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Abstract

We propose a new simple model incorporating the implication of the quantity

theory of money that money growth and inflation should move one for one in the

long run, and, hence, inflation should be predictable by money growth. The model

fits postwar U.S. data well, and beats common univariate benchmark models in

forecasting inflation. Moreover, this evidence is quite robust, and predictability is

found also in the Great moderation period. The detected predictability of inflation

by money growth lends support to the quantity theory.
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1 Introduction

Allegedly forecasting inflation has recently become more diffi cult. For instance,

Stock and Watson (2007) show that improving upon univariate forecasts of U.S.

inflation has become hard since the mid-1980s, and Lenza (2006) provides similar

evidence for euro area inflation since the early 2000s. Money growth, one of the

most often considered predictors of future inflation, has also been reported to have

lost its predictive power, and typically this loss in predictability has been attrib-

uted to monetary policy. In particular, Sargent and Surico (2011) point out that

the aggressive response to inflation by the central bank prevents the movements

in money growth to show up in inflation, and, hence, it has had marginal predict-

ive power only during periods with no credible commitment to fight inflation. In

accordance with this, D’Agostino and Surico (2012) find little evidence in favor of

the predictability of inflation by money growth in the U.S. since the mid-1980s,

i.e., in the Great moderation period.

The rationale behind forecasting inflation by money growth is the quantity

theory of money, according to which these variables should move one for one in

the long run, and diminished predictability can thus be seen as weakened evidence

in favor of that theory. This conclusion has quite commonly been reached with

U.S. and international data in recent research, where the quantity theory has been

taken as the starting point. Teles and Uhlig (2013) find that it has since 1990

become more diffi cult to establish a long-run relationship between money growth

and inflation. D’Agostino and Surico (2009), on the other hand, claim that the

information in U.S. money growth concerning inflation is embedded in measures

of global liquidity. Berger and Österholm (2008), and Assenmacher-Wesche and

Gerlach (2007) indeed do find predictability of U.S. inflation by money growth

only when accounting for the impact of other variables, such as interest rates. The

results of Amisano and Fagan (2013), and Amisano and Colavecchio (2013), in

turn, suggest that nonlinearities need to be taken into account in order to uncover

the predictability of inflation by money growth.
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In much of the previous literature cited above, frequency-domain methods or

relatively complicated nonlinear models, often containing additional variables be-

sides money growth and inflation, have been employed. In contrast, in this paper,

we put forth a new simple econometric model involving only money growth and

inflation and incorporating the central implication of quantity theory that money

growth and inflation should move one for one in the long run. In oder to capture

the low-frequency (or long-run) component of money growth, we employ an ex-

ponentially weighted moving average (EWMA) filter. It turns out that the model

(discussed in detail in Section 2 below) can be written as a classical transfer func-

tion (TF) model with restrictions on the parameters and an autocorrelated error

term. Hence, it can be estimated in a straightforward manner by the method of

maximum likelihood (ML), and the properties of the ML estimator (under mild

regularity conditions) are well known.

We apply the new model to quarterly postwar U.S. consumer price and GDP

deflator inflation, and it seems to fit the data quite well. We also find a clear im-

provement in inflation predictability by the low-frequency component of money

growth over and above the own history of inflation. In particular, our model beats

the benchmark univariate autoregressive model as well as the naïve (Atkeson and

Ohanian (2001)) and random walk forecasts often entertained in the inflation fore-

casting literature. Moreover, with the exception of a short period in the latter half

of the 1980s, the new model is incessantly superior in the entire forecasting period

starting in 1970. The latter finding is remarkable in that breaks in predictabil-

ity, often attributed to monetary policy, have in the previous literature typically

been detected, and the existing evidence in favor of predictability during the Great

moderation is weak. Hence, our results lend quite robust support to the quantity

theory of money.

The plan of the paper is as follows. In Section 2, we describe the new model,

termed EWMA-TF model, and discuss estimation, inference and forecasting. Sec-

tion 3 contains the estimation results based on consumer price inflation, while
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in Section 4, we report the (pseudo) out-of-sample forecasting results based on a

recursive scheme. To gauge the robustness of the results, in Section 5, we report

results based on the GDP deflator inflation and a rolling forecasting scheme. These

robustness checks do not overturn our main findings. Finally, Section 6 concludes.

2 EWMA-TF Model

In this section, we introduce our econometric model and discuss its estimation and

use in forecasting. The model incorporates the core implication of the quantity

theory of money that inflation and money growth move one-for-one, but following

Lucas (1980), we assume this relationship to hold only in the long run. Therefore,

instead of including money growth in the model as such we concentrate on its low-

frequency component, obtained with an exponentially weighted moving average

(EWMA) filter. As shown below, our model can be written in the form of a standard

restricted transfer function (TF) model with an autocorrelated error term assumed

to follow an AR(p) process (see, e.g., Box and Jenkins, 1976, Chapter 10) whose

statistical properties are well known, Thus, hereafter we refer to the model as the

EWMA-TF(p) model.

2.1 Model

In line with the quantity theory of money, our model postulates a one-for-one

relationship between inflation, πt, and the long-run component of money growth,

xt:

πt = µ+ xt + ut, t = 1, . . . , T, (1)

where µ is an intercept term, ut is an error term following an autoregressive pro-

cess of order p (an AR(p) process), and inflation is computed as πt ≡ log (Pt) −

log (Pt−1), with Pt the aggregate price level. Specifically, φ (L)ut = εt where εt

is a sequence of independently and identically distributed random variables with

mean zero and variance σ2ε , L denotes the usual lag operator, and the polynomial
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φ (z) ≡ 1 − φ1z − . . . − φpzp has its zeros outside the unit circle. The latter spe-

cification is assumed to capture any high-frequency autocorrelation in inflation πt

not accounted for by the long-run component xt, and according to the results in

Section 3 this assumption seems adequate in our empirical application.

The long-run component of money growth xt is obtained as an exponentially

weighted moving average (EWMA) as

xt = xt−1 + α(mt − xt−1), (2)

where mt ≡ log (Mt)− log (Mt−1) withMt the money supply. The properties of the

one-sided filter (2) are determined by the parameter α (0 < α ≤ 1), and it has large

power at low frequencies when the value of this smoothing parameter lies close to

zero. This is illustrated in Figure 1 that depicts its gain function with α equal to

our estimate from quarterly U.S. data in Section 3 (α = 0.035). The gain is large

only at frequencies corresponding to periods greater than 16 quarters, or four years

(frequencies lower than π/8), while it is virtually zero at higher frequencies. Hence,

our filtered component indeed manages to capture only the long-run movements

of money growth.

2.2 Estimation and inference

Our econometric model is actually a standard transfer function model with restric-

tions on the parameters and an autocorrelated error term. To see this, write (2)

as

xt =
α

1− (α− 1)Lmt

and plug xt into (1) to obtain

πt = µ+
α

1− (α− 1)Lmt + φ(L)−1εt. (3)

The parameters of the model can thus be consistenly estimated by the method of

(conditional) maximum likelihood (see, e.g., Harvey (1981b, Chapter 7)). Specific-

ally, assuming normality of εt, the log-likelihood function conditional on the first
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p+ 1 observations can be expressed as

lT (θ) = −
T − p− 1

2
log
(
2πσ2ε

)
− 1

2σ2ε

T∑
t=p+2

ε2t , (4)

where εt is obtained recursively for t = p + 2, p + 3, ..., T by setting εp+1 = 0 and

writing (3) as

εt = [1− (α− 1)L]φ(L)πt − (2− α)φ(1)µ− αφ(L)mt + (α− 1) εt−1.

Under mild regularity conditions, the maximum likelihood estimator is asymptot-

ically normally distributed, and standard inference, including conventional dia-

gnostic checks of the adequacy of the model, can be employed.

Box and Jenkins (1976, Chapter 11) and subsequently, among others, Liu et al.

(2010) (see also the references therein) discuss model selection in transfer function

models, and put forth a strategy involving cycles of identification, estimation,

and diagnostic checking. When there is little a priori knowledge on the relations

between the variables, these procedures are sensible, while the structure of our

model is dictated by the quantity theory, and hence, model selection reduces to

finding the correct order p of the lag polynomial φ(z) in the EWMA-TF(p) model

(3). To that end we employ information criteria and standard diagnostic checks to

guard against remaining error autocorrelation and conditional heteroskedasticity.

2.3 Forecasting

Optimal forecasts of πt from (1) or, equivalently, from (3) h periods ahead at time

point T are obtained recursively. As xt also enters the model contemporaneously,

for forecasting, a univariate model (with an error term independent of εt) must be

specified for it (see, Harvey (1981b, Chapter 7)), and we assume that its dynamics

are adequately captured by an autoregressive process. Forecasts are thus obtained

in three stages. First, we fix the initial value of xt at the average of mt over the

entire sample, and compute the sequence of smoothed money growth xt from (2)

for t = 1, ..., T . Second, we estimate an AR(s) process for mt (using observations
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up to period T ), and plugging its h-period forecast into Eq. (2), compute the h-

period forecast xT+h|T . Third, based on the forecast xT+h|T , we obtain πT+h|T , the

h-period forecast of inflation πt as

πT+h|T = µ̂+ xT+h|T + uT+h|T , (5)

where µ̂ is the ML estimate of µ, and uT+h|T is the h-period forecast of uT ≡

πT − µ̂ − xT computed recursively (starting with the one-period forecast) from

the AR(p) model φ̂ (L)ut = εt with φ̂ the ML estimate of the lag polynomial

coeffi cients.

Our interest concentrates on the out-of-sample forecasting performance of the

low-frequency component of money growth for inflation. In particular, we are in-

terested in finding out about the marginal predictive ability of the money growth

component over and above that of the own history of inflation. The relevant uni-

variate benchmark for πt is an adequate autoregressive moving average (ARMA)

model because, under our assumption that mt follows an AR(s) process, (3) is a

sum of two independent autoregressive processes, and, hence, the univariate process

of πt is an ARMA process (see, e.g., Harvey (1981a, Chapter 2)). In our empirical

analysis in Section 4, an AR model is deemed adequate for U.S. inflation.

In order to assess the forecast performance of our model vis-à-vis the univariate

benchmark model, we conduct a (pseudo) out-of-sample forecasting excercise in

Section 4. Specifically, we recursively compute forecasts from (5) and a univariate

AR(p) model for inflation by expanding the estimation sample by one period at

a time until the end of the data series to obtain sequences of h-quarter forecasts.

We then measure forecast accuracy by the mean squared forecast error (MSFE)

criterion. If the value of this criterion for forecasts computed from the EWMA-TF

model lies below that of the univariate ARmodel, following Box and Jenkins (1976,

Chapter 11), we call the smoothed money growth a leading indicator of inflation,

and conclude that the quantity theory of money is useful in forecasting inflation.
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3 Estimation Results

Our quarterly data set covers the period from 1947:Q1 to 2013:Q4. Following

Lucas (1980) and Chan et al. (2013), among others, we estimate the models for

the U.S. inflation computed as πt = 400× log (Pt/Pt−1), where Pt is the consumer

price index (CPI) for all urban consumers.1 Money supply is measured by the

M2 money stock, and the money growth series is analogously computed as mt =

400× log(M2t/M2t−1). Both the CPI and M2 series are seasonally adjusted. The

source of all the data is the FRED database of the Federal Reserve Bank of St.

Louis, with the exception of the M2 money stock for the period from 1947:Q1 to

1958:Q4 that is constructed by Sargent and Surico (2011), whose work, in turn,

builds upon Balke and Gordon (1986).

Although our main objective is to examine the predictive power of the smoothed

money growth for inflation, and we mostly concentrate on (pseudo) out-of-sample

forecasting, we start by reporting estimation results from the entire sample period.

These results should provide some evidence on the fit of the proposed model and

yield information on the statistical properties of U.S. inflation.

In Table 1, we present the estimation results of the AR(4) and EWMA-TF(4)

models. The lag length is in each case selected by a sequential testing procedure,

starting with a fifth-order model, and sequentially proceeding to the model, where

the coeffi cient of the longest lag is significant at the 5% level. The fourth-order

model is also selected by the Bayesian information criterion. The EWMA-TF(p)

model reduces to the usual AR(p) model, when the low-frequency component ofmt

(i.e. xt) is excluded from the model. It is seen from (3) that this is the case when α

equals zero, and, hence, our main interest focuses on the smoothing parameter α. In

the fourth-order EWMA-TF model, the ML estimate of α equals 0.035, suggesting

that it is indeed the permanent component of inflation that xt captures (with α =

0.035 the EWMA filter (2) has most of its power at low frequencies, as indicated

1As a robustness check, we also consider the GDP deflator as a measure of inflation in Section

5. Overall, the main conclusions remain intact irrespective of the inflation series.
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by the gain function in Figure 1). This is also visible in Figure 2, which depicts

the evolution of xt with the time series of mt superimposed. Comparison of the

estimates of the autoregressive coeffi cients of the AR and EWMA-TF models also

lends support to this claim: the sums of the estimated autoregressive coeffi cients

of these models are 0.78 and 0.66, respectively, indicating that after the inclusion

of xt, the portion of the variation of inflation left to be explained by its own lags

exhibits substantially reduced persistence.

The EWMA-TF model has higher values of both the maximized log-likelihood

function and the Bayesian information criterion than the AR model. However, not

too much emphasis should be laid on these in-sample comparisons that implicitly

assume a one-period-ahead forecast horizon, as the EWMA-TF model is designed

for long-horizon forecasting, and evidence on the superiority of the EWFA-TF

model vis-à-vis the AR model in forecasting is provided in Section 4. According

to the diagnostic checks, there is little evidence of remaining autocorrelation or

conditional heteroskedasticity in the residuals of either model. In fact, the inclusion

of xt tends to somewhat reduce remaining conditional heteroskedasticity. All in

all, it seems fair to state that the EWMA-TF(4) model is a statistically adequate

specification for U.S. inflation.2

4 Out-of-Sample Forecasting

In this section, we report results of out-of-sample forecasting exercises with the

EWMA-TF model estimated in Section 3, with emphasis on its multistep forecast

performance compared to that of the benchmark ARmodel. As discussed in Section

3, the AR model is a natural benchmark because model (1) reduces to an AR(MA)

model when excluding the long-run component xt (under the assumption that

2 One obvious extension of model (1) is obtained by not restricting the coeffi cient of xt equal

to unity in accordance with the quantity theory. However, with our data, this restriction cannot

be rejected (the p-value in the likelihood ratio test equals 0.96), which lends further support to

the adequacy of the restricted EWMA-TF(4) model and the quantity theory.
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money growth is not hepful in forecasting inflation). In addition to these two

models, we consider the naïve forecast of Atkeson and Ohanian (2001) and the

random walk forecast popular in the previous inflation forecasting literature. For

the most part, the forecast period runs from the first quarter of 1970 until the last

quarter of 2013 (1970:Q1—2013:Q4). However, we also report results for the shorter

forecast period starting in the first quarter of the year 1990 (the Great Moderation

period). The results in this section are based on the expanding window approach

in updating the parameters of the models. In Section 5, we also report forecast

results based on the rolling window approach, but the general conclusions remain

unchanged.

The estimation sample starts at 1947:Q1, and it is extended by one quarter at

a time. Model selection is also performed recursively, selecting the lag length p in

the EWMA-TF(p) and AR(p) models by the Bayesian information criterion (BIC)

with a maximum lag length of five. More or less the same results are obtained with

the Akaike information criterion (AIC).3 In fact, perhaps somewhat surprisingly,

both criteria typically select the fourth-order model (p = 4) for both models, with

very few exceptions for the EWMA-TF model. In line with the previous infla-

tion forecasting literature, we consider forecast horizons of four, eight, and twelve

quarters, i.e., of one, two and three years. These horizons were also examined by

D’Agostino and Surico (2012), albeit with emphasis on the eight-quarter horizon,

and they are the most interesting ones, as we expect the smoothed money growth

to have predictive power in the intermediate and long forecast horizons.

In Table 2, we report the MSFE statistics and the results of the test for equal

predictive accuracy of Diebold and Mariano (1995) and West (1996) related to

them for the full out-of-sample period. Following the common practice in the in-

flation forecasting literature, forecasts are computed for average inflation over the

h-period forecast horizon. The EWMA-TF model clearly outperforms the univari-

ate AR model. In addition to the MSFE criterion, following Chan et al. (2013), we

3These results are not reported to save space, but they are available upon request.
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study the qualitative differences in predictive ability between the models by com-

puting the fraction of quarters, when the EWMA-TF model is more accurate, and

also according to this criterion, the EWMA-TF is the winner. However, the tests

results are mixed. While the qualitative differences are statistically significant at

the 1% level, by the MSFE criterion, there is a significant difference between the

models (at the 10% level) only at the four-quarter horizon. A likely explanation to

this discrepancy are the large differences in the MSFEs in favor of the AR model

in the short period from the mid-1980s to the beginning of the 1990s (see Figure

3 and the related discussion below). Nevertheless, the smoothed M2 predictor xt

appears to have substantial long lasting out-of-sample predictive power.

Finally, Table 2 also reports the MSFEs of the random walk and naïve forecasts

of inflation. Especially the latter has often been found superior in the inflation

forecasting literature, and it indeed turns out to be more accurate than the AR

model. However, the fact that it is beaten by our EWMA-TF model at all horizons

considered further reinforces the evidence in favor of the marginal predictive ability

of the smoothed money growth.

A long line of previous research (see, for instance, Stock and Watson (2007),

Clark and Doh (2011), D’Agostino and Surico (2012), and Chan et al. (2013), and

the references therein) points at breakdowns in the one-for-one movement of money

growth and inflation implied by the quantity theory as a potential explanation to

changes in the forecast performance of commonly employed models. Because also

our model in (1) directly utilizes this central implication, we next explore whether

the relative forecast performance of the EWMA-TF model compared to the con-

ventional AR model is stable over time. To this end, following D’Agostino and

Surico (2012), we consider the smoothed mean squared forecast errors (SMSFE)

using a rolling window of 31 quarters to examine the predictive performance of

the models.4 To facilitate comparisons, we report the relative SMSFE as a ratio

of the SMSFEs from the EWMA-TF model to the benchmark AR model. Hence,

4 Stock and Watson (2009) used a window of 15 observations (quarters). The figures in that

case are similar as those in Figure 3.

10



the values of the relative SMSFE below unity indicate that the forecasts of the

former model with dependence on the smoothed money growth are on average

more accurate than those of the AR model.

Figure 3 depicts the relative SMSFE of the EWMA-TF model relative to that

of the univariate AR model for the forecast horizons of four, eight, and 12 quar-

ters. Values above unity are rare and concentrated on a relatively short time period

between the mid-1980s and the beginning of the 1990s, where deviations from unity

also tend to be large, and the differences between the models increase with the fore-

cast horizon. With the exception of this period, the smoothed money growth thus

has clear predictive power and can be considered a leading indicator of inflation.

While also D’Agostino and Surico (2012) pointed out this period as exceptional,

our general conclusions deviate from theirs in that they found only very few peri-

ods, all related to specific monetary policy regimes, where the money growth is a

useful predictor.

Based on the findings in Figure 3, it seems that since the beginning of the

1990s, the smoothed money growth has (again) had predictive power for inflation

in the spirit of the quantity theory. To study this further, we repeat the analysis of

Table 2 for the period of the Great Moderation and beyond (1990:Q1—2013:Q4) in

Table 3. The results are essentially the same as those for the whole out-of-sample

period above. However, in the shorter period also the differences in the absolute

magnitudes of the squared forecast errors between the models are statistically

significant (at the 10%, 5% and 1% levels of significance at the four eight and 12-

quarter horizons, respectively). In the same way as in the full out-of-sample period,

the EWMA-TF model yields superior forecasts also compared with the naïve (and

random walk) forecasts, with even wider margins. Especially the fact that the

EWMA-TFmodel outperforms the naïve forecasts in the Great Moderation period,

is noticeable. As concluded by Stock and Watson (2007), inter alia, the naïve

forecast has turned out hard to beat in this period.
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5 Robustness checks

In this section, we check whether our findings in Section 4 are sensitive to the

particular inflation series considered or choices made in producing the results. In

particular, we compare the results based on the rolling window approach to those

above in the out-of-sample forecasting exercises and report results based on the

GDP deflator inflation. Overall, our conclusions turn out to be quite robust.

In Section 4, we used the expanding window approach when updating the

parameters (and selecting the specification) in the forecasting period. The results

of an alternative, rolling window, approach are reported in Table 4 for the entire

out-of-sample period as well as the subsample period considered in Table 3. The

size of the estimation window is fixed at 91 observations which is the size of the

first estimation sample also in the expansive window case. Results based on model

selection by the BIC are reported, but like with the expanding window approach,

the AIC leads to no substantial changes. The results are essentially the same as

obtained with the expansive window approach: The EWMA-TF model including

the smoothed money growth clearly outperforms the AR model for inflation. In

the rolling window case, the statistical significance of the differences in forecast

accuracy are tested using the (unconditional) test of Giacomini and White (2006)

which coincides with the test employed in Section 4 in this case. Note that the

naïve and random walk forecasts are the same as in the expanding window case

and therefore they are not reproduced in Table 4.

The main analysis in Section 4 concerns the CPI inflation. In Table 5, we

report the results for inflation based on the GDP deflator for both forecast periods

considered. As above, the results based on using the BIC to select the lag length are

reported, but the AIC yields similar conclusions. As far as the relative performance

of the EWMA-TFmodel vis-à-vis the univariate ARmodel is concerned, the results

are essentially the same as those for the CPI inflation, albeit with a narrower

margin. In other words, the EWMA-TF model yields superior forecasts also for

the GDP inflation, suggesting that the smoothed money has statistically significant
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predictive power for inflation. However, while the qualitative differences in forecast

accuracy are again statistically significant, this does not apply to the quantitative

differences even in the more recent forecast period. The only major difference is

that for the GDP deflator, the naïve and random walk forecasts are much more

accurate than in the case of the CPI inflation, beating even the EWMA-TF model.

6 Conclusions

In this paper, we have proposed a new model for capturing the long-run comove-

ment of inflation and money growth. The model is inspired by the classical quantity

theory of money, and it incorporates its central implication that money growth and

inflation should move one for one in the long run. Because the long-run (or low-

frequency) component of inflation is obtained by an exponentially weighted moving

average filter and the model can be written in the form of a transfer function model,

we call it the EWMA-TF model. Its parameters can be consistently estimated by

the method of maximum likelihood, and (under regularity conditions) standard

asymptotic inference applies.

We applied the EWMA-TF model to modeling and forecasting postwar U.S.

inflation. Diagnostically the model turned out to fit both the CPI and GDP in-

flation series well, and in forecasting it manages to beat a number of univariate

benchmark models entertained in the literature. In particular, for the CPI inflation,

its forecasts are more accurate than those of the univariate AR model (obtained

as its special case by excluding the effect of money growth on inflation) and the

naïve forecasts of Atkeson and Ohanian (2001). With the exception of a relatively

short period in the late 1980s, the EWMA-TF model is superior to univariate

alternatives, indicating that money growth indeed has predictive power for infla-

tion in accordance with the quantity theory. The fact that this is the case also

in the period of the Great moderation is quite remarkable in that in the previous

literature money growth has been found a significant predictor of inflation only

occasionally. Typically periods exhibiting such predictability have been attributed

13



to weak monetary policy, captured by allowing for nonlinearities or augmenting

the model with additional variables. Our findings, based on a relatively simple

econometric model compared to those previously entertained, can be interpreted

as quite robust support to the quantity theory of money.

In this paper, we concentrate on the U.S., but much of the previous empirical

literature on the predictability of inflation by money growth is related to the euro

area, and in future work it might be interesting to study the performance of our

model in that as well as other geographic areas. Also, while the EWMA-TF model

seems adequate for the U.S. data, this may not be the case in general, given that

relatively complicated nonlinear models have widely been considered in the recent

related literature. The development of nonlinear extensions may therefore be called

for. Specifically, for some other data sets, allowing for switching between (monetary

policy) regimes may be needed.
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Tables and Figures

Table 1: Estimation results of the AR(4) and EWMA-TF(4) models.

Model AR(4) EWMA-TF(4)

µ 3.380 -2.573

(0.596) (0.373)

φ1 0.634 0.600

(0.061) (0.060)

φ2 -0.006 -0.034

(0.069) (0.068)

φ3 0.331 0.307

(0.069) (0.068)

φ4 -0.177 -0.214

(0.060) (0.060)

α 0.035

(0.010)

σ2ε 4.392 4.227

(0.384) (0.369)

Log-likelihood -565.616 -560.605

BIC 582.239 579.999

Ljung-Box test(8) 0.040 0.039

Ljung-Box test(12) 0.116 0.144

McLeod-Li test(8) 0.163 0.286

McLeod-Li test(12) 0.451 0.622

Notes: The sample period is 1947:Q1—2013:Q4. The standard errors of the estimated coeffi cients

are given in parentheses. The p-values of the Ljung-Box and McLeod-Li tests (with the number

of lags used in parentheses) for the null hypotheses of no remaining autocorrelation and

conditional heteroskedasticity in the residuals are reported, respectively.
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Table 2: MSFEs of the out-of-sample forecasts for the full out-of-sample period 1970:Q1—2013:Q4.

Model Forecast horizon

h = 4 h = 8 h = 12

MSFE AR 5.125 6.497 6.965

MSFE EWMA-TF 3.926 4.035 3.672

Relative MSFE 0.766∗ 0.621 0.527

Fraction 0.618∗∗∗ 0.679∗∗∗ 0.709∗∗∗

Benchmark forecasts

MSFE random walk 5.097 6.095 7.012

MSFE naïve 4.146 5.156 5.628

Notes: The MSFEs are computed for average inflation. The expanding window approach is

employed, and the lag lengths in the AR and EWMA-TF models are at each step selected using

the BIC information criterion. The relative MSFEs are obtained as ratios between the MSFEs

of the EWMA-TF model and the AR model. Fraction is the percentage share of forecasts with

the EWMA-TF model yielding a smaller squared forecast error than the AR model at a given

forecast horizon. The statistical significance of the differences in the mean squared errors and

fractions is tested using the test of Diebold and Mariano (1995) and West (1996). In the table,

*, **, and *** denote the rejection of the null hypothesis of equal predictive performance at

10%, 5% and 1% significance levels, respectively. In the bottom panel, the MSFEs of the

random walk and naïve forecasts of Atkeson and Ohanian (2001) are reported.
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Table 3: MSFEs of the out-of-sample forecasts for the period 1990:Q1—2013:Q4.

Model Forecast horizon

h = 4 h = 8 h = 12

MSFE AR 3.026 1.833 1.531

MSFE EWMA-TF 2.399 1.135 0.845

Relative MSFE 0.793∗ 0.619∗∗ 0.552∗∗∗

Fraction 0.635∗∗ 0.682∗∗∗ 0.753∗∗∗

Benchmark forecasts

MSFE random walk 5.265 4.482 4.379

MSFE naïve 2.559 1.934 1.706

Notes: See the notes to Table 2.
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Table 4: Out-of-sample forecasting results based on the rolling window approach.

Model Forecast horizon

h = 4 h = 8 h = 12

Period 1970:Q1—2013:Q4

MSFE AR 3.636 4.958 5.958

MSFE EWMA-TF 3.273 3.855 4.212

Relative MSFE 0.900∗∗ 0.778∗ 0.707∗

Fraction 0.606∗∗∗ 0.655∗∗∗ 0.618∗∗∗

Period 1990:Q1—2013:Q4

MSFE AR 2.007 1.645 1.771

MSFE EWMA-TF 1.859 1.401 1.399

Relative MSFE 0.926∗ 0.852 0.790

Fraction 0.659∗∗∗ 0.682∗∗∗ 0.600∗

Notes: See the notes to Table 2.
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Table 5: Out-of-sample forecasting results for the GDP deflator.

Model Forecast horizon

h = 4 h = 8 h = 12

Period 1970:Q1—2013:Q4

MSFE AR 2.322 3.313 3.841

MSFE EWMA-TF 1.920 2.362 2.503

Relative MSFE 0.827 0.713 0.652

Fraction 0.588∗∗ 0.600∗∗ 0.618∗∗∗

MSFE random walk 1.348 2.031 2.455

MSFE naïve 1.526 2.097 2.356

Period 1990:Q1—2013:Q4

MSFE AR 0.572 0.846 1.091

MSFE EWMA-TF 0.523 0.672 0.784

Relative MSFE 0.913 0.795 0.719

Fraction 0.624∗∗ 0.624∗∗ 0.682∗∗∗

MSFE random walk 0.553 0.665 0.752

MSFE naïve 0.447 0.550 0.614

Notes: See the notes to Table 2.
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Figure 1: The gain function of the EWMA filter (2) with α = 0.035.
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Figure 2: M2 growth rate (mt, dotted line) and the smoothed M2 predictor (xt, solid line) when

α = 0.035 (see Table 1).
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Figure 3: Relative predictability: The smoothed MSFE of the EWMA-TF model relative to that

of the AR model. Values less than unity indicate that the EWMA-TF model outperforms the

AR model. The forecast horizon is four (h = 4), eight (h = 8) and 12 (h = 12) quarters.
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