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Abstract

The volatility of financial returns is characterized by rapid and large increments. We propose an
extension of the Heterogeneous Autoregressive model to incorporate jumps into the dynamics of
the ex-post volatility measures. Using the realized-range measures of 36 NYSE stocks, we show
that there is a positive probability of jumps in volatility. A common factor in the volatility jumps
is shown to be related to a set of financial covariates (such as variance risk premium, S&P500
volume, credit-default swap, and federal fund rates). The credit-default swap on US banks
and variance risk premium have predictive power on expected jump moves, thus confirming the
common interpretation that sudden and large increases in equity volatility can be anticipated by
credit deterioration of the US bank sector as well as changes in the market expectations of future
risks. Finally, the model is extended to incorporate the credit-default swap and the variance risk
premium in the dynamics of the jump size and intensity.
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1 Introduction

Recent empirical studies indicate that diffusive stochastic volatility and jumps in returns are in-

capable of capturing the empirical features of equity index returns. Instead, it has been stressed

that jumps in volatility can improve the overall fitting of stochastic volatility models. Eraker et al.

(2003), for instance, report convincing evidence that volatility of financial returns is affected by

rapid and large increments. The results of Eraker et al. (2003) point toward the inclusion of both

jumps in volatility and in returns, and analogous conclusions are reached by Broadie et al. (2007).

Duffie et al. (2000) provide some evidence, based on calibration, that the introduction of a volatility

jump may attenuate the option overpricing observed in stochastic volatility models with jumps only

in the returns. Todorov and Tauchen (2011), by means of a non-parametric analysis on the VIX

volatility index, find that market volatility involves many small changes as well as occasional big

moves, where the latter justifies the use of jumps in volatility modeling. They also find strong cor-

relation between return and volatility jumps measured as realized jumps in both series. In general,

both the return-based and option-based evidence support the presence of jumps in returns as well

as in volatility.

As noted by Giot et al. (2010), market participants usually care as much about the nature of

volatility as about its level. For example, all traders make the distinction between good and bad

volatilities. Good volatility is directional, persistent and relatively easy to anticipate. Bad volatility

is jumpy and relatively difficult to foresee. As such, good and bad volatilities can be associated

with the continuous, persistent part and with the discontinuous, jump component of volatility,

respectively.

From an econometric perspective, and focusing on continuous time stochastic volatility models,

the introduction of jumps requires an additional set of latent state variables. Therefore, the esti-

mation of stochastic volatility models with jumps in returns and/or volatilities can be possible only

if the unobserved state variables are filtered out. For instance, Chernov et al. (2003), Eraker et al.

(2003), and Eraker (2004), estimate their models by means of simulation-based methods, while Pan

(2002) adopts the implied-state technique to fit her models to returns and option prices, and Li

et al. (2008) employ MCMC techniques for models with infinite-activity Lévy jumps.

We contribute to this strand of the financial econometrics literature by focusing on the modeling

and on the estimation of the volatility jump component in a discrete time setting. As a distinctive

feature of our contribution, we use the realized range as non parametric ex-post measure of the daily

integrated variance. Such a choice allows us to simplify the computational burden of estimating
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the jumps in volatility. In fact it circumvents the need to integrate out unobservable quantities.

As suggested by Todorov (2009, 2011) we can make inference on the volatility jumps regardless of

how complicated the model for the stochastic volatility is. Furthermore, recent theoretical findings

by Christensen and Podolskij (2007, 2012) prove that realized range is a very efficient estimator

of the quadratic variation of the returns. In our framework, efficiency of the integrated variance

estimation is a crucial element, since the potential reduction in the measurement error obtained

with realized-range measures can lead to more precise evaluations of the volatility jump component.

In order to evaluate the contribution of jumps to the daily volatility dynamics we specify and

estimate a parametric model in discrete time. In particular, given the well documented long-range

dependence of the realized variance estimators, see Andersen et al. (2003) among others, and the

persistent effects of jumps in volatility, we propose a conditional model that generalizes the HAR

model, introduced by Corsi (2009). The asymmetric Heterogeneous Autoregressive-Volatility-Jump

(HAR-V-J) model includes an additive volatility jump term, which is modeled as a compound

Poisson process allowing for multiple jumps per day, as in Chan and Maheu (2002) and Maheu and

McCurdy (2004), whose intensity and magnitude parameters are varying over time according to

an autoregressive specification. In this way, we are able to model and identify periods with higher

volatility jump activity, that are also periods of high market stress.

The empirical analysis focuses on 36 stocks quoted at the New York Stock Exchange, representing

nine sectors of the U.S. economy: banks, insurance and financial services, oil gas and basic materials,

food beverage and leisure, health care, industrial goods, retail and telecommunications, services,

and technology. The estimation results point out that the jump activity is characterized by two

different periods. The first one, from 2004 to 2007, of low jump activity, the second, from mid-2008

to mid-2009, of high jump activity. In particular, during the second period the jump component

represents a relevant part of the estimated conditional volatility. Such a finding is perfectly in line

with the known feature of equity data during the sample period we consider. Furthermore, we find

an ex-post positive correlation between volatility and price jumps, in line with Bandi and Renò

(2014).

The second part of the analysis is devoted to investigate the relationship between the estimated

volatility jump sequences and some economic covariates. A similar analysis is conducted by Rangel

(2011) who evaluates the impact that scheduled announcements have on the conditional jump

intensity of daily market returns. Firstly, we regress the estimated volatility jump sequences on a

set of daily financial variables, such as the variance risk premium (VRP), trading volume of S&P

500, Federal Funds rate, and credit default swaps (CDS ) on the US banks in order to investigate
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the potential determinants of occasional big moves in asset’s volatility. The results indicate that the

CDS, the lagged market return and, the V RP are significant across the stocks considered. Secondly,

we look at the presence of a common factor in the estimated volatility jump components. We find

that the first principal component, that we call jump volatility factor, is highly correlated with

the same explanatory variables. The main result is that V RP and CDS capture large part of the

expected jumps moves, verifying the common interpretation that large and sudden increases in the

volatility of stock markets over some days in the recent financial crisis have been anticipated by

credit deterioration of US bank sector, and by an underestimate of volatility by market operators.

We also argue that this result is not driven by the inclusion of the financial sector in the analysis.

In fact, a robustness check made excluding the volatility jumps associated with financial companies,

lead to almost identical results. The introduction of CDS and VRP as exogenous variables in the

dynamics of volatility jumps provides an improvement in the ex-ante and ex-post jump probabilities.

The evidence we provide thus suggests that our modeling strategy could be used in the forecast of the

integrated variance, employed within risk management, or used for policy and market intervention

purposes. The empirical validation of those additional elements is not included in this present

contribution and is left for future researches.

This paper is organized as follows. In Section 2 the econometric model is set out and the

estimation procedure is outlined. Section 3 illustrates the estimation results of the HAR-V-J model

with data on 36 NYSE stocks. Section 4 investigates the determinants of the common component

of estimated expected jumps and presents the estimates of an extended version of the HAR-V-J.

Section 6 concludes. The Appendix summarizes some results associated with the realized range and

presents the bias-corrected realized range-based bipower variation that is employed in the empirical

analysis.

2 A model for realized range with jumps

A wide empirical literature focuses on modeling daily realized volatility measures, see e.g. Andersen

and Bollerslev (1998), Andersen et al. (2001), Andersen et al. (2003), Andersen et al. (2007).

More recently, the estimates of the components of the total daily price variation (the integrated

variance and the price jump) have been separately modeled, see e.g. Bollerslev et al. (2009a),

Busch et al. (2011), and Andersen et al. (2011). In the same spirit, we investigate the volatility

jumps contribution to the integrated variance, using an ex-post realized range estimator. The range

estimator can produce considerable efficiency gains relative to a standard return-based estimator,
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even when the latter employs subsampling to exhaust the entire database (e.g. Zhang et al., 2005).

The range partially distills some of the information contained in intermediate data not used by a

sparsely sampled return-based estimator, and this turns out to be a more effective way of doing it

compared to subsampling of low-frequency returns (see Christensen and Podolskij, 2012).

In our analysis, we employ the bias-corrected realized range-based bipower variation (RBV ∆
m,BC)

of Christensen et al. (2009) as an ex-post measure of the integrated variance. The Appendix discusses

the notation, the assumptions and the properties of the range-based estimator. The RBV ∆
m,BC has

been shown to be a consistent estimator of the integrated variance in presence of jumps in prices

and microstructure noise, as well as periodicities and long memory in the instantaneous volatility

process. As long as jumps in prices cause discontinuities in the price trajectories, jumps in volatility

temporarily amplify the diffusive component of the price dynamics. The RBV ∆
m,BC disentangles the

contribution to the total price variation of the jumps in prices, but it retains the contribution of

the jumps in volatility. The RBV ∆
m,BC is evaluated at the daily level from stock prices sampled at

1 minute intervals.

We propose an extension of the HAR model by Corsi (2009), which incorporates a jump term into

the conditional mean of the realized range. The HAR model mimics the asymmetric propagation of

volatility, due to the presence of heterogeneous market participants. It is an additive cascade model

of different volatility components each of which is generated by the actions of different types of mar-

ket players. This additive volatility cascade generates a simple long AR-type model, as it considers

averages of realized measures over different time horizons. In the most common HAR specification,

the actual log-realized variance is regressed on its past daily, weekly and monthly averages, together

with a leverage term capturing the asymmetric relation between returns and volatility, see Martens

et al. (2009), among others. The main advantage of the HAR-type specifications is represented by

its estimation simplicity, given that the model can be estimated by ordinary last squares.

Let Xt = logRBV ∆
m,BC,t and It−1 be the time t − 1 information set, the asymmetric HAR-

Volatility Jump (HAR-V-J) model for Xt is given by,

Xt = µ+ φDXt−1 + φWX
W
t−1 + φMX

M
t−1 + γrt−1I(rt−1 < 0) + Zt + ǫt (1)

where ǫt|It−1 ∼ N(0, σ2t ) and

XW
t =

1

5

4∑

j=0

Xt−j , and XM
t =

1

22

21∑

j=0

Xt−j
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represent the weekly and monthly volatility components, respectively, see also Corsi (2009); the

asymmetric component is driven by I(·), i.e. the indicator function which takes unit value when

asset daily return is negative. The conditional variance of ǫt is allowed to be time-varying and it can

be modeled as a GARCH process. The additional jump term allows us to estimate the probability

and the impact of volatility jumps on the dynamic and the conditional moments of the logRBV ∆
m,BC .

This model implies that the RBV ∆
m,BC is given by a multiplicative structure such as

RBV ∆
m,BC,t = exp {X̄t−1} exp {Zt} exp {ǫt}

where X̄t−1 = µ + φDXt−1 + φWX
W
t−1 + φMX

M
t−1 + γrt−1I(rt−1 < 0). Hence, the jump term

Jt = exp {Zt} acts as a multiplicative term in the volatility process, such that it can be considered

as a burst factor of the volatility dynamics. In case of no jumps, i.e. when Jt = 1, the volatility

follows a HAR process. In period t, the jump term, Zt, is given by

Zt =
Nt∑

k=1

Yt,k

where the jump size, conditional on the information set at time t− 1, is independent and normally

distributed

Yt,k|It−1 ∼ N (Θt,∆t) ,

and ǫt and Yt,k are assumed to be independent of each other. Chan and Maheu (2002) specify the

dynamics of Θt and ∆t as affine functions of the lagged dependent variable. In our case, Θt and ∆t

are assumed to be

Θt = ζ0 + ζ ′Wt−1 (2)

and

∆t = η0 + η′Wt−1, (3)

where Wt−1 are vectors containing variables included in the information set at time t − 1, and ζ

and η are vectors of parameters conformable with Wt−1. For example,

The jump component has a compound Poisson structure where the number of jumps arrivals at

time t, Nt, is a Poisson counting process with intensity parameter Λt > 0 and density

P
(
Nt = j|It−1

)
=
e−ΛtΛjt
j!

, j = 0, 1, 2, ...
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This implies that

E
[
Nt|It−1

]
= Var

[
Nt|It−1

]
= Λt

so that the conditional density of Zt given Nt and I
t−1 is

Zt|Nt = j, It−1 ∼ N (jΘt, j∆t) . (4)

Since E
[
Zt|Nt = j, It−1

]
= jΘt, the conditional expected value of the jump component is

E
[
Zt|It−1

]
= ΘtΛt (5)

where Θt is assumed to be measurable with respect to It−1, as in (2). Given the conditional density

of Zt in (4), the conditional variance of the jump component is

Var
[
Zt|It−1

]
=

(
∆t +Θ2

t

)
Λt, (6)

where ∆t is assumed to be measurable with respect to It−1, see (3). Whereas, as in Chan and

Maheu (2002), the unobserved log-volatility jump intensity is assumed to follow an autoregressive

specification

Λt = λ0 + λ1Λt−1 + ψξt−1. (7)

As a result, the conditional jump intensity in period t depends on its own lag and on the lag of

the innovation term ξt, which represents the measurable shock constructed ex-post. This shock, or

jump intensity residual, is defined as

ξt = E
[
Nt|It

]
− Λt.

Therefore, ξt depends on the expected number of jumps measured with respect to the information

set including the contemporaneous information, i.e. at time t. It follows that the jump intensity

equation can be rewritten as

Λt = λ0 + (λ1 − ψ) Λt−1 + ψ E
[
Nt−1|It−1

]

with

E
[
Nt|It

]
=

∞∑

j=0

jP
(
Nt = j|It

)
. (8)
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As noted by Chan and Maheu (2002), other functional forms that include nonlinearity also may

be very useful. For example, in Bandi and Renò (2014), the intensities of the jumps are nonlinear

functions of the underlying variance level. An alternative observation-driven specification for the

dynamic parameter Λt could be obtained in the GAS framework, discussed in Harvey (2013) and

Creal et al. (2013) among others.1

The filtered probabilities P
(
Nt = j|It

)
are obtained by means of the Bayes’ law

P
(
Nt = j|It

)
=
P
(
Xt|Nt = j, It−1

)
P
(
Nt = j|It−1

)

P (Xt|It−1)
, j = 0, 1, 2, . . . (9)

where

P
(
Xt|It−1

)
=

∞∑

j=0

P
(
Xt|Nt = j, It−1

)
P
(
Nt = j|It−1

)

and P
(
Xt|Nt = j, It−1

)
is given by the density of ǫt. Analogously, we can compute the conditional

probability of tail events, such as P (Xt > u|It−1). This allows us to compare the probability of

extreme events implied by the HAR-V-J model, with those implied by the Gaussian HAR.

2.1 Log-likelihood

Given equation (4), the first two conditional moments of Xt are given by

E
[
Xt|Nt = j, It−1

]
= X̄t−1 + jΘt

and

Var
[
Xt|Nt = j, It−1

]
= σ2t + j∆t,

with σ2t modeled as a GARCH(1,1), i.e.

σ2t = ω + αǫ̃2t−1 + βσ2t−1

ǫ̃t−1 = Xt − X̄t−1 − ΛtΘt.

1Creal et al. (2013) derives the GAS representation for both the time-varying intensity Poisson process and the
dynamic mixtures of models. However, the derivation of the GAS specification for Λt in the HAR-V-J model in (1)
is complicated by the fact that Zt is an infinite countably mixture of Gaussian terms whose weights depend on the
realization of a random variable, Nt, which is Poisson distributed. We believe that an extension of the HAR-V-J
model within the GAS framework is a natural advancement but this is left to future investigation.
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The likelihood function of the model, conditional on the number of arrivals, Nt = j, and on It−1, is

therefore given by

f(Xt|Nt = j, It−1) =
1√

2π(σ2
t + j∆t)

exp

(
− (Xt − X̄t−1 − jΘt)

2

2(σ2
t + j∆t)

)

so that the log likelihood function conditional on It−1 is

ℓ(Xt|It−1) = log




∞∑

j=0

P (Nt = j|It−1) · f(Xt|Nt = j, It−1)


. (10)

The likelihood function is then maximized with respect to the parameter vector,

θ = {µ, φD, φW , φM , ζ0, ζ, η0, η, λ0, λ1, ψ, ω, α, β}.

In the empirical applications presented below the expression in (10) is approximated by a finite

sum, where we employ a truncation value of 20.2

2.2 Conditional moments

Adopting the expression in Maheu and McCurdy (2004, p.766), the first four conditional moments

of Xt are:

E[Xt|It−1] = X̄t−1 + ΛtΘt, (11)

Var[Xt|It−1] = σ2t +
(
Θ2
t +∆t

)
Λt, (12)

Sk[Xt|It−1] =
Λt

(
Θ3
t + 3Θt∆t

)

[
σ2t +

(
Θ2
t +∆t

)
Λt

]3/2 , (13)

Kur[Xt|It−1] = 3 +
Λt

(
Θ4
t + 6Θ2

t∆t + 3∆2
t

)

[
σ2t +

(
Θ2
t +∆t

)
Λt

]2 . (14)

Interestingly, the introduction of a jump component in the mean evolution of the log-RBV provides

a number of relevant features. First of all, as compared to the simple HAR model, the condi-

tional higher moments, i.e. the conditional skewness and kurtosis, are time-varying when Λt > 0.

This makes the HAR-V-J model more flexible than the HAR without jumps, as it allows to relax

the assumption of conditional normality. The jump component also contributes to the volatility-

of-volatility evolution through the time-varying specification of the intensity and of the size and

2Larger truncation values did not provide sensible improvements in the likelihood or relevant changes in the results.
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variance of Yk,t. In fact, the HAR-V-J can be seen as a model designed to parameterize the time-

varying conditional heteroskedasticity observed in the log-realized measures, in the same spirit of

Corsi et al. (2008). In the HAR-V-J model the conditional heteroskedasticity of Xt is decomposed

into two sources of variation: one is the volatility-of-volatility the other is the jump component.

The expected value of RBV ∆
m,BC,t = exp {Xt} conditional on It−1 is

E
[
RBV ∆

m,BC,t|It−1
]
=

∞∑

j=0

[
P
(
Nt = j|It−1

)
· exp

{
X̄t−1 + jΘt +

1

2
(σ2t + j∆t)

}]
(15)

Finally, the conditional expectation of Jt ≡ exp {Zt} is given by

Jt|t−1 ≡ E
[
Jt|It−1

]
=

∞∑

j=0

P
(
Nt = j|It−1

)
· exp

(
jΘt +

1

2
j∆t

)
. (16)

In the next section, we discuss the results of the ML estimates of the HAR-V-J model, providing a

detailed investigation of the conditional volatility jump component, Jt|t−1.

3 Volatility jumps in the US stock market

3.1 Data description

Our empirical analysis is based on the intradaily returns of 36 equities of the S&P 500 index.

The companies considered are shown in Table 1. Prices are sampled at one minute frequency,

from January 2, 2004 to December 31, 2009, for a total of 1510 trading days. The start of the

sample period is motivated by the availability of the CDS data, which are employed in Section

4. We compute the RBV ∆
m,BC,t, for each stock, according to (26), using one-minute returns. The

parameter m is set equal to the average number of returns in one minute interval in each trading

day for each stock considered, while the number of intradaily ranges is n = 390. Figure 1 plots

the dynamic behavior of the annualized volatility of BA, IBM, JPM, and UPS.3 The volatility is

characterized by two dominant regimes. A long period of low volatility, approximately from 2004

to 2007, which is followed by a period of high volatility in correspondence of the financial crisis. It

is interesting to note that the first part of the sample is not characterized by large jumps, while

the period in correspondence of the recent financial crisis has many large spikes. As expected,

this suggests that during financial crises, the probability and the magnitude of the jumps could be

higher. Instead, the volatility of UPS is lower but with a large spike on October 10, 2008.

3To save space the plots are displayed only for these four stocks.
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Sector Ticker Company

BANK BAC Bank of America
C Citygroup
JPM JP Morgan
WFC Wells Fargo

INSURANCE AND FIN. SERVICES AXP American Express
GS Goldman & Sachs
MET Met Life
MS Morgan Stanley

OIL, GAS AND BASIC MATERIALS XOM Exxon
CVX Chevron
FCX Freeport-McMoRan Copper
NEM Newmont Mining Corporation

FOOD, BEVERAGE AND LEISURE TWX Time Warner
PEP Pepsi Cola
KFT Kraft
MCD Mc Donalds

HEALTH CARE AND CHEMICAL JNJ Johnson & Jonhson
PFE Pfizer
PG Procter & Gamble
DD Du Pont

INDUSTRIAL GOODS CAT Caterpillar
BA Boeing
HON Honeywell
F Ford

RETAIL AND TELECOMMUNICATIONS WMT Wall-Mart
T AT&T
HD Home Depot
VZ Verizon

SERVICES FDX Fed-Ex
UPS UPS
GE General Electric
EMR Emerson Electric

TECHNOLOGY AAPL Apple
IBM International Business Machines
HPQ Hewlett Packard
TXN Texas Instruments

Table 1: Sector, Companies and Ticker
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Figure 1: Annualized volatilities of Boeing, IBM, JP Morgan, and UPS computed as 100×
√
252×√

RBVBC,t.

As it is apparent from the second and third columns of Table 2, the series are right-skewed and

leptokurtic. The sample skewness is around 1, on average, while the kurtosis is generally higher

than three but smaller than six. This positive skewness could be related to the presence of a few

large values in the logRBV ∆
m,BC,t series, such as those observed during the financial crisis (2008-

2009). The unconditional non-normality could stem from the presence of jumps in the volatilities,

as well as to changes in the conditional behavior of the series. However, explicitly accounting for

the presence of jumps and GARCH effects reduces the tail fatness of the conditional distribution of

the disturbances.

3.2 Estimation results

We estimate the model in (1) according to the maximum likelihood procedure outlined in previous

section. Preliminary estimates obtained by including Xt−1 and X2
t−1 in equation (5) and (6) as in

Chan and Maheu (2002), suggest that past volatility does not significantly affect the dynamics of

Θt and ∆t.
4 Consequently, the dynamics in the jump size mean and variance are initially restricted

4These estimates are not reported here to save space, but they are available upon request from the authors. All
computations have been performed with MATLAB.
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σ̄ Skewness Kurtosis Λ̄t E(Nt|It) Var(Xt|It−1) Sk(Xt|It−1) Kur(Xt|It−1) ρ(Jt|t−1,Ξt)04:07 ρ(Jt|t−1,Ξt)08:09 ρ(Jt|t−1,Ξt)04:09

AAPL 24.8368 0.7437 4.5830 0.1480 0.1400 0.2217 0.9208 5.1104 0.2494 0.4999 0.4256
AXP 20.5084 0.7587 2.4834 0.6060 0.0666 0.1798 0.4528 3.4386 0.5013 0.5036 0.5080
BA 15.9610 1.1382 4.7531 0.1554 0.0478 0.1757 0.4285 3.7419 0.2424 0.5739 0.5646
BAC 23.1555 0.9767 2.9254 0.1486 0.0751 0.2090 0.4766 3.8997 0.5659 0.3181 0.4260
C 23.9415 0.9290 3.0168 0.3935 0.0659 0.2345 0.4384 3.5649 0.6778 0.3841 0.4694
CAT 18.4294 1.1565 4.1235 0.2610 0.1497 0.1747 0.5149 3.7756 0.2937 0.4249 0.4193
CVX 15.9767 0.9214 4.7157 0.3389 0.1030 0.1655 0.1745 3.2217 0.2896 0.4359 0.3910
DD 16.5392 1.1019 4.1269 0.1213 0.0493 0.1648 0.3263 3.6093 0.4055 0.5818 0.6312
EMR 16.3422 1.3718 5.3417 0.1836 0.0666 0.1692 0.4619 3.7992 0.5721 0.5933 0.6162
F 30.0859 1.2691 5.7290 0.1802 0.0679 0.2676 0.4130 4.4640 0.2101 0.3250 0.3451
FCX 29.1566 1.0974 4.6910 0.1982 0.1488 0.1518 0.3964 3.6045 0.3604 0.6971 0.6603
FDX 16.0122 0.7384 3.4815 0.0325 0.0328 0.1706 0.6708 4.8614 0.2918 0.3988 0.4608
GE 15.6763 1.1663 3.7924 0.7652 0.2988 0.2050 0.5304 3.5059 0.6066 0.5950 0.6084
GS 21.5953 1.0772 3.7746 0.4591 0.1381 0.1609 0.2821 3.2560 0.6884 0.5114 0.5230
HD 17.8131 0.9366 3.4931 0.1000 0.0750 0.1844 0.5439 4.1896 0.2495 0.4384 0.3489
HON 16.7893 1.3807 6.2263 0.1838 0.1212 0.1793 0.3969 3.6082 0.1443 0.5774 0.4987
HPQ 16.6704 1.1246 4.8770 0.4664 0.3733 0.2022 0.5125 3.5950 -0.0581 0.1372 -0.0101
IBM 13.3862 1.3166 5.2915 0.2066 0.0870 0.1645 0.3525 3.4803 0.4385 0.6549 0.6343
JNJ 10.1048 1.3872 5.7007 0.2531 0.1674 0.1855 0.5560 3.8558 0.2228 0.3743 0.3568
JPM 22.0841 0.9047 2.7714 0.2547 0.5170 0.1536 0.4135 3.5565 0.6403 0.4611 0.5254
KFT 16.1119 0.6633 5.0948 0.0608 0.1022 0.2428 0.7285 5.0754 0.3174 0.5157 0.4491
MCD 14.1048 1.3491 6.3214 0.0432 0.0338 0.2014 0.7700 6.0775 0.1775 0.4657 0.4478
MET 23.0263 1.1781 4.1188 0.1401 0.0512 0.1977 0.4269 3.8061 0.2048 0.3711 0.2632
MS 28.5541 1.1187 3.8033 0.1938 0.0223 0.1888 0.4847 3.9082 0.5801 0.5995 0.5596
NEM 21.5462 0.8663 3.8108 0.0690 0.0306 0.1261 0.3079 3.6153 0.3457 0.7390 0.6432
PEP 11.7077 1.4604 6.2378 0.1232 0.1789 0.1947 0.6286 4.3648 0.3239 0.4726 0.4590
PFE 13.8933 1.2437 4.9546 0.1554 0.1328 0.2659 1.1211 6.2036 0.0750 0.4942 0.3931
PG 11.5246 1.3308 5.6124 0.1631 0.1299 0.1936 0.4304 3.9387 0.1674 0.4948 0.4707
T 17.0354 0.8744 4.9006 0.4070 0.1671 0.1864 0.1584 3.3035 0.2213 0.3552 0.3703
TWX 17.6097 1.1112 4.6496 0.2773 0.1168 0.1822 0.5774 3.9257 0.2555 0.4777 0.5038
TXN 20.3096 0.9976 4.2807 0.0618 0.0290 0.1668 0.2262 3.5960 0.0446 0.3653 0.4378
UPS 13.1429 1.0870 4.4766 0.0316 0.0227 0.1732 0.6783 5.5076 0.3128 0.4657 0.4562
VZ 14.5341 1.2889 5.2242 0.3394 0.0931 0.2119 0.6441 3.9441 0.2738 0.4439 0.4265
WFC 22.6472 0.8660 2.6464 0.3683 0.0941 0.1799 0.4766 3.6784 0.5368 0.5066 0.5270
WMT 13.1333 1.1507 4.4018 0.2287 0.0968 0.1928 0.5371 3.9605 0.4041 0.4520 0.4961
XOM 15.1828 0.9625 4.5853 0.6287 0.2017 0.1597 0.2592 3.1982 0.3859 0.5668 0.4894

Table 2: Summary statistics of log(RBVBC), and conditional jumps and conditional moments of log-volatility. First column reports the average percentage volatility on annual
basis, that is σ̄ = 1

T

∑T

t=1

√

RBVBC,t × 100 ×
√
252. Second and third columns report sample skewness and kurtosis of log(RBVBC), see (13) and (14). Column 4 reports the

sample averages of Λt, which is the average expected number of jumps. E(Nt|It), Var(Xt|It−1), Sk(Xt|It−1), Kur(Xt|It−1) are the sample average of the number of expected
jumps, and the sample average of the conditional variance, conditional skewness, and conditional kurtosis of log-volatility, respectively, implied by the HAR-V-J model. The last
three columns report the jump correlations for the periods 2004-2007, 2008-2009 and 2004-2009. Jt|t−1 = E[Jt|It−1] is the expected jump component in the BPVBC,t, that is
obtained from the estimates of the HAR-V-J model, see (16). Squared jump price is estimated by Ξt = λ2,m (RRGBC −RBVBC). ρ(Jt|t−1,Ξt) is the estimated linear correlation
coefficient between Jt|t−1 and Ξt.
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to be constant. Therefore, the specification we adopt here is the following

Xt = X̄t−1 +

Nt∑

k=1

Yt,k + ǫt, ǫt|It−1 ∼ N(0, σ2t ), Yt,k|It−1 ∼ N (ζ0, η0) ,

P
(
Nt = j|It−1

)
=
e−ΛtΛjt
j!

j = 0, 1, 2, . . .

Λt = λ0 + (λ1 − ψ) Λt−1 + ψ E
[
Nt−1|It−1

]

σ2t = ω + αǫ̃2t−1 + βσ2t−1

(17)

In Section 5, the dynamic equations for Λt and Θt are extended by the inclusion of economic/financial

covariates.

Table 3 reports the estimated parameters of the HAR-V-J for the 36 stocks under analysis, while

Table 4 contains some diagnostic checks. Looking at the Ljung-Box test on the model residuals, see

the last columns of Table 4, for some series the HAR-V-J model is not able to completely capture

the dynamic of the log-volatility series. This is due to the peculiar autoregressive lag structure of

the HAR-V model which appears to be too restrictive for many series under exam, thus leaving some

autocorrelation in the residuals. It is important to stress that the autocorrelation in the residuals is

not due to the inclusion of the jump term in the HAR-V-J model. The coefficient of the HAR part

of the model are in line with values observed in previous studies, positive and highly significant.

In addition, the leverage term is characterized by negative coefficients, an expected result. In fact,

when the past returns are negative, we observe an increase in the log-realized measure, that is an

increase in volatility. For what concerns the jump size mean, we note that the estimates of ζ0 in

(2) are positive and statistically significant, in most cases at the 5% confidence level. Only in five

cases we have a jump mean size coefficient which is not statistically significant. In addition, the

jump size variance (η0) is statistically significant in most cases at the 10% confidence level; the few

exceptions are AXP, JPM, and WFC.

The estimates of the GARCH(1,1) parameters for the conditional variance of ǫt are significant in

almost all cases. It should also be noted that the estimated GARCH shows a moderate persistence.

Notably, Table 4 reports in the first column the LR test for the presence of GARCH effects (volatility-

of-volatility effects). The null cannot be rejected in just 8 cases, many of them associated with a very

limited persistence. To understand how the jump component contributes to the overall conditional

variance of Xt, we plot in Figure 2 the ratio of the conditional variance of the HAR-V-J model

to the one obtained from a HAR-V model, both with a GARCH(1,1) specification for the error

conditional variance. From the plots it is evident how the inclusion of the jumps not only changes
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HAR Leverage Mean Variance Intensity GARCH

µ φD φW φM γ ζ0 η0 λ0 λ1 ψ ω α β

AAPL -0.6157a 0.3576a 0.3376a 0.1843a -0.0780a 0.5597a 0.2714a 0.0017a 0.9881a 0.0080a 0.0081a 0.0225a 0.9028a

AXP -0.4493a 0.3290a 0.4238a 0.1821a -0.0589a 0.1568 0.1129 0.0002 0.9990a 0.0504a 0.0127a 0.0772a 0.7120a

BA -0.6180a 0.2699a 0.4097a 0.2117a -0.0603a 0.3290a 0.2358a 0.0001a 0.9983a 0.0491a 0.0196a 0.0299a 0.7949a

BAC -0.4515a 0.3951a 0.4179a 0.1180a -0.0571a 0.3980a 0.2344a 0.0001 0.9991a 0.0296a 0.0078a 0.0432a 0.8854a

C -0.5890a 0.3463a 0.4349a 0.1244a -0.0451a 0.2358a 0.1885a 0.0007 0.9972a 0.0838a 0.0399a 0.1162a 0.5035a

CAT -0.4242a 0.3180a 0.3634a 0.2467a -0.0480a 0.2299 0.2121a 0.0210a 0.9182a 0.3081a 0.0980a 0.0429a 0.0000
CVX -0.4272a 0.3442a 0.5105a 0.0725a -0.0796a 0.0804 0.1708a 0.0234a 0.9318a 0.5688a 0.0909a 0.0213a 0.1041

DD -0.5028a 0.2756a 0.4565a 0.1812a -0.0878a 0.2494 0.2757a 0.0001 0.9982a 0.0477b 0.0058 0.0341a 0.9056a

EMR -0.7156a 0.2431a 0.4026a 0.2244a -0.0341a 0.3935a 0.1584a 0.0003 0.9976a 0.1013a 0.0578a 0.0856a 0.3502a

F -0.3243a 0.2513a 0.3106a 0.3676a -0.0244a 0.2056a 0.4833a 0.0002 0.9983a 0.0498a 0.0091a 0.0981a 0.7894a

FCX -0.3613a 0.3242a 0.4288a 0.1726a -0.0469a 0.1872a 0.2082c 0.0024a 0.9874a 0.0893a 0.0522a 0.0901a 0.3644a

FDX -0.3175a 0.2554a 0.3492a 0.3423a -0.0498a 1.1303a 0.0000 0.0002 0.9944a 0.0057 0.0233a 0.0421a 0.7627a

GE -0.7683a 0.2992a 0.4357a 0.1585a -0.0991a 0.1810b 0.1087a 0.0004 0.9990a 0.0593a 0.0672a 0.1362a 0.0000
GS -0.4776a 0.3943a 0.3698a 0.1542a -0.0674a 0.1339a 0.1181a 0.0119a 0.9743a 0.4588a 0.0750a 0.0575a 0.1416a

HD -0.3299a 0.3241a 0.3739a 0.2500a -0.0619a 0.4886a 0.2226a 0.0120a 0.8785a 0.1405a 0.0338a 0.0543a 0.6814a

HON -0.6342a 0.2562a 0.4339a 0.1929a -0.0635a 0.2510b 0.1971a 0.0002 0.9985a 0.0292a 0.0067b 0.0468a 0.8831a

HPQ -0.5188a 0.2967a 0.4565a 0.1623a -0.0876a 0.1639a 0.1735a 0.2858a 0.3872a 0.0000 0.0183a 0.1058a 0.6296a

IBM -0.7510a 0.3173a 0.4513a 0.1092a -0.1344a 0.2682a 0.1529a 0.0004 0.9972a 0.0897a 0.0679a 0.0443a 0.3615a

JNJ -0.7980a 0.2455a 0.4093a 0.2297a -0.1659a 0.3005a 0.1775a 0.0003 0.9981a 0.0415a 0.0544a 0.1115a 0.3523a

JPM -0.4327a 0.3964a 0.4297a 0.1080a -0.0700a 0.2616a 0.1223 0.0001 0.9990a 0.0452a 0.0056 0.0240 0.9097a

KFT -0.6929a 0.1845a 0.4481a 0.2356a -0.0476a 0.9152a 0.2294b 0.0003 0.9953a 0.0113a 0.0087a 0.0317a 0.9069a

MCD -0.5563a 0.2327a 0.4274a 0.2432a -0.0879a 0.6798a 0.6780a 0.0002 0.9957a 0.0175a 0.0272a 0.0402a 0.7668a

MET -0.3332a 0.2465a 0.5128a 0.1856a -0.0538a 0.3027a 0.2899a 0.0258a 0.8134a 0.3922a 0.0003 0.0051a 0.9907a

MS -0.3154a 0.4011a 0.3492a 0.1951a -0.0427a 0.2565a 0.2865a 0.0136a 0.9297a 0.3328a 0.0519a 0.0534a 0.4797a

NEM -0.2662a 0.3116a 0.4565a 0.1819a -0.0364a 0.3405a 0.2282a 0.0002 0.9959a 0.0814a 0.0989a 0.0268a 0.0000
PEP -0.6877a 0.1852a 0.4874a 0.2190a -0.0838a 0.5384a 0.1779a 0.0003 0.9974a 0.0206a 0.0072a 0.0318a 0.9002a

PFE -0.4111a 0.3066a 0.3225a 0.3108a -0.0560a 0.5111a 0.5400a 0.0046a 0.9704a 0.0307a 0.1189a 0.0821a 0.0000
PG -0.5535a 0.2967a 0.4362a 0.1776a -0.0778a 0.2121a 0.3340a 0.0008c 0.9945a 0.0380a 0.0084a 0.0387a 0.8774a

T -0.3665a 0.2570a 0.4834a 0.1940a -0.0604a 0.0598 0.2043a 0.0007 0.9971a 0.1168a 0.0675a 0.0939a 0.1528a

TWX -0.5057a 0.2326a 0.3945a 0.2806a -0.0144a 0.2467a 0.2240a 0.0014a 0.9940a 0.0904a 0.0266a 0.0604a 0.6320a

TXN -0.3507a 0.2517a 0.4364a 0.2397a -0.0406a 0.2404a 0.3873a 0.0008a 0.9884a 0.1020a 0.0028 0.0261a 0.9491a

UPS -0.4609a 0.2371a 0.5352a 0.1529a -0.0840a 0.8774a 0.4138a 0.0001 0.9974a 0.0155a 0.0037 0.0193a 0.9478a

VZ -0.6315a 0.2652a 0.3471a 0.2905a -0.0925a 0.2791a 0.2043a 0.0371a 0.8895a 0.2846a 0.0850a 0.0526a 0.1673a

WFC -0.5353a 0.2536a 0.3634a 0.3051a -0.0517a 0.3611b 0.0564 0.0424a 0.8858a 0.4381a 0.0021 0.0182b 0.9515a

WMT -0.5045a 0.2363a 0.4587a 0.2264a -0.0873a 0.2397a 0.2812a 0.0019a 0.9914a 0.0934a 0.0971a 0.0938a 0.0000

XOM -0.4863a 0.3548a 0.4629a 0.1057a -0.0978a 0.0870b 0.1081a 0.0327a 0.9471a 0.4356a 0.0849a 0.0129a 0.0002

Table 3: Estimated parameters of the HAR-V-J model using price data from January 2, 2004 to December 31, 2009. The first column reports the ticker
of the stocks, see Table 1. a, b, and c denote significance at the 1%, 5% and 10% confidence levels, respectively.
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Figure 2: The ratio between the conditional variances of HAR-V-J and HAR-V both with
GARCH(1,1) errors.

the evolution of the conditional variance of Xt but also, and more relevantly, contributes in the

second period of the sample to the increase of the level of the conditional variance, inducing large

variations on some days.

Now, if we turn our attention to the estimates of the parameters of Λt, the jump intensity, we

have that the persistence parameter, λ1, is strongly significant and greater than 0.9 in most cases.

This result confirms the evidence in Eraker et al. (2003) and Duffie et al. (2000), where the jump

arrivals in volatility are highly persistent, producing jump clusters. The close-to-unit-root behavior

of the jumps intensity could stem from a change of regime in the number of jumps arrivals during

the financial crisis. Interestingly, the plots of the expected number of jumps in Figure 3 suggest the

presence of three regimes in the jumps intensity, with the exception of UPS. The first period, from

2004 to the beginning of 2007, is characterized by an absence of jumps in volatility (the number of

jumps is on average one in twenty days). In the second period, the estimated jump arrivals sharply

increase to a daily average of 0.3-0.4, while between mid-2008 and mid-2009, the average number of

jump arrivals dramatically increases, implying approximately more than one jump every second day.

This result is in line with the findings in Dotsis et al. (2007), who estimate a constant probability

of jumps equal to 0.4 for a set of implied volatility series, during the period 1997-2004.
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LRα=β=0 LRλ1=ψ=0 Q5

ǫ Q20

ǫ Q5

ǫ̃2

AAPL 0.0018 0.8297 0.0187 0.2522 0.8322
AXP 0.0000 0.0038 0.0001 0.0061 0.9653
BA 0.0929 0.0001 0.0242 0.1165 0.4044
BAC 0.0001 0.0010 0.0391 0.1196 0.9475
C 0.0000 0.0001 0.0019 0.0060 0.8166
CAT 0.1608 0.0001 0.0095 0.0368 0.5304
CVX 0.7221 0.1013 0.1487 0.0000 0.7789
DD 0.0002 0.0015 0.0026 0.0018 0.9581
EMR 0.0003 0.0000 0.0506 0.0134 0.2179
F 0.0000 0.0001 0.4440 0.0242 0.5470
FCX 0.0036 0.0305 0.0004 0.0011 0.8963
FDX 0.0000 0.3897 0.0430 0.1471 0.0509
GE 0.0001 0.0000 0.0087 0.0334 0.2245
GS 0.1431 0.0010 0.0001 0.0004 0.8328
HD 0.0011 0.1057 0.0002 0.0018 0.8850
HON 0.0007 0.0527 0.0372 0.1377 0.7482
HPQ 0.0000 0.9049 0.0000 0.0045 0.8425
IBM 0.5876 0.0710 0.0000 0.0003 0.9988
JNJ 0.0000 0.0003 0.0070 0.0005 0.9901
JPM 0.0036 0.0073 0.1217 0.0850 0.9661
KFT 0.0001 0.4424 0.0502 0.5993 0.9349
MCD 0.0005 0.9836 0.0774 0.0544 0.7593
MET 0.0005 0.0594 0.0598 0.1334 0.9744
MS 0.0079 0.0596 0.0451 0.1429 0.9917
NEM 0.3122 0.0005 0.3007 0.2246 0.3791
PEP 0.0000 0.0172 0.0064 0.1446 0.4376
PFE 0.0000 0.0001 0.0768 0.1315 0.1536
PG 0.0083 0.0592 0.0189 0.2739 0.8504
T 0.0036 0.0525 0.0003 0.0036 0.9287
TWX 0.0037 0.0000 0.0129 0.0411 0.0898
TXN 0.0079 0.1295 0.1781 0.0023 0.5562
UPS 0.0000 0.0154 0.1071 0.0562 0.9669
VZ 0.0189 0.0183 0.0004 0.0177 0.9091
WFC 0.0000 0.0000 0.2706 0.2265 0.6970
WMT 0.0003 0.0002 0.0024 0.0031 0.6492
XOM 0.9041 0.7370 0.0948 0.0006 0.8634

Table 4: Diagnostic test. The first column reports the company ticker. Column LRα=β=0 reports
the p-value of the likelihood-ratio test for the null hypothesis α = β = 0, i.e. absence of GARCH
effects. Column LRλ1=ψ=0 reports the p-value of the likelihood-ratio test for the null hypothesis
λ1 = ψ = 0, i.e. the jump intensity is constant. Columns Q5

ǫ and Q20
ǫ contain the p-values

of the Ljung-Box test on the residuals of the estimated HAR-V-J model in (17), with 5 and 20
lags, respectively. The last column, Q5

ǫ̃2 reports the p-values of the Ljung-Box test on the squared

standardized residuals,
ˆ̃ǫt√

σ2t+(Θ2
t+∆t)Λt

.
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Figure 3: The expected number of jump arrivals, Λt.

This is a common characteristic of the estimated jump intensities of the financial stocks in the

sample and it could be the outcome of the financial crisis, which hits the bank sector more than

others. This result is in line with the findings of Todorov and Tauchen (2011), where the high

number of jumps in volatility is attributed to the pure jump nature of the volatility process. The

changing-regime feature in the intensity process could be modeled with a dummy variable or with a

smooth transition function. We don’t pursue this possibility here because we don’t want to further

complicate the estimation of the model. We obtain a different picture for UPS where the jump

activity is very low for the entire sample period. This result is consistent with the evolution of the

corrected-realized range shown in Figure 1.

The estimated ex-post probability of at least one jump, shown for the four stocks in Figure

4, reflects the high persistence in the Λt estimates, consistently with the jump clustering which

characterizes all the series in the sample. Moreover, in the crisis period (2008-2009), the ex-post

probability of observing at least one log-volatility jump approaches one. The higher estimated jump

activity in the second part of the sample explains the increase in the unconditional expected value

of the Λt process, see Table 2.

Our results suggest that time variation in the jumps intensity is not negligible, so that the
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Figure 4: Ex-post probability of at least one jump, P (Nt ≥ 1|It).

assumption of constant jump arrival probability turns out to be unrealistic, especially during periods

of financial turmoil. This is also confirmed by looking at the parameter ψ in the intensity equation

which is always positive, and significant in most of the cases. As a consequence the unobserved

past innovation has always a positive and significant impact on the jump intensity. Some of the

ψ coefficients are, however, not significant or very small, thus raising some doubts on the dynamic

evolution of the jump intensity in these cases. This hypothesis is verified by means of a LR test,

reported in Table 4. Only in six cases the LR test cannot reject the null of constant jump intensity

at any significance level.5 In the remaining cases, three have p-values around 10%, another ten

assets show p-values between 1% and 10%, and the remaining 17 assets have p-values below 1%.

Those results further support the dynamic evolution of jump intensity which captures both volatility

bursts as well as the heteroskedasticity of realized range volatilities.

Figure 5 reports the estimated expected exponential jumps, Ĵt|t−1. In all cases, the expected

exponential jumps increase during the period 2008-2009, that is, jumps in volatility constitute

5Since when jumps are absent, i.e. Λt = 0, the parameters of Θt and ∆t are not identified, it is not possible to
evaluate the significance of the jump term by a standard LR test, see the discussion in Hansen (1996). In this case
simulation based approaches can be used to recover likelihood ratio test critical values following Hansen (1996). We
don’t pursue this strategy due to the computational burden implied in the estimation of the HAR-V-J, but rather we
evaluate, in the next section, the consequences of the inclusion of the jump term in characterizing the moments and
the tails of the distribution of Xt.
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Figure 5: Expected exponential jump, Jt|t−1.

an important source of price variability. By looking at the volatility of JPM, the expected jump

component increases already after 2007. The role of the jumps for IBM and BA is relevant in the

period between mid-2008 and mid-2009, namely during the recent financial crisis. A completely

different picture emerges from the plot of the expected exponential jumps of UPS, which remain

rather low and stable for the entire period. Overall, the results we obtain are somewhat expected,

and show the ability of the model in capturing the occurrences of jumps in volatility during the

recent financial crisis. Furthermore, such a result suggests the relevance of volatility jumps in

addition to the price jumps.

3.3 Volatility jump features

With the HAR-V-J model we can study the difference between the ex-ante and ex-post probabilities

of jumps during a given day. This can be done in our setup, simply comparing P (Nt = j|It−1) with

P (Nt = j|It), where the latter is obtained by the Bayes law in (9). In particular, the recent financial

crisis peaked on October 10, 2008, when annualized volatility of the S&P 500 index reached a peak

of 120%. As it is clear from Figure 6, the estimated ex-ante and ex-post probabilities on October

10, 2008 have different patterns. In particular, the ex-ante probabilities of more than one jump,
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(d) UPS

Figure 6: Ex-ante (black solid line) and ex-post (red dashed line) probability of jumps on October
10, 2008, i.e. P (Nt = j|It−1) and P (Nt = j|It), respectively.

calculated using Λt, are already high and centered on 1-2 jumps. On the other hand, after the arrival

of the information on the volatility for October 10, 2008, the ex-post jump probability distribution

is shifted to the right, such that we have a higher probability of observing 3-4 jumps on that day.

In Table 2 we report the sample averages of conditional moments for the expected number of

jumps, as computed in (8), and for Xt, as in (12)-(14). The average ex-post number of jumps is

very close to the expected number of jumps, meaning that the specification of Λt correctly estimates

E[Nt|It]. Since, the HAR-V-J model is a non-Gaussian conditional model for Xt due to the presence

of jumps it generates positive skewness and mild leptokurtosis. The sample averages for the 36 stocks

of Sk(Xt|It−1) are always positive and smaller than one, with the exception of PFE. This means that

including the jumps in the model allows us to partially account for the positive skewness observed in

the log-volatility. Analogous considerations hold for the sample averages of the conditional kurtosis.

Table 2 also reports the sample correlations between the expected exponential jump component,

i.e. E[Jt|It−1], and the squared price jumps, defined as
∑Np(t)

i=1 ς2i , as in (24) (see Appendix). The

jumps are estimated by Ξt = λ2,m (RRGBC −RBVBC), see Appendix for details. The interesting

finding is a positive correlation with the squared jumps-in-price component (see for an analogous

result Todorov and Tauchen, 2011). This result is in line with the evidence in Eraker et al. (2003)
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which suggest a positive association in the price and volatility jumps. This is also confirmed in a

recent paper by Jacod et al. (2013), which rejects the null hypothesis of no correlation between price

and volatility jumps. Since we look at the correlation between the cumulated squared price jumps

and the volatility jumps, we cannot provide an evidence on the sign of the correlation between the

jump sizes. Correlation is strengthened during the financial crisis, since the arrival of bad news

induces not only jumps in prices, but also a sharp increase in the volatility. A possible explanation

of this is that as traders receive new information, they revise their expectations, causing an increase

in the disagreement on the fair price that leads to higher volatility. This result provides further

support to the model specification in Bandi and Renò (2014) where the price and volatility co-jumps

intensity is function of the volatility level.

In order to highlight the ability of the HAR-V-J model in predicting the log-volatility one-day

ahead, we compute P (RBV ∆
m,BC,t > u|It−1), where u corresponds to a certain level of the annualized

volatility. We choose October 10, 2005, as a day of low volatility, and October 10, 2008, as a day

of extremely high volatility. For both days we calibrate u on the basis of the annualized realized

variance: if ARBV is the annualized realized bipower on a given day, we set u = 0.9 × ARBV .

In such a way, we evaluate the probability of tail events setting the threshold in accordance with

both the features of each series and the scale of the volatility observed in a specific day. The tail

probability is given by

Pr
[
RBV ∆

m,BC,t > u|It−1
]
=

∞∑

j=0

[
P
(
Nt = j|It−1

)
·
(
1− Φ

( log u− Et
Vt

))]
(18)

where

Et = E[Xt|Nt = j, It−1] = X̄t−1 + jΘt

V 2
t = Var[Xt|Nt = j, It−1] = σ2t + j∆t

and Φ(·) is the standard Normal CDF. This simple exercise allows us to evaluate how much the

introduction of the jump component in the HAR increases the conditional probability of observing

abnormal levels of volatility. The results in Table 5 clearly illustrates that the HAR-V-J behaves

better than the Gaussian HAR in days of high volatility. This is not surprising because the positive

conditional probability of observing more than one jump, as already seen above, dramatically in-

creases the conditional probability that the log-volatility is above a given threshold. In general, the

performances of the two models for October 10, 2005, are very similar, and this is not surprising

as the probability of jumps is low in that day. There is one exception, represented by Ford, for
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October 10, 2005 October 10, 2008 Kupiec (1995) Test Christoffersen (1998) Test Bates (2000) Test

ARBV 1 2 ARBV 3 4 HAR HAR− V − J HAR HAR− V − J HAR HAR− V − J

AAPL 20.0188 0.0144 0.0474 140.4111 0.0000 0.1430 0.0000 0.9813 0.0000 0.8496 0.0000 0.0001
AXP 7.0985 0.0000 0.0000 195.9950 0.5728 0.4604 0.0000 0.9813 0.0000 0.8496 0.0000 0.0674
BA 11.2431 0.0000 0.0000 123.5293 0.0000 0.0832 0.0000 0.9813 0.0000 0.8496 0.0000 0.0001
BAC 7.0298 0.0000 0.0011 199.4987 0.9966 0.6161 0.0000 0.9813 0.0000 0.8496 0.0000 0.0102
C 9.5267 0.0000 0.0503 255.5481 0.9590 0.5605 0.0006 0.4360 0.0000 0.5853 0.0000 0.0642
CAT 11.9894 0.0000 0.0000 152.8040 0.0000 0.2902 0.0047 0.6113 0.0000 0.7770 0.0000 0.1261
CVX 15.9539 0.0000 0.0029 192.1001 0.1177 0.3846 0.0047 0.5947 0.0000 0.7052 0.0000 0.5761
DD 9.8219 0.0000 0.0000 141.2881 0.0000 0.4489 0.0167 0.5947 0.0000 0.7052 0.0000 0.0037
EMR 11.0407 0.0000 0.0000 131.8486 0.0000 0.3037 0.0047 0.4360 0.0000 0.5853 0.0000 0.0020
F 37.9658 0.0041 0.3158 411.7023 0.9971 0.4972 0.0000 0.2080 0.0000 0.3401 0.0000 0.0034
FCX 26.1148 0.0000 0.0002 211.2908 0.9995 0.7842 0.0167 0.2080 0.0000 0.3401 0.0000 0.2485
FDX 12.2305 0.0000 0.0004 93.8766 0.0000 0.0004 0.0001 0.5947 0.0000 0.7052 0.0000 0.0001
GE 6.8006 0.0000 0.0138 153.0170 0.0080 0.4054 0.0000 0.9813 0.0000 0.8496 0.0000 0.3794
GS 7.7381 0.0000 0.0000 272.7749 0.9902 0.5476 0.0006 0.4360 0.0000 0.5853 0.0000 0.1449
HD 10.2281 0.0000 0.0036 171.6845 0.0000 0.1765 0.0024 0.7792 0.0000 0.7995 0.0000 0.0034
HON 13.4460 0.0000 0.0000 150.3984 0.0000 0.2942 0.0024 0.3072 0.0000 0.4586 0.0000 0.5446
HPQ 14.7037 0.0000 0.0399 110.7953 0.0000 0.3583 0.0012 0.9834 0.0000 0.8498 0.0000 0.2329
IBM 11.7421 0.0000 0.0000 137.9708 0.0000 0.2377 0.0024 0.5947 0.0000 0.7052 0.0000 0.0000
JNJ 9.6341 0.0000 0.0000 40.6092 0.0000 0.1435 0.0000 0.3072 0.0000 0.2936 0.0000 0.6413
JPM 10.8244 0.0000 0.0017 206.8594 0.9941 0.6079 0.0024 0.6113 0.0000 0.7770 0.0000 0.1238
KFT 14.9079 0.0000 0.0006 100.5462 0.0000 0.0003 0.0000 0.7812 0.0000 0.8002 0.0000 0.1006
MCD 6.8673 0.0000 0.0000 146.5338 0.0000 0.0088 0.0297 0.4360 0.0000 0.5853 0.0000 0.1434
MET 12.8613 0.0000 0.0003 147.9437 0.6029 0.3764 0.0091 0.5965 0.0000 0.7063 0.0000 0.5361
MS 10.5996 0.0000 0.0000 554.0050 1.0000 0.7507 0.0167 0.9813 0.0000 0.8496 0.0000 0.0001
NEM 19.6853 0.0000 0.0000 126.4511 0.0000 0.0199 0.0167 0.5947 0.0000 0.7052 0.0000 0.0020
PEP 9.6105 0.0000 0.0046 139.3136 0.0000 0.0297 0.0003 0.5965 0.0000 0.7063 0.0000 0.8380
PFE 12.0183 0.0000 0.0001 31.1800 0.0000 0.0060 0.0000 0.8109 0.0000 0.8429 0.0000 0.0298
PG 8.5149 0.0000 0.0004 125.7594 0.0000 0.2665 0.0024 0.9813 0.0000 0.8496 0.0000 0.0696
T 17.2465 0.0000 0.0000 152.2023 0.0000 0.3278 0.0002 0.0813 0.0000 0.0268 0.0000 0.0030
TWX 16.4170 0.0000 0.0191 140.8583 0.0000 0.3516 0.0000 0.2080 0.0000 0.3401 0.0000 0.6530
TXN 22.9959 0.0000 0.0035 115.7267 0.0000 0.3441 0.1354 0.3072 0.0000 0.4586 0.0000 0.0012
UPS 11.6728 0.0000 0.0000 164.6850 0.0000 0.1117 0.0047 0.1354 0.0000 0.2395 0.0000 0.2345
VZ 12.1461 0.0000 0.0263 134.7510 0.0000 0.2273 0.0003 0.6113 0.0000 0.7770 0.0000 0.6056
WFC 8.0200 0.0000 0.0020 204.3211 0.0000 0.5856 0.0006 0.4360 0.0000 0.5853 0.0000 0.7212
WMT 9.5847 0.0000 0.0000 129.5273 0.0000 0.1325 0.0090 0.7792 0.0000 0.7995 0.0000 0.7262
XOM 13.0649 0.0000 0.0512 188.5670 0.0000 0.4604 0.0297 0.4360 0.0000 0.5853 0.0000 0.5977

Table 5: Probability of tail events. ARBV is the annualized percentage RBV , 1 = P (ARBV HAR
t > u1|It−1), 2 = P (ARBV HAR−V −J

t > u1|It−1),
3 = P (ARBV HAR

t > u2|It−1), 4 = P (ARBV HAR−V−J
t > u2|It−1). P (ARBV HAR

t > u1|It−1) and P (ARBV HAR−V−J
t > u1|It−1) are the estimated

conditional probabilities obtained from the HAR and HAR-V-J model, respectively. P (ARBV HAR−V−J
t > u2|It−1) is calculated as in (18) and

P (ARBV HAR−V−J
t > u2|It−1) =

(
1− Φ

(
log u−µt

σt

))
with µt = X̄t−1 and σ2ǫ . u1 = 0.9 × ARBV and u2 = 0.9 ×ARBV represent the threshold values

and they are set proportional to the ex-post realization of volatility. Columns 8 and 9 report the p-values of the Kupiec (1995) test, while the p-values
of the Christoffersen (1998) test are included in columns 10 and 11. Columns 12 and 13 report the p-values of the Bates (2000) test for goodness-of-fit
of the 99-th quantile.
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which the conditional probability that the annualized RBV is larger than u in October 10, 2005

is correctly anticipated by the HAR-V-J while the one obtained with the Gaussian HAR is close

to zero. A completely different picture is obtained on October 10, 2008, when the average level of

volatility is much higher and the ex-ante probability of observing a volatility level higher than u is

much higher. In this case, the HAR-V-J is able, in the majority of the stocks considered, to give a

conditional probability of an extreme realization much higher than the probability implied by the

Gaussian HAR. For the HAR-V-J model, in 3 cases the expected tail probability is below 1% and

in 29 cases we have a probability larger than 10%. Differently, the HAR model results include only

10 cases with a probability of tail events higher than 5%, suggesting that the HAR-V-J model is a

more appropriate specification.

Finally, to assess the model’s capability of predicting tail events, like the ones so far discussed, we

report the results of the Kupiec (1995), the Christoffersen (1998) and the Bates (2000) tests. The

unconditional coverage test of Kupiec (1995) verifies the statistical significance of the difference

between the expected (1%) and the actual number of exceedances. The null hypothesis of the

Christoffersen (1998) test is the independence of the observed exceedances. The test of Bates

(2000) takes a different point of view and verifies the correct model specification by testing the

Uniform distribution of tail probabilities after a monotonic transformation. The tests are computed

for both Gaussian HAR (i.e. without jumps) and HAR-V-J models. While for the former the right

tail quantile (at 1%) of the conditional distribution of Xt is known, for the HAR-V-J it has to be

calculated by simulation for each t. The results, displayed in Table 5, shows that for the Gaussian

HAR, the unconditional coverage test rejects in 30 out of 36, at 1% significance level the null of an

accurate interval forecast, since the actual fraction of violations is statistically different from the

expected fraction, in our case 1%. Moreover, both the Bates (2000) and Christoffersen (1998) tests

reject the null in all cases; this latter finding might be associated with the clustering of exceedances

during the financial crisis (after 2007). A completely different evidence emerges from the results for

the HAR-V-J. In this case, the Kupiec and Christoffersen tests cannot reject the null for all stocks

(at the 1% confidence level), while the Bates test show evidences of some rejections (11 out of 36

cases at the 1% confidence level). These findings can be interpreted as an evidence in favour of

the inclusion of the jump component in the HAR model, as it improves the prediction accuracy of

extreme events.

As shown by Maheu and McCurdy (2011) the full characterization of the distribution of the

returns helps in constructing the forecast of return densities. From this point of view the inclusion

of a jump term in the log-volatility specification provides better fit to the ex-post volatility dynamics
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and, through this, to the forecast density of the daily returns. A detailed study of this is left for

future research.

4 Volatility jumps and financial covariates

Understanding the origins of jumps in returns and volatility is a topic of considerable interest to

both theorists and market practitioners. In this section we focus on the economic determinants of

volatility jumps. To this end, we investigate to what extent the estimated jump components in

logRBV ∆
m,BC,t are driven by common factors. We aim at identify variables that have predictive

power for the future occurrence of jumps for the stocks considered. We consider in our analysis

financial and policy variables that are informative on the market expectations of the future economic

activity and on the perceived risks of the financial system.

We thus regress the change in the estimated exponential jump components, ∆Ĵt|t−1, of each stock

on a set of lagged financial variables6: a proxy of the V RP computed as the difference between the

VIX and the realized volatility of the S&P 500 index.7 The V RP measures the mismatch between

the market expectation of risk and the statistical measure of market risk; the first difference of

the logarithm of S&P 500 volume, ∆V ; the daily log-return of S&P, ∆S&P ; the log-return of

the DJ-UBS Commodity Index, ∆CM ; the first difference of the logarithm of the Federal Reserve

trade-weighted US dollar index, ∆Ex ; the first difference of the excess yield on Moody’s seasoned

Baa corporate bond over the Moody’s seasoned Aaa corporate bond, the credit spread or ∆CS ; the

change in the difference between the 10-Year and 3-months Treasury constant maturity rates, the

term spread or ∆TS ; the difference between the effective and the target Federal Funds rates, FF ;

and the US Banks sector credit default swap index8, CDS.9

The estimated parameters are shown in Table 6. From the results it is evident that only two

variables, namely VRP and CDS, are significant for almost all stocks. Moreover, it should be noted

that the signs of the estimated coefficients are the same across the individual stocks. The coefficient

of the lagged CDS is significant, at the 1% level, in 20 cases out of 36, and not significant at the

6We follow here the setup in Fernandes et al. (2014).
7As in Bollerslev et al. (2009b), we define the V RP as the difference between a forward looking market a forward

looking market measure of return variation, based on VIX, and the realized return variation, based on RV. As noted by
Bollerslev et al. (2009b, p.4475), this definition of V RP has the advantage, over other specifications, to be model-free,
i.e. both VIX and realized volatility are directly observable at time t. This makes this definition of V RP suitable for
the purpose of the present application.

8We do not consider a more general CDS index but prefer focusing on a sectoral index as this is closely related to
the financial crisis.

9The financial variables have been recovered from different sources including Datastream, the Federal Reserve
Economic Data website, and the Oxford-Mann Realized Library. The list of regressors include variables in level or in
change, depending on the results of an Augmented Dickey-Fuller test.
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const V RPt−1 ∆Vt−1 ∆CMt−1 ∆Ext−1 ∆S&Pt−1 ∆CSt−1 ∆TSt−1 FFt−1 CDSt−1 R2

AAPL 0.0007a -0.0001a 0.0005 -0.0072 0.0282c -0.0166a -0.0010 -0.0003 -0.0001 0.0001 0.0137
AXP 0.0017a -0.0003a -0.0001 0.0122 -0.0213 -0.0236c -0.0028 -0.0006 0.0001 0.0005a 0.0809
BA 0.0028a -0.0005a 0.0008 -0.0086 0.0302 -0.0191 0.0102 -0.0034 -0.0007 0.0008a 0.1381
BAC 0.0014a -0.0002a 0.0020b 0.0028 0.0305 -0.0456a -0.0020 0.0017 0.0005 0.0005b 0.0911

C 0.0043a -0.0007a 0.0051c 0.0168 0.0264 -0.1159a 0.0074 0.0036 -0.0005 0.0015b 0.1113

CAT 0.0099a -0.0018a 0.0145b -0.1287 0.1875 -0.1931 -0.0161 -0.0200 0.0132 0.0044a 0.0980
CVX 0.0049a -0.0009a 0.0021 -0.0540 0.1560 -0.1278 0.0146 -0.0073 0.0099c 0.0023a 0.0480
DD 0.0015a -0.0003a 0.0010 -0.0083 -0.0094 -0.0210c -0.0070 -0.0022 0.0000 0.0005a 0.1225
EMR 0.0100a -0.0018a 0.0015 -0.0276 0.1943 -0.1980b 0.0029 -0.0137 0.0062 0.0044a 0.2456

F 0.0010a -0.0002a -0.0003 -0.0232 0.0202 -0.0457b -0.0006 -0.0037 0.0007 0.0006b 0.0354
FCX 0.0019a -0.0003a 0.0014 -0.0414a 0.0022 -0.0137 -0.0109 -0.0004 0.0014 0.0008a 0.0923
FDX 0.0003a -0.0000a -0.0002 -0.0003 0.0042 -0.0034 0.0012 -0.0004 0.0001 0.0001 0.0149
GE 0.0033a -0.0005a 0.0035b 0.0172 -0.0096 -0.0719a -0.0001 0.0007 0.0002 0.0011a 0.1156

GS 0.0100a -0.0019a 0.0150b -0.0160 0.4593b -0.3937b -0.0055 0.0217 0.0273b 0.0057a 0.1628
HD 0.0066a -0.0012a 0.0022 -0.0572 0.1017 -0.0758 0.0014 -0.0174 0.0073 0.0027a 0.0854

HON 0.0010a -0.0002a -0.0005 -0.0120b 0.0350b -0.0180a -0.0045 -0.0006 -0.0005 0.0003a 0.0857
HPQ 0.0001 0.0000 0.0000 0.0013 0.0112 -0.0027 0.0005 0.0001 0.0002 -0.0001 0.0007
IBM 0.0040a -0.0007a 0.0037b 0.0039 0.0547 -0.0925a 0.0084 -0.0071 -0.0002 0.0014a 0.1858

JNJ 0.0025a -0.0004a 0.0008 -0.0144 0.0423 -0.0429b 0.0091 -0.0017 -0.0005 0.0007a 0.1340

JPM 0.0019a -0.0003a 0.0026b -0.0054 0.0437c -0.0475a 0.0042 0.0025 0.0008 0.0005b 0.1618
KFT 0.0011a -0.0002a -0.0008 -0.0090 -0.0290 -0.0021 0.0038 -0.0002 0.0005 0.0003c 0.0385

MCD 0.0012a -0.0002a -0.0002 -0.0131 0.0169 -0.0244b 0.0094 0.0002 -0.0003 0.0002 0.0551
MET 0.0054b -0.0010b 0.0233a -0.0828 0.1210 -0.0643 -0.0092 -0.0039 0.0072 0.0030c 0.0281

MS 0.0066c -0.0014b 0.0116 0.0238 0.7203a -0.4620b 0.0012 0.0084 0.0542a 0.0066b 0.0990

NEM 0.0022a -0.0004a 0.0019b -0.0486b 0.0050 -0.0289 0.0043 0.0042 0.0017 0.0009a 0.1329
PEP 0.0020a -0.0003a 0.0006 -0.0174c 0.0278 -0.0227c 0.0071 -0.0006 -0.0001 0.0006a 0.1464
PFE 0.0024a -0.0004a 0.0003 0.0127 0.0797 -0.0291 0.0095 -0.0030 0.0044a 0.0012a 0.0452
PG 0.0012a -0.0002a -0.0001 -0.0123 0.0307 -0.0206b 0.0038 -0.0024 0.0003 0.0003b 0.0816

T 0.0018a -0.0003a 0.0009 0.0140 0.0028 -0.0477a 0.0039 -0.0044c -0.0011 0.0004b 0.0699
TWX 0.0014a -0.0002a -0.0014 0.0079 0.0345 -0.0373a 0.0119 -0.0034 0.0001 0.0004c 0.0585

TXN 0.0014b -0.0002a -0.0033c -0.0129 -0.0173 0.0080 0.0184 -0.0013 0.0000 0.0006b 0.0666

UPS 0.0014a -0.0002a 0.0013a -0.0079 0.0146 -0.0098 0.0035 -0.0011 -0.0004 0.0004b 0.0992

VZ 0.0143a -0.0025a 0.0096 -0.1724 0.1006 -0.3224b 0.0784 -0.0172 0.0156 0.0061a 0.0912
WFC 0.0246a -0.0045a 0.0853b -0.5725c 0.0698 -0.3699 0.0597 -0.0105 0.0733c 0.0133a 0.0935

WMT 0.0038a -0.0006a -0.0006 -0.0482c 0.0917 -0.0588b 0.0049 -0.0020 0.0016 0.0012a 0.0878

XOM 0.0051a -0.0009a 0.0047 -0.0966c 0.2121c -0.1902b -0.0242 -0.0095 0.0084 0.0023a 0.0808

Table 6: Regression results. The first difference of the estimated conditional jump for each stock is regressed on the lagged values of the volatility risk
premium, V RPt−1 = V IXt−1 −RVt−1, the S&P volume change, ∆Vt−1; the daily log return of S&P, ∆S&P; the log return of the DJ-UBS Commodity
Index, ∆CMt−1; the first difference of the logarithm of the foreign exchange value of the US dollar, ∆Ext−1; the first difference of the credit spread,
∆CSt−1; the first difference of the term spread, ∆TSt−1; the difference between the effective and the target Federal Funds rates, FFt−1; the US Banks
sector credit default swap index, CDSt−1. The Table reports the OLS estimates of the regression coefficients. a, b, and c stand for significance at 1%,
5% and 10% respectively. Standard errors are computed with the Newey-West method.

26



10% level in just four cases. The sign is, as expected, positive, since an increase in the default risk

associated with the bank sector provides an increase in the estimated jump component. In turn,

this is associated with the increase in unexpected volatility burst that might occur when even single

financial institutions news report a deterioration of their credit worthiness. The coefficient of the

VRP, is significant in 33 cases at the 1% level, all coefficients have a negative sign. This somewhat

surprising result can be interpreted by looking at the evolution of the risk premium in the analysed

sample. In fact, during the crises, VRP becomes negative and has a positive impact on the expected

jump. When the market (the VIX index) underestimates the volatility level (as measured by the

realized variance of the S&P index) this positively impacts on the volatility jump component on the

next day. On the contrary, a positive and increasing VRP might negatively impact on the expected

jump as it can be associated with a market already pricing (at least in part) the risk of a volatility

burst.10 This evidence suggests that the increase in volatility bursts (driven by the jump intensity)

can be due to an underestimation of the risk by the market participants. In fact, this occurs when

the forward looking measure of volatility, the VIX, is lower than the actual measure of volatility

(i.e. the realized volatility of S&P500 index).

Among the remaining variables, two show some significance across the stocks we consider. The

first is the difference between the effective and target FED fund rates, FF, which is significant, up

to the 10% level, in 5 cases, with three of them being financial companies. The coefficients are in all

instances positive suggesting that a decrease in the effective rate leads to a decrease in the expected

jump, as the market view is concordant with the view of the FED. Discordant views increase the

probability of volatility bursts. The second relevant variable is the market return, S&P , that is

significant, again up to the 10% level, in 21 cases out of 36. For that variable, the coefficients are

always negative, suggesting a kind of leverage effect also for the expected jumps. When negative

returns are observed, we face an increase in the probability of sudden changes in the volatility.

4.1 Volatility jump factor

Overall, the previous outcomes suggest that there could be a common factor in the estimated

jump components which can be predicted on the basis of lagged economic and financial variables.

To get further insights into the presence of a common factor in the individual jump components

we extract the first principal component, PC1, computed from the correlation matrix of the 36

estimated conditional jump series, Ĵt|t−1. PC1, explains approximately 60% of the overall variation

10We stress the increase in VRP might be due both to a decrease of the market realized volatility or to an increase
in the VIX index. Nevertheless, our interpretation remains valid in both cases.
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Figure 7: First principal component of estimated conditional jumps in daily volatilities.

(considering the first three components one arrives at 73%). The weights11 in PC1 are all positive.

PC1, plotted in Figure 7(a), is therefore a good proxy of the latent volatility jump factor. The

dynamic pattern of PC1 closely follows the behavior of the volatility series, and, as illustrated

above, a sharp increase occurs in the levels of the expected volatility jumps during the financial

crisis period. In order to investigate the determinants of the volatility jump series, we regress the

first difference of PC1, ∆PC1, on the same set of variables previously used.

Table 7 reports the result of the regressions. The R2 is higher than 20%, suggesting that

VRP, CDS, ∆ S& P and FF have predictive power for jumps in volatility. Further, the partial

r2 reported in the last column, are consistent with the findings observed at the single asset level:

the most relevant variable is the V RP , that negatively impacts on the first principal component;

then, the second relevant variable is the CDS of the banking sector, with a positive impact; finally,

the FED fund rates and the market returns have minor, but significant, impact, positive the first,

negative the second. Jointly removing the cited variables from the regression drastically reduces

the R2. However, as the significant covariates are, in most cases, finance-related, the result might

be driven by the inclusion in our sample of the financial sector.

To address this issue, we extract the first principal component of the volatility jumps of 28

equities, excluding banks and insurance companies. The first PC still explains about 60% of the

total variation and its pattern, shown in Figure 7(b), is similar to that of the entire set of assets,

with peaks located during the crisis period. Furthermore, the second panel of Table 7 shows that

the coefficients’ sign and magnitude are only slightly affected. The coefficient of CDS maintains its

significance, even if its magnitude is somewhat smaller. This might be explained by the direct effect

that CDS have on the banks volatility. In addition, the coefficient of FF is now not significant, and

11Not reported to save space but available upon request from the authors.
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(a) All stocks

β s.e. t-stat p-value r2

const 0.0431 0.0065 6.5907 0.0000 0
V RPt−1 -0.0074 0.0011 -7.0295 0.0000 0.1446
∆Vt−1 0.0292 0.0187 1.5590 0.1192 0.0038
∆CMt−1 -0.3459 0.1972 -1.7544 0.0796 0.0020
∆Ext−1 0.7661 0.4615 1.6600 0.0971 0.0019
∆S&Pt−1 -0.8476 0.3185 -2.6609 0.0079 0.0164
∆CSt−1 0.0643 0.1229 0.5230 0.6010 0.0004
∆TSt−1 -0.0343 0.0492 -0.6957 0.4867 0.0011
∆FFt−1 0.0410 0.0201 2.0432 0.0412 0.0051
CDSt−1 0.0169 0.0037 4.5407 0.0000 0.0256

(b) Excluding the Financial sector

β s.e. t-stat p-value r2

const 0.0435 0.0068 6.4244 0.0000 0
V RPt−1 -0.0074 0.0011 -6.8315 0.0000 0.1430
∆Vt−1 0.0133 0.0167 0.7916 0.4287 0.0008
∆CMt−1 -0.3681 0.1916 -1.9207 0.0550 0.0023
∆Ext−1 0.6464 0.4796 1.3476 0.1780 0.0014
∆S&Pt−1 -0.7419 0.3116 -2.3811 0.0174 0.0126
∆CSt−1 0.0764 0.1350 0.5657 0.5717 0.0006
∆TSt−1 -0.0512 0.0501 -1.0216 0.3072 0.0024
∆FFt−1 0.0244 0.0188 1.2960 0.1952 0.0018
CDSt−1 0.0154 0.0034 4.5913 0.0000 0.0215

Table 7: OLS regression: The difference of the first principal component of the excess jump, ∆PC1t,
is regressed on the lagged values of volatility risk premium, V RPt−1 = V IXt−1 − RVt−1, on the
S&P volume change, ∆Vt−1; the daily log return of S&P, ∆S&Pt−1; the log return of the DJ-UBS
Commodity Index, ∆CMt−1; the first difference of the logarithm of the foreign exchange value of
the US dollar, ∆Ext−1; the first difference of credit spread, ∆CSt−1; the first difference of term
spread, ∆TSt−1; the difference between the effective and the target Federal Funds rates, FFt−1; the
US Banks sector credit default swap index, CDSt−1. The Newey-West standard errors are reported.
The last column reports the partial r2. The Financial sector is given by the union of the Bank and
Insurance sectors.
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Figure 8: Time-varying parameter estimates. The figure displays the estimated time-varying co-
efficients (black-solid line) of VRP and CDS with the 95% confidence interval (red-dotted line),
obtained in a time-varying parameter linear regression where the variables are those in Table 7.
The estimation is based on the on-line method by Raftery et al. (2010) and Koop and Korobilis
(2012).

this depend on the relevance of that variable mostly for the financial institutions. The partial r2,

are substantially unchanged with the total value stills around 20%.

Finally, to get some insights into the effect that the financial crisis have on the estimates of the

regression of ∆PC1 for the entire set of assets, we perform a time-varying parameters estimation

following the on-line method proposed by Raftery et al. (2010) and Koop and Korobilis (2012). The

results confirm the relevance of the V RP , whose coefficient is statistically significant for the entire

sample, see Figure 8, peaking during the subprime crisis. More importantly, the CDS turns out to

be significant only after 2007. We can thus conclude that the financial crisis amplifies the effect that

financial covariates have on the volatility jump factor.12 These further results confirm our previous

intuitions that the change in the volatility jump intensity, and thus the increase in the occurrence

of volatility bursts, can be associated with a worsening of the bank sector risk, and with a negative

value of the V RP .

5 Extended HAR-V-J model

Given the predictive ability of VRP and CDS previously documented, we extend the HAR-V-

J model including both variables in the jump intensity and in the expected jump size dynamic

equations, as follows:

Θt = ζ0 + ζCDSCDSt−1 + ζV RPV RPt−1, (19)

12The other covariates rolling estimates confirm their irrelevance, confidence intervals always include the zero. Plots
are available upon requests.
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Λt = λ0 + λ1Λt−1 + βCDSCDSt−1 + βV RPV RPt−1 + ψξt−1. (20)

In order to allow for a possible negative impact of VRP on the jump intensity, and given the

presence of negative values in the time series of VRP, we remove the positivity constraints on the

coefficient βV RP , required to guarantee the positivity of the jump intensity. We estimate the model

by imposing a minimum bound at zero to the jump intensity Λt. The bound has never been reached

thus supporting our choice.13

In addition, we can’t a priori exclude that CDS and VRP have a linear effect on the log-volatility.

Thus we also include both in the conditional mean. In this way the two covariates can have linear

and nonlinear effects on the log-volatility. The latter is simply induced by the fact the conditional

mean of Xt depends on ΛtΘt, as shown in (11). The lagged CDS and VRP in the conditional mean

anticipates the evolution of the continuous component of the log-volatility, while the presence in

the expected size and intensity contributes to account for unpredictable variations induced by the

credit worsening of US banks or by the change in the mismatch between market perception of risk

and realized risk. The estimation results for selected coefficients are presented in Table 8.14 Since

the effect of the two covariates on the jump intensity is minimum, with the coefficients equal to

zero for almost all stocks, Table 8 reports the estimates for the extended HAR-V-J model under

the assumption of βCDS = βV RP = 0.

The CDS has a larger impact on the conditional mean of log-volatility compared to VRP. The

former impacts on the mean in 30 cases out of 36 (at the 1% level) compared to the 12 cases for the

risk premium. Moreover, while the impact of the CDS is in almost all cases positive (only one case

shows evidence of a negative impact), the sign turns to be negative for VRP (it is negative in 10

cases). When looking at the jump mean size, results are similar with a somewhat higher relevance

for CDS compared to VRP : the CDS impacts positively in 27 cases, negatively in just 4, and it is

not significant in 5 cases; the VRP now plays a more relevant role, but its impact is not so clear,

being positive in 7 cases, negative in 13, and not significant in 16. The results suggest a potential

impact of covariates on the size of jumps, but not on the process driving the jump intensity.

Table 9 reports further tests on the extended model with the purpose of evaluating the benefits

coming from the inclusion of covariates. We first consider a likelihood ratio test verifying the null

that all coefficients associated with the covariates are jointly equal to zero (second column of Table

13Imposing the positivity of jump intensity could have been achieved in other ways. However, in facing the trade-off
between model flexibility and the appropriateness of the model estimation approach, we gave a preference to the
former. We thus made a sub-optimal choice bearing the risk that predicted jump intensity might be negative when
the model is used for forecasting purposes.

14The full table has been omitted for space reasons but can be made available upon request.
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Conditional Mean Jump Size Mean and Variance Jump Intensity

φCDS φV RP ζ0 ζCDS ζV RP η0 λ0 λ1 ψ

AAPL 0.0179a -0.0049 0.3422a 0.0332a 0.0205b 0.2865a 0.0021b 0.9866a 0.0203a

AXP 0.1851a 0.0012 0.2452a -0.0341 -0.0070 0.0974a 0.0002 0.9990a 0.0531b

BA 0.0627a -0.0048 0.3052a 0.0569a -0.0083 0.2477a 0.0002 0.9981a 0.0474a

BAC 0.1807a -0.0056 0.0019 0.1075a 0.0072b 0.1039a 0.0487a 0.9406a 0.2636a

C 0.1253a -0.0113a 0.0423a 0.0806a 0.0052b 0.0378a 0.3050a 0.8493a 0.4926a

CAT 0.0250a 0.0020 0.1460a 0.1269a -0.0139a 0.1393a 0.0431a 0.9018a 0.2366a

CVX 0.0197a 0.0027c 0.1829a 0.0930a -0.0217a 0.1732a 0.0401a 0.8312a 0.4244a

DD 0.0082a 0.0075a 0.0928a 0.1055a -0.0121a 0.0759a 0.0035 0.9952a 0.2045a

EMR 0.0245a 0.0002 0.0247a 0.1573a -0.0014 0.0613a 0.0801a 0.9217a 0.4150a

F 0.0088 -0.0091b 0.1656a 0.0840a -0.0072 0.4797a 0.0001 0.9989a 0.0437a

FCX 0.0783a -0.0082a 0.1045a -0.0373a 0.0132b 0.2041a 0.0019 0.9902a 0.0495a

FDX 0.0790a -0.0047b 1.1797a -0.0122 -0.0077 0.0000 0.0002 0.9951a 0.0042
GE 0.0724a 0.0001 0.0603a 0.0441a -0.0005 0.0560a 0.1936a 0.9260a 0.2894a

GS 0.1709a 0.0018 0.0845c 0.1373a 0.0019 0.0210 0.0089 0.9920a 0.2745a

HD 0.1262a -0.0093a 0.1253a 0.0657a 0.0046c 0.0860a 0.0624a 0.8926a 0.3473a

HON 0.0421a -0.0033 0.2654a 0.0960a -0.0160a 0.1963a 0.0005 0.9973a 0.0158c

HPQ 0.0752 -0.0074 0.1035a -0.0150 0.0072 0.1532a 0.0766a 0.8665a 0.0000
IBM -0.0206b 0.0063b 0.0271b 0.0786a -0.0043a 0.0568a 0.0134a 0.9931a 0.1680a

JNJ 0.0385a -0.0004 0.2947a 0.0884a -0.0148a 0.1514a 0.0009 0.9963a 0.0549a

JPM 0.1863a 0.0018 0.0602 0.0820 -0.0005 0.0451 0.0350 0.9761a 0.2944a

KFT 0.0234 -0.0102 0.5803a 0.1373a -0.0105 0.1733a 0.0174a 0.8700a 0.0000
MCD 0.0607 -0.0099 0.7348a 0.2339a -0.0451 0.6073a 0.0003 0.9942a 0.0182b

MET 0.0864a -0.0056 0.5658a 0.0453c -0.0014 0.2993a 0.0076 0.8595a 0.0000
MS 0.1323a 0.0023 0.2861a 0.0830a -0.0079 0.1945a 0.0054 0.9749a 0.1800a

NEM 0.0723a -0.0111a 1.0517a -0.5423a 0.0196a 0.0523a 0.0000 0.9975a 0.0226a

PEP 0.0569a -0.0053a 0.3408a 0.1291a -0.0072a 0.1090a 0.1414a 0.4681a 0.2079a

PFE 0.0993a -0.0025 0.8874a -0.0564a -0.0382a 0.4737a 0.0035a 0.9748a 0.0071
PG 0.0339a 0.0038 0.0605a 0.1608a -0.0090a 0.1408a 0.0101 0.9811a 0.1669a

T -0.0376 -0.0032 0.0216 0.1249a -0.0115 0.1259a 0.0014 0.9970a 0.1602a

TWX 0.0148 -0.0014 0.2563a 0.0985a -0.0183a 0.2183a 0.0018 0.9922a 0.0961a

TXN 0.0929a -0.0082a 0.1607a -0.0812a 0.0103a 0.4226a 0.0011c 0.9856a 0.1492a

UPS 0.0719a -0.0021 0.7245a 0.1689a -0.0074a 0.3757a 0.0001 0.9970a 0.0132a

VZ 0.0362a -0.0053a 0.1924a 0.1038a -0.0122a 0.1284a 0.0603a 0.9102a 0.2372a

WFC 0.1567a -0.0025 0.0517b 0.0932a 0.0011 0.0345a 0.1130a 0.9403a 0.4322a

WMT 0.0683a 0.0034 0.3331a 0.0226a -0.0194a 0.2277a 0.0029a 0.9898a 0.1214a

XOM 0.0523a -0.0066a 0.0569a 0.0469a 0.0068a 0.0877a 0.0570a 0.8995a 0.4302a

Table 8: Estimated parameters of the model with jump intensity and expected size specified as in
(19) and (20). φCDS denotes the coefficient of CDSt−1 in the conditional mean. Similarly, φV RP
denotes the coefficient of V RPt−1 in the conditional mean. a, b, and c stand for significance at 1%,
5% and 10% respectively.
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9). We reject the null in 31 cases at the 1% confidence level. However, such a rejection can be

due either to coefficients in the mean or in the jump dynamics (size and intensity). Therefore,

we also consider as models under the alternative hypothesis restricted versions of the most general

one that includes CDS and VRP in conditional mean and jump parameters. We first test the null

hypothesis that the covariates have no impact on the jump intensity (βCDS = βV RP = 0), column

3. Secondly, we contrast a model with covariates in the jump size and intensity against a model

without covariates (a standard HAR-V-J), column 4. Finally, we evaluate the inclusion of covariate

only in the conditional mean dynamic (φCDS = φV RP = 0). The overall picture does not change:

the covariates are not relevant for the jump intensity, while their role is much more evident for

both the mean volatility and the jump size. The last claim is further confirmed if we compare the

HAR-V-J model with covariates in the mean with the HAR-V-J model with covariates in the jump

dynamics. Being the two models non-nested, we resort to a Diebold-Mariano testing framework.

We thus compare the in-sample performances of the two models in fitting the log-RBV dynamic

adopting a mean squared error (MSE) loss function. Negative values represent over-performance

of the HAR-V-J with explanatory variables in conditional mean. The tests suggest that the two

specifications are substantially equivalent, without thus giving a predominance to the inclusion of

covariates in the mean volatility dynamic or in the jump dynamic.

5.1 Structural break analysis

The analysis presented so far does not consider the possibility of a structural break associated

with the beginning of the financial crisis. However, this cannot be excluded a priori. In fact, in

subsection 4.1, the analysis suggests the presence of a structural break in the coefficients of CDS.

We reformulate the HAR-V-J model, allowing for a structural break in all the covariates coefficients,

as follows

Xt = X̄t−1 + Zt + φCDS,1(1−Dt)CDSt−1 + φCDS,2DtCDSt−1

+ φV RP,1(1−Dt)V RPt−1 + φV RP,2DtV RPt−1 + ǫt (21)

Θt = ζ0 + ζCDS,1(1−D)CDSt−1 + ζCDS,2DtCDSt−1

+ ζV RP,1(1−Dt)V RPt−1 + ζV RP,2DtV RPt−1 (22)

Λt = λ0 + λ1Λt−1 + ψξt−1 (23)

where Dt = 1 when t > 750, corresponding to January 3, 2007, and 0 elsewhere. Note that we

exclude the covariates from the jump intensity equation as the previous estimates suggest their
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Constant Parameter Model Structural Break Model

LR(6)E0 LR(2)Eβ=0 LR(4)J0 LR(2)M0 DMM
J LR(8)bE0 LR(4)bEβ=0 LR(2)bEbJ LR(2)bEbM DMbJ

bM

AAPL 0.7767 0.3680 0.9257 0.8508 0.4493 0.0420 0.0052 0.0022 0.9820 6.1108
AXP 0.0000 0.0673 0.0080 0.0000 -0.5979 0.0000 0.0606 0.0125 0.0181 3.1441
BA 0.0004 0.0808 0.1587 0.0001 -0.8459 0.0000 0.0001 0.0692 0.0001 -0.8902
BAC 0.0000 0.1543 0.0011 0.0000 -0.0473 0.0000 0.0012 0.8387 0.0008 0.3635
C 0.0000 0.2540 0.0000 0.0000 1.2703 0.0000 0.0061 0.4693 0.0098 -0.6121
CAT 0.0004 0.2896 0.0002 0.0015 -0.1600 0.0002 0.1063 0.1793 0.0197 1.4988
CVX 0.0063 0.9049 0.0071 0.0023 -0.7208 0.0002 0.0135 0.9442 0.0153 0.8673
DD 0.0002 0.1095 0.0021 0.0003 -0.6262 0.0000 0.0081 0.0159 0.0011 3.7768
EMR 0.0000 0.0147 0.0000 0.0035 1.1358 0.0000 0.0024 0.0028 0.0308 3.1248
F 0.0041 0.0194 0.0020 0.0023 0.6431 0.0002 0.0008 0.0000 0.0002 2.1806
FCX 0.0071 0.6750 0.6776 0.0138 -1.2573 0.0037 0.2068 0.8692 0.3058 0.4970
FDX 0.0004 0.5471 0.0484 0.0000 -1.7543 0.0010 0.6043 0.8690 0.2675 3.4024
GE 0.0000 0.0544 0.0000 0.0000 0.6006 0.0000 0.0000 0.0000 0.0000 -7.4576
GS 0.0000 0.9048 0.0018 0.0000 -0.1418 0.0000 0.0024 0.2604 0.4674 -3.1338
HD 0.0001 0.3679 0.0017 0.0000 0.0099 0.0000 0.0248 0.5117 0.0185 0.9235
HON 0.0101 0.4348 0.0015 0.0036 -0.2057 0.0000 0.0006 0.0031 0.0003 5.9157
HPQ 0.0053 0.1772 0.0665 0.0006 -0.5072 0.0062 0.1693 0.3608 0.8918 0.5600
IBM 0.0000 0.9477 0.0000 0.0179 0.5613 0.0000 0.0007 0.0063 0.0002 -4.8731
JNJ 0.0006 0.5924 0.0004 0.0258 -0.2347 0.0000 0.0026 0.0180 0.0137 -7.0145
JPM 0.0000 0.7783 0.0000 0.0000 0.1221 0.0000 0.0013 0.0500 0.0005 -4.6967
KFT 0.0019 1.0000 0.0310 0.0003 -0.6924 0.0000 0.0000 0.0002 0.0014 4.8857
MCD 0.0001 0.9783 0.0082 0.0000 -0.3524 0.0000 0.0002 0.0018 0.0117 4.0945
MET 0.0005 0.1079 0.0087 0.0001 -0.7784 0.0001 0.0109 0.0076 0.0135 4.4704
MS 0.0000 0.2212 0.0088 0.0000 -0.1682 0.0000 0.1017 0.0361 0.6952 1.9340
NEM 0.0009 0.7823 0.1493 0.0008 -1.1983 0.0000 0.0015 0.3502 0.0002 0.9102
PEP 0.0001 0.5515 0.0006 0.0001 0.4998 0.0000 0.0021 0.0300 0.0006 1.5866
PFE 0.0000 0.3272 0.0002 0.0000 -1.3600 0.0000 0.3638 0.4604 0.2545 -7.7316
PG 0.0000 0.9150 0.0006 0.0012 -0.4952 0.0000 0.1039 0.5346 0.0623 -4.8856
T 0.0000 0.3806 0.0000 0.0000 -0.6432 0.0000 0.0502 0.0000 0.1540 4.8602
TWX 0.0001 0.0133 0.0000 0.0060 -0.5696 0.0001 0.0229 0.0090 0.0229 2.5300
TXN 0.0006 0.3071 0.0002 0.0001 -0.8320 0.0008 0.2504 0.8976 0.0451 -0.2880
UPS 0.0030 0.7918 0.2277 0.0002 -1.9748 0.0008 0.1195 0.8993 0.0454 -0.8010
VZ 0.0000 0.5043 0.0000 0.0000 -0.6122 0.0000 0.0012 0.0408 0.0132 1.7701
WFC 0.0000 0.3062 0.0000 0.0000 1.7818 0.0000 0.0143 0.5869 0.5123 2.6738
WMT 0.0001 0.6673 0.0165 0.0001 -0.6298 0.0000 0.0055 0.0024 0.9092 4.4961
XOM 0.0011 0.9990 0.0105 0.0006 -1.0185 0.0000 0.0115 0.1243 0.4205 4.3562

Table 9: Model Evaluations. The table reports the p-values of several LR statistics for the HAR-V-J model with explanatory variables and breaks. In column 2, (LR(6)E0 ) is
relative to the null φCDS = φV RP = ζCDS = ζV RP = βCDS = βV RP = 0 in the HAR-V-J with CDS and VRP in conditional mean, jump size and jump intensity (E) (see (21)-(23)),
6 represents the number of tested restrictions/degrees of freedom. In column 3, the null is βCDS = βV RP = 0, LR(2)Eβ=0. In column 4, the null is ζCDS = ζV RP = βCDS = βV RP = 0
in the HAR-V-J with CDS and VRP only in jump size and jump intensity (J). In column 5, the null is φCDS = φV RP = 0 in the HAR-V-J with CDS and VRP in conditional
mean only (M). In column 7 the null is φCDS,1 = φCDS,2 = φV RP,1 = φV RP,2 = ζCDS,1 = ζCDS,2 = ζV RP,1 = ζV RP,2 = 0 in the HAR-V-J model in (21)-(23) (bE ). In column 8 the
model under the null is the HAR-V-J with jump intensity specified as in (23) (i.e. β = 0) and with no breaks in the covariates coefficients versus the model with breaks (bE). In
column 9 the model under the null is the HAR-V-J with breaks in Θt only (bJ ) versus the model bE. In column 10 the model under the null has breaks in conditional mean only
(bM ) versus bE. Column 6 reports the in-sample Diebold-Mariano test of the HAR-V-J with explanatory variables in conditional mean against the HAR-V-J with explanatory
variables in jumps, (DMM

J ). The loss function is the mean squared error, MSE. In column 11, DMbJ
bM is the Diebold-Mariano test of the HAR-V-J with breaks only in jumps

(bJ) versus breaks only in the conditional mean (bM). Positive values represent under-performance of the latter.
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irrelevance.15

Table 10 reports the estimated coefficients. The results substantially confirm our previous

findings. Looking at the estimated coefficients in the conditional mean of Xt, the impact of VRP

is more evident and pronounced in the second subsample with 17 significant coefficients (at the

1% level), 15 of them being negative, compared to 10 significant coefficients in the first subsample,

with mixed sign (4 negative, 6 positive). This is supporting our preliminary claim, associated with

the sign of the V RP . Similarly to VRP, the impact of the CDS is more heterogeneous in the first

subsample, with 35 significant coefficients, 22 positive and 13 negative. In the crisis subsample the

coefficients are, as expected, always positive (in all the 33 cases where we have a significant estimate

at the 1% level).

When considering the covariates impact on the jump size, we have a larger heterogeneity when

looking at VRP, in particular in the first subsample, where 13 coefficients out of the 23 statistically

significant are positive. Differently, in the crisis period, VRP is less relevant, with just 18 significant

estimates, but 12 of them are negative, in accordance to the sign of the covariate (negative), and

thus leading to an increase in the jump intensity. The CDS seems more relevant in both periods.

In the crisis period, the CDS has a positive impact in 22 cases and a negative impact in 9 (all

significant at the 1% level), consistently with what one might expect. On the contrary, in the first

period, the CDS has a negative impact in 28 cases and a positive one in just 7 cases. The empirical

evidences thus suggest that in the pre-crisis period an increase in the CDS reduces the size of jumps

but increases the volatility level. It should be noted that, in the first sample, the CDS time series is

characterized by a negative time trend. In the crisis period the increase in the CDS has a positive

impact on both the jump size as well as the mean volatility.

To get further insight on these results we perform additional diagnostic checks. In Table 9

(column 7) we report the likelihood ratio test statistics for the model with structural breaks in the

covariate coefficients. A general test for the null of no impact of covariates is always rejected (with

the exception of AAPL), as expected. Moreover, when testing the equality of covariate coefficients

across the two subsamples (i.e. no break), null is rejected in 25 cases out of 36 at the 5% confidence

level (see column 8 of Table 9). We thus test restrictions in the conditional mean dynamic only,

the null hypothesis is that φCDS,1 = φCDS,2 and φV RP,1 = φV RP,2. The null is rejected in 18 out

of 36 cases at 5%, confirming the presence of a structural break in the conditional mean for half

of the stocks (see column 9 of Table 9). Similarly, we test for the absence of a break in the mean

15We have also tried to include them, allowing for a break in their coefficients. However, they were not-significant
in both subsamples.

35



Conditional Mean Jump Size Mean and Variance Jump Intensity

φCDS,1 φV RP,1 φCDS,2 φV RP,2 ζ0 ζCDS,1 ζV RP,1 ζCDS,2 ζV RP,2 η0 λ0 λ1 ψ

AAPL 0.1533a 0.0087a 0.0624a -0.0059a 0.3740a -0.1416a 0.0202a 0.0148a 0.0212a 0.2818a 0.0021 0.9866a 0.0349a

AXP -0.0839a 0.0041c 0.1746a -0.0002 0.2333a 0.0708a -0.0088a -0.0274a -0.0068 0.1120a 0.0002 0.9990a 0.0496a

BA -0.0710a 0.0076 0.0925a -0.0065b 0.9388a -1.3666a -0.0561a 0.0776a 0.0046 0.0000 0.0001 0.9984a 0.0000
BAC 0.2430a 0.0011 0.1932a -0.0004 0.9777a -6.9558a 0.1358a -0.0858a 0.0168a 0.0059b 0.0316a 0.6333a 0.0000
C 0.3504a -0.0036 0.1381a -0.0108a 0.1362a -0.3603a 0.0017b 0.0468a 0.0060a 0.0354b 0.6726a 0.6011a 0.5373a

CAT 0.2147a 0.0078 0.0438a 0.0014 0.2491a -0.9547a 0.0004 0.0808a -0.0146a 0.1196a 0.0603a 0.8841a 0.2003a

CVX -0.0399a 0.0009 0.0306a 0.0002 0.5497a -2.5750a 0.0057 0.0173b -0.0342a 0.1646a 0.1136a 0.2969a 0.2771a

DD 0.3674a -0.0041c 0.0130a 0.0088a 0.1003a -0.5667a 0.0148a 0.1086a -0.0129a 0.0749a 0.0035a 0.9950a 0.2081a

EMR 1.0869a -0.0127b 0.0665a 0.0000 0.1596a -1.2083a 0.0210a 0.1064a -0.0017 0.0515a 0.1050a 0.8844a 0.3516a

F -0.4568a -0.0044b 0.0046 -0.0024 0.0000 3.8208a -0.0733a 0.0964a -0.0096c 0.3145a 0.0001 0.9990a 0.0662a

FCX -0.0556a -0.0080c 0.0745a -0.0081a 0.1109a -1.6505a 0.0659a -0.0215a 0.0100b 0.1873a 0.0030 0.9860a 0.0695a

FDX -0.0025 -0.0038a 0.0787a -0.0048a 1.3575a 0.0306a -0.0693a -0.0727a -0.0097c 0.0000 0.0002 0.9936a 0.0000
GE 0.0981a 0.0107 0.1053a -0.0028 0.0940 -0.2333 0.0044 0.0190b 0.0013 0.0570a 0.5830a 0.7712a 0.3967a

GS -0.2537a 0.0159a 0.1563a -0.0019 0.1921a -0.8042a 0.0171c 0.1071a 0.0030 0.0232a 0.0106a 0.9818a 0.1921a

HD 0.0850a -0.0103b 0.1100a -0.0055a 0.7280a -3.1663a 0.0956a 0.0085a -0.0109a 0.0337a 0.0139c 0.8912a 0.0794a

HON 0.4953a -0.0010 0.0888a -0.0050a 0.7432a -2.4900a 0.0101c -0.0200b -0.0098 0.0514a 0.0007 0.9964a 0.0000
HPQ -0.0847a 0.0052b 0.1110a -0.0114a 0.1119a -0.1885a 0.0111 -0.0440a 0.0107a 0.1503a 0.2993a 0.4934a 0.0000
IBM 1.4756a -0.0383a -0.0048c 0.0077a 0.0618a -0.9265a 0.0276a 0.0646a -0.0051a 0.0539a 0.0162a 0.9925a 0.1264a

JNJ 1.0683a -0.0061c 0.0535b 0.0073 0.2177a -1.0880a 0.0301 0.0318a -0.0091a 0.0530a 0.0005 0.9990a 0.0752a

JPM 0.9191a -0.0190a 0.1883a 0.0022 0.0730a -1.2697a 0.0453a 0.0976a -0.0024 0.0458a 0.0191a 0.9841a 0.2568a

KFT 0.5509a -0.0015 0.0841a -0.0107a 1.1552a -3.2988a -0.0030 -0.0358a -0.0166a 0.0599a 0.0846a 0.4239a 0.0000
MCD -0.1877a 0.0123a 0.0926a -0.0117a 1.5885a -1.4982a -0.1446a 0.0779a -0.0493a 0.1100a 0.0434a 0.0214a 0.0182
MET 0.2279a 0.0059a 0.1135a -0.0064a 0.6484a -1.9484a -0.0054 -0.0721a -0.0035a 0.2076a 0.0111a 0.9193a 0.0000
MS -0.4524a 0.0147a 0.1274a 0.0001 0.2896a 1.8178a -0.0661a 0.0843a -0.0060 0.2504a 0.0025 0.9832a 0.1278a

NEM 0.2985a -0.0116b 0.0946a -0.0115a 0.8508a -3.1712a -0.0192a -0.4547a 0.0203a 0.0000 0.0002 0.9982a 0.0000
PEP 0.8871a 0.0018 0.1039a -0.0021 0.4463a -1.1102a -0.0084 -0.0065 -0.0080 0.0430a 0.4307a 0.4709a 0.2051a

PFE -0.2005a 0.0057c 0.0949a -0.0031 0.6814a 2.9508a -0.0810a 0.0113a -0.0334a 0.4633a 0.0020 0.9836a 0.0157a

PG 0.3096a 0.0008 0.0466a 0.0036 0.1104a -1.0082a 0.0207a 0.1445a -0.0100 0.1261a 0.0130a 0.9787a 0.1731a

T 0.9859a -0.0026 0.0607a -0.0037a 0.1769a -0.5343a -0.0114c 0.1049a -0.0120a 0.1310a 0.0022 0.9959a 0.1314a

TWX 0.4440a -0.0098a 0.0188a 0.0023b 0.1845a -0.8068a 0.0213a 0.1053a -0.0163a 0.1577a 0.0087 0.9816a 0.1913a

TXN 0.0150a -0.0071 0.0922a -0.0087a 0.0000 8.8607a -0.2940a -0.0298a 0.0105b 0.3129a 0.0011 0.9909a 0.1904a

UPS -0.0202a 0.0000 0.0736a -0.0025 0.9636a -5.7507a 0.0981a 0.1635a -0.0057 0.1125a 0.0002 0.9957a 0.0000
VZ 0.5172a -0.0044 0.0563c -0.0052a 0.3923a -1.3138a 0.0052 0.0486a -0.0164c 0.1081a 0.2380a 0.6074a 0.3075a

WFC 0.1662a -0.0140 0.1498a -0.0034b 0.0702a -0.3057a 0.0113a 0.0721a 0.0010 0.0306a 0.2452a 0.8791a 0.4750a

WMT -0.5291a 0.0282a 0.0889a -0.0005 0.3301a 0.3074a -0.0317a 0.0070 -0.0145b 0.2334a 0.0032 0.9885a 0.1224a

XOM -0.4568a 0.0062c 0.0548a -0.0087a 0.0767a -0.3253a 0.0190a 0.0427a 0.0083a 0.0927a 0.0541a 0.8830a 0.4102a

Table 10: Estimated parameters of the model with jump intensity and expected size specified as in (21) and (22). The subscripts identity the two
subsamples for the CDS and V RP coefficients. a, b, and c stand for significance at 1%, 5% and 10% respectively.
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(d) UPS

Figure 9: Ex-ante (black solid line) and ex-post (red dashed line) probability of jumps on October 10
2008, implied by the HAR-V-J model with CDS and V RP , i.e. P (Nt = j|It−1) and P (Nt = j|It),
respectively.

of the jump size only, ζCDS,1 = ζCDS,2 and ζV RP,1 = ζV RP,2, (see column 10). The null is rejected

in 24 cases at 5%, thus confirming the presence of a break in the mean of the jump size for many

assets. The analysis is complemented with a Diebold-Mariano test to compare the in-sample fit of

the model with breaks only in jumps and model with breaks only in the conditional mean. In 15

cases the Diebold-Mariano test has a positive and significant value, meaning that the model with

breaks only in jumps provides better predictions than the model with breaks only in the conditional

mean. In 7 cases the Diebold-Mariano test has a negative and significant, while in 14 cases is not

significant. Summarizing, despite the Diebold-Mariano test does not discriminate between the two

models in all cases, there is some evidence that it is important to allow for a breaks in the impact

of the covariates in the jump size equation more than in the conditional mean.

Concluding, a worsening in the credit risk of financial intermediaries, as represented by an

increase in CDS, or a change in the V RP , increases the expected size of the volatility jumps, and

thus the market risk, especially during the financial crises. These results confirm and extend those

in Zhang et al. (2009) on the relation between credit risk, volatility risk and jumps. In particular, we

stress that the risk of default directly impacts on the expected size of the volatility jumps, causing
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a rapid variation in the price. The importance of the inclusion of the CDS in the jump equations

is also shown by the improvement of the in-sample fit over the classic HAR model.

Finally, we calculate and plot in Figure 9 the ex-ante and ex-post probability of jumps on October

10, 2008 with the extended HAR-V-J. Those probabilities are different from those obtained with

the standard HAR-V-J (see Figure 6). In particular, the densities are assign larger probabilities

to a higher number of jumps. The differences between the probabilities in Figure 6 and those in

Figure 9 can be explained by the introduction of the covariates in the model. As expected, once the

CDS and the VRP are included in the model, the probability of having a jump during the crisis

changes and is higher than that obtained without covariates. Overall, the improvement made by

the introduction of additional variables in the model information set is evident. This outcome might

open the door to the development of risk management strategies which are trying to anticipate (or

to take into account) the arrival of volatility jumps. At this stage we must also make clear that

the choice of the exogenous variables to be introduced in the HAR-V-J model might depend on

several elements: market evolution, macroeconomic framework, economic sector structure, without

excluding qualitative and fundamentals subjective choices. Different explanatory variables could

become relevant in other sample periods or with different dependent variables.

6 Concluding remarks

This paper studies the contribution of volatility jumps to the evolution of volatility. Differently from

some earlier contribution we propose a modified version of the HAR, the HAR-V-J, for modeling

the realized range instead of relying on continuous-time stochastic volatility specification.

We model the corrected bipower realized range, a consistent estimator of the integrated variance

in presence of jumps in prices and microstructure noise, with a HAR-V-J model that allows for

the presence of jumps in volatility. The inference on the parameters of the model is carried out

utilizing maximum likelihood estimation, after having specified the dynamics of the jumps sizes and

intensities. The estimation results of the HAR-V-J model based on high-frequency data from 36

NYSE stocks suggest that jumps in volatility are more likely to happen during the financial crises,

i.e., when the level of volatility is high, and they are positively correlated with jumps in prices.

The second part of the analysis focuses on the common determinants of the jump component to

the volatilities of individual stocks. It turns out that the variability of a common factor of the

estimated jumps, obtained by principal components, can be predicted by using a set of leading

financial variables. In particular, CDS on US banks appears particularly significant in explaining
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the observed common jump component.

This result reinforces the idea that the increase in volatility observed during the 2008-2009 US

stock market turmoil has been provoked by the worsening of the credit risk of financial institutions

and by an underestimate of the risk by market participants. From this point of view the paper

contributes to the understanding of the volatility evolution and in particular to the nature and the

sources of volatility jumps. Finally, the HAR-V-J model is modified to incorporate the information

content of CDS and V RP in the dynamics of the jump size and intensity. The estimation results

of the extended HAR-V-J model confirm the significant contribution of the CDS to the jump size

dynamics, and some impact coming from the V RP . The proposed modeling approach provides a

better understanding of realized measures behavior which could be relevant for risk management

strategies, policy interventions or trading activities.
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Appendix: Realized range estimators

In this Appendix, we describe the integrated variance estimator that we adopt in our empirical

study. Our objective is to estimate the return variation over the trading day, that is disentangled

from the jump in prices component and robust to microstructure noise. Christensen and Podolskij

(2007) show that the realized range is a consistent estimator of the integrated variance and it is, in

ideal situation of a fully observed price sequence, five times more efficient than the realized variance.

Recent Monte Carlo experiments support this finding in more complex setups, see e.g. Rossi and

Spazzini (2009) and Christensen and Podolskij (2012).

Suppose first that the log-price of an asset, p(t), follows a stochastic volatility model (SV), that

is the price follows a jump-diffusion process

p(t) = p(0) +

∫ t

0
µ(u)du+

∫ t

0
σ(u)dW (u) +

Np(t)∑

i=1

ςi (24)

where Np(t) counts the jumps arrivals at time t, and ςi is the jump size. Consider the equidistant

partition 0 = t0 < t1 < . . . < tn = 1 where ti = i/n and ∆ = 1/n for i = 1, . . . , n. We

assume as in Christensen and Podolskij (2007) that mn + 1 equally spaced observations of the

price are available. The log-price for each time in the interval (0, 1) is denoted as p i−1
n

+ t
mn

, where

i = 1 . . . , n and t = 0, . . . ,m. The observed range over the i-th interval is given by spi∆,∆,m =

max0≤s,t≤m

{
p i−1

n
+ t

mn

− p i−1
n

+ s
mn

}
.

When there are no jumps in prices but the price is contaminated by the microstructure noise,

ηt, which is modeled as an i.i.d. sequence of random variables with mean zero and finite variance

ω2, Christensen et al. (2009) show that the estimator of the integrated variance is

RRG∆
m,BC =

1

λ̃2,m

n∑

i=1

(sp̃i∆,∆,m − 2ω̂N )
2 (25)

where

λ̃r,m = E

[∣∣∣∣∣ max
t:η t

m
=ω,s:η s

m
=−ω

(
W t

m
−W s

m

)∣∣∣∣∣

r]
.

where λr,m = E[srW,m] = E
[
max0≤s,t≤m

{
Wt/m −Ws/m

}r]
is the r-th moment of the range of a

standard Brownian motion over a unit interval when we observe onlym increments of the underlying

continuous time process. The value of λr,m is obtained through numerical simulation of a standard

Brownian motion observed m times over the unit interval and λ2,m → λ2 = 4 log (2) as m → ∞.

The variance of the noise process ω2 can be consistently estimated with ω̂2
N = RV N

2N , where RV N is
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the realized variance computed using N intraday returns, with N = nm, i.e. the total number of

log-returns, and N1/2
(
ω̂2
N − ω2

) d→ N (0, ω4).

Christensen et al. (2009) show that the bias-corrected realized range-based bipower variation,

defined as:

RBV ∆
m,BC =

1

λ̃21,m

n−1∑

i=1

|spi∆,∆,m − 2ω̂N ||sp(i+1)∆,∆,m − 2ω̂N | (26)

is a consistent and robust estimator of the integrated variance in the presence of stochastic volatility,

jumps and noise. Furthermore, the price jumps can be determined as

λ2,m
(
RRG∆

m,BC −RBV ∆
m,BC

) p→
Np(t)∑

i=1

ς2i

where Np(t) cumulates the number of jumps in a given discrete interval. In this paper, we have

used (26) to estimate the daily integrated variance. Given the properties outlined above, the

bias-corrected realized range-based bipower variation represents a suitable ex post-measure of the

integrated variance.
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