a continuous transformation of a strictly stationary
process is still strictly stationary, the Assumption A follows. Moreover, the Assumption B
follows from the fact that the UWLLN of ∂fX(xt;θ0)

∂θ · ∂fX(xt;θ0)
∂θ′ is implied by the UWLLN of

∂fX(xt;θ0)
∂θ which follows from Assumption v.

Assumption vi. Assumption 3.vi corresponds to the assumption that the MEM-J-λt captures
all of the dynamics in xt, i.e. is dynamically complete (see Wooldridge, 1994) which follows
under the assumption of correct model specification.

B The K distribution

If X ∼ Γ (µ, ν1), in mean-shape form, and Y |X ∼ Γ (X, ν2) then we have Y ∼ K (µ, ν1, ν2) such
that

f (y) =
2

y

(
y
ν1ν2
µ

) ν1+ν2
2 1

Γ (ν1) Γ (ν2)
Kν1−ν2

(
2

√
y
ν1ν2
µ

)
, y ≥ 0
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where Ka (·) is the modified Bessel function of the second kind. Moments of the K density are
given by

E [ys] =
µsΓ (ν1 + s) Γ (ν2 + s)

νs1ν
s
2Γ (ν1) Γ (ν2)

(52)

so that E [Y ] = µ and V [Y ] = µ2
(
ν1+ν2+1

ν1ν2

)
. Furthermore, if Y ∼ K (µ, ν1, ν2) then αY ∼

K (αµ, ν1, ν2), E [αY ] = αµ and V [αY ] = α2µ2
(
ν1+ν2+1

ν1ν2

)
. Different K densities, corresponding

to different values of ν1 and ν2, are plotted in Figure 5. Increasing both parameters reduces the
variance, as it is apparent in both plots.
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(a) K density calculated with ν1 = {1, 5, 10, 15, 20} and ν2 = 10.
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(b) K density calculated with ν2 = {1, 5, 10, 15, 20} and ν1 = 10.

Figure 5: K density computed for different values of ν1 (upper panel) and ν2 (lower panel).

Further, as noted by Redding (1999, p.3), the product of two independent Gamma random
variables, Z ∼ Γ(1, ν2) and X ∼ Γ(µ, ν1), is

Y = Z ·X ∼ K(µ, ν1, ν2)

with density given by the following integral

fY (y) =

∫ ∞

−∞

1

x
fZ

(y
x

)
fX(x) dx.
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Pseudo random numbers with K distribution can be generated from Z ∼ Γ(1, L) andX ∼ Γ(µ, ν),
since Y = Z ·X is distributed as K(µ, ν, L).

Setting θ1 = ν1, θ2 = ν2 or viceversa, the cumulative distribution function (CDF) of a K -
distributed random variable can be written as

F (y;µ, θ1, θ2) =
22−θ1−θ2

Γ(θ1)Γ(θ1)

∫ 2
√

θ1θ2y/µ

0
tθ1+θ2−1

Kθ1−θ2(t)dt, y ≥ 0. (53)

The hypothesis of θ2 ∈ N instead of θ2 ∈ R+ is required in order to obtain the previous expression
in closed form. Writing ζ = θ1 − θ2, k = 2ν2 − 1 and z = 2

√
θ1θ2y/µ

F (y;µ, θ1, θ2) = 1 +
22−θ1−θ2

Γ(θ1)Γ(θ2)
g(z, ζ, k) (54)

where

g(y, ζ, k) =





−zζ+1
K(ζ+1)(z) k = 1

(k − 1)(2ζ + k − 1)g(y, ζ, k − 2)− zζ+k
Kζ+1(z)

−(k − 1)z(ζ+k−1)
Kζ(z)

elsewhere

The number of required recursions to compute a single value FY (y;µ, θ1, θ2) is θ2. The best
parametrization, in terms of computational speed, is θ1 = max{ν1, ν2} and θ1 = min{ν1, ν2}.
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