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Abstract. This paper develops alternative asymptotic results for a

large class of two-step semiparametric estimators. The first main result is

an asymptotic distribution result for such estimators and differs from those

obtained in earlier work on classes of semiparametric two-step estimators by

accommodating a non-negligible bias. A noteworthy feature of the assumptions

under which the result is obtained is that reliance on a commonly employed

stochastic equicontinuity condition is avoided. The second main result shows

that the bootstrap provides an automatic method of correcting for the bias

even when it is non-negligible.
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1. Introduction

This paper is concerned with basing inference about a finite-dimensional parameter

on an estimator which is semiparametric in the sense that it employs a nonparametric

estimator of some nuisance function. The importance of such estimators is widely

recognized, as is the diffi culty of obtaining accurate distributional approximations

for estimators of this kind. Regarding the latter, the consensus opinion (substan-

tiated by Monte Carlo evidence) seems to be that the distributional properties of

semiparametric estimators are much more sensitive to the properties of their (slowly

converging) nonparametric ingredients than conventional asymptotic theory would

suggest. In other words, the conventional approach to asymptotic analysis of semi-

parametric estimators, while delivering very tractable distributional approximations,

effectively ignores certain features of these estimators which are important in samples

of realistic size.

Important progress in the direction of avoiding this shortcoming has been made by

Linton (1995), Nishiyama and Robinson (2000, 2001, 2005), and Ichimura and Linton

(2005), among others. These papers develop (Nagar- and Edgeworth expansion-type)

higher-order asymptotic theory under assumptions implying in particular that the

estimators under consideration are
√
n-consistent (where n is the sample size). An

alternative approach, and the one we take in this paper, was employed by Cattaneo,

Crump, and Jansson (2013). That approach is conceptually similar to the “dimension

asymptotics”approach taken in the seminal work of Mammen (1989), but we will refer

to it as a “small bandwidth”approach for reasons that will become apparent below.1,2

1For an explanation of the connection between the approaches of Cattaneo et al. (2013) and

Mammen (1989), see Enno Mammen’s discussion of Cattaneo et al. (2013).
2The approach we take is also similar to the approach taken in a series of papers by Abadie and

Imbens (2006, 2008, 2011), but our main conclusion regarding the bootstrap (and subsampling) is

quite different from that of Abadie and Imbens (2008).
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The “small bandwidth”approach is a first-order asymptotic approach whose goal is

to produce more reliable distributional approximations by forcing the approximations

to be more sensitive to the precise implementation of nonparametric ingredients than

conventional first-order asymptotic approaches.

Because its objective is similar to that of asymptotic analysis based on Edge-

worth expansions, an obvious question is whether the “small bandwidth”approach

shares with the Edgeworth approach the feature that developing results for general

classes of estimators is (or at least would appear to be) prohibitively complicated

(e.g., Nishiyama and Robinson (2005, p. 927)). One of the two main goals of this

paper is to demonstrate by example that this is not the case. To do so, we study

a class of estimators essentially coinciding with the class investigated by Newey and

McFadden (1994, Section 8) and develop “small bandwidth”asymptotic results for

it. These results turn out to be in perfect qualitative agreement with those obtained

by Cattaneo et al. (2013) for a particular member of the class of estimators under

study. To be specific, it turns out that in general semiparametric estimators utilizing

kernel estimators of unknown functions suffer from bias problems whose magnitude

is non-negligible and bandwidth-dependent.

Being similar to that obtained by Cattaneo et al. (2013), this “small bandwidth”

asymptotic finding is also in perfect analogy with the finding obtained under “dimen-

sion asymptotics”by Mammen (1989, Theorem 4). It therefore seems natural to ask

whether positive results about the bootstrap analogous to those of Mammen (1989,

Theorem 5) can be obtained also for the class of semiparametric estimators studied

herein. Providing an affi rmative answer to that question is the second main goal of

this paper. Achieving this goal turns out to require relatively little effort, essentially

because the high level conditions formulated in the process of achieving our first main

goal have been designed partly with achievement of the second goal in mind.

Our main methodological prescription is a simple and constructive one: in semi-
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parametric models, inference procedures based on the bootstrap are much less sensi-

tive to the precise implementation of nonparametric ingredients than their main rivals.

From a practical perspective this prescription is very attractive because implementa-

tion of bootstrap-based inference procedures does not require characterization of the

asymptotic variance and/or the bias of the estimator upon which inference is to be

based. Although the prescription is consistent with folklore, our theoretical justifi-

cation for it would appear to be new. In particular, unlike Nishiyama and Robinson

(2005) our theory is based on first-order asymptotic results and partly for this rea-

son we do not require studentization in order to show that the bootstrap provides

“refinements”in the sense that bootstrap-based “percentile”confidence intervals en-

joy first-order asymptotic validity in cases where no such validity is enjoyed by their

main rivals, including “Efron”confidence intervals and subsampling-based confidence

intervals.

Previous work on bootstrap validity for general classes of semiparametric models

includes Chen, Linton, and van Keilegom (2003) and Cheng and Huang (2010). For

the models studied in this paper our results generalize theirs by accommodating non-

parametric ingredients implemented using bandwidths that are “small”in the sense

that they converge to zero at a faster-than-usual rate. Accommodating such band-

widths turns out to prohibit reliance on certain stochastic equicontinuity conditions

employed by Chen et al. (2003), Cheng and Huang (2010), and most (if not all)

previous developments of asymptotic distribution theory for semiparametric two-step

estimators, including the results surveyed by Andrews (1994b), Newey and McFad-

den (1994), Chen (2007), and Ichimura and Todd (2007). As a consequence, avoiding

reliance on such stochastic equicontinuity conditions turns out be necessary in order

to achieve the goals of this paper. The approach taken in this paper is to replace

a key stochastic equicontinuity condition by an “asymptotic separability”condition,

which is similar to, but weaker than, its stochastic equicontinuity counterpart. This
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condition exploits a special feature of kernel estimators, but may nevertheless be of

independent interest.

The paper proceeds as follows. Section 2 provides a more detailed statement

of and motivation for the questions addressed by this paper. Section 3 presents

our “small bandwidth”asymptotic result about semiparametric two-step estimators,

while Section 4 is concerned with verification of the high-level assumptions of that

result. Section 5 presents bootstrap analogs of the results from Sections 3 and 4.

Appendix I contains additional results, some of which may be of independent interest.

Finally, Appendix II contains proofs of our main results while Appendix III provides

additional details for the examples discussed in the paper.

2. Motivation

To fix ideas, suppose θ0 is a scalar parameter of interest admitting an estimator θ̂n

satisfying

√
n(θ̂n − θ0) N (0,Σ), (1)

where n is the sample size,  denotes weak convergence (as n → ∞), and Σ is

positive. In this scenario it is common to base inference on a distributional approxi-

mation of the form
√
n(θ̂n− θ0)∼̇N (0, Σ̂n), where Σ̂n is some estimator of Σ. If Σ̂n is

consistent, then the distributional approximation is itself consistent in the sense that

supt |P[
√
n(θ̂n − θ0) ≤ t]− P[N (0, Σ̂n) ≤ t]| →p 0, (2)

a fact which in turn implies for instance that the asymptotic coverage probability of

the following confidence interval for θ0 is 95%:
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CIn = [θ̂n − 1.96

√
Σ̂n/n, θ̂n + 1.96

√
Σ̂n/n].

An alternative distributional approximation is provided by the bootstrap. In

standard notation, the bootstrap approximation to the cdf of
√
n(θ̂n − θ0) is given

by P∗[
√
n(θ̂

∗
n − θ̂n) ≤ ·], where θ̂∗n denotes a bootstrap analogue of θ̂n and P∗ denotes

a probability computed under the bootstrap distribution conditional on the data.

Assuming (1) holds, asymptotically valid inference procedures can be based on the

bootstrap whenever the following bootstrap consistency condition is satisfied:

supt |P[
√
n(θ̂n − θ0) ≤ t]− P∗[

√
n(θ̂

∗
n − θ̂n) ≤ t]| →p 0. (3)

For instance, two well-known examples of bootstrap-based confidence intervals for θ0

with asymptotic coverage probability 95% are the “percentile”interval

CI∗P,n = [θ̂n − q∗n,0.975, θ̂n − q∗n,0.025],

and the “Efron”interval

CI∗E,n = [θ̂n + q∗n,0.025, θ̂n + q∗n,0.975],

where q∗n,α = inf{q ∈ R : P∗[(θ̂
∗
n − θ̂n) ≤ q] ≥ α}.

Being “automatic” in the sense that it can be obtained without characterizing

and/or (explicitly) estimating Σ, the bootstrap distributional approximation is par-

ticularly attractive when Σ is diffi cult to characterize and/or estimate, a phenomenon

which occurs with some regularity for estimators θ̂n that are semiparametric in the
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sense that an estimator of an infinite-dimensional nuisance parameter is employed in

the construction of θ̂n. Chen et al. (2003) and Cheng and Huang (2010) made this

point and gave conditions under which (1) and (3) are satisfied also in models with

infinite-dimensional nuisance parameters.

In addition to complicating the characterization of Σ, the presence of estimators

of infinite-dimensional nuisance parameters often implies that a delicate choice of

tuning parameters (e.g., bandwidths in the case of kernel estimators) is required in

order to achieve (1) in the first place. Moreover, in such semiparametric settings

the finite sample distribution of
√
n(θ̂n − θ0) has often been found in Monte Carlo

experiments to be rather sensitive to the choice of these tuning parameters, suggesting

in particular that distributional approximations not depending on tuning parameters

can be quite unreliable unless sample sizes are very large.

Acknowledging this, Cattaneo et al. (2013) investigated the consequences of re-

laxing the bandwidth conditions needed to achieve (1). Under weaker-than-usual

bandwidth conditions and studying a particular kernel-based semiparametric estima-

tor, Cattaneo et al. (2013) obtained a distributional result of the form

√
n(θ̂n − θ0 − Bn) N (0,Σ), (4)

where Σ is the same as in (1) while Bn is some (possibly) non-negligible bias whose

value depends in part on the bandwidth. Simulation evidence reported by Cattaneo

et al. (2013) was found there to be consistent with the main prediction obtained by

replacing (1) with the more general result (4) , namely that kernel-based semipara-

metric estimators suffer from bias problems whose magnitude is non-negligible and

bandwidth-dependent.

Replacing (1) with (4) can have severe consequences. For instance, the consistency



Bootstrapping Semiparametric Estimators 8

property (2) fails when Bn 6= o(n−1/2) in (4) , implying in turn that inference proce-

dures based on the distributional approximation
√
n(θ̂n−θ0)∼̇N (0, Σ̂n) are invalid in

general. For instance, the asymptotic coverage probability of the interval CIn is less

than 95% when Bn 6= o(n−1/2).3 Likewise, if (3) and (4) hold the asymptotic coverage

probability of the “Efron”interval CI∗E,n is less than 95% when Bn 6= o(n−1/2).4 On

the other hand, using the relation

supt |P[
√
n(θ̂n − θ0 − Bn) ≤ t]− P∗[

√
n(θ̂

∗
n − θ̂n − Bn) ≤ t]|

= supt |P[
√
n(θ̂n − θ0) ≤ t]− P∗[

√
n(θ̂

∗
n − θ̂n) ≤ t]| (5)

it can be shown that (3) and (4) are suffi cient to guarantee asymptotic validity of the

“percentile” interval CI∗P,n. For this bootstrap-based inference procedure the conse-

quences of replacing (1) with (4) would therefore be benign if validity of (3) could be

established also under (4) .

The objective of this paper is twofold. First, we want to explore the general-

3If (4) holds and if Σ̂n is consistent, then

P[θ0 ∈ CIn] = Φ(1.96−
√
nBn/

√
Σ)− Φ(−1.96−

√
nBn/

√
Σ) + o(1),

implying in particular that limn→∞P[θ0 ∈ CIn] < 0.95 when Bn 6= o(n−1/2).
4If (3) and (4) hold, then

P[θ0 ∈ CI∗E,n] = Φ(1.96− 2
√
nBn/

√
Σ)− Φ(−1.96− 2

√
nBn/

√
Σ) + o(1),

implying in particular that limn→∞P[θ0 ∈ CI∗E,n] ≤ limn→∞P[θ0 ∈ CIn]. In other words, CI∗E,n is

even more sensitive to the bias Bn than CIn.
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ity of the finding that replacing (1) with (4) is necessary when characterizing the

large-sample properties of semiparametric estimators under weaker-than-usual con-

ditions on tuning parameters. To do so, we study an important class of kernel-based

semiparametric two-step estimators and find that members of this class of estima-

tors generally have the property that a result of the form (4) can be obtained under

significantly weaker bandwidth conditions than those needed to achieve (1) .

Our development is constructive in the sense that it produces an explicit and in-

terpretable formula for the bias Bn. It turns out that Bn in (4) arises due to features

of θ̂n that can be replicated by the bootstrap. As a consequence, it seems plausible

that the bootstrap consistency property (3) could be valid also when Bn 6= o(n−1/2)

in (4) . Formalizing and verifying the latter conjecture is the second objective of this

paper. In combination, our findings suggest that even though semiparametric esti-

mators are likely to suffer from nonnegligible bias problems in samples of moderate

size, these biases can be corrected for in a fully automatic way by basing inference on

the bootstrap. It seems to us that this is a “robustness”property of the bootstrap

that is of both theoretical and practical importance.

Remarks. (i) Although our main emphasis is on obtaining constructive results,

one negative conclusion emerging as a by-product of our development seems to be

of suffi cient theoretical and practical interest to be worth mentioning. As it turns

out, the “robustness” of bootstrap-based inference with respect to tuning parame-

ter choice is not shared by inference procedures based on subsampling, a possibly

surprising finding in light of the fact that subsampling is often regarded as a “regu-

larized”version of the bootstrap (e.g., Bickel and Li (2006)). Indeed, while it is well

understood (e.g., Politis and Romano (1994)) that the subsampling approximation

to the distribution of
√
n(θ̂n − θ0) is consistent under (1) whenever θ̂n is of the form

θ̂n = Tn(z1, . . . , zn) with zi ∼ i.i.d., a consequence of replacing (1) with (4) is that
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one of the “minimal”assumptions for asymptotic validity of subsampling is violated

and in fact it is not hard to show that inference procedures based on subsampling will

be invalid (in general) as well. (For instance, subsampling-based inference procedures

will be invalid if, for some r < 1/2, nrBn converges to a non-zero limit.) In particular,

the examples analyzed below all have the feature that there are (bandwidth) condi-

tions under which inference procedures based on the standard bootstrap are valid

even though subsampling-based inference procedures are not.

(ii) Ibragimov and Müller (2010) have proposed an inference procedure which

shares with subsampling-based inference procedures the feature that its asymptotic

validity follows from (1) whenever θ̂n is of the form θ̂n = Tn(z1, . . . , zn) with zi ∼ i.i.d..

Like subsampling, that procedure ceases to be valid when (1) is replaced by (4) .

(iii) Another well-known bootstrap-based confidence interval for θ0 is the “sym-

metric”interval

CI∗S,n = [θ̂n −Q∗n,0.95, θ̂n +Q∗n,0.95],

where Q∗n,α = inf{Q ∈ R : P∗[|θ̂∗n − θ̂n| ≤ Q] ≥ α}. The asymptotic coverage proba-

bility of this interval is 95% when (3) and (4) hold, but the interval is unnecessarily

wide when Bn 6= o(n−1/2) and is therefore not recommended.

(iv) The assumption that θ0 and θ̂n are scalar was made in this section only

to simplify the exposition. In particular, the fact that “percentile” intervals are

asymptotically valid when (3) and (4) hold is true also when θ0 and θ̂n are vector-

valued, so in the remainder of the paper we allow for that possibility.

3. Asymptotics without Stochastic Equicontinuity

Suppose θ0 ∈ Θ ⊆ Rk is a (possibly) vector-valued estimand that can be represented

as the solution to a system of equations of the form G(θ, γ0) = 0, where G(θ, γ) =
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Eg(z, θ, γ(·, θ)), g(·) is a known function, z is a random vector, and

γ0(z, θ) = E[w(z, θ)|x(z, θ)]f0[x(z, θ), θ],

with w(·) and x(·) being known functions and f0(·, θ) denoting the (unknown) density

of x(z, θ), the latter being assumed to be continuously distributed.

Letting z1, . . . , zn denote i.i.d. copies of z, a natural estimator θ̂n of θ0 is given by

an approximate minimizer (with respect to θ ∈ Θ) of

Ĝn(θ, γ̂n)′WĜn(θ, γ̂n), Ĝn(θ, γ) =
1

n

n∑
i=1

g[zi, θ, γ(·, θ)],

where W is some symmetric, positive semi-definite matrix and γ̂n is a kernel-based

estimator of γ0 given by

γ̂n(z, θ) =
1

n

n∑
j=1

w(zj, θ)Kn[x(z, θ)− x(zj, θ)], Kn(x) =
1

hdn
K

(
x

hn

)
,

where K(·) is a kernel and d is the dimension of x(z, θ).5

The formulation just given is essentially the same as in Newey and McFadden

(1994, Section 8), except that we follow Newey (1994a) and Chen et al. (2003), re-

spectively, by allowing the dimension of g to exceed that of θ0 and by accommodating

profiling (i.e., allowing γ0(z, θ) and γ̂n(z, θ) to depend on θ) as well as models where

g(z, ·, ·) is non-smooth.
5In our motivating examples, an (approximate) minimizer is one that solves Ĝn(θ, γ̂n) = 0. More

generally, an (approximate) minimizer is one that satisfies Condition (i) of Lemma 3.
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3.1. Conventional Asymptotics. Theorem 2 below provides a template for es-

tablishing (4) . The approach summarized in that theorem is related to Newey and

McFadden’s (1994) approach to establishing (1) . To facilitate a comparison between

the approaches, we begin by presenting a version of that approach.

Lemma 1. Suppose that:

(AL) [approximate linearity] for some matrix J of rank k,

√
n(θ̂n − θ0) = J 1√

n

n∑
i=1

g0(zi, γ̂n) + op(1),

where g0(z, γ) = g[z, θ0, γ(·, θ0)];

(SE) [stochastic equicontinuity] for some function ḡ0,

1√
n

n∑
i=1

[g0(zi, γ̂n)− ḡ0(zi, γ̂n)− g0(zi, γ0) + ḡ0(zi, γ0)]→p 0,

1√
n

n∑
i=1

[ḡ0(zi, γ̂n)− Ḡ0(γ̂n)− ḡ0(zi, γ0) + Ḡ0(γ0)]→p 0,

where Ḡ0(γ) = Eḡ0(z, γ);

(AN0) [asymptotic zero-mean normality] for some positive definite Ω,

1√
n

n∑
i=1

[g0(zi, γ0) + Ḡ0(γ̂n)− Ḡ0(γ0)] N (0,Ω).

Then (1) holds with Σ = JΩJ ′.

Condition (AL) is standard and typically holds (with J = −(Ġ′0WĠ0)−1Ġ′0W )

provided the error in the following linear approximation to Ĝn(·, γ̂n) is small:

Ĝn(θ, γ̂n) ≈ Ĝn(θ0, γ̂n) + Ġ0(θ − θ0), Ġ0 =
∂

∂θ′
G(θ, γ0)

∣∣∣∣
θ=θ0

.

A suffi cient condition for this to occur will be given in Section 4.1.
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An implication of Condition (AL) is that the large sample properties of θ̂n are

governed by n−1/2
∑n

i=1 g0(zi, γ̂n). Characterizing the distributional properties of such

objects is potentially complicated because of the possible nonlinearity of g0(zi, ·) and,

in particular, the dependence/overlap between the arguments of g0(zi, γ̂n) (i.e., be-

tween zi and γ̂n). A common way to account for nonlinearity and the overlap is to

impose Condition (SE) with ḡ0(zi, ·) being a linear approximation to g0(zi, ·). Irre-

spective of the functional form of ḡ0, Condition (SE) implies that

1√
n

n∑
i=1

g0(zi, γ̂n) =
1√
n

n∑
i=1

[g0(zi, γ0) + Ḡ0(γ̂n)− Ḡ0(γ0)] + op(1). (6)

Because the summands in this expansion depend on either zi or γ̂n (but not both),

Condition (SE) effectively achieves (asymptotic) “separability”between zi and γ̂n.

Verifying Condition (AN0) on the part of the leading term in the expansion (6)

tends to be straightforward, as typically the g0(zi, γ0) are mean zero random variables

and Ḡ0(γ̂n)−Ḡ0(γ0) is a smooth functional of γ̂n. (For instance, Ḡ0 is linear whenever

ḡ0(zi, ·) is.) To be specific, assuming the smoothing bias of γ̂n is small enough it is

usually not hard to show that Condition (AN0) holds (with Ω computable using the

pathwise derivative formula of Newey (1994a)).

Remarks. (i) From the perspective of this paper the most problematic assump-

tion in Lemma 1 is Condition (SE). One exceptional case where that condition is

mild is the case where the model is “adaptive” in the sense that the first step (i.e.,

estimation of γ0) has no effect on the asymptotic distribution of θ̂n. This occurs when

1√
n

n∑
i=1

[g0(zi, γ̂n)− g0(zi, γ0)]→p 0, (7)
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in which case Condition (SE) is satisfied with ḡ0 = 0 (and Condition (AN0) is satisfied

with Ω = V[g0(zi, γ0)] whenever the latter exists and is positive definite). Achieving

(7) under the “small bandwidth” asymptotics employed in this paper turns out to

require stronger conditions than in cases where the nonparametric ingredient γ̂n is

n1/4-consistent. Indeed, the condition (7) seems quite restrictive in our setup and

in the sequel we therefore tacitly assume that we are dealing with a “non-adaptive”

situation where the first step does have an effect on the asymptotic distribution

of θ̂n. (Although we focus on “non-adaptive” situations in this paper, the results

developed below remain valid also in “adaptive” situations so there is no need to

explicitly rule out (7).) Nevertheless, because some of the technical effort used in

the development of our results can be avoided when (7) holds it is of interest to be

able to identify situations when this occurs, so for completeness Section 7.1 provides

a useful “heuristically necessary”condition for (7) when γ̂n is n
1/6-consistent.

(ii) When ḡ0(zi, ·) is linear, the first part of Condition (SE) typically holds pro-

vided γ̂n − γ0 = op(n
−1/4). More generally, when ḡ0(zi, ·) is a polynomial approx-

imation of order R, then the first part of Condition (SE) typically holds provided

γ̂n − γ0 = op(n
−1/2(R+1)). In other words, the first part of Condition (SE) can typi-

cally be satisfied by judicious choice of ḡ0. (Indeed, the first part of Condition (SE)

can be rendered redundant by setting ḡ0 = g0.) The most interesting part of Con-

dition (SE), and the part motivating the label “(SE)”, is therefore the second part,

which is a stochastic equicontinuity condition.

(iii) In important special cases, the second part of Condition (SE) reduces to

conditions already in the literature, being equivalent to Assumption 5.2 of Newey

(1994a) when ḡ0(zi, ·) is linear and reducing to (2.8) of Andrews (1994a) and (3.34)

of Andrews (1994b) when ḡ0 = g0.
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3.2. Alternative Asymptotics. As can the approach outlined in Lemma 1, the

approach taken in this paper can be summarized by means of three high-level condi-

tions. To state these, let

γ̂n,i(z, θ) =
1

n− 1

n∑
j=1,j 6=i

w(zj, θ)Kn[x(z, θ)− x(zj, θ)] (i = 1, . . . , n)

denote the “leave-one-out”versions of γ̂n(z, θ) and define γn(·, θ) = Eγ̂n(·, θ).

Theorem 2. Suppose that:

(AL) for some matrix J of rank k,

√
n(θ̂n − θ0) = J 1√

n

n∑
i=1

gn(zi, γ̂n,i) + op(1),

where gn(z, γ) = g[z, θ0, n
−1w(z, θ0)Kn[x(·, θ0)− x(z, θ0)] + (1− n−1)γ(·, θ0)];

(AS) [asymptotic separability] for some function ḡn,

1√
n

n∑
i=1

[gn(zi, γ̂n,i)− ḡn(zi, γ̂n,i)− gn(zi, γn) + ḡn(zi, γn)]→p 0,

1√
n

n∑
i=1

[ḡn(zi, γ̂n,i)− Ḡn(γ̂n,i)− ḡn(zi, γn) + Ḡn(γn)]→p 0,

where Ḡn(γ) = Eḡn(z, γ);

(AN) [asymptotic normality] for some positive definite Ω and some βn,

1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂n,i)− Ḡn(γn)− βn] N (0,Ω).

Then (4) holds with Bn = J βn and Σ = JΩJ ′.

By construction, the functional form of gn is such that gn(zi, γ̂n,i) = g0(zi, γ̂n) for

every i = 1, . . . , n. As a consequence, Condition (AL) of the theorem is simply an
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unorthodox restatement of Condition (AL) of Lemma 1. It is stated in terms of gn

and γ̂n,i in anticipation of the other conditions of the theorem.

As discussed in more detail in Section 4.2, Condition (SE) typically fails when the

bandwidth hn is “small”in the sense that it converges to zero at a faster-than-usual

rate. On the one hand, rapid convergence of hn to zero can result in failure of n1/4-

consistency of γ̂n, which in turn can lead to a failure of the first part of Condition

(SE) when ḡ0(zi, ·) is chosen to be linear. In isolation, this problem is conceptually

straightforward to address. Indeed, as alluded to in remark (ii) at the end of the

previous subsection, the first part of Condition (SE) can usually be preserved also

when smaller-than-usual bandwidths are employed simply by working with a polyno-

mial (e.g., quadratic) ḡ0(zi, ·). On the other hand, it turns out that regardless of the

functional form of ḡ0(zi, ·) the stochastic equicontinuity (i.e., the second) part of Con-

dition (SE) tends to fail when the bandwidth conditions ensuring n1/4-consistency of

γ̂n are relaxed. Addressing this problem turns out to be necessary in order to achieve

the goals of this paper.

We are unaware of previous work pointing out the need to (let alone providing a

solution to the question of how to) avoid reliance on stochastic equicontinuity when

accommodating slowly converging nonparametric components. The approach we take

is to replace Condition (SE) with Condition (AS). On the surface, Condition (AS) is

simply a “leave-one-out”version of Condition (SE), but perhaps remarkably it turns

out that Condition (AS) is satisfied (with ḡn(zi, ·) being a quadratic approximation

to gn(zi, ·)) in many cases even when Condition (SE) is not.

Condition (AS) gives rise to the following counterpart of (6) :

1√
n

n∑
i=1

gn(zi, γ̂n,i) =
1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂n,i)− Ḡn(γn)] + op(1). (8)
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In this expansion, the terms gn(zi, γn) and Ḡn(γ̂n,i) − Ḡn(γn) each depend on one

(but not both) of zi and γ̂n,i. In other words, Condition (AS) achieves (asymptotic)

“separability” between zi and the nonparametric ingredient γ̂n,i in gn(zi, γ̂n,i). As

such, Condition (AS) serves a purpose very similar to that of Condition (SE) and the

label “(AS)”has been chosen to highlight this connection between the two conditions.

The big advantage of Condition (AS) is that in leading examples it can be verified

under assumptions that are considerably weaker than those required for Condition

(SE). The price to be paid for this extra generality is relatively small. In addition to

the notational nuisance of having to employ additional subscripts in many places, a

complication that must be addressed is that the terms gn(zi, γn) and Ḡn(γ̂n,i)−Ḡn(γn)

in (8) both have a nonnegligible mean in general. Accordingly, Condition (AN) is

the simplest counterpart of Condition (AN0) that one can hope for (in general).

Thankfully, it turns out that Condition (AN) is verifiable under assumptions similar

to those required for Condition (AN0) (with Ω once again computable using the

pathwise derivative formula of Newey (1994a) and βn given by a formula presented

below).

4. Verifying the Conditions of Theorem 2

The goal in this section is to demonstrate the plausibility of the conditions of Theo-

rem 2. To do so, we outline general approaches to verifying the conditions and apply

these approaches to the following three prominent examples.6

Example 1: Average Density. Suppose x1, . . . , xn are i.i.d. copies of a con-

tinuously distributed random vector x ∈ Rd with density f0. Then a kernel-based

6To avoid distractions, we omit statements of regularity conditions when presenting the examples

and the associated results. Additional details for the examples are provided in Section 9.
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estimator of θ0 =
∫
Rd f0(x)2dx, the average density, is given by

θ̂n =
1

n

n∑
i=1

f̂n(xi), f̂n(x) =
1

n

n∑
j=1

Kn(x− xj).

When verifying the conditions of Theorem 2 for this example, we set z = x,

x(z, θ) = z, w(z, θ) = 1, γ0(·, θ) = f0(·), and let θ̂n be defined by Ĝn(θ̂n, f̂n) = 0,

where g(x, θ, f) = f(x)− θ is a linear functional of f.

Being a second-order V -statistic this estimator is very tractable. Owing partly to

this tractability the estimator has been widely studied (in the statistics literature at

least). We include it here mainly because it provides a dramatic demonstration of the

fragility of the second part of Condition (SE) with respect to bandwidth choice. �

Example 2: Weighted Average Derivative. Suppose z1, . . . , zn are i.i.d. copies

of z = (y, x′)′, where y ∈ R is a scalar dependent variable and the vector x ∈ Rd

is a continuous explanatory variable with density f0. A weighted average derivative

of the regression function r(x) = E(y|x) is defined as θ0 = E[ω(x)∂r(x)/∂x], where

ω is a known scalar weight function. As an estimator of θ0, Cattaneo et al. (2013)

considered

θ̂n =
1

n

n∑
i=1

yis(xi, f̂n), s(x, f) = − ∂

∂x
ω(x)− ω(x)

∂f(x)/∂x

f(x)
,

where f̂n is defined as in Example 1.

In this example, z = (y, x′)′, x(z, θ) = x, w(z, θ) = 1, γ0(·, θ) = f0(·), and

Ĝn(θ̂n, f̂n) = 0, where g(z, θ, f) = ys(x, f)− θ.

This estimator is a representative member of the class of two-step semiparametric

estimators insofar as it involves a nonlinear, but smooth, functional of its nonpara-

metric ingredient f̂n. As will become apparent, this nonlinearity needs to be taken
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into account when choosing ḡn in the process of verifying Condition (AS). More im-

portantly, perhaps, it turns out that nonlinearity manifests itself in the functional

form of βn in Condition (AN) and therefore in the form of the bias Bn in (4) . �

Example 3: Hit Rate. Suppose z1, . . . , zn are i.i.d. copies of z = (y, x′)′, where

y ∈ R is a scalar and the vector x ∈ Rd is a continuous explanatory variable with

density f0. As an estimator of θ0 = P[y ≥ f0(x)], a particular example of a so-called

‘hit rate’, Chen et al. (2003) studied

θ̂n =
1

n

n∑
i=1

1[yi ≥ f̂n(xi)],

where 1[·] is the indicator function and f̂n is as in the previous examples.

In this example, z = (y, x′)′, x(z, θ) = x, w(z, θ) = 1, γ0(·, θ) = f0(·), and

Ĝn(θ̂n, f̂n) = 0, where g(z, θ, f) = 1[y ≥ f(z)]− θ.

While simple in many respects, being a discontinuous functional of f̂n this estima-

tor is an interesting one to investigate when attempting to understand the extent to

which the conclusions of Example 2 are consequences of the smoothness (with respect

to f̂n) of the estimator considered there. In particular, because the empirical process

methods utilized by Chen et al. (2003) to handle the lack of smoothness of θ̂n with

respect to f̂n cannot be applied when verifying Condition (AS) it would appear to be

of interest to investigate the extent to which Condition (AS) can be verified also in

the absence of smoothness. �

4.1. Approximate Linearity. Condition (AL) is simply a representation when

θ̂n is defined as the solution to Ĝn(θ, γ̂n) = 0 for a function g with g(z, θ, γ)− θ not

depending on θ. Indeed, Condition (AL) holds with J = Ik and without any op(1)

term in this important special case, which covers Examples 1-3.
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More generally, verifying Condition (AL) is usually straightforward when Ĝn(θ0, γ̂n)

is assumed to be Op(n
−1/2), as in Conditions (SE) and (AN0) of Lemma 1, because

then suffi cient conditions for Condition (AL) can be formulated with the help of Pakes

and Pollard (1989, Theorem 3.3). The situation is slightly more delicate in the sce-

narios of main interest to us because Conditions (AS) and (AN) of Theorem 2 imply

only that Ĝn(θ0, γ̂n) = Op(‖βn‖), where it turns out that ‖βn‖ = o(n−1/3) 6= O(n−1/2)

in the cases of primary interest.

For completeness, we provide a set of suffi cient conditions for Condition (AL)

compatible with Conditions (AS) and (AN). To state these, let ‖ · ‖ denote the

Euclidian norm, let ‖ · ‖Γ denote a norm on a function space to which γ̂n−γ0 belongs

(with probability approaching one), and for any δ > 0, let Θ(δ) = {θ : ‖θ − θ0‖ ≤ δ}

and Γ(δ) = {γ : ‖γ − γ0‖Γ ≤ δ}. Also, suppose Ġ(γ) = ∂G(θ, γ)/∂θ′|θ=θ0 exists for

every γ in a neighborhood of γ0 and let Ġ0 = Ġ(γ0).

Lemma 3. Suppose that θ̂n − θ0 = op(1), ‖γ̂n − γ0‖Γ = op(n
−1/6), and that:

(i) Ĝn(θ̂n, γ̂n)′WĜn(θ̂n, γ̂n) ≤ infθ∈Θ Ĝn(θ, γ̂n)′WĜn(θ, γ̂n) + op(n
−1);

(ii) Ġ′0WĠ0 has rank k and for every positive δn = o(1),

sup
θ∈Θ(δn),γ∈Γ(δn)

[
‖G(θ, γ)−G(θ0, γ)− Ġ(γ)(θ − θ0)‖

‖θ − θ0‖2
+
‖Ġ (γ)− Ġ0‖
‖γ − γ0‖Γ

]
= O(1);

(iii) for α ∈ {0, 1/3} and for every positive δn = o(n−α),

sup
θ∈Θ(δn)

‖Ĝn(θ, γ̂n)−G(θ, γ̂n)− Ĝn(θ0, γ̂n) +G(θ0, γ̂n)‖ = op(n
−1/2−α/2);

(iv) Ĝn(θ0, γ̂n) = op(n
−1/3);

(v) θ0 is an interior point of Θ.

Then Condition (AL) holds with J = −(Ġ′0WĠ0)−1Ġ′0W.



Bootstrapping Semiparametric Estimators 21

Lemma 3 is in the spirit of Pakes and Pollard (1989, Theorem 3.3). An inspection

of the proof of the lemma shows that the α = 1/3 version of condition (iii) is redundant

when condition (i) is strengthened to Ĝn(θ̂n, γ̂n) = op(n
−1/2), as is usually possible in

the “just identified”case where θ0 and g are of the same dimension. More details on

the assumptions of the lemma, including in particular some remarks on our (stochastic

equicontinuity) condition (iii), are provided in Section 7.2.

Suffi ce it to say that overall the conditions of Lemma 3 seem suffi ciently weak to

support the view that in perfect analogy Newey and McFadden (1994, p. 2196), Con-

dition (AL) is “not conceptually diffi cult, only technically diffi cult”. Accordingly, and

because those features that are allowed for by the general formulation but assumed

away in examples where Condition (AL) is simply a representation are incidental

to the main points of this paper, we have deliberately chosen illustrative examples

satisfying
√
n(θ̂n − θ0) = n−1/2

∑n
i=1 g0 (zi, γ̂n) .

4.2. Asymptotic Separability. In many cases Condition (SE) is too strong

when the goal is to prove (4) with Bn 6= o(n−1/2). This shortcoming is not shared by

Condition (AS), which often turns out to be verifiable under assumptions compatible

with βn 6= o(n−1/2) in Condition (AN0). A dramatic illustration of this phenomenon

is provided by Example 1.

Example 1 (continued). Suppose the kernel is of order P and satisfies standard

conditions, and suppose the bandwidth satisfies nh2P
n → 0 and nhdn → ∞. Then (4)

holds with Bn = K(0)/(nhdn) and Σ = 4V[f0(x)] provided f0 is suffi ciently smooth.

(For details, see Section 9.)

Because
√
nBn = K(0)/

√
nh2d

n , the condition nh
d
n →∞ is weak enough to permit

Bn 6= o(n−1/2). On the other hand, (4) reduces to (1) when imposing conditions

requiring nh2d
n → ∞, so it is necessary to guard against this when the goal is to
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obtain a result of the form (4) with Bn 6= o(n−1/2).

Turning first to Condition (SE) and setting ḡ0 = g0, the first part of that condition

is automatically satisfied and the second part becomes

1√
n

n∑
i=1

[f̂n(xi)− fn(xi)− f0(xi) + θ0] = op(1), fn(·) = Ef̂n(·).

It follows from a direct calculation that

1√
n

n∑
i=1

[f̂n(xi)− fn(xi)− f0(xi) + θ0] =
K(0)√
nh2d

n

+ op(1),

so Condition (SE) requires nh2d
n →∞ and is therefore too strong for our purposes.

On the other hand, setting ḡn = gn the first part of Condition (AS) is automati-

cally satisfied and the second part becomes

1√
n

n∑
i=1

[f̂n,i(xi)− 2fn(xi) + θn] = op(1), θn =

∫
Rd
fn(x)f0(x)dx,

where f̂n,i(x) = (n − 1)−1
∑n

j=1,j 6=iKn(x − xj). A simple variance calculation now

shows that Condition (AS) is satisfied if nhdn →∞. �

To interpret the bandwidth requirements nh2d
n → ∞ and nhdn → ∞ implied by

Conditions (SE) and (AS) in this example it is helpful to recall that the (pointwise)

rate of convergence of f̂n is
√
nhdn; that is, f̂n(x) − fn(x) = Op(1/

√
nhdn) for any

x ∈ Rd. The conditions nh2d
n → ∞ and nhdn → ∞ therefore correspond loosely to

the requirements of n1/4-consistency and consistency, respectively, on the part of the

nonparametric ingredient f̂n.

The fact that any rate of convergence (on the part of the nonparametric ingredient

f̂n) will suffi ce when verifying Condition (AS) is largely due to the linearity of θ̂n with
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respect to f̂n. This feature is clearly special, but in three important respects Example

1 turns out to be representative. First, in order to obtain results of the form (4) with

Bn 6= o(n−1/2) it is necessary to work under bandwidth conditions that can result in

convergence rates slower than n1/4 for nonparametric ingredients. Second, bandwidth

conditions needed for stochastic equicontinuity (i.e., Condition (SE)) generally imply

n1/4-consistency on the part of nonparametric ingredients. Avoiding reliance on Con-

dition (SE) therefore turns out to be crucial in order to achieve the goals of this paper.

Third, as demonstrated by the examples that follow the qualitatively conclusion that

Condition (AS) is compatible with convergence rates slower than n1/4 on the part of

nonparametric ingredients is true quite generally. Condition (AS) therefore emerges

as an attractive alternative to Condition (SE).

Among estimators not satisfying (7) we are aware of only two types that pro-

vide exceptions to the rule that bandwidth conditions needed for Condition (SE)

imply n1/4-consistency on the part of nonparametric ingredients. These exceptions

are those illustrated by Hausman and Newey’s (1995) consumer surplus estimator and

the “leave in”version of Powell, Stock, and Stoker’s (1989) estimator, respectively.

Hausman and Newey’s (1995) consumer surplus estimator (also discussed in Newey

and McFadden (1994)) is one for which g0(z, γ) is additively separable between z and

γ.7 In such special cases “separability”between z and γ is of course automatic and,

indeed, both parts of Condition (SE) are satisfied (without any op(1) terms) when

g0 = ḡ0. In the case of the “leave in”version of Powell et al.’s (1989) estimator, on

the other hand, validity of Condition (SE) under weak bandwidth conditions would

appear to be due to the fact that Condition (AS) holds and the fact that g0 and gn

coincide (apart from a non-important factor of proportionality).8

7Indeed, their g0(z, γ) does not depend on z.
8As pointed out by footnote 6 of Powell et al. (1989), g0 = (1 − n−1)gn because symmetric

kernels satisfy K ′(0) = 0.
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While seemingly peculiar, the feature which makes the “leave in”version of Powell

et al.’s (1989) estimator satisfy Condition (SE) turns out to be exploitable quite

generally. To be specific, essentially because it involves γ̂n,i rather than γ̂n, the “leave-

one-out” version of Condition (SE) given by Condition (AS) turns to be verifiable

under remarkably weak bandwidth conditions.

As pointed out by Newey and McFadden (1994) and illustrated by Example 1,

verification (or otherwise) of the second part of Condition (SE) involves nothing more

than second-order U -statistic calculations when ḡ0(z, γ) is linear in γ. Example 1 also

shows that very similar calculations can be used to verify the second part of Condition

(AS) when ḡn(z, γ) is linear in γ.

To accommodate slower-than-n1/4 rates of convergence while achieving nontrivial

generality it is useful to have results that cover nonlinear-in-γ functions. It turns out

that in many nonlinear-in-γ cases a variation on Newey’s (1994a) approach can be

used to verify Condition (AS) for a ḡn which is quadratic (rather than linear, as in

Newey (1994a)) in its second argument. For such a ḡn, the second part of Condition

(AS) can usually by verified by means of the following lemma.

Lemma 4. Suppose that gn,γ(z)[·] is linear, gn,γγ(z)[·, ·] is bilinear, and that:

V(gn,γ(z1)[κn,2]) = o(n),

V[E(gn,γγ(z1)[κn,2, κn,2]|z1)] = o(n2), V(gn,γγ(z1)[κn,2, κn,2]) = o(n3),

V(gn,γγ(z1)[κn,2, κn,3]) = o(n2),

where κn,j(z, θ) = w(zj, θ)Kn[x(z, θ)− x(zj, θ)]− γn(z, θ). Then

ḡn(z, γ) = gn(z, γn) + gn,γ(z)[γ − γn] +
1

2
gn,γγ(z)[γ − γn, γ − γn],

satisfies the second part of Condition (AS).
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The ease with which the first part of Condition (AS) can be verified with a

quadratic ḡn depends on the smoothness of gn(z, γ) with respect to γ. One widely

applicable suffi cient condition, similar in spirit to Newey (1994a, Condition 5.1), is

given by the following lemma, in which ‖ · ‖Γ0 denotes a norm on a function space to

which γ̂n,i(·, θ0)− γn(·, θ0) belong (with probability approaching one).

Lemma 5. Suppose that max1≤i≤n ‖γ̂n,i(·, θ0)−γn(·, θ0)‖Γ0 = op(n
−1/6) and that for

all γ with ‖γ(·, θ0)− γn(·, θ0)‖Γ0 small enough,

‖gn(z, γ)− ḡn(z, γ)‖ ≤ b(z)‖γ(·, θ0)− γn(·, θ0)‖3
Γ0
,

where ḡn is as in Lemma 4 and Eb(z) <∞. Then the first part of Condition (AS) is

satisfied.

The conditions of the lemma are satisfied in Example 2, although slightly better

suffi cient conditions for Condition (AS) can be obtained by exploiting a special fea-

ture of the estimator considered in that example.

Example 2 (continued). A quadratic approximation to gn(z, f) is given by

ḡn(z, f) = gn(z, fn) + gn,f (z)[f − fn] +
1

2
gn,ff (z)[f − fn, f − fn],

where, defining f+
n (x) = n−1Kn(0) + (1− n−1)fn(x),

gn,f (z)[κ] = −(1− n−1)
yω(x)

f+
n (x)

[
∂

∂x
κ(x)− ∂f+

n (x)/∂x

f+
n (x)

κ(x)

]
,

gn,ff (z)[κ, λ] = (1− n−1)2 yω(x)

f+
n (x)2

[
λ(x)

∂

∂x
κ(x) + κ(x)

∂

∂x
λ(x)− 2

∂f+
n (x)/∂x

f+
n (x)

κ(x)λ(x)

]
.

If hn → 0 and if nh
3
2
d+3

n /(log n)3/2 → ∞, then the conditions of Lemma 5 are

satisfied. Proceeding as in Cattaneo et al. (2013), the second bandwidth condition
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can in fact be relaxed to nh
3
2
d+1

n /(log n)3/2 → ∞. This bandwidth condition is also

suffi cient for the second part of Condition (AS), as the assumptions of Lemma 4 are

satisfied whenever nhd+2
n →∞. �

In Example 1, Condition (AS) could be verified without imposing conditions on the

rate of convergence of f̂n. In contrast, the condition nh
3
2
d+1

n /(log n)3/2 →∞ imposed

in Example 2 does impose a convergence rate condition on f̂n, corresponding roughly

to an n1/6-consistency requirement on f̂n (and its derivative). While almost certainly

not the weakest possible, this bandwidth condition is attractive from the perspective

of this paper as it is weak enough to permit failure of n1/4-consistency (which once

again turns out to be crucial) yet strong enough to enable us to verify Condition (AS)

with a fairly modest amount of effort.

Even in cases where gn(z, ·) is not smooth, Lemma 5 might be useful when at-

tempting to verify that the first part of Condition (AS) is satisfied by a quadratic ḡn.

Example 3 provides an illustration.

Example 3 (continued). Let Fy|x(·|x) denote the conditional cdf of y given x,

let fy|x(·|x) and ḟy|x(·|x) denote its first and second derivatives. By first conditioning

on x and then proceeding as in the smooth case we are led to consider

ḡn(x, f) = ğn(x, fn) + ğn,f (x)[f − fn] +
1

2
ğn,ff (x)[f − fn, f − fn],

where ğn(x, fn) = −Fy|x[f+
n (x)|x] and

ğn,f (x)[κ] = −(1− n−1)fy|x[f
+
n (x)|x]κ(x),

ğn,ff (x)[κ, λ] = −(1− n−1)2ḟy|x[f
+
n (x)|x]κ(x)λ(x).
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If hn → 0 and if nh
3
2
d

n /(log n)3/2 → ∞, then Lemma 5 can be used to show that

the first part of Condition (AS) is satisfied. The same bandwidth conditions are

suffi cient for the second part of Condition (AS), as the assumptions of Lemma 4 are

satisfied whenever nhdn →∞. �

In perfect analogy with Example 2, also in this nonsmooth case Condition (AS) is

seen hold under bandwidth conditions corresponding roughly to an n1/6-consistency

requirement on f̂n. Once again, the main thing to notice is the fact that Condition

(AS) permits failure of n1/4-consistency.

Remarks. (i) The second part of Condition (SE) can be verified by exhibiting a

sequence Γn,0 of function classes satisfying limn→∞ P[γ̂n(·, θ0) ∈ Γn,0] = 1 and

supγ(·,θ0)∈Γn,0

∥∥∥∥∥ 1√
n

n∑
i=1

[ḡ0(zi, γ)− Ḡ0(γ)− ḡ0(zi, γ0) + Ḡ0(γ0)

∥∥∥∥∥→p 0,

where empirical process results (e.g., maximal inequalities) can be used to formulate

primitive suffi cient conditions for the latter. This approach, taken by Andrews (1994b,

Condition (3.36)), Chen et al. (2003, Conditions (2.4) and (2.5′)), and many others,

does not seem applicable when the goal is to formulate primitive suffi cient conditions

for the second part of Condition (AS). To be specific, the dependence of γ̂n,i on i in

the second part of Condition (AS) implies that the desired convergence in probability

result cannot be deduced with the help of a result of the form

supγ(·,θ0)∈Γn,0

∥∥∥∥∥ 1√
n

n∑
i=1

[ḡn(zi, γ)− Ḡn(γ)− ḡn(zi, γn) + Ḡn(γn)

∥∥∥∥∥→p 0.

(ii) For Example 3 arguments similar to those used in our verification of Condi-

tion (AS) can be used to show that Condition (SE) holds when nh2d
n → ∞ (which



Bootstrapping Semiparametric Estimators 28

corresponds roughly to an n1/4-consistency requirement on f̂n). This represents a

considerable improvement over the condition nh3d
n →∞ (which corresponds roughly

to an n1/3-consistency requirement on f̂n) apparently required when using empirical

process methods to verify Condition (SE) by first exhibiting a function space H sat-

isfying (3.3) of Chen et al. (2003)’s Theorem 3 (as is done by Chen et al. (2003,

p. 1600)) and then formulating bandwidth conditions under which f̂n (ĥ in their

notation) belongs to H with probability approaching one. �

4.3. Asymptotic Normality. Suppose ḡn is as in Lemmas 4 and 5, in which

case we have

Ḡn(γ) = Gn(γn) +Gn,γ[γ − γn] +
1

2
Gn,γγ[γ − γn, γ − γn],

where Gn,γ[·] = Egn,γ(z)[·] and Gn,γγ[·] = Egn,γγ(z)[·]. Then

1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂n,i)− Ḡn(γn)] =
1√
n

n∑
i=1

ψn(zi) +
√
nBn,

where, defining δn(z) = Gn,γ[w(z, θ0)Kn(x(·, θ0)− x(z, θ0))− γn(·, θ0)],

ψn(z) = gn(z, γn)− Egn(z, γn) + δn(z)

and

Bn = Egn(z, γn) +
1

2

1

n

n∑
i=1

Gn,γγ[γ̂n,i − γn, γ̂n,i − γn].

The assumptions of the following lemma are usually straightforward to verify.
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Lemma 6. Suppose that

E[‖ψn(z)− ψ(z)‖2]→ 0 (9)

for some function ψ and that:

V(Gn,γγ[κn,1, κn,1]) = o(n2), V(Gn,γγ[κn,1, κn,2]) = o(n). (10)

Then Condition (AN) holds with Ω = E[ψ(z)ψ(z)′] and βn any sequence satisfying

βn = EBn + o(n−1/2).

Knowing the functional form of ψ and βn is unnecessary for the purposes of

verifying Condition (AN) and/or applying the bootstrap, but since ψ and βn may

nevertheless be objects of theoretical interest we comment briefly on them before

verifying Condition (AN) for the examples. The function ψ in (9) will typically be

given by ψ(z) = g0(z, γ0) + δ0(z), where δ0(z) is the “correction term” discussed

by Newey (1994a). Regarding the “bias” sequence βn, we have the decomposition

EBn = βSn + βLIn + βNLn , where

βSn = Eg0(z, γn), βLIn = E[gn(z, γn)− g0(z, γn)], βNLn =
1

2n
EGn,γγ[κn,1, κn,1].

Here, βSn is a familiar (smoothing) bias term, which can typically be ignored because

βSn = o(n−1/2) under standard smoothness, kernel, and bandwidth conditions.9 The

term βLIn is a “leave in” bias term (in the terminology of Cattaneo et al. (2013))

whose presence can be attributed to a failure of stochastic equicontinuity. This term

is nonnegligible in all of our examples. The final term, βNLn , is what Cattaneo et al.

9To be specific, we typically have βSn = O(hPn ), where P is the order of the kernel. In this case,

βSn can be ignored if nh
2P
n → 0.
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(2013) refer to as a “nonlinearity”bias term. This term is zero in Example 1 (where

θ̂n is a linear functional of f̂n), but is nonnegligible in Examples 2 and 3 (where θ̂n is

a nonlinear functional of f̂n). To summarize, we can typically set βn = βLIn + βNLn .

Example 1 (continued). If hn → 0, then (9) holds with ψ(x) = 2[f0(x) − θ0].

Also, Bn is nonrandom and satisfies Bn = K(0)/(nhdn) + O(hPn + n−1). As a con-

sequence, Condition (AN) is satisfied with Σ = 4V[f0(x)] and βn = K(0)/(nhdn)

provided nh2P
n → 0.

In summary, if nh2P
n → 0 and if nhdn →∞, then the conditions of Theorem 2 are

satisfied and (4) holds with Bn = O(1/(nhdn)). �

Example 2 (continued). If hn → 0 and if nhdn → ∞, then (9) holds with

ψ(z) = g0(z, f0) + δ0(z), where

δ0(z) = ω(x)
∂

∂x
r(x) + r(x)

∂

∂x
ω(x) + r(x)ω(x)

∂f0(x)/∂x

f0(x)
.

Also, (10) is satisfied if hn → 0 and if nhd+2
n → ∞. As a consequence, Condition

(AN) is satisfied with Σ = E[ψ(z)ψ(z)′] if hn → 0 and if nhd+2
n →∞.

If also nh2P
n → 0, then βSn = O(hPn ) = o(n−1/2) and

βLIn =
1

nhdn
K(0)

∫
Rd
r(x)ω(x)

∂f0(x)/∂x

f0(x)
dx+ o(n−1/2),

βNLn =
1

nhd+1
n

∫
Rd

∫
Rd

r(x)ω(x)

f0(x)
K(r)

∂

∂r
K(r)f0(x− rhn)dxdr

− 1

nhdn

∫
Rd

∫
Rd

r(x)ω(x)

f0(x)

∂f0(x)/∂x

f0(x)
K(r)2f0(x− rhn)dxdr + o(n−1/2),

where it follows from Cattaneo et al. (2013, Lemma 1) that βNLn admits a polynomial-

in-hn expansion of the form
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βNLn =
1

nhdn
[B0 + B1h

2
n + B2h

4
n + . . .],

the constants B0, B1, B2, . . . being functionals of K and the data generating process.

(Symmetry of the kernel implies that βNLn is of order 1/(nhdn) and that the polynomial

expansion of nhdnβ
NL
n involves only even powers of hn.)

In summary, if nh2P
n → 0 and if nh

3
2
d+1

n /(log n)3/2 → ∞, then the conditions of

Theorem 2 are satisfied and (4) holds with Bn = O(1/(nhdn)). �

Example 3 (continued). If hn → 0 and if nhdn → ∞, then (9) holds with

ψ(z) = g0(z, f0) + δ0(x), where

δ0(x) = −fy|x[f0(x)|x]f0(x) +

∫
Rd
fy|x[f0(x)|x]f0(x)2dx.

Also, (10) is satisfied if hn → 0 and if nhdn →∞. As a consequence, Condition (AN)

is satisfied with Σ = E[ψ(z)ψ(z)′] if hn → 0 and if nhdn →∞.

If also nh2P
n → 0, then βSn = O(hPn ) = o(n−1/2) and

βLIn = − 1

nhdn
K(0)

∫
Rd
fy|x[f0(x)|x]f0(x)dx+ o(n−1/2),

βNLn = − 1

nhdn

1

2

∫
Rd
ḟy|x[f0(x)|x]K(r)2f0(x)f0(x− rhn)dxdr + o(n−1/2),

where βNLn can be shown to admit a polynomial-in-hn expansion of the form

βNLn =
1

nhdn
[B0 + B1h

2
n + B2h

4
n + . . .],
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the constants B0, B1, B2, . . . being functionals of K and the data generating process.

In summary, if nh2P
n → 0 and if nh

3
2
d

n /(log n)3/2 → ∞, then the conditions of

Theorem 2 are satisfied and (4) holds with Bn = O(1/(nhdn)). �

The findings for Examples 1 and 3 are in qualitative agreement with the those

for Example 2. For the model studied in Example 2, Cattaneo et al. (2013, Section

3.3) went slightly further and used a bias expansion to develop a bandwidth selec-

tion method. The bandwidths chosen by that procedure are of order n−1/(P+d) and

were found by Cattaneo et al. (2013) to perform well. It seems plausible analogous

bandwidth selection procedures can be developed for Examples 1 and 3 (and perhaps

even in fairly complete generality).

Remark. From the perspective of this paper the “leave-one-out” estimators γ̂n,i

are simply a technical device used when analyzing the properties of the estimator θ̂n

defined in terms of γ̂n. An estimator θ̃n (say) naturally formulated in terms of γ̂n,i

is the “leave-one-out”counterpart of θ̂n defined as an approximate minimizer (with

respect to θ ∈ Θ) of

G̃n(θ)′WG̃n(θ), G̃n(θ) =
1

n

n∑
i=1

g[zi, θ, γ̂n,i(·, θ)].

Under conditions similar to those imposed when analyzing θ̂n the methodology de-

veloped in this paper can be used to show that θ̃n satisfies (4) with Bn = J βNLn
and Σ = JΩJ ′. In particular, the estimator θ̃n does not suffer from “leave in”bias.

Although θ̃n itself is immune to a bias problem attributable to a failure of stochastic

equicontinuity, this conclusion is not obtainable by means of methods relying on sto-

chastic equicontinuity conditions, so from a technical point of view little simplicity

is gained by analyzing θ̃n instead of θ̂n. Moreover, it turns out that the bootstrap
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consistency result (3) typically fails for θ̃n, so there are good practical reasons for

focusing on θ̂n when part of the goal is to obtain constructive results. For this reason

we do not analyze θ̃n in this paper.

5. Bootstrap Consistency

One consequence of replacing (1) with (4) is that the statistics
√
n(θ̂n − θ0) cease to

be tight. Proving bootstrap consistency without existence of limiting distributions

(or even tightness) can be diffi cult in general (e.g., Radulovic (1998)), but thankfully

the present setting has enough structure to enable us to give a simple characterization

of bootstrap consistency. Indeed, in light of (5) the following condition is (necessary

and) suffi cient for (3) under (4) :

√
n(θ̂

∗
n − θ̂n − Bn) p N (0,Σ), (11)

where  p denotes weak convergence in probability.

This characterization is very useful for our purposes because it turns out that in

many cases verification of (3) and (4) can proceed by first proving (4) and then, by

imitating that proof, demonstrating (11) . For example, the next result is a bootstrap

analogue of Theorem 2. To state it, let θ̂
∗
n be an (approximate) minimizer of

Ĝ∗n(θ, γ̂∗n)′WĜ∗n(θ, γ̂∗n), Ĝ∗n(θ, γ) =
1

n

n∑
i=1

g[z∗i , θ, γ(·, θ)],

where

γ̂∗n(z, θ) =
1

n

n∑
j=1

w(z∗j , θ)Kn[x(z, θ)− x(z∗j , θ)]

and z∗1 , . . . , z
∗
n is a random sample with replacement from z1, . . . , zn. Also, let
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γ̂∗n,i(z, θ) =
1

n− 1

n∑
j=1,j 6=i

w(z∗j , θ)Kn[x(z, θ)− x(z∗j , θ)] (i = 1, . . . , n).

Theorem 7. Suppose the assumptions of Theorem 2 are satisfied and that:

(AL*) for the same J as in (AL),

√
n(θ̂

∗
n − θ̂n) = J 1√

n

n∑
i=1

g∗n(z∗i , γ̂
∗
n,i) + op(1),

where g∗n(z, γ) = g[z, θ̂n, n
−1w(z, θ̂n)Kn[x(·, θ̂n)− x(z, θ̂n)] + (1− n−1)γ(·, θ̂n)];

(AS*) for some function ḡ∗n,

1√
n

n∑
i=1

[g∗n(z∗i , γ̂
∗
n,i)− ḡ∗n(z∗i , γ̂

∗
n,i)− g∗n(z∗i , γ̂n) + ḡ∗n(z∗i , γ̂n)]→p 0,

1√
n

n∑
i=1

[ḡ∗n(z∗i , γ̂
∗
n,i)− Ḡ∗n(γ̂∗n,i)− ḡ∗n(z∗i , γ̂n) + Ḡ∗n(γ̂n)]→p 0,

where Ḡ∗n(γ) = n−1
∑n

i=1 ḡ
∗
n(zi, γ);

(AN*) for the same Ω and βn as in (AN),

1√
n

n∑
i=1

[g∗n(z∗i , γ̂n) + Ḡ∗n(γ̂∗n,i)− Ḡ∗n(γ̂n)− βn] p N (0,Ω).

Then (3) holds.

The conditions of Theorem 7 are natural bootstrap analogs of the corresponding

conditions of Theorem 2 not only in appearance but also in the sense that they can

usually be verified by mimicking the verification of the corresponding conditions of

Theorem 2.

Like (AL), Condition (AL*) is simply a representation in many important cases,

including Examples 1-3. More generally, Condition (AL*) can often be verified with

the help of a bootstrap analog of Lemma 3 given in Section 7.2.
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Turning next to Conditions (AS*) and (AN*), suppose ḡ∗n satisfies

ḡ∗n(z, γ) = g∗n(z, γ̂n) + g∗n,γ(z)[γ − γ̂n] +
1

2
g∗n,γγ(z)[γ − γ̂n, γ − γ̂n],

where g∗n,γ(z)[·] is linear and g∗n,γγ(z)[·, ·] is bilinear. In perfect analogy with Lemma

4, the second part of Condition (AS*) is satisfied provided the following conditions

hold:

V∗(g∗n,γ(z∗1)[κ∗n,2]) = op(n),

V∗[E∗(g∗n,γγ(z∗1)[κ∗n,2, κ
∗
n,2]|z∗1)] = op(n

2), V∗(g∗n,γγ(z∗1)[κ∗n,2, κ
∗
n,2]) = op(n

3),

V∗(g∗n,γγ(z∗1)[κ∗n,2, κ
∗
n,3]) = op(n

2),

where κ∗n,j(z, θ) = w(z∗j , θ)Kn[x(z, θ)−x(z∗j , θ)]− γ̂n(z, θ), E∗(·) = E(·|z1, . . . , zn), and

V∗(·) = V(·|z1, . . . , zn).

As in the case of the first part of Condition (AS), the ease with (and methods by)

which the first part of Condition (AS*) can be verified with a “quadratic”ḡ∗n depends

on the specifics of the example, but verification by imitation is usually straightforward

once verification of the first part of Condition (AS) has been achieved.

Finally, we have

1√
n

n∑
i=1

[g∗n(z∗i , γ̂n) + Ḡ∗n(γ̂∗n,i)− Ḡ∗n(γ̂n)] =
1√
n

n∑
i=1

[ψ∗n(z∗i ) +B∗n],

where, defining δ∗n(z) = G∗n,γ[w(z, θ̂n)Kn(x(·, θ̂n)− x(z, θ̂n))− γ̂n(·, θ̂n)],

ψ∗n(z) = g∗n(z, γ̂n)− 1

n

n∑
i=1

g∗n(zi, γ̂n) + δ∗n(z)
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and

B∗n =
1

n

n∑
i=1

g∗n(zi, γ̂n) +
1

2

1

n

n∑
i=1

G∗n,γγ[γ̂
∗
n,i − γ̂n, γ̂∗n,i − γ̂n].

If Condition (AN) holds, then so does Condition (AN*) if

1

n

n∑
i=1

‖ψ∗n(zi)− ψn(zi)‖2 →p 0

and if

V∗(G∗n,γγ[κ∗n,1, κ∗n,1]) = op(n
2), V∗(G∗n,γγ[κ∗n,1, κ∗n,2]) = op(n),

E∗(B∗n) = βn + op(n
−1/2).

These conditions can usually be verified using straightforward, but possibly tedious,

moment calculations for U -statistics.

In our examples it turns out that the conditions of Theorem 7 can be verified

under the same bandwidth conditions as those used when verifying the conditions of

Theorem 2. As a consequence, assuming for specificity that the bandwidth is of the

form hn = Cn−1/η (where C > 0 and η > 0 are user-chosen constants) the examples

allow us to draw the following conclusions regarding the “robustness”of inference pro-

cedures with respect to bandwidth choice. Asymptotic validity of (the Ibragimov and

Müller (2010) procedure, “Efron”confidence intervals, and) standard confidence in-

tervals motivated by the distributional approximation
√
n(θ̂n−θ0)∼̇N (0, Σ̂n) requires

η ∈ (2d, 2P ), while asymptotic validity of subsampling-based confidence intervals re-

quires η ∈ [2d, 2P ). On the other hand, there is an example-specific constant η∗ < 2d



Bootstrapping Semiparametric Estimators 37

such that the bootstrap-based percentile confidence intervals are asymptotically valid

whenever η ∈ (η∗, 2P ). The constant η∗ equals d in Example 1 and it follows from the

results presented above that η∗ is no greater than
3
2
d+1 and 3

2
d in Examples 2 and 3,

respectively.10 In other words, the range of η-values for which bootstrap-based infer-

ence procedures enjoy asymptotic validity is wider than the range for which its main

rivals are valid. As a result, there is a formal sense in which bootstrap-based inference

procedures are more “robust”with respect to bandwidth choice than their main rivals.

Remarks. (i) We deliberately study only the simplest version of the bootstrap.

As in Hahn (1996) doing so is suffi cient when the goal is to establish first-order as-

ymptotic validity, but we conjecture that results analogous to Theorem 2 can be

obtained for various modifications of the simple nonparametric bootstrap, including

those proposed by Brown and Newey (2002) and Hall and Horowitz (1996) to handle

overidentified models.

(ii) Similarly, to highlight the fact that asymptotic pivotality plays no role in our

theory we use the bootstrap to approximate the distribution of
√
n(θ̂n − θ0) rather

than a studentized version thereof.

(iii) The condition n−1
∑n

i=1 ‖ψ
∗
n(zi) − ψn(zi)‖2 →p 0 implies in particular that

if (9) holds, then Ω̂n = n−1
∑n

i=1 ψ
∗
n(zi)ψ

∗
n(zi)

′ →p E[ψ(z)ψ(z)′] = Ω. Although the

estimator Ω̂n emerges here as a by-product of our analysis of the bootstrap it may

be of interest to note that it can be interpreted as a variant of the “delta-method”

variance estimator of Newey (1994b).

(iv) A small simulation study based on Example 3 produced results (not reported

here) consistent with one of the main predictions of the theory developed in this paper,

10The results of Cattaneo, Crump, and Jansson (2014) suggest that η∗ = d cannot be improved

in Example 1. In contrast, for Examples 2 and 3 we conjecture that even smaller values of η∗ can

be obtained with some additional effort.
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namely that in samples of moderate size the coverage probabilities of CI∗E,n (i.e., the

“Efron” interval) and CI∗P,n (i.e., the “percentile” interval) can differ substantially

and that when this occurs

P[θ0 ∈ CI∗E,n] < P[θ0 ∈ CIn] < P[θ0 ∈ CI∗P,n],

where in most cases P[θ0 ∈ CI∗P,n] ≈ 0.95.

6. Conclusion

This paper has developed “small bandwidth”asymptotic results for a class of two-step

semiparametric estimators previously studied by Newey and McFadden (1994) and

others. The first main result, Theorem 2, differs from those obtained in earlier work

on semiparametric two-step estimators by accommodating a non-negligible bias and a

noteworthy feature of the assumptions of Theorem 2 is that reliance on a commonly

employed stochastic equicontinuity condition is avoided. The second main result,

Theorem 7, shows that the bootstrap provides an automatic method of correcting for

the bias even when it is non-negligible.

The findings of this paper are pointwise in two distinct respects. First, the dis-

tribution of observables is held fixed when developing large sample theory. Second,

the results are obtained for a fixed bandwidth sequence. It would be of interest to

develop uniform versions of Theorems 2 and 7 (along the lines of Romano and Shaikh

(2012) and Einmahl and Mason (2005), respectively).

Although the size of the class of estimators covered by our results is nontrivial

it would be of interest to explore whether conclusions analogous to ours can be ob-

tained for semiparametric two-step estimators whose first step involves other types of

nonparametric estimators (e.g., local polynomial or sieve estimators of M -regression

functions, possibly after model selection as in Belloni, Chernozhukov, Fernández-Val,
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and Hansen (2013)). In this paper we focus on kernel-based estimators because of

their analytical tractability, but we conjecture that our results (and the methods by

which they are obtained) can be extended to cover other nonparametric first-step

estimators. In future work we intend to attempt to substantiate this conjecture.
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7. Appendix I: Additional Results

7.1. Orthogonality. In the case where the nonparametric estimator γ̂n satisfies

γ̂n−γ0 = op(n
−1/4), suffi cient conditions for the “orthogonality”condition (7) to hold

have been given by Newey (1994a), among others. For completeness, this subsection

discusses conditions for (7) to hold also in the case where only γ̂n− γ0 = op(n
−1/6) is

assumed. In this case g0 will typically admit linear and bilinear functionals g0,γ(z)[·]

and g0,γγ(z)[·, ·] such that the first part of Condition (SE) holds with

ḡ0(z, γ) = g0(z, γ0) + g0,γ(z)[γ − γ0] +
1

2
g0,γγ(z)[γ − γ0, γ − γ0].

Under mild additional moment conditions, (7) then holds if

Eg0,γ(z)[·] = 0 (12)

and if

Eg0,γγ(z)[·, ·] = 0. (13)

Both (12) and (13) are usually straightforward to verify (when they hold). For

instance, verifying the conditions is easy when g(z, θ, γ) = A(x(z), θ, γ)m(z, θ), where

m(z, θ) is a residual satisfying E[m(z, θ0)|x(z)] = 0 and A(x(z), θ, γ) is a matrix of

(optimal) instruments depending on θ and γ (e.g., Newey (1990)).

The condition (12) is similar to Newey (1994a, Proposition 3). Under this con-

dition, the “correction term” of Newey (1994a) is zero and (12) therefore implies

that the presence of the nonparametric estimator has no impact on the asymptotic

variance of θ̂n. Unlike (12) , (13) has no counterpart in Newey (1994a), but is needed

when the condition γ̂n − γ0 = op(n
−1/4) is relaxed. The condition (13) implies that
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Bn in (4) can be set equal to zero even under “small bandwidth”asymptotics. As a

consequence, (13) can be thought of as giving a condition under which the presence

of the nonparametric estimator has no impact on the asymptotic bias of θ̂n.

It is easy to give examples where (12) holds, but (13) and (7) do not. As a

consequence, having a “correction term”equal to zero is only a necessary condition

for (7) to hold when γ̂n − γ0 6= op(n
−1/4). In particular, also estimators having the

“small bias property”discussed by Newey, Hsieh, and Robins (2004) can suffer from

the bias problems highlighted in this paper.

7.2. Remarks on Lemma 3. The assumptions of Lemma 3 are comparable to

those of Pakes and Pollard (1989, Theorem 3.3). As in Pakes and Pollard (1989,

Theorem 3.3), one of the conditions of Lemma 3 is a consistency condition on θ̂n. That

condition can usually be verified by adapting Pakes and Pollard (1989, Corollary 3.2)

to our setup. The condition ‖γ̂n− γ0‖Γ = op(n
−1/6) has no counterpart in Pakes and

Pollard (1989, Theorem 3.3), but is satisfied in the cases of primary interest in this

paper and is therefore included as an assumption in Lemma 3. Our conditions (i)

and (v) correspond exactly to the analogous conditions in Pakes and Pollard (1989,

Theorem 3.3).11

Condition (iv) of Lemma 3 is weaker than its counterpart in Pakes and Pollard

(1989, Theorem 3.3), a weakening necessitated by the fact that in the cases of main

interest in this paper only an assumption of the form Ĝn(θ0, γ̂n) = op(n
−1/3) can

be justified. To compensate for this weakening, conditions (ii) and (iii) of Lemma

3 are somewhat stronger than the natural counterparts of conditions (ii) and (iii) of

Pakes and Pollard (1989, Theorem 3.3). For instance, while the natural counterpart

11As in Pakes and Pollard (1989, pp. 1044-1046), it is possible to relax the assumption that the

matrix W in (i) is nonrandom. To be specific, the conclusion of Lemma 3 remains unaffected if W

is replaced with an estimator Ŵn satisfying Ŵn = W + op(n
−1/6).
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of condition (ii) of Pakes and Pollard (1989, Theorem 3.3) imposes only a full rank

condition on Ġ′0WĠ0 our condition (ii) also includes additional (mild) smoothness

requirements on G.

Translated into our notation, the natural counterpart of condition (iii) of Pakes

and Pollard (1989, Theorem 3.3) is intended to ensure that

‖Ĝn(θ̂n, γ̂n)−G(θ̂n, γ0)− Ĝn(θ0, γ̂n) +G(θ0, γ0)‖ = op(n
−1/2).

Under our condition (ii), the α = 0 version of our condition (iii) achieves the same

goal when θ̂n − θ0 = op(n
−1/3) and ‖γ̂n − γ0‖Γ = op(n

−1/6). The α = 1/3 version of

condition (iii) has no obvious counterpart in Pakes and Pollard (1989, Theorem 3.3),

but can be interpreted as a weakened version of a condition similar to (13) of Cheng

and Huang (2010, Condition S1). This condition is used here to handle situations

where Ĝn(θ̂n, γ̂n) 6= op(n
−1/2), as typically happens when θ0 ∈ Rk is “overidentified”

in the sense the dimension of g exceeds k.

When θ̂n − θ0 = op(n
−1/3) and ‖γ̂n − γ0‖Γ = op(n

−1/6), a seemingly more elegant

way of arriving at the displayed result would be to set Γn = Γ(n−1/6) and assume the

following variant of Chen et al. (2003)’s Condition (2.5′) : 12

(SE’) for every positive δn = o(n−1/3),

sup
θ∈Θ(δn),γ∈Γn

‖Ĝn(θ, γ)−G(θ, γ)− Ĝn(θ0, γ0) +G(θ0, γ0)‖ = op(n
−1/2).

12By assumption, G(θ0, γ0) = 0. The purpose of retainingG(θ0, γ0) in the formulation of Condition

(SE’) is to facilitate comparison with condition (iii) of Lemma 3. We use the label (SE’) in recognition

of the fact that the condition is stronger than Condition (SE) whenever γ̂n ∈ Γn (with probability

approaching one).
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An implication of the discussion in Section 4.2 is that Condition (SE’) is violated in the

examples of interest in this paper. In contrast, because the stochastic equicontinuity

condition (iii) of Lemma 3 employs a formulation in which the second argument of

each function inside the ‖ · ‖ is the same, the condition often reduces to a condition

concerning the fluctuations of a process indexed by the finite-dimensional parameter

θ, suggesting that it might be verifiable under weaker conditions than Condition (SE’),

which concerns the fluctuations of a process which depends on the infinite-dimensional

parameter γ as well. Indeed, condition (iii) of Lemma 3 is automatically satisfied

(with the op(n−1/2−α/2) term equal to zero) in Examples 1-3.13 More generally, the

condition can often be verified by setting s ≥ 1/2 and Γn = Γ(n−1/6) and verifying

the condition of the following lemma.

Lemma 8. Suppose that

limn→∞limδ↓0δ
−2s supθ∈ℵ E[Fn(z; δ, θ)2] <∞

for some neighborhood ℵ of θ0 and some s > 0, where

Fn(z; δ, θ) = sup
‖θ′−θ‖≤δ,γ∈Γn

‖g(z, θ′, γ(·, θ′))− g(z, θ, γ(·, θ)‖.

Then, for every α ≥ 0 and for every positive δn = o(n−α),

sup
θ∈Θ(δn),γ∈Γn

‖Ĝn(θ, γ)−G(θ, γ)− Ĝn(θ0, γ) +G(θ0, γ)‖ = op(n
−1/2−αs) (14)

and

sup
θ∈Θ(δn),γ∈Γn

‖Ĝ∗n(θ, γ)−G(θ, γ)− Ĝ∗n(θ0, γ) +G(θ0, γ)‖ = op(n
−1/2−αs). (15)

13Because Condition (AL) itself is automatically satisfied in Examples 1-3 there is no need to

verify it using Lemma 3. Nevertheless, given the failure of Condition (SE’) in these examples it

seems comforting that condition (iii) of Lemma 3 is satisfied in the examples.
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Like Chen et al. (2003, Theorem 3), Lemma 8 is in the spirit of Andrews (1994b,

Section 5). The lemma is obtained by bounding the L2 bracketing numbers of the

classes

Fn = {g(·, θ, γ(·, θ))− g(·, θ0, γ(·, θ0)) : θ ∈ Θ(δn), γ ∈ Γn}.

These bracketing numbers are often considerably smaller in magnitude than the brack-

eting numbers of classes such as {g(·, θ, γ(·, θ)) : θ ∈ Θ(δn), γ ∈ Γn}, the latter being

the classes of interest when verifying Condition (SE’).

In Lemma 8, (15) is a natural bootstrap counterpart of (14) . It is stated in

anticipation of condition (iii*) of the following bootstrap analog of Lemma 3.

Lemma 9. Suppose that θ̂
∗
n− θ̂n = op(1), ‖γ̂∗n− γ̂n‖Γ = op(n

−1/6), that the assump-

tions of Lemma 3 are satisfied, and that:

(i*) Ĝ∗n(θ̂
∗
n, γ̂

∗
n)′WĜ∗n(θ̂

∗
n, γ̂

∗
n) ≤ infθ∈Θ Ĝ

∗
n(θ, γ̂∗n)′WĜ∗n(θ, γ̂∗n) + op(n

−1);

(iii*) for α ∈ {0, 1/3} and for every positive δn = o(n−α),

sup
θ∈Θ(δn)

‖Ĝ∗n(θ, γ̂∗n)−G(θ, γ̂∗n)− Ĝ∗n(θ0, γ̂
∗
n) +G(θ0, γ̂

∗
n)‖ = op(n

−1/2−α/2);

(iv*) Ĝ∗n(θ̂n, γ̂
∗
n) = op(n

−1/3).

Then Condition (AL*) holds.

In perfect analogy with Lemma 3, an inspection of the proof of Lemma 9 shows

that the α = 1/3 version of condition (iii*) is redundant when condition (i*) is

strengthened to Ĝ∗n(θ̂
∗
n, γ̂

∗
n) = op(n

−1/2), as is usually possible in the “just identified”

case where θ0 and g are of the same dimension.
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7.3. UniformConvergence Rates. Various results on uniform convergence rates

for kernel estimators are used to verify the conditions of Theorems 2 and 7 in Exam-

ples 2 and 3. The results utilized are all special cases of Lemma 10 below.

Suppose that for every n, Zin = (Win, X
′
i)
′ (i = 1, . . . , n) are i.i.d. copies of

Zn = (Wn, X
′)′, where X ∈ Rd is continuous with bounded density fX (·) . The kernel

estimators we consider are of the form

Ψ̂n(x) =
1

n

n∑
j=1

Wjnκn(x−Xj), κn (x) =
1

hdn
κ

(
x

hn

)
,

and

Ψ̂n,i(x) =
1

n− 1

n∑
j=1,j 6=i

Wjnκn(x−Xj) (i = 1, . . . , n),

where hn = o (1) is a bandwidth and κ : Rd → R is a bounded and integrable

kernel-like function.

Bootstrap analogs of these estimators are also of interest. Letting {Z∗1n, . . . , Z∗nn}

be a random sample with replacement from {Z1n, . . . , Znn}, define

Ψ̂∗n(x) =
1

n

n∑
j=1

W ∗
jnκn(x−X∗j )

and

Ψ̂∗n,i(x) =
1

n− 1

n∑
j=1,j 6=i

W ∗
jnκn(x−X∗j ) (i = 1, . . . , n).

Defining Ψn (x) = EΨ̂n (x) the objective is to give conditions (on hn, ρn, and the

distribution of Zn) under which
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max1≤i≤n |Ψ̂n(Xi)−Ψn(Xi)| = Op(ρn), (16)

max1≤i≤n |Ψ̂n,i(Xi)−Ψn(Xi)| = Op(ρn), (17)

max1≤j≤n |Ψ̂∗n(Xj)− Ψ̂n(Xj)| = Op(ρn), (18)

max1≤i,j≤n |Ψ̂∗n,i(Xj)− Ψ̂n(Xj)| = Op(ρn). (19)

To give a succinct statement, let Gam(·) be the Gamma function and for s > 0, let

C (s) = supn[E(|Wn|s) + supx∈Rd E(|Wn|s|X = x)fX(x)].

Lemma 10. (a) If C(S) < ∞ for some S ≥ 2 and if n1−1/Shdn/ log n → ∞, then

(16)− (19) hold with ρn = max(
√

log n/
√
nhdn, log n/(n1−1/Shdn)).

(b) If C(s) ≤ Gam(s)Hs for some H <∞ and every s and if limn→∞nh
d
n/(log n)3 > 0,

then (16)− (19) hold with ρn =
√

log n/
√
nhdn.

(c) If C(s) ≤ Hs for some H < ∞ and every s and if limn→∞nh
d
n/ log n > 0, then

(16)− (19) hold with ρn =
√

log n/
√
nhdn.

The condition C(s) ≤ Hs (for some H < ∞ and every s) is satisfied when Wn is

bounded (uniformly in n), so part (c) can be used to analyze f̂n and its derivative

and we use this part in all of the examples. Part (b) covers certain distributions with

full support (e.g., sub-Gaussian distributions), but is not used in our examples. On

the other hand, the S = 4 version of part (a) is used to verify Condition (AN*) in

Example 2.
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8. Appendix II: Proofs

8.1. Proof of Lemma 1. The proof is elementary:

√
n(θ̂n − θ0) = J 1√

n

n∑
i=1

g0(zi, γ̂n) + op(1)

= J 1√
n

n∑
i=1

[g0(zi, γ0) + ḡ0(zi, γ̂n)− ḡ0(zi, γ0)] + op(1)

= J 1√
n

n∑
i=1

[g0(zi, γ0) + Ḡ0(γ̂n)− Ḡ0(γ0)] + op(1)

 N (0,JΩJ ′),

where the first equality uses Condition (AL), the second and third equalities use

Condition (SE), and the last line uses Condition (AN0).

8.2. Proof of Theorem 2. The proof is elementary:

√
n(θ̂n − θ0 − J βn) = J 1√

n

n∑
i=1

[gn(zi, γ̂n,i)− βn] + op(1)

= J 1√
n

n∑
i=1

[gn(zi, γn) + ḡn(zi, γ̂n,i)− ḡn(zi, γn)− βn] + op(1)

= J 1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂n,i)− Ḡn(γn)− βn] + op(1)

 N (0,JΩJ ′),

where the first equality uses Condition (AL), the second and third equalities use

Condition (AS), and the last line uses Condition (AN).

8.3. Proof of Lemma 3. Let Ġn = Ġ(θ0, γ̂n) and define Jn = −(Ġ′nWĠn)−1Ġ′nW.

Using ‖γ̂n − γ0‖Γ = op(n
−1/6), (ii), and (iv),
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(Jn − J )Ĝn(θ0, γ̂n) = op(n
−1/2).

It therefore suffi ces to show that θ̂n − θ0 − JnĜn(θ0, γ̂n) = op(n
−1/2).

To do so, let Ln(θ) = Ġ′nW [Ĝn(θ0, γ̂n) + Ġn(θ − θ0)]. Because

Ln(θ̂n) = Ġ′nWĠn[θ̂n − θ0 − JnĜn(θ0, γ̂n)]

and because Ġ′nWĠn →p Ġ
′
0WĠ0 > 0, it suffi ces to show that Ln(θ̂n) = op(n

−1/2).

Using θ̂n − θ0 = op(1), ‖γ̂n − γ0‖Γ = op(n
−1/6), and (ii)-(iii) (with α = 0),

‖G(θ̂n, γ̂n)− Ĝn(θ̂n, γ̂n)−G(θ0, γ̂n) + Ĝn(θ0, γ̂n)‖ = op(n
−1/2)

and

‖Ġn(θ̂n − θ0)−G(θ̂n, γ̂n) +G(θ0, γ̂n)‖ = ‖θ̂n − θ0‖2Op(1).

As a consequence, by the triangle inequality and using ‖Ġ′nW‖ = O(1),

‖Ln(θ̂n)‖ ≤ ‖Ġ′nW‖‖Ġn(θ̂n − θ0)−G(θ̂n, γ̂n) +G(θ0, γ̂n)‖

+‖Ġ′nW‖‖G(θ̂n, γ̂n)− Ĝn(θ̂n, γ̂n)−G(θ0, γ̂n) + Ĝn(θ0, γ̂n)‖

+‖Ġ′nWĜn(θ̂n, γ̂n)‖

= ‖θ̂n − θ0‖2Op(1) + ‖Ġ′nWĜn(θ̂n, γ̂n)‖+ op(n
−1/2),

so it suffi ces to show that θ̂n − θ0 = op(n
−1/3) and that Ġ′nWĜn(θ̂n, γ̂n) = op(n

−1/2).
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Proof of θ̂n − θ0 = op(n
−1/3). Condition (ii) implies the existence of a positive

constant C for which ‖θ − θ0‖ ≤ C−1‖G (θ, γ0) ‖ near θ0. Because θ̂n − θ0 = op(1), it

therefore suffi ces to show that ‖G(θ̂n, γ0)‖ = ‖θ̂n − θ0‖op(1) + op(n
−1/3).

Using (i) and (iv)-(v), we have

Ĝn(θ̂n, γ̂n)′WĜn(θ̂n, γ̂n) ≤ Ĝn(θ0, γ̂n)′WĜn(θ0, γ̂n) + op(n
−1) = op(n

−2/3),

implying in particular that Ĝn(θ̂n, γ̂n) = op(n
−1/3). Also, using θ̂n − θ0 = op(1),

‖γ̂n − γ0‖Γ = op(n
−1/6), and (ii)-(iii) (with α = 0),

‖G(θ̂n, γ̂n)− Ĝn(θ̂n, γ̂n)−G(θ0, γ̂n) + Ĝn(θ0, γ̂n)‖ = op(n
−1/2)

and (with probability approaching one)

‖G(θ̂n, γ0)−G(θ̂n, γ̂n) +G(θ0, γ̂n)‖ ≤ ‖θ̂n − θ0‖op (1) .

Using these rates, the triangle inequality, and (iv),

‖G(θ̂n, γ0)‖ ≤ ‖G(θ̂n, γ0)−G(θ̂n, γ̂n) +G(θ0, γ̂n)‖

+‖G(θ̂n, γ̂n)− Ĝn(θ̂n, γ̂n)−G(θ0, γ̂n) + Ĝn(θ0, γ̂n)‖

+‖Ĝn(θ̂n, γ̂n)‖+ ‖Ĝn(θ0, γ̂n)‖

= ‖θ̂n − θ0‖op(1) + op(n
−1/3).

Proof of Ġ′nWĜn(θ̂n, γ̂n) = op(n
−1/2). Because Ġ′nWĠn →p Ġ′0WĠ0 > 0, it

suffi ces to show that
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Ĝn(θ̂n, γ̂n)′WĠn(Ġ′nWĠn)−1Ġ′nWĜn(θ̂n, γ̂n) = op(n
−1).

To do so, let θ̃n = θ̂n + JnĜn(θ̂n, γ̂n), which satisfies θ̃n − θ0 = op(n
−1/3) because

θ̂n − θ0 = op(n
−1/3) and Ĝn(θ̂n, γ̂n) = op(n

−1/3).

By (ii) and (iii) (with α = 1/3), we therefore have

Rn = Ĝn(θ̃n, γ̂n)− Ĝn(θ̂n, γ̂n)− Ġn(θ̃n − θ̂n) = op(n
−2/3).

As a consequence, using (i) and (v), with probability approaching one

Ĝn(θ̂n, γ̂n)′WĜn(θ̂n, γ̂n) ≤ Ĝn(θ̃n, γ̂n)′WĜn(θ̃n, γ̂n) + op(n
−1)

= Ĝn(θ̂n, γ̂n)′WĜn(θ̂n, γ̂n)

−Ĝn(θ̂n, γ̂n)′WĠn(Ġ′nWĠn)−1Ġ′nWĜn(θ̂n, γ̂n)

+2R′n[W −WĠn(Ġ′nWĠn)−1Ġ′nW ]Ĝn(θ̂n, γ̂n)

+R′nWRn + op(n
−1),

which rearranges as

Ĝn(θ̂n, γ̂n)′WĠn(Ġ′nWĠn)−1Ġ′nWĜn(θ̂n, γ̂n)

≤ 2R′n[W −WĠn(Ġ′nWĠn)−1Ġ′nW ]Ĝn(θ̂n, γ̂n) +R′nWRn + op(n
−1)

= op(n
−1).

8.4. Proof of Lemma 4. When ḡn is defined as in the lemma, we have:
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1√
n

n∑
i=1

[ḡn(zi, γ̂n,i)− Ḡn(γ̂n,i)− ḡn(zi, γn) + Ḡn(γn)]

=
1√

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

(gn,γ(zi)[κn,j]−Gn,γ[κn,j])

+
1

2
√
n(n− 1)2

n∑
i=1

n∑
j=1,j 6=i

(gn,γγ(zi)[κn,j, κn,j]−Gn,γγ[κn,j, κn,j])

+
1

2
√
n(n− 1)2

n∑
i=1

n∑
j=1,j 6=i

n∑
k=1,k /∈{i,j}

(gn,γγ(zi)[κn,j, κn,k]−Gn,γγ[κn,j, κn,k]),

where Gn,γ[·] = Egn,γ(z)[·] and Gn,γγ[·] = Egn,γγ(z)[·]. By construction,

E(
1√
n

n∑
i=1

[ḡn(zi, γ̂n,i)− Ḡn(γ̂n,i)− ḡn(zi, γn) + Ḡn(γn)]) = 0.

The result therefore follows from Chebychev’s inequality because

V(
1√
n

n∑
i=1

[ḡn(zi, γ̂n,i)− Ḡn(γ̂n,i)− ḡn(zi, γn) + Ḡn(γn)])

= n−1O(V(gn,γ(z1)[κn,2]))

+n−2O(V[E(gn,γγ(z1)[κn,2, κn,2]|z1)]) + n−3O(V(gn,γγ(z1)[κn,2, κn,2]))

+n−2O(V(gn,γγ(z1)[κn,2, κn,3]))

= o(n−1),

where the first equality uses Hoeffding’s theorem for U -statistics.

8.5. Proof of Lemma 5. Becausemax1≤i≤n ‖γ̂n,i(·, θ0)−γn(·, θ0)‖Γ0 = op(n
−1/6),

we have (with probability approaching one)
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‖ 1√
n

n∑
i=1

[gn(zi, γ̂n,i)− ḡn(zi, γ̂n,i)− gn(zi, γn) + ḡn(zi, γn)]‖

≤ 1√
n

n∑
i=1

‖gn(zi, γ̂n,i)− ḡn(zi, γ̂n,i)‖

≤ 1√
n

n∑
i=1

b(zi)‖γ̂n,i(·, θ0)− γn(·, θ0)‖3
Γ0

≤ (n1/6 max1≤i≤n ‖γ̂n,i(·, θ0)− γn(·, θ0)‖Γ0)
3 1

n

n∑
i=1

b(zi)

= op(1),

where the last equality uses E|b(z)| = Eb(z) <∞.

8.6. Proof of Lemma 6. If (9) holds and if V(Bn) = o(n−1), then Condition

(AN) holds with Ω = E[ψ(z)ψ(z)′] and βn = EBn + o(n−1/2) because

1√
n

n∑
i=1

[gn(zi, γn) + Ḡn(γ̂n,i)− Ḡn(γn)− βn]

=
1√
n

n∑
i=1

ψn(zi) +
√
n(Bn − EBn) +

√
n(EBn − βn)

=
1√
n

n∑
i=1

ψ(zi) + op (1) N (0,Ω).

Now,
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1

n

n∑
i=1

Gn,γγ[γ̂n,i − γn, γ̂n,i − γn] =
1

n(n− 1)2

n∑
i=1

n∑
j=1,j 6=i

Gn,γγ[κn,j, κn,j]

+
1

n(n− 1)2

n∑
i=1

n∑
j=1,j 6=i

n∑
k=1,k /∈{i,j}

Gn,γγ[κn,j, κn,k]

=
n− 1

n(n− 1)2

n∑
i=1

Gn,γγ[κn,i, κn,i]

+
n− 2

n(n− 1)2

n∑
i=1

n∑
j=1,j 6=i

Gn,γγ[κn,i, κn,j],

so it follows from Hoeffding’s theorem for U -statistics that

V(Bn) = n−3O(V(Gn,γγ[κn,1, κn,1])) + n−2O(V(Gn,γγ[κn,1, κn,2])),

implying in particular that V(Bn) = o(n−1) if (10) holds.

8.7. Proof of Theorem 7. It suffi ces to show that (11) holds with Bn = J βn
and Σ = JΩJ ′. The proof of that result is elementary:

√
n(θ̂

∗
n − θ̂n − J βn) = J 1√

n

n∑
i=1

[g∗n(z∗i , γ̂
∗
n,i)− βn] + op(1)

= J 1√
n

n∑
i=1

[g∗n(z∗i , γ̂n) + ḡ∗n(z∗i , γ̂
∗
n,i)− ḡ∗n(z∗i , γ̂n)− βn] + op(1)

= J 1√
n

n∑
i=1

[g∗n(z∗i , γ̂n) + Ḡ∗n(γ̂∗n,i)− Ḡ∗n(γ̂n)− βn] + op(1)

 p N (0,JΩJ ′),

where the first equality uses Condition (AL*), the second and third equalities use
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Condition (AS*), and the last line uses Condition (AN*).

8.8. Proof of Lemma 8. Let α ≥ 0 be given and let δn = o(n−α) be positive.

Studying one component at a time, if necessary, we may assume without loss of

generality that g(·) is scalar.

Suppose E[Fn(z)2] = O(1), where Fn(z) = supf∈Fn |f(z)|. By van der Vaart (1998,

Lemma 19.35),

E

[
sup

θ∈Θ(δn),γ∈Γn

‖Ĝn(θ, γ)−G(θ, γ)− Ĝn(θ0, γ) +G(θ0, γ)‖
]

= O[n−1/2J[ ](Fn)],

where, with N[ ](ε,Fn) denoting the minimum number of ε-brackets in L2 needed to

cover Fn, J[ ](Fn) =
∫√E[Fn(z)2]

0

√
logN[ ](ε,Fn)dε. To show (14) it therefore suffi ces

to show that E[Fn(z)2] = O(1) and that J[ ](Fn) = o(n−αs). To do so, it suffi ces to

show that E[Fn(z)2] = o(n−2sα) and that, for some K > 0, some r > 0, and for all n

large enough,

logN[ ](ε,Fn) ≤ max(K − r log[εδ−sn ], 0).

By assumption,

E[Fn(z)2] = E[Fn(z; δn, θ0)2] ≤ supθ∈ℵ E[Fn(z; δn, θ)
2] = O(δ2s

n ) = o(n−2sα).

Also, if M > limn→∞limδ↓0δ
−2s supθ∈ℵ E[Fn(z; δ, θ)2], then

sup
θ∈Θ(δn)

E[Fn(z; δ, θ)2] ≤Mδ2s
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for all (n, δ) with n large enough and δ small enough. Given such a pair (n, δ), let

{θj : j = 1, . . . , Nn(δ)} be a δ-cover for Θ(δn). The cover may be assumed to be

chosen in such way that, for some constant C,

Nn(δ) ≤ max

[
C

(
δn
δ

)k
, 1

]
.

Then an ε =
√

4Mδ2s-bracketing for Fn is given by

{
[
g∆(·, θj)− Fn(·; δ, θj), g∆(·, θj) + Fn(·; δ, θj)

]
: j = 1, . . . , Nn(δ)},

where g∆(·, θj) = g(·, θj, γ0(·, θj))− g(·, θ0, γ0(·, θ0)). As a consequence,

logN[ ](ε,Fn) ≤ logNn

(
ε1/s

(4M)1/2s

)
≤ max(log[C (4M)k/2s]− k

s
log[εδ−sn ], 0),

as was to be shown.

Finally, using n−1
∑n

i=1 Fn(zi)
2 = Op(E[Fn(z)2]) and proceeding as in the proof of

(14) it can be shown that

sup
θ∈Θ(δn),γ∈Γn

‖Ĝ∗n(θ, γ)− Ĝn(θ, γ)− Ĝ∗n(θ0, γ) + Ĝn(θ0, γ)‖ = op(n
−1/2−αs),

a result which is equivalent to (15) when (14) holds.

8.9. Proof of Lemma 9. The proof is analogous to that of Lemma 3. Let

Ġ∗n = Ġ(θ0, γ̂
∗
n) and define J ∗n = −(Ġ∗′nWĠ∗n)−1Ġ∗′nW. Using ‖γ̂∗n − γ0‖Γ = op(n

−1/6),

(ii), and (iv*),
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(J ∗n − J )Ĝ∗n(θ̂n, γ̂
∗
n) = op(n

−1/2).

It therefore suffi ces to show that θ̂
∗
n − θ̂n − J ∗n Ĝ∗n(θ̂n, γ̂

∗
n) = op(n

−1/2).

To do so, let L∗n(θ) = Ġ∗′nW [Ĝ∗n(θ̂n, γ̂
∗
n) + Ġ∗n(θ − θ̂n)]. Because

L∗n(θ̂
∗
n) = Ġ∗′nWĠ∗n[θ̂

∗
n − θ̂n − J ∗n Ĝ∗n(θ̂n, γ̂

∗
n)]

and because Ġ∗′nWĠ∗n →p Ġ
′
0WĠ0 > 0, it suffi ces to show that L∗n(θ̂

∗
n) = op(n

−1/2).

Using θ̂
∗
n− θ0 = op(1), θ̂n− θ0 = op(n

−1/3), ‖γ̂∗n− γ0‖Γ = op(n
−1/6), (ii), and (iii*)

(with α = 0),

‖G(θ̂
∗
n, γ̂

∗
n)− Ĝ∗n(θ̂

∗
n, γ̂

∗
n)−G(θ̂n, γ̂

∗
n) + Ĝ∗n(θ̂n, γ̂

∗
n)‖ = op(n

−1/2)

and

‖Ġ∗n(θ̂
∗
n − θ̂n)−G(θ̂

∗
n, γ̂

∗
n) +G(θ̂n, γ̂

∗
n)‖ = ‖θ̂∗n − θ0‖2Op(1) + op(n

−1/2).

As a consequence, by the triangle inequality and using ‖Ġ∗′nW‖ = Op(1),

‖L∗n(θ̂
∗
n)‖ ≤ ‖Ġ∗′nW‖‖Ġ∗n(θ̂

∗
n − θ̂n)−G(θ̂

∗
n, γ̂

∗
n) +G(θ̂n, γ̂

∗
n)‖

+‖Ġ∗′nW‖‖G(θ̂
∗
n, γ̂

∗
n)− Ĝ∗n(θ̂

∗
n, γ̂

∗
n)−G(θ̂n, γ̂

∗
n) + Ĝ∗n(θ̂n, γ̂

∗
n)‖

+‖Ġ∗′nWĜ∗n(θ̂
∗
n, γ̂

∗
n)‖

= ‖θ̂∗n − θ0‖2Op(1) + ‖Ġ∗′nWĜ∗n(θ̂
∗
n, γ̂

∗
n)‖+ op(n

−1/2),
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so it suffi ces to show that θ̂
∗
n − θ0 = op(n

−1/3) and that Ġ∗′nWĜ∗n(θ̂
∗
n, γ̂

∗
n) = op(n

−1/2).

Proof of θ̂
∗
n − θ0 = op(n

−1/3). Condition (ii) implies the existence of a positive

constant C for which ‖θ − θ0‖ ≤ C−1‖G (θ, γ0) ‖ near θ0. Because θ̂
∗
n − θ0 = op(1), it

therefore suffi ces to show that ‖G(θ̂
∗
n, γ0)‖ = ‖θ̂∗n − θ0‖op(1) + op(n

−1/3).

Using (i*), (iv*), and θ̂n ∈ Θ (with probability approaching one), we have (with

probability approaching one)

Ĝ∗n(θ̂
∗
n, γ̂

∗
n)′WĜ∗n(θ̂

∗
n, γ̂

∗
n) ≤ Ĝ∗n(θ̂n, γ̂

∗
n)′WĜ∗n(θ̂n, γ̂

∗
n) + op(n

−1) = op(n
−2/3),

implying in particular that Ĝ∗n(θ̂
∗
n, γ̂

∗
n) = op(n

−1/3). Also, using θ̂
∗
n − θ0 = op(1),

θ̂n − θ0 = op(n
−1/3), ‖γ̂∗n − γ0‖Γ = op(n

−1/6), (ii), and (iii*) (with α = 0),

‖G(θ̂
∗
n, γ̂

∗
n)− Ĝ∗n(θ̂

∗
n, γ̂

∗
n)−G(θ̂n, γ̂

∗
n) + Ĝ∗n(θ̂n, γ̂

∗
n)‖ = op(n

−1/2)

and (with probability approaching one)

‖G(θ̂
∗
n, γ0)−G(θ̂

∗
n, γ̂

∗
n) +G(θ̂n, γ̂

∗
n)‖ ≤ ‖θ̂∗n − θ0‖op (1) + op(n

−1/3).

Using these rates, the triangle inequality, and (iv*),

‖G(θ̂
∗
n, γ0)‖ ≤ ‖G(θ̂

∗
n, γ0)−G(θ̂

∗
n, γ̂

∗
n) +G(θ̂n, γ̂

∗
n)‖

+‖G(θ̂
∗
n, γ̂

∗
n)− Ĝ∗n(θ̂

∗
n, γ̂

∗
n)−G(θ̂n, γ̂

∗
n) + Ĝ∗n(θ̂n, γ̂

∗
n)‖

+‖Ĝ∗n(θ̂
∗
n, γ̂

∗
n)‖+ ‖Ĝ∗n(θ̂n, γ̂

∗
n)‖

= ‖θ̂∗n − θ0‖op(1) + op(n
−1/3).
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Proof of Ġ∗′nWĜ∗n(θ̂
∗
n, γ̂

∗
n) = op(n

−1/2). Because Ġ∗′nWĠ∗n →p Ġ′0WĠ0 > 0, it

suffi ces to show that

Ĝ∗n(θ̂n, γ̂n)′WĠ∗n(Ġ∗′nWĠ∗n)−1Ġ∗′nWĜ∗n(θ̂
∗
n, γ̂

∗
n) = op(n

−1).

To do so, let θ̃
∗
n = θ̂

∗
n + J ∗n Ĝ∗n(θ̂

∗
n, γ̂

∗
n), which satisfies θ̃

∗
n − θ0 = op(n

−1/3) because

θ̂
∗
n − θ0 = op(n

−1/3) and Ĝ∗n(θ̂
∗
n, γ̂

∗
n) = op(n

−1/3).

By (ii) and (iii*) (with α = 1/3), we therefore have

R∗n = Ĝ∗n(θ̃
∗
n, γ̂

∗
n)− Ĝ∗n(θ̂

∗
n, γ̂

∗
n)− Ġ∗n(θ̃

∗
n − θ̂

∗
n) = op(n

−2/3).

As a consequence, using (i) and (v), with probability approaching one

Ĝ∗n(θ̂
∗
n, γ̂

∗
n)′WĜ∗n(θ̂

∗
n, γ̂

∗
n) ≤ Ĝ∗n(θ̃

∗
n, γ̂

∗
n)′WĜ∗n(θ̃

∗
n, γ̂

∗
n) + op(n

−1)

= Ĝ∗n(θ̂
∗
n, γ̂

∗
n)′WĜ∗n(θ̂

∗
n, γ̂

∗
n)

−Ĝ∗n(θ̂
∗
n, γ̂

∗
n)′WĠ∗n(Ġ∗′nWĠ∗n)−1Ġ∗′nWĜ∗n(θ̂

∗
n, γ̂

∗
n)

+2R∗′n [W −WĠ∗n(Ġ∗′nWĠ∗n)−1Ġ∗′nW ]Ĝ∗n(θ̂
∗
n, γ̂

∗
n)

+R∗′nWR∗n + op(n
−1),

which rearranges as

Ĝ∗n(θ̂
∗
n, γ̂

∗
n)′WĠ∗n(Ġ∗′nWĠ∗n)−1Ġ∗′nWĜ∗n(θ̂

∗
n, γ̂

∗
n)

≤ 2R∗′n [W −WĠ∗n(Ġ∗′nWĠ∗n)−1Ġ∗′nW ]Ĝ∗n(θ̂
∗
n, γ̂

∗
n) +R∗′nWR∗n + op(n

−1)

= op(n
−1).
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8.10. Proof of Lemma 10. For i = 1, . . . , n, we have

Ψ̂n(Xi) = (1− n−1)Ψ̂n,i(Xi) +
κ(0)

nhdn
Win

and therefore

max1≤i≤n |Ψ̂n(Xi)−Ψn(Xi)| ≤ max1≤i≤n |Ψ̂n,i(Xi)−Ψn(Xi)|+Rn,

where

Rn =
1

n
supx∈Rd |Ψn(x)|+ Cκ

nhdn
max1≤i≤n |Win| =

Cκ
nhdn

max1≤i≤n |Win|+O(ρn)

because n−1 supx∈Rd |Ψn(x)| ≤ n−1C(1)
∫
Rd |κ(t)|dt = O(n−1) = O(ρn). By Cheby-

chev’s inequality,

P[max1≤i≤n |Win| > Mτn] ≤ nP[|Wn| > Mτn] ≤ nC(Sn)

MSnτSnn

for every M and every (Sn, τn). Therefore, max1≤i≤n |Win| = Op(τn) if the limn→∞ of

the majorant can be made arbitrarily small by choosing Sn appropriately and making

M large.

In case (a), setting (Sn, τn) = (S, n1/S) we have τn/(nhdn) = O(ρn) and

nC(Sn)

MSnτSnn
=
C(S)

MS
,

whose limn→∞ can be made arbitrarily small by making M large.
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In case (b), setting (Sn, τn) = (log n, log n) we have τn/(nhdn) = O(ρn) and

nC(Sn)

MSnτSnn
=

nC(log n)

M logn(log n)logn
≤ nΓ(log n)H logn

M logn(log n)logn
=

(
H

M

)logn

O(1/
√

log n),

where the second equality uses Stirling’s formula and the limn→∞ of the majorant

can be made arbitrarily small by making M large.

In case (c), setting (Sn, τn) = (log n, 1) we have τn/(nhdn) = O(ρn) and

nCW (Sn)

MSnτSnn
=
nCW (log n)

M logn
≤ n

(
H

M

)logn

,

where the limn→∞ of the majorant can be made arbitrarily small by makingM large.

In all cases, Rn = Op(ρn) because τn/(nhdn) = O(ρn). The proof of (16) can

therefore be completed by showing that (17) holds.

Proof of (17) . With (Sn, τn) as before, let

Ψ̂τ
n,i(x) =

1

n− 1

n∑
j=1,j 6=i

W τ
jnκn(x−Xj), W τ

jn = Wjn1[|Wjn| ≤ Cττn],

where Cτ is a constant to be chosen. We have

P[Ψ̂n,i(·) 6= Ψ̂τ
n,i(·) for some i] ≤ P[max1≤i≤n |Win| > Cττn],

whose limn→∞P[Ψ̂n,i(·) 6= Ψ̂τ
n,i(·) for some i] can be made arbitrarily small by making

Cτ large. Also,

max1≤i≤n supx∈Rd |E[Ψ̂n,i(x)− Ψ̂τ
n,i(x)]| = O(n−1/2) = O(ρn)
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because

n

τn
|E[Ψ̂n,i(x)− Ψ̂τ

n,i(x)]| =
n

τn
|E[Wn1(|Wn| > Cττn)κn(x−X)]|

≤ nC(Sn)

CSn
τ τSnn

Cτ

∫
Rd
|κ(t)|dt,

whose limn→∞ can be made arbitrarily small by making Cτ large. To show the desired

result it therefore suffi ces to show that

max1≤i≤n |Ψ̂τ
n,i(Xi)−Ψτ

n(Xi)| = Op(ρn)

for every Cτ , where Ψτ
n(x) = EΨ̂τ

n(x) = EΨ̂τ
n,i(x).

For any M,

P
[
max1≤i≤n |Ψ̂τ

n,i(Xi)−Ψτ
n(Xi)| > Mρn

]
≤ nmax1≤i≤n P[|Ψ̂τ

n,i(Xi)−Ψτ
n(Xi)| > Mρn]

≤ nmax1≤i≤n supx∈Rd P[|Ψ̂τ
n,i(x)−Ψτ

n(x)| > Mρn],

where the last inequality uses the fact that Xi is independent of Ψ̂τ
n,i.

Because

|W τ
jnκn(x−Xj)−Ψτ

n(x)| = O(h−dn τn), V[W τ
jnκn(x−Xj)] = O(h−dn ),

it follows from Bernstein’s inequality that
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nmax1≤i≤n supx∈Rd P[|Ψ̂τ
n,i(x)−Ψτ

n(x)| > Mρn] ≤ 2n exp

[
− M2nρ2

nh
d
n

O(1 +Mρnτn)

]
.

To complete the proof of (17) it therefore suffi ces to show that

limn→∞
1

log n

M2nρ2
nh

d
n

1 +Mρnτn

can be made arbitrarily large by making M large.

In case (a), the desired result follows from the proof of Cattaneo et al. (2013,

Lemma B-1).

In case (b),

1

log n

M2nρ2
nh

d
n

1 +Mρnτn
=

M2

1 +MCτρn log n
,

whose limn→∞ can be made arbitrarily large (by making M large) if ρn log n =√
(log n)3/(nhdn) is bounded.

In case (c),

1

log n

M2nρ2
nh

d
n

1 +Mρnτn
=

M2

1 +MCτρn
,

whose limn→∞ can be made arbitrarily large (by making M large) if ρn is bounded.

Proof of (18) . For any M,

P[max1≤i≤n |Ψ̂∗n(Xi)− Ψ̂n(Xi)| > Mρn] = EP∗[max1≤i≤n |Ψ̂∗n(Xi)− Ψ̂n(Xi)| > Mρn]
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and

P∗[max1≤i≤n |Ψ̂∗n(Xi)− Ψ̂n(Xi)| > Mρn] ≤ n supx∈Rd P∗[|Ψ̂∗n(x)− Ψ̂n(x)| > Mρn].

Because

|W ∗
jnκn(x−X∗j )− Ψ̂n(x)| = Op(h

−d
n τn), V∗[W ∗

jnκn(x−X∗j )] = Op(h
−d
n ),

it follows from Bernstein’s inequality that

P∗[|Ψ̂∗n(x)− Ψ̂n(x)| > Mρn] ≤ 2 exp

[
− M2nρ2

nh
d
n

Op(1 +Mρnτn)

]
.

Validity of (18) follows from this bound and the fact that

limn→∞
1

log n

M2nρ2
nh

d
n

1 +Mρnτn

can be made arbitrarily large by making M large.

Proof of (19) . Because

Ψ̂∗n,i(x) = (1− n−1)−1Ψ̂∗n(x)− (n− 1)−1W ∗
inκn(x−X∗i ),

we have the bound

(1− n−1) max
1≤i,j≤n

|Ψ̂∗n,i(Xj)− Ψ̂n(Xj)| ≤ max
1≤j≤n

|Ψ̂∗n(Xj)− Ψ̂n(Xj)|+R∗n,
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where

R∗n =
1

n
max
1≤i≤n

|Ψ̂n(Xi)|+
Cκ
nhdn

max
1≤i≤n

|Win|

≤ 1

n
max
1≤i≤n

|Ψ̂n(Xi)−Ψn(Xi)|+
1

n
sup
x∈Rd
|Ψn(x)|+ Cκ

nhdn
max
1≤i≤n

|Win| = Op(ρn).

In particular, (19) holds because (18) holds.
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9. Appendix III: Details for the Examples

The purpose of this section is to give explicit regularity conditions and to provide

details on the derivations of the results for Examples 1-3.

9.1. Example 1. To obtain primitive bandwidth conditions for the conditions of

Theorems 2 and 7, suppose that for some P > d/2,

• f0 is P times differentiable, and f0 and its first P derivatives are bounded and

continuous.

• K is even and bounded with
∫
Rd |K(u)| (1 + ‖u‖P )du <∞ and

∫
Rd
ul11 · · ·u

ld
d K(u)du =

 1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ Zd+ and l1 + · · ·+ ld < P

.

Conditions (AL) and (AL*) hold with J = Ik and without any op (1) terms.

Condition (AS). Because

ḡn(x, f) = gn(x, fn) + gn,f (x)[f − fn], gn,f (x)[κ] = (1− n−1)κ(x),

Condition (AS) holds with ḡn = gn if V(gn,f (z1)[κn,2]) = o(n). A suffi cient condition

for this occur is that nhdn →∞, because then

V(gn,f (z1)[κn,2]) = (1− n−1)2V[Kn(x1 − x2)− fn(x1)] = O(1/hdn) = o(n).

Condition (SE). If nh2P
n → 0 and if nhdn →∞, then, using Condition (AS),
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1√
n

n∑
i=1

[f̂n(xi)− fn(xi)− f0(xi) + θ0]

=
1√
n

n∑
i=1

[n−1Kn(0) + (1− n−1)f̂n,i(xi)− fn(xi)− f0(xi) + θ0]

=
K(0)√
nh2d

n

+
1√
n

n∑
i=1

[(1− n−1)(2fn(xi)− θn)− fn(xi)− f0(xi) + θ0] + op(1)

=
K(0)√
nh2d

n

+
1√
n

n∑
i=1

[fn(xi)− f0(xi)]−
√
n(θn − θ0) + op(1) =

K(0)√
nh2d

n

+ op(1),

where the last equality uses E(|fn(x)−f0(x)|2) = o(1) and θn−θ0 = O(hPn ) = o(n−1/2).

As a consequence, Condition (SE) requires nh2d
n →∞.

Condition (AN). We have:

1√
n

n∑
i=1

[gn(xi, fn) + Ḡn(f̂n,i)− Ḡn(fn)] =
1√
n

n∑
i=1

[ψn(xi) +Bn],

where

ψn(x) = 2[f+
n (x)− θ+

n ], θ+
n =

∫
Rd
f+
n (x)f0(x)dx,

and Bn = θ+
n − θ0. If hn → 0, then ψn(x)→ ψ(x) for every x and it follows from the

dominated convergence theorem that (9) is satisfied. Also, (10) is satisfied because

Bn = K(0)/(nhdn)+O(hPn +n−1) is nonrandom. Condition (AN) is therefore satisfied

(with Σ = 4V[f0(x)]) if hn → 0 and, in fact, we can take βn = K(0)/(nhdn) when

nh2P
n → 0.

Condition (AS*). Because

ḡ∗n(x, f) = g∗n(x, f̂n) + g∗n,f (x)[f − f̂n], g∗n,f (x)[κ] = (1− n−1)κ(x),
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Condition (AS*) holds with ḡ∗n = g∗n if V∗(ḡ∗n,γ(z∗1)[κ∗n,2]) = op(n). A suffi cient condi-

tion for this to occur is that nhdn →∞, because then

EV∗(g∗n,γ(z∗1)[κ∗n,2]) = (1− n−1)2EV∗[Kn(x∗1 − x∗2)− f̂n(x∗1)] = O(1/hdn) = o(n).

Condition (AN*). We have:

1√
n

n∑
i=1

[g∗n(x∗i , f̂n) + Ḡ∗n(f̂ ∗n,i)− Ḡ∗n(f̂n)] =
1√
n

n∑
i=1

[ψ∗n(x∗i ) +B∗n],

where, defining f̂+
n (x) = n−1Kn(0) + (1− n−1)f̂n(x),

ψ∗n(x) = 2[f̂+
n (x)− θ̂+

n ], θ̂
+

n =
1

n

n∑
i=1

f̂+
n (xi), B∗n = n−1Kn(0)− n−1θ̂n.

Suppose hn → 0 and nhdn → ∞. Then B∗n = n−1Kn(0) − n−1θ̂n = βn + op(n
−1/2)

because θ̂n = Op(1). Because θ̂n − θn →p 0, n−1
∑n

i=1 |ψ
∗
n(xi) − ψn(xi)|2 →p 0 also

holds provided

1

n

n∑
i=1

|f̂n(xi)− fn(xi)|2 →p 0.

A suffi cient condition for this to occur is that maxi |f̂n(xi) − fn(xi)| = op (1) , which

in turn will hold if nhdn/ log n → ∞. Suffi ciency of the slightly weaker condition

nhdn →∞ can be demonstrated by using a direct calculation to show that if nhdn →∞,

then

E(
1

n

n∑
i=1

|f̂n(xi)− fn(xi)|2) = O(
1

nhdn
)→ 0.
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In other words, Condition (AN*) holds if hn → 0 and if nhdn →∞.

9.2. Example 2. To obtain primitive bandwidth conditions for the conditions of

Theorems 2 and 7, suppose that for some P > d ≥ 3,

• E[ |y|4] + supx E[|y|4|x]f0(x) <∞.

• Σ = V[ψ(z)] is positive definite.

• ω is continuously differentiable, and ω and its first derivative are bounded.

• infx:ω(x)>0 f0(x) > 0.

• f0 is P+1 times differentiable, and f0 and its first P+1 derivatives are bounded

and continuous.

• γr is continuously differentiable, and γr and its first derivative are bounded,

where γr(x) = r(x)f0(x).

• lim‖x‖→∞[f0(x) + |γr(x)|] = 0, where ‖ · ‖ is the Euclidean norm.

• K is even and differentiable, and K and its first derivative are bounded.

•
∫
Rd ‖∂K(u)/∂u‖du+

∫
Rd |K(u)|(1 + ‖u‖P )du <∞ and

∫
Rd
ul11 · · ·u

ld
d K(u)du =

 1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ Zd+ and l1 + · · ·+ ld < P

.

Conditions (AL) and (AL*) hold with J = Ik and without any op (1) terms.

Condition (AS). Suppose hn → 0. As in the text, let

ḡn(z, f) = gn(z, fn) + gn,f (z)[f − fn] +
1

2
gn,ff (z)[f − fn, f − fn],
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where, defining f+
n (x) = n−1Kn(0) + (1− n−1)fn(x),

gn,f (z)[κ] = −(1− n−1)
yω(x)

f+
n (x)

[
∂

∂x
κ(x)− ∂f+

n (x)/∂x

f+
n (x)

κ(x)

]
,

gn,ff (z)[κ, λ] = (1− n−1)2 yω(x)

f+
n (x)2

[
λ(x)

∂

∂x
κ(x) + κ(x)

∂

∂x
λ(x)− 2

∂f+
n (x)/∂x

f+
n (x)

κ(x)λ(x)

]
.

The assumptions of Lemma 5 are satisfied if max(∆n, ∆̇n) = op(n
−1/6), where

∆n = maxi

∣∣∣f̂n,i(xi)− fn(xi)
∣∣∣ , ∆̇n = maxi

∣∣∣∣ ∂∂xi f̂n,i(xi)− ∂

∂xi
fn(xi)

∣∣∣∣ .
More generally, proceeding as in Cattaneo et al. (2013) it can be shown that the first

part of Condition (AS) is satisfied if ∆n = op(1) and if ∆2
n max(∆n, ∆̇n) = op(n

−1/2).

Because (by Lemma 10)

∆n = Op(1/
√
nhdn/ log n), ∆̇n = Op(1/

√
nhd+2

n / log n),

a suffi cient condition for this to occur is that nh
3
2
d+1

n / (log n)3/2 →∞. Moreover,

V(gn,f (z1)[κn,2]) = O(1/hd+2
n ),

V[E(gn,ff (z1)[κn,2, κn,2]|z1)] = O(1/h2d+2
n ), V(gn,ff (z1)[κn,2, κn,2]) = O(1/h3d+2

n ),

V(gn,ff (z1)[κn,2, κn,3]) = O(1/h2d+2
n ),

so the assumptions of Lemma 4 will be satisfied provided nhd+2
n →∞.

Condition (AN). We have:
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1√
n

n∑
i=1

[gn(zi, fn) + Ḡn(f̂n,i)− Ḡn(fn)] =
1√
n

n∑
i=1

[ψn(zi) +Bn],

where

ψn(z) = gn(z, fn)− Egn(z, fn) + δn(z),

δn(z) = (1− n−1)

∫
Rd
δ0(s)

f0(s)

f+
n (s)

[Kn(s− x)− fn(s)]ds,

δ0(z) = ω(x)
∂

∂x
r(x) + r(x)

∂

∂x
ω(x) + r(x)ω(x)

∂f0(x)/∂x

f0(x)
,

and

Bn = Egn(z, fn) +
1

2

1

n

n∑
i=1

Gn,ff [f̂n,i − fn, f̂n,i − fn].

If hn → 0 and if nhdn → ∞, then ψn(z) → ψ(z) = g0(z, f0) + δ0(z) for every z and

it follows from the dominated convergence theorem that (9) is satisfied. Also, (10) is

satisfied if hn → 0 and if nhd+2
n →∞ because the representation

Gn,ff [κ, λ] = (1− n−1)2

∫
Rd

r(x)ω(x)

f+
n (x)2

[λ(x)
∂

∂x
κ(x) + κ(x)

∂

∂x
λ(x)]f0(x)dx

−2(1− n−1)2

∫
Rd

r(x)ω(x)

f+
n (x)2

∂f+
n (x)/∂x

f+
n (x)

κ(x)λ(x)f0(x)dx

can be used to show that if hn → 0, then

E(‖Gn,ff [κn,1, κn,1]‖2) = O(1/h2d+2
n ), E(‖Gn,ff [κn,1, κn,2]‖2) = O(1/hd+2

n ).
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Condition (AN) is therefore satisfied (with Σ = E[ψ(z)ψ(z)′]) if hn → 0 and if

nhd+2
n →∞. It can be shown that if also nh2P

n → 0, then EBn = βn+o(n−1/2), where

βn =
1

nhdn
K(0)

∫
Rd
r(x)ω(x)

∂f0(x)/∂x

f0(x)
dx

+
1

nhd+1
n

∫
Rd

∫
Rd

r(x)ω(x)

f0(x)
K(r)

∂

∂r
K(r)f0(x− rhn)dxdr

− 1

nhdn

∫
Rd

∫
Rd

r(x)ω(x)

f0(x)

∂f0(x)/∂x

f0(x)
K(r)2f0(x− rhn)dxdr.

Condition (AS*). A quadratic approximation to g∗n(z, f) is given by

ḡ∗n(z, f) = g∗n(z, f̂n) + g∗n,f (z)[f − f̂n] +
1

2
g∗n,ff (z)[f − f̂n, f − f̂n],

where

g∗n,f (z)[κ] = −(1− n−1)
yω(x)

f̂+
n (x)

[
∂

∂x
κ(x)− ∂f̂+

n (x)/∂x

f̂+
n (x)

κ(x)

]
,

g∗n,ff (z) [κ, λ] = (1− n−1)2 yω(x)

f̂+
n (x)2

[
λ(x)

∂

∂x
κ(x) + κ(x)

∂

∂x
λ(x)− 2

∂f̂+
n (x)/∂x

f̂+
n (x)

κ(x)λ(x)

]
.

Suppose hn → 0 and ∆n = op(1). Then the first part of Condition (AS*) is satisfied

if ∆∗n = op(1) and if ∆∗2n max(∆∗n, ∆̇
∗
n) = op(n

−1/2), where

∆∗n = maxi |f̂ ∗n,i(x∗i )− f̂n(x∗i )|, ∆̇∗n = maxi |
∂

∂x
f̂ ∗n,i(x

∗
i )−

∂

∂x
f̂n(x∗i )|.

Because (by Lemma 10)
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∆∗n = Op(1/
√
nhdn/ log n), ∆̇∗n = Op(1/

√
nhd+2

n / log n),

a suffi cient condition for this to occur is that nh
3
2
d+1

n / (log n)3/2 → ∞. Moreover, if

nhdn →∞, then

V∗(g∗n,f (z∗1)[κ∗n,2]) = Op(1/h
d+2
n ),

V∗[E∗(g∗n,ff (z∗1)[κ∗n,2, κ
∗
n,2]|z∗1)] = Op(1/h

2d+2
n ), V∗(g∗n,ff (z∗1)[κ∗n,2, κ

∗
n,2]) = Op(1/h

3d+2
n ),

V∗(g∗n,ff (z∗1)[κ∗n,2, κ
∗
n,3]) = Op(1/h

2d+2
n ),

so the second part of Condition (AS*) will be satisfied provided nhd+2
n →∞.

Condition (AN*). We have:

1√
n

n∑
i=1

[g∗n(z∗i , f̂n) + Ḡ∗n(f̂ ∗n,i)− Ḡ∗n(f̂n)] =
1√
n

n∑
i=1

[ψ∗n(z∗i ) +B∗n],

where

ψ∗n(z) = g∗n(z, f̂n)− 1

n

n∑
i=1

g∗n(zi, f̂n) + δ∗n(z),

δ∗n(z) = −(1− n−1)
1

n

n∑
i=1

yiω(xi)

f̂+
n (xi)

[
∂

∂xi
K̇n(xi − x)− ∂

∂xi
f̂n(xi)

]
+(1− n−1)

1

n

n∑
i=1

yiω(xi)

f̂+
n (xi)

∂f̂+
n (xi)/∂xi

f̂+
n (xi)

[Kn(xi − x)− f̂n(xi)].

B∗n =
1

n

n∑
i=1

g∗n(zi, f̂n) +
1

2

1

n

n∑
i=1

G∗n,ff [f̂
∗
n,i − f̂n, f̂ ∗n,i − f̂n].



Bootstrapping Semiparametric Estimators 77

Suppose hn → 0 and nhd+2
n / log n→∞. Using Lemma 10 and the fact that θ̂n →p θ0

it can be shown that n−1
∑n

i=1 ‖ψ
∗
n(zi) − ψn(zi)‖2 →p 0. Also, the bootstrap analog

of (10) is satisfied because the representation

G∗n,ff [κ, λ] =

(
1− 1

n

)2
1

n

n∑
i=1

yiω (xi)

f̂+
n (xi)

2

[
κ̇ (xi)λ (xi) + κ (xi) λ̇ (xi)

]
−2

(
1− 1

n

)2
1

n

n∑
i=1

yiω (xi)

f̂+
n (xi)

2

[
∂f̂+

n (xi) /∂xi

f̂+
n (xi)

κ (xi)λ (xi)

]

can be used to show that

V∗(‖G∗n,ff [κ∗n,1, κ∗n,1]‖2) = Op(1/h
2d+2
n ), V∗(‖G∗n,ff [κ∗n,1, κ∗n,2]‖2) = Op(1/h

d+2
n ).

Finally, it can be shown that E∗(B∗n) = βn + op
(
n−1/2

)
if nh

3
2
d+1

n / (log n)3/2 →∞. In

other words, Condition (AN*) holds if hn → 0 and if nh
3
2
d+1

n / (log n)3/2 →∞.

9.3. Example 3. To obtain primitive bandwidth conditions for the conditions of

Theorems 2 and 7, suppose that for some P > 3d/4,

• f0 is P times differentiable, and f0 and its first P derivatives are bounded and

continuous.

• Fy|x(·|x), the conditional cdf of y given x, has three bounded (uniformly in x)

derivatives.

• K is even and bounded with
∫
Rd |K(u)|(1 + ‖u‖P )du <∞ and∫

Rd
ul11 · · ·u

ld
d K(u)du =

 1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ Zd+ and l1 + · · ·+ ld < P

.
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Conditions (AL) and (AL*) hold with J = Ik and without any op (1) terms.

Condition (AS). Let Fy|x(·|x) denote the conditional cdf of y given x, let fy|x(·|x)

and ḟy|x(·|x) denote its first and second derivatives, and define

ğn(x, f) = E[gn(z, f)|x]− (1− θ0) = −Fy|x[n−1Kn(0) + (1− n−1)f(x)|x].

Being a defined through a projection, ğn(x, f) is likely to be close to gn(z, f) in the

the appropriate sense and, indeed,

1√
n

n∑
i=1

[gn(zi, f̂n,i)− ğn(xi, f̂n,i)− gn(zi, fn) + ğn(xi, fn)] = op(1)

if ∆n = op(1), because then

E

( 1√
n

n∑
i=1

[gn(zi, f̂n,i)− ğn(xi, f̂n,i)− gn(zi, fn) + ğn(xi, fn)]

)2

|Xn


=

1

n
V

(
n∑
i=1

[gn(zi, f̂n,i)− gn(zi, fn)]|Xn

)
≤ supr,s fy|x(r|s)∆n = op(1),

where Xn = (x1, . . . , xn)′. Next, being smooth ğn(x, f) admits the quadratic approx-

imation

ḡn(x, f) = ğn(x, fn) + ğn,f (x)[f − fn] +
1

2
ğn,ff (x)[f − fn, f − fn],

where
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ğn,f (x)[κ] = −(1− n−1)fy|x[f
+
n (x)|x]κ(x),

ğn,ff (x)[κ, λ] = −(1− n−1)2ḟy|x[f
+
n (x)|x]κ(x)λ(x).

It follows from standard bounding arguments (e.g., Lemma 5) that

1√
n

n∑
i=1

[ğn(xi, f̂n,i)− ḡn(xi, f̂n,i)− ğn(xi, fn) + ḡn(xi, fn)] = op(1)

provided ∆n = op(n
−1/6). This condition, and therefore the first part of Condition

(AS), is satisfied when nh
3
2
d

n /(log n)3/2 →∞. Moreover,

V(ğn,f (x1)[κn,2]) = O(1/hdn),

V[E(ğn,ff (x1)[κn,2, κn,2]|z1)] = O(1/h2d
n ), V(ğn,ff (x1)[κn,2, κn,2]) = O(1/h3d

n ),

V(ğn,ff (x1)[κn,2, κn,3]) = O(1/h2d
n ),

so the assumptions of Lemma 4 will be satisfied provided nhdn →∞.

Condition (AN). We have:

1√
n

n∑
i=1

[gn(zi, fn) + Ḡn(f̂n,i)− Ḡn(fn)] =
1√
n

n∑
i=1

[ψn(zi) +Bn],

where

ψn(z) = gn(z, fn)− Egn(z, fn) + δn(x),

δn(x) = −(1− n−1)

∫
Rd
fy|x[f

+
n (r)|r][Kn(r − x)− fn(r)]f0(r)dr,
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and

Bn = Egn(z, fn) +
1

2

1

n

n∑
i=1

Ğn,ff [f̂n,i − fn, f̂n,i − fn].

If hn → 0 and if nhdn →∞, then

ψn(z)→ ψ(z) = g0(z, f0)+δ0(x), δ0(x) = −fy|x[f0(x)|x]f0(x)+

∫
Rd
fy|x[f0(x)|x]f0(x)2dx,

for every z and it follows from the dominated convergence theorem that (9) is satisfied.

Also, (10) is satisfied if hn → 0 and if nhdn →∞ because the representation

Ğn,ff [κ, λ] = −(1− n−1)2

∫
Rd
ḟy|x[f

+
n (x)|x]κ(x)λ(x)f0(x)dx

can be used to show that if hn → 0, then

E(‖Ğn,ff [κn,1, κn,1]‖2) = O(1/h2d
n ), E(‖Ğn,ff [κn,1, κn,2]‖2) = O(1/hdn).

Condition (AN) is therefore satisfied (with Σ = E[ψ(z)ψ(z)′]) if hn → 0 and if

nhdn →∞. It can be shown that if also nh2P
n → 0, then EBn = βn + o(n−1/2), where

βn = − 1

nhdn
K (0)

∫
Rd
fy|x [f0 (x) |x] f0 (x) dx

− 1

nhdn

1

2

∫
Rd
ḟy|x [f0 (x) |x]K (r)2 f0 (x) f0 (x− rhn) dxdr.
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Condition (AS*). Let ğ∗n(x, f) = ğn(x, f) and define

ḡ∗n(x, f) = ğ∗n(x, f̂n) + ğ∗n,f (x)[f − f̂n] +
1

2
ğ∗n,ff (x)[f − f̂n, f − f̂n],

where

ğ∗n,f (x)[κ] = −(1− n−1)fy|x[f̂
+
n (x)|x]κ(x),

ğ∗n,ff (x)[κ, λ] = −(1− n−1)2ḟy|x[f̂
+
n (x)|x]κ(x)λ(x).

Defining Ni =
∑n

j=1 1
(
x∗j = xi

)
and using the fact (about the multinomial distribu-

tion) that n−1
∑n

i=1N
2
i = Op(1), it can be shown that

1√
n

n∑
i=1

[g∗n(z∗i , f̂
∗
n,i)− ğ∗n(x∗i , f̂

∗
n,i)− g∗n(z∗i , f̂n) + ğ∗n(x∗i , f̂n)] = op(1)

if ∆∗n = op (1) , because then

E

( 1√
n

n∑
i=1

[g∗n(z∗i , f̂
∗
n,i)− ğ∗n(x∗i , f̂

∗
n,i)− g∗n(z∗i , f̂n) + ğ∗n(x∗i , f̂n)]

)2

|Xn,X ∗n


=

1

n
V

(
n∑
i=1

[g∗n(z∗i , f̂
∗
n,i)− g∗n(z∗i , f̂n)]|Xn,X ∗n

)
≤ supr,s fy|x(r|s)

(
1

n

n∑
i=1

N2
i

)
∆∗n = op(1),

where X ∗n = (x∗1, . . . , x
∗
n)′. Also, it follows from standard bounding arguments that

1√
n

n∑
i=1

[ğ∗n(x∗i , f̂
∗
n,i)− ḡ∗n(x∗i , f̂

∗
n,i)− ğ∗n(x∗i , f̂n) + ḡ∗n(x∗i , f̂n)] = op(1)
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provided ∆∗n = op(n
−1/6). This condition, and therefore the first part of Condition

(AS*), is satisfied when nh
3
2
d

n / (log n)3/2 →∞. Moreover,

V∗(ğ∗n,f (x∗1)[κ∗n,2]) = Op(1/h
d
n),

V∗[E∗(ğ∗n,ff (x∗1)[κ∗n,2, κ
∗
n,2]|x∗1)] = Op(1/h

2d
n ), V∗(ğ∗n,ff (x∗1)[κ∗n,2, κ

∗
n,2]) = Op(1/h

3d
n ),

V∗(ğ∗n,ff (x∗1)[κ∗n,2, κ
∗
n,3]) = Op(1/h

2d
n ),

so the second part of Condition (AS*) will be satisfied provided nhdn →∞.

Condition (AN*). Finally, we have:

1√
n

n∑
i=1

[g∗n(z∗i , f̂n) + Ḡ∗n(f̂ ∗n,i)− Ḡ∗n(f̂n)] =
1√
n

n∑
i=1

[ψ∗n(z∗i ) +B∗n],

where

ψ∗n(z) = g∗n(z, f̂n)− 1

n

n∑
i=1

g∗n(zi, f̂n) + δ∗n(z),

δ∗n(z) = −(1− n−1)
1

n

n∑
i=1

fy|x[f̂
+
n (xi)|xi][Kn(xi − x)− f̂n(xi)],

B∗n =
1

n

n∑
i=1

g∗n(zi, f̂n) +
1

2

1

n

n∑
i=1

Ğ∗n,ff [f̂
∗
n,i − f̂n, f̂ ∗n,i − f̂n].

Suppose hn → 0 and nh
3
2
d

n / (log n)3/2 → ∞. Using Lemma 10 and the fact that

θ̂n →p θ0 it can be shown that n−1
∑n

i=1 ‖ψ
∗
n(zi)−ψn(zi)‖2 →p 0. Also, the bootstrap

analog of (10) is satisfied because the representation
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Ğ∗n,ff [κ, λ] = −(1− n−1)2 1

n

n∑
i=1

ḟy|x[f̂
+
n (xi)|xi]κ(xi)λ(xi)

can be used to show that

V∗(‖Ğ∗n,ff [κ∗n,1, κ∗n,1]‖2) = Op(1/h
2d
n ), V∗(‖Ğ∗n,ff [κ∗n,1, κ∗n,2]‖2) = Op(1/h

d
n).

Finally, it can be shown that E∗(B∗n) = βn + op
(
n−1/2

)
if nh

3
2
d

n / (log n)3/2 → ∞. In

other words, Condition (AN*) holds if hn → 0 and if nh
3
2
d

n / (log n)3/2 →∞.
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