
 

Department of Economics and Business 

Aarhus University 

Fuglesangs Allé 4 

DK-8210 Aarhus V 

Denmark 

Email: oekonomi@au.dk  

Tel: +45 8716 5515 

 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 

Discriminating between fractional integration 

and spurious long memory 

 

Niels Haldrup and Robinson Kruse 

 

CREATES Research Paper 2014-19 

 

 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:oekonomi@au.dk


Discriminating between fractional integration and spurious long memory

Niels Haldrupac and Robinson Krusebc

Aarhus Universitya, Leibniz Universität Hannoverb, CREATESc∗

26 June 2014

Abstract. Fractionally integrated processes have become a standard
class of models to describe the long memory features of economic and finan-
cial time series data. However, it has been demonstrated in numerous studies
that structural break processes and non-linear features can often be confused
as being long memory. The question naturally arises whether it is possible
empirically to determine the source of long memory as being genuinely long
memory in the form of a fractionally integrated process or whether the long
range dependence is of a different nature. In this paper we suggest a test-
ing procedure that helps discriminating between such processes. The idea is
based on the feature that nonlinear transformations of stationary fractionally
integrated Gaussian processes decrease the order of memory in a specific way
which is determined by the Hermite rank of the transformation. In principle, a
non-linear transformation of the series can make the series short memory I(0).
We suggest using the Wald test of Shimotsu (2007) to test the null hypothesis
that a vector time series of properly transformed variables is I(0). Our test-
ing procedure is designed such that even non-stationary fractionally integrated
processes are permitted under the null hypothesis. The test is shown to have
good size and to be robust against certain types of deviations from Gaussian-
ity. The test is also shown to be consistent against a broad class of processes
that are non-fractional but still exhibit (spurious) long memory. In particu-
lar, the test is shown to have excellent power against a class of stationary and
non-stationary random level shift models as well as Markov switching GARCH
processes where the break and transition probabilities are allowed to be time
varying.
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1. Introduction
Recent empirical research indicates that many time series in economics and finance
have long memory and belong to the class of fractionally integrated processes. This
is especially the case for high frequency financial time series such as log squared
returns, log implied and realized volatility, interest rate spreads etc., see e.g. Taylor
(1986), Diebold and Rudebusch (1989), Ding et al. (1993), Baillie et al. (1996),
Comte and Renault (1998) Andersen, et al. (2001, 2003), Christensen and Nielsen
(2006) and Bollerslev et al. (2013). A univariate time series process xt is said to have
long memory if its autocorrelation function γx(τ) at long lags decays at a hyperbolic
(rather than an exponential) rate, i.e. γx(τ) ' Bτ 2d−1 as τ → ∞ where B is a
finite constant and d is the memory index. Alternatively, the spectral density of the
series is proportional to λ−2d with d 6= 0 for low frequencies λ→ 0. This implies that
distant observations tend to be highly correlated and hence the term long memory or
long range dependence is used for such processes. Fractionally integrated processes
have this property and are often used as a convenient model class for time series
with seemingly long memory features. A vast literature exists in estimating the long
memory parameter d. Many of these studies address the estimation problem in a
semiparametric framework, e.g. Geweke and Porter-Hudak (1983), Künsch (1987),
and Robinson (1995a, 1995b), but parametric models within the class of fractionally
integrated processes have also attracted considerable attention, i.e. Fox and Taqqu
(1986), Sowell (1992a,b), and Nielsen (2005). Recently Johansen and Nielsen (2010,
2012) and Lasak (2010) have developed estimation and testing procedures for co-
fractional VAR models.
Despite its attractiveness for parsimonous model building, fractionally integrated

processes are often found to be a too flexible model class in the sense that processes
that are not truly fractional or genuinely long memory, can be fitted arbitrarily well
to the data. For instance, the features of hyperbolic decay of autocorrelations and
unboundedness of the spectral density at the origin can also be present when a short
memory process is affected by a regime change, a smooth trend, or similar. Hence,
in practice it can be hard to distinguish these processes from genuine long mem-
ory processes. Often this feature is referred to as "spurious" long memory, see e.g.
Diebold and Inoue (2001), Gourieux and Jasiak (2001), Granger and Ding (1996),
Granger and Hyung (2004), Shimotsu (2006), Ohanissian, Russell and Tsay (2008),
Perron and Qu (2010) and Qu (2011). A commonly used example is a short memory
process, (a summable and invertible ARMA process for instance), which is subject
to a random level shift where the shifts are governed by a Bernoulli process with a
shift probability p, see for instance Diebold and Inoue (2001), Lu and Perron (2010),
Qu (2011), Perron and Qu (2010), and Xu and Perron (2014). Diebold and Inoue
(2001) show that if the shift probability is allowed to depend on the sample size in
a particular way, then the process mimics the long run behaviour of a long memory
process. Even though fractionally integrated processes and the random level shift
model for instance have common features in terms of long memory, fractionally in-



Discriminating between fractional integration and spurious long memory 3

tegrated processes have the property of self-similarity which is a feature that the
random level shift model and other apparent long memory processes do not share.
The notion of a self-similar process is discussed in e.g. Mandelbrot and Van Ness
(1968) and has the implication for instance that the long memory properties of the
process are unaffected by the sampling frequency. To sum up, long memory features
described only through the first two moments as in the autocorrelation and spectral
density functions will generally be insuffi cient to discriminate fractional integration
from spurious long memory processes.
A steadily growing literature has developed with emphasis on whether it is possible

to empirically discriminate between genuine long memory processes and spurious
long memory processes. This is an important question from both a statistical and
an economic perspective. Estimation and inference under a stationary long memory
model is quite different from structural break, non-linear, and non-stationary models
and from an economic perspective the long lasting impact of shocks in presence of
long memory is rather different from models where rare structural breaks occur for
example. Also forecasts obtained from these models can be very different.
A number of tests have been developed which attempt to discriminate between

true and spurious long memory. Ohanissian, Russell and Tsay (2008) exploit the self-
similarity property of fractional processes to develop a test based on the invariance of
the long memory parameter subject to different temporal aggregates of the process.
Shimotsu (2006) develops two tests. One test is based on the estimation of the long
memory parameter using subsamples and comparing these estimates with the estimate
for the full sample. Under the null of true long memory the memory parameters are
identical. The second test suggested by Shimotsu (2006) is based on the idea of
estimating d for the full sample and test whether ∆d̂xt is short memory I(0). This
is a property which does not generally apply for spurious long memory models. Qu
(2011) proposes a test for the null of true stationary long memory. The test is a
frequency domain test based on the derivative of the profiled local Whittle likelihood
function in a shrinking neighborhood of the origin. For long memory processes the
behaviour of the likelihood at the origin depends on the bandwidth parameter in a
particular way and this is a feature that can be used as a basis for testing. Perron and
Qu (2010) propose a test against the mean shift hypothesis based on the observation
that under the alternative the estimate of d will depend on the number of frequencies
included in the log-periodogram regression.
The present paper takes a different point of departure. More precisely, the null

being tested is that a Gaussian univariate time series is fractionally integrated of
some order d with 0 < d < 1/2, i.e. the process is assumed to be a stationary long
memory process. As for the second test of Shimotsu (2006) it is true that the dth
difference is short memory I(0). However, there are other ways a Gaussian fractional
long memory process can be transformed to be I(0). We exploit the feature that
nonlinear transformations of a fractionally integrated process will have a lower order
of memory compared with the original series, see e.g. Dittmann and Granger (2002)
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and Avarucci and Marinucci (2007). The actual reduction in memory is determined
by the Hermite rank of the transformation. A Gaussian FI(d) series xt can thus be
made I(0) by an appropriately chosen nonlinear transformation, possibly in combi-
nation with partial differencing of the series ∆δxt with δ < d. In principle, a range
of different transformations can be considered in constructing a vector series which is
short memory I(0) under the null hypothesis. The combination of a non-linear trans-
formation and partial pre-differencing also allows the case of non-stationary Gaussian
FI(d) processes with d > 0.5 and hence generalizes the applicability of the test to a
broader class of fractionally integrated processes.
We suggest to use a multivariate Gaussian semiparametric estimator of long-range

dependent processes proposed by Shimotsu (2007) to estimate the long memory pa-
rameters of a vector of transformed time series and to use a Wald-statistic to test the
null that the vector time series is jointly I(0). The test has a limiting χ2 distribution
under the null and by appropriate choice of tuning parameters, i.e. the choice of
Hermite rank and partial differencing parameter δ, the test is shown to have good
empirical size properties. After appropriate pre-filtering the test is shown to be ro-
bust to the presence of serial correlation and conditional heteroscedasticity. The test
is shown to have power against a variety of spurious long memory models that have
been previously analyzed in the literature; this includes stationary and non-stationary
random level shift models and Markov switching GARCH processes. Even though the
power is comparable to the power of competing tests in the literature the test of Qu
(2011) appears to be superior though. However, if the regime switching or transition
probabilities are allowed to be time varying the test is shown to have excellent power
and outperforms the Qu (2011) test in most cases.
The plan of the paper is as follows. In section 2, we define the class of mod-

els considered in the paper and in section 3 the theoretical results underlying our
suggested testing procedure are presented and includes a review of how fractionally
integrated Gaussian processes are affected by Hermite polynomial or other transfor-
mations. Section 4 presents the suggested testing procedure and subsequently the size
and power properties are examined through simulations in sections 5-8. The paper
presents an empirical application in section 9 that focuses on log realized volatility
for stock market indices and US inflation time series. Finally, the paper is completed
with a conclusion and suggestions for future extensions.

2. Fractional integration, structural breaks, and non-linear
models

Consider a fractionally integrated time series process xt generated according to

(1− L)dxt = ut (1)

where ut is a covariance stationary process with spectral density fu(λ) being bounded
(and bounded away from zero) at frequency zero. Initially we will assume that
0 ≤ d < 1/2 meaning that xt is stationary with long memory, except for d = 0
where xt is short memory. More generally, −1/2 < d < 0 means that the process is
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antipersistant whereas 1/2 < d < 1 implies a non-stationary, mean-reverting, long
memory process. Assume for instance that xt follows a summable and invertible
ARFIMA(p, d, q) process

Φ(L)(1− L)dxt = Θ(L)εt (2)

where Φ(L) = 1 − φ1L − φ2L2 − .... − φpLp and Θ(L) = 1 + θ1L + θ2L
2 + ... + θqL

q

and εt is white noise with variance E(ε2t ) = σ2ε . Then the spectral density of xt in a
neighborhood of zero approximates

fx(λ) ' σ2ε
2π

|Θ(1)|2
|Φ(1)|2λ

−2d as λ→ 0+

where ” ' ” signifies that the ratio on the right and left sides tends to unity. In
general, a long memory process is defined to be a process with spectral density f(λ) '
Cλ−2d as λ → 0+ for −1/2 < d < 1/2 and finite constant C. In other words, the
spectral density of an ARFIMA process exhibit the shape of a long memory process
around the origin and hence belongs to this class of models. Similarly, it can be shown
that the auto correlation function of a long memory process will exhibit hyperbolic
decay, i.e. γx(τ) ' Hτ 2d−1 where H is a finite constant, and this is a property
shared with ARFIMA process. We will denote a long memory process with memory
parameter d an LM(d) process. Note that an FI(d) process is LM(d), but the reverse
is not generally the case. In the present paper the class of long memory processes
we want to discriminate from spurious long memory processes are of the Gaussian
ARFIMA type with εt ∼ N(0, σ2ε) and 0 ≤ d < 1/2.

3. Nonlinear transformations of Gaussian fractionally integrated
processes

It is well known that stationary Gaussian fractionally integrated processes can be
transformed to reduce their order of long memory, see e.g. Dittmann and Granger
(2002) and Avarucci and Marinucci (2007). We will exploit this property to develop
a test for fractional long memory. This section reviews some properties of non-linear
transformations and Hermite polynomial expansions and we present the main result
upon which our test is based.
Consider the case of a zero mean Gaussian random variable1 x with variance σ2

and some transformation given by the function G(.) satisfying EG2(xt) < ∞. The
function can be expanded in terms of a series of Hermite polynomials

G(x) =
∞∑
k=0

ck
k!
Hk(x) (3)

1It may be seen as a limitation that the following results build upon Gaussianity. Alternatively,
Appell polynomial expansions could be considered which allow a more general class of distributions
and encompasses the Gaussian distribution as a special case, see e.g. the review in Beran et al.
(2013). However, because the specific moment generating function of the underlying distribution
has to be known in this case and as its unknown parameters enter the Appell polynomials to be used,
this approach also has its limitations. As we shall see, transforming data to approximate Gaussianity
is suffi cient for our testing procedure to have good properties in terms of size and power.
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where the Hermite polynomials read

Hk(x) = (−1)k exp

(
x2

2σ2

)
dk

dkx

(
exp

(
−x2
2σ2

))
. (4)

The Hermite polynomials follow the recursion formulaeHk+1(x) = xHk(x)−kHk−1(x) =
xHk(x)−H ′k(x) and apart from scaling the first 5 Hermite polynomials are given by:

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1, (5)

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x.

The coeffi cients ck in equation (3) are defined as

ck = E [G(x)Hk(x)] =
1√
2π

∫ ∞
−∞

G(x)Hk(x) exp

(
−x2
2σ2

)
dx (6)

so for instance c0 =E[G(x)] .
The Hermite rank of G(.) is the index J of the lowest non-zero coeffi cient ck, i.e.

ck = 0 for k = 1, 2, ..., J − 1
cJ = E [G(x)HJ(x)] 6= 0

Interestingly, we have that

1√
2π

∫ ∞
−∞

Hl(x)Hk(x) exp

(
−x2
2σ2

)
dx =

{
1 for l = k
0 for l 6= k

such that the Hermite polynomials are orthogonal and hence, according to (6), a
polynomial transformation G(x) with Hermite rank J can always be found by se-
lecting Hermite polynomials G(x) = HJ(x), i.e. by construction transformations
corresponding to Hermite polynomials of order J will have Hermite rank J.
Assume that we have two zero-mean Gaussian variables x and y scaled to have

unit variance. Then

E[Hk(x)Hl(y)] =

{
k! [E(xy)]k for l = k
0 for l 6= k

(7)

Now, consider the Gaussian process ∆dxt, 0 < d < 1/2, i.e. xt is a fractionally
integrated Gaussian process whereby the autocorrelation function declines according
to γx(τ) ' Gτ 2d−1. It follows from (7) that

E[Hk(xt)Hk(xt−τ )] = k!γkx(τ) ' Cτ k(2d−1), as τ →∞
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In other words, the sequence Hk+1(xt) will exhibit less memory than the sequence
Hk(xt). More precisely, if xt ∼ FI(d), then the transformation Hk(xt) will be a long
memory series LM(dk) with dk < d where

dk = max

{
0, (d− 1

2
)k +

1

2

}
(8)

which follows from 2dk − 1 = k(2d− 1).
Figure 1 displays the relationship (8) for transformations with Hermite rank J

where we use Hermite polynomials as transformations, i.e. GJ=k(xt) = Hk(xt). As
seen, any tranformation with Hermite rank bigger than one will reduce the long
memory index of the original fractionally integrated process. For instance, for Hermite
rank J = 2 an I(d) series can be made short memory I(0) as long as 0 < d < 0.25.
For J = 3 the transformed series is I(0) when the original series has d in the range
0 < d < .33, and so forth. The memory range in which a series can be made
I(0) increases with the Hermite rank of the transformation. However, as d increases
towards the boundary value of d = 0.5, it becomes diffi cult to make the transformed
series I(0) without choosing a transformation with a very high Hermite rank. There
is a way of circumventing this problem. Assume that the original series is I(d) with
d being "close" to 0.5, say d = 0.45. For a Hermite rank of J = 2 it is not possible
to make the series I(0). In fact, in this case d2 = 0.4 and only a minor reduction
in memory results. However, it is possible to partially difference the series prior to
non-linear transformation in order to amplify the reduction of memory order. In
place of xt, consider as an example the series yt = ∆δxt, where δ = 0.2 such that
yt ∼ FI(0.25) as d− δ = 0.25. Note that yt is still a Gaussian process. A subsequent
transformation HJ(yt) with Hermite rank J = 2 will thus make the original series I(0)
after "partial" pre-differencing. We shall later see that such a combination of partial
differencing and a non-linear transformation may be useful for testing purposes.

Figure 1 about here

As seen, an interesting feature of Gaussian FI(d) processes is that the series can be
made short memory I(0) not only by taking a d′th difference of the series, but also by
non-linear transformation. This has the consequence, that a series may "cointegrate"
non-linearly with itself even though common long memory rather than cointegration
seems to be the appropriate notion in this case, see Engle and Granger (1987) for
the definition of cointegration. Assume for instance the case where xt ∼ FI(d) and
consider the transformation H3(xt). It follows that H3(xt) = (x3t − 3xt) has memory
LM(d3), with d3 = max{0, 3d− 1} < d. Note however, that the two terms x3t and 3xt
both have Hermite rank J = 1 and hence have memory LM(d). This shows that linear
combinations of Gaussian FI(d) processes may have common memory features with
non-linear transformations of itself and for certain values of d the linear combination of
the series may even be short memory. This property is somewhat related to the notion
of summability and co-summability of linear and nonlinear stochastic processes that
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has recently been suggested by Berenguer-Rico and Gonzalo (2013, 2014). However,
the two notions are distinct and only coincide in special cases.
After having presented the relevant results for nonlinear transformations of frac-

tionally integrated processes, we turn to transformation of processes which gener-
ate spurious long memory. In particular, we focus on the widely studied random
level shift process for an illustration. It is given by µt = µt−1 + εt with εt = πtηt,
where πt ∼ iidB(1, p) and ηt ∼ iidN(0, σ2η) being independent of each other. The
process can be re-written as µt =

∑t
j=1 εj with E(εj) = 0 and var(εj) = pσ2η. This

leads to E(µt) = 0 and var(µt) = tpσ2η. The autocovariance function is denoted as
Ct,t−τ = E(

∑t
j=1 εj

∑t−τ
j=1 εj) with |τ | ≤ t − 1. Consider the nonlinear transforma-

tion of the standardized series zt = µt/C
1/2
t,t , i.e. G(zt) =

∑∞
k=0 α

(t)
k Hk(zt), where

α
(t)
k = 1

k!
E

(
dkG(C

1/2
t,t zt)

dzkt

)
. In general, the autocovariance function of the nonlinearly

transformed series is given by

γG(z)(τ) =
∞∑
k=1

(α
(t)
k C

−k/2
t,t )(α

(t−τ)
k C

−k/2
t−τ,t−τ )k!Ck

t,t−τ

see Ermini and Granger (1993). For the case of a random level shift process and a
transformation of G(zt) = H2(zt) with Hermite rank J = 2, we obtain after some
algebra γG(z)(τ) ' Czτ

2p2. According to Diebold and Inoue (2001), random level
shift processes and fractionally integrated processes display the same long memory
behaviour in levels if p = O(T 2d−2).2 When applying this rate, we obtain that G(zt)
is LM(d∗) since

γG(z)(τ) ' Czτ
2d∗−1

where d∗ =
(
1
2
d+ 1

4

)
∈ [1/4, 1/2) for d ∈ [0, 1/2). Thus, the long memory behaviour

of a squared random level shift process is very different to the one for a squared
fractionally integrated process. While the two processes are hardly distinguishable
when considering the levels, taking the square does reveal substantial differences in
the decay of the autocovariance function. Such a distinct behaviour is the basis for
our testing approach.

4. Testing the null of fractional integration
The properties of non-linear transformations of stationary FI(d) processes discussed
in the previous section will be used to develop a testing procedure to discrimi-
nate between stationary, fractionally integrated processes and spurious long memory
processes.
The testing procedure consists of first estimating d for the original series, xt,

which is FI(d) under the null hypothesis. We know that as long as the estimate of d
is consistent, then in the limit ∆d̂xt is short memory I(0), see Shimotsu (2006), and,

2Similar to the analysis in Diebold and Inoue (2001), the results derived below also extend to
the richer ”mean plus noise”model xt = µt + ut with ut ∼ iidN(0, σ2u).
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also in the limit, yt = ∆d̂−δxt is FI(δ) for some target differencing δ. Consider next
a Hermite polynomial transformation of yt, i.e. HJ(yt) which is designed such that
theoretically this will have short memory LM(0)3. Recall that the choice of δ and J
are related to ensure this. In principle, a sequence of transformations with different
Hermite ranks can be considered (and in different combinations) which leads to the
vector time series Yt = (∆d̂xt, HJ1(yt), HJ2(yt), ...., HJp(yt))

′ of dimension q × 1, (q =
p+ 1), being short memory LM(0) under the null hypothesis. Observe that the first
element in Yt is xt differenced by the estimate d̂ and hence does not involve a nonlinear
transformation. If this element were the only one being tested in Yt the test would
correspond to the "differencing test" by Shimotsu (2006). Our test statistic is based
on a multivariate estimate of the long memory parameters of the vector series Yt and
testing Yt ∼ LM(0) using a Wald test due to Shimotsu (2007). Note that in the
construction of the yt series using different Hermite polynomial transformations, the
possibility of using different target values δ for each transformation may be considered.
In accordance with the discussion in section 3 a proper notation will include an index
J of the partially differenced series to indicate that the target differencing may depend
on the Hermite rank, i.e. yJt = ∆d̂−δJxt is FI(δJ). In section 5 we will use simulations
to determine how the target differencing filter can be selected in practice to obtain
an acceptable size-power trade-off of the test4.
The design of the null hypothesis implies that a broader class of fractional Gaussian

processes can be accomodated. The theory presented in section 3 only applies for
stationary fractionally integrated Gaussian processes where 0 < d < 1/2. However,
because the series is pre-differenced to the stationary region before testing our pro-
cedure allows d to take on values in the non-stationary region d ≥ 1/2 and hence can
be used under more general conditions than initially thought.
Assume that the dimension of Yt is q×1, q = p+1, with the memory index vector

d = (d0, d1, d2, ..., dp)
′ = 0′ under the null hypothesis, i.e.

H0 : Yt = (∆d̂xt, HJ1(y
J1
t ), HJ2(y

J2
t ), ...., HJp(y

Jp
t ))′ ∼ LM(0). (9)

In principle, a single element or a group of elements in Yt can be tested under the
null. The test we suggest is based on Shimotsu’s (2007) multivariate Gaussian semi-
parametric estimator (GSE) of long memory processes and the associated Wald test
of the null hypothesis (9). The estimator is defined as

d̂ = arg min
d∈Θ

R(d) (10)

3yt is assumed to be measured in deviations from the mean and to have unit variance. For
notational convenience, we assume that yt is the demeaned series scaled by its standard deviation.

4The idea of differencing the data appropriately has also been used in Nielsen and Frederiksen
(2011) in the context of weak fractional cointegration. As the authors note, the particular choice of
the differencing parameter is user-specfic and different choices lead to different outcomes. In their
case, there exists a choice which is best in a GLS sense. In our situation there is a best choice
as well as the power of our tests are monotonically increasing in the target differencing parameter.
Therefore, we are able to optimize the power of the tests with respect to δ, while controlling for the
size.
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where the objective function reads

R(d) = log det Ĝ(d)− 2

q∑
a=1

da
1

m

m∑
j=1

log λj (11)

Ĝ(d) =
1

m

m∑
j=1

Re
[
Λj(d)−1I(λj)Λ

∗
j(d)−1

]
(12)

The Fourier frequencies are given by λj = 2πj/T with j = 1, 2, ...m and m = o(T ) is
the bandwidth parameter. We also have Λj(d) =diag(Λja(d)), Λja(d) = λdaj exp(i(π−
λj)da/2) and Λ∗j(d) is the conjugate transpose of Λj(d). The admissable range of d
in minimizing the objective function (11) is Θ = [∆1,∆2]

q , with −1
2
< ∆1 < ∆2 <

1
2
.

Nielsen (2011) extends the Shimotsu (2007) estimator to an expanded range of d
values given by −1

2
< d <∞, so in principle this estimator can be considered for an

extended class of long memory processes that exhibit non-stationarity.
Shimotsu (2007) shows the consistency and asymptotic normality of the estimator

in (10). He also shows that the estimator is more effi cient that the two step GSE
estimator of Lobato (1999). It is important to note that Gaussianity is not assumed
in the asymptotic theory and a general class of multivariate long-range dependent
processes is allowed for, including fractionally integrated processes. A test of the
hypothesis H0 : d = 0 is given by the Wald statistic

W = m d̂′Ω̂ d̂ ∼ χ2(q) as T →∞ (13)

where

Ω̂ = 2

[
Ĝ(d̂)� Ĝ(d̂)−1 + Iq +

π2

4
(Ĝ(d̂)� Ĝ(d̂)−1 − Iq)

]
and � denotes the Hadamard product.
With reference to work by Hurvich and Chen (2000) concerning properties of the

GSE estimator in univariate settings, Shimotsu (2007) proposes a correction factor
of the Wald test that appears to yield better size properties. The modified Wald test
reads

Wc(J, δJ) = cmd̂́Ω̂d̂ (14)

where cm =
m∑
j=1

v2j , vj = log λj − 1
m

m∑
j=1

log λj. Because cm/m → 1 as m → ∞,

the asymptotic distribution is unaffected by the correction factor. This is our pre-
ferred test to be used subsequently and in short we will use the notation W (J, δj) =
W ((J1, J2, ..Jp), δJ).
Note that when the null hypothesis cannot be rejected it is appropriate to model

the series as a fractional long memory process and if the null is rejected a search
should be made for an adequate alternative model specification. The route outlined
in Qu (2011) can be followed in this situation.
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5. Test size and choice of δ for the Gaussian fractional noise case
In order to implement the testing procedure we will examine how appropriate target
values δJ can be determined to control the size of the test. The transformations
we consider are themselves Hermite polynomials but in principle any transformation
with Hermite rank larger than one can be considered. In case of no estimation uncer-
tainty, the relationship (8) would hold exactly and finding the appropriate differencing
d− δJ that would make yJt exactly LM(0) would be trivial. However, when estimat-
ing d the estimation error should be accounted for. We have empirically replicated
the theoretical shapes displayed in Figure 1 by estimating d for a range of FI(d)
processes xt with d ∈ [0, 0.5[. Next, we have estimated the memory parameter dk of
the transformed univariate series HJ(xt). Figures 2-3 display Monte Carlo averages
of the combinations of d̂ and d̂k using local Whittle estimates of the long memory
parameter estimated with the commonly used bandwidth parameter m = [T 0.65], see
Künsch (1987). The graphs are displayed for Hermite ranks 2-5 with T = 500 and
T = 3000 observations. 2000 Monte Carlo replications were used to construct the
graphs.

Figures 2-3 about here

As seen, the theoretical decline in long memory is only partially reflected in the
empirical estimates. Generally, the reduction of memory is less steep than predicted
by the theory and the point where the Monte Carlo average of d̂k is approximately
zero is lower than the theoretical value. This suggests that the target differing δJ
should be chosen to be a smaller value than indicated by the theory. The simulations
also confirm that δJ can be chosen as an increasing function of J whereas the sample
size seems to play a neglible role in the choice of δJ .
To determine the desired target values δJ we will follow a different route and

consider theW (J,δJ) test to see for which target values δJ the test has acceptable size.
It is clear that selecting a value of δJ that is too large will size distort the test since
the long memory is not completely removed after the appropriate transformation. On
the other hand, by selecting a too low value of δJ may be at the cost of power even
though the overall size of the test is less affected.
We consider different variants of the test where δJ ∈ [0, 0.4] and for the bivariate

(q = 2) transformations choose J = (2, 3, 4, 5) and for trivariate (q = 3) transfor-
mations J = ((2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)). Recall that for all tests the first
element in the vector Yt given in (9) is the (empirically) differenced series ∆d̂xt using
the local Whittle estimator to estimate d. Hence the dimension of Yt being tested
is respectively q = 2 and q = 3. The GSE (10) is constructed with the bandwidth
parameter m = [T 0.65] and asymptotic critical values are taken from the χ2(q) distri-
bution.
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The benchmark model for the simulations is a Gaussian fractional noise process
generated according to

∆dxt = ut t = 1, 2, ...., T

ut ∼ N(0, 1)

Different values of 0 < d < 0.5 are considered.

Figures 4-5 about here

Figure 4 reports the rejection frequencies for the two-dimensional tests (q = 2) for
d = 0.4 with J = 2, 3, 4, 5 and T = 500, 3000. The graphs show that for small values
of δJ the tests are conservative with size less than the nominal 5% level. However, as
δJ increases the rejection frequencies increase as well. This is expected since too large
values of δJ results in remaining long memory and beyond a certain point the rejection
frequencies increase as the sample size increases. This reflects that power and not
size is measured when δJ is large and hence demonstrates that the test is consistent.
The reason why the tests are undersized for small values of δJ is due to the prior
differencing operation ∆d̂−δJ which uses the estimate d̂ that is subject to estimation
uncertainty. The optimal value δ∗J is the largest possible value that can be achieved
before the test size increases above its nominal level. This is because the power
increases monotonically in δJ . The simulations show that a choice of values robust to
the sample size is in the neighborhood of δ∗2 = 0.225, δ∗3 = 0.3, and δ∗4 = δ∗5 = 0.35
and hence are slightly smaller than the theoretical values (δ2 = 0.25, δ3 = 0.33, δ4 =
0.375, δ5 = 0.40). These are the values we will use subsequently in simulations and
applications.
Figure 5 displays graphs for the three dimensional case (q = 3) where pairs of

Hermite transformations are compared. In theory, one would expect a test to have
power increasing in q, but in practice the appropriate choice of target differencing
may blur this intuition. Qualitatively, the conclusions regarding size for the q = 3
case are similar to the q = 2 case. The appropriate choice of δ∗J should be in the
range 0.2 − 0.3 depending upon the test design. For practical purposes we suggest
the target parameters δ∗2,3 = δ∗2,4 = δ∗2,5 = 0.2, δ∗3,4 = 0.3, δ∗3,5 = 0.275, and δ∗4,5 = 0.3.
These tuning parameters will give a slightly conservative test, but larger target values
will potentially result in excessive size distortions.
Figures 4 and 5 motivating our (practical) choice of target parameters δ∗J are

constructed for the situation with d = 0.4. This is a memory parameter in the range
typically found in financial applications. When calculating rejection frequencies for
a broader range of d values it can be shown to have only a minor effect on size.
Table 1 documents this by showing the rejection frequencies for both the two-, and
three- dimensional tests with d in the stationary range between 0.2 and 0.45 as well
as the non-stationary range 0.55 − 0.65. As seen the tests are slightly undersized
for small sample sizes and close to the nominal 5% level for T = 3000. Due to
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the partial differencing as an integral part of the testing procedure, values of d in
the non-stationary region d > 0.5 are permitted as well and as seen the sizes are
similar to the stationary case. The fact that the test is performing well even for non-
stationary fractional processes is a clear advantage of the present testing procedure
since competing tests assume stationarity and can be heavily size distorted when
the sample size is large. We have simulated the empirical size of the Qu (2011)
test for d = 0.55, 0.60,and 0.65 and for T = 3000 the size of the test is respectively
0.077, 0.226, and 0.455. For T = 500 the size distortion is moderate.

Table 1 about here

6. Robustifying the procedure to allow for general fractional
processes

The theoretical arguments motivating our test assume the underlying process is a frac-
tional Gaussian noise under the null hypothesis. It is unknown how short-memory
dynamics or conditional heteroscedasticity will affect the validity of the results, but
it is likely that such dynamics may have an impact and hence there is a need for ap-
propriately modifying the testing procedure to control the size of the test. Following
the approach of Qu (2011), we will adopt a prewhitening procedure to remove a pos-
sible short memory component of the underlying series. This procedure is based on
estimation of a low order ARFIMA model and filtering the series using the estimated
autoregressive and moving average coeffi cients. A second prewhitening filter is con-
sidered for situations where the underlying process is suspected to be conditionally
heteroscedastic. This variance prefiltering is based on a GARCH(1,1) specification
and is thus comparable to the mean prewhitening procedure of the process. We
do not assume that the underlying process under the null is an ARFIMA-GARCH
process, but we suggest this model as a reasonable approximation to account for serial
dependence and conditional heteroscedasticity.

6.1. ARFIMA prewhitening. The mean prefiltering procedure to be used fol-
lows Qu (2011). Initially ARFIMA(p, d, q) models are estimated for the time series
xt by maximizing the Gaussian likelihood for p, q = 0, 1 and using the Akaike infor-
mation criterion (AIC) for model selection. The estimated AR and MA parameters
are â1, b̂1 which are restricted to ensure stationarity and invertibility. In practice the
restriction is implemented by requiring that −1+κ ≤ â1, b̂1 ≤ 1−κ with κ > 0 being
a small constant. Following Qu (2011) we set κ = 0.01 for practical applications. The
filtered series reads

x∗t = (1− â1L)(1 + b̂1L)−1(xt − x) (15)

where x = 1
T

∑
t xt. With no further filtering the series x

∗
t in (15) is used in place of

xt in the testing procedure outlined in section 4.
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6.2. GARCH prewhitening. In case the underlying series is suspected to be
heteroscedastic we additionally suggest GARCH prefiltering of the x∗t series, i.e.
the series which has been mean prefiltered as in (15). The experience is that a
GARCH(1,1) model approximates time series data with conditional heteroscedastic-
ity rather well so for simplicity we preselect the orders of the GARCH model. The
estimated conditional standard deviations obtained from maximum likelihood esti-
mation is denoted σ̂t and accordingly, we construct the GARCH filtered series as
x∗∗t = x∗t/σ̂t which is the series to be analyzed subsequently.

7. Simulation results for the robustified testing procedure
In order to evaluate the robustness of the testing procedure compared to the bench-
mark model, we examine a range of Monte Carlo designs. In all cases we set d = 0.4
in the following model specifications:

1. ARFIMA(0, d, 0) : (1− L)dxt = et,

2. ARFIMA(1, d, 0) : (1− 0.8L)(1− L)dxt = et,

3. ARFIMA(0, d, 1) : (1− L)dxt = (1 + 0.5L)et,

4. FI(d) − GARCH(1, 1) : (1 − L)dxt = ut, where ut = σtet, σ
2
t = 1 + 0.1u2t−1 +

0.85σ2t−1

For all models we let et ∼ iid N(0, 1) in line with Qu (2011). Note that the
ARFIMA(0, d, 0) is the benchmark model which is also considered in the previous
section. When implementing our testing procedure we used the ARFIMA prewhiten-
ing filter in all cases. For the case with conditional heteroscedasticity the GARCH
prewhitening filter was used as well.
Figures 6 and 7 report the rejection frequencies as a function of δJ for the two-

dimensional tests (q = 2) with J = 2, 3, 4, 5 and T = 500, 3000, respectively. Figures
8 and 9 display the corresponding graphs for the three-dimensional tests (q = 3). The
simulation results can be summarized very briefly: The shape of the curves is very
similar compared with the benchmark model and hence the tuning parameters δ∗J
suggested in the previous section can be applied under more general situations when
the testing procedure is combined with appropriate prewhitening of the series. As a
consequence the size of the test is very reasonable even when the underlying process
is governed by serially dependent and possibly conditionally heteroscedastic strongly
persistent disturbances.
The case of GARCH(1,1) errors implies that the underlying distribution will have

fat tails. In simulations that are not reported here we find that assuming errors to be
governed by a t-distributions with six degrees of freedom will have very little impact
on the size of the test for the target differencing parameters we are suggesting to
use in practice. Our findings suggest that the W (J,δJ) test generally is robust to
fat-tailness of the underlying distribution under the null hypothesis.

Figures 6-9 about here.
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8. Power
8.1. Models with constant parameters. We will examine the power properties
of theW (J,δJ) test with respect to the hypothesis (9) for six different non-linear model
specifications that are known to exhibit long memory. The models considered are all
characterized by having constant parameters and are also included in the studies of
Ohanissian, Russell and Tsay (2008) and Qu (2011) amongst others5. The models
are:

1. Nonstationary random level shift model (RLS-NS): yt = µt + εt, µt = µt−1 +
πtηt, πt ∼ iid B(1, p), εt ∼ iid N(0, σ2ε), ηt ∼ iid N(0, σ2η) where p = 6.1/T, σ2ε =
5, σ2η = 1.

2. Stationary random level shift model (RLS-S): yt = µt + εt, µt = (1− πt)µt−1 +
πtηt, πt ∼ iid B(1, p), εt and ηt ∼ iid N(0, σ2) where p = 0.003, σ2ε = σ2η = 1.

3. White noise with a monotonic deterministic trend (MONO): yt = at−β+εt, εt ∼
iid N(0, σ2ε), where a = 3, β = 0.1, σ2ε = 1.

4. White noise with a nonmonotonic deterministic trend (NON-MONO):
yt =sin(aπt/T ) + εt, εt ∼ iid N(0, σ2ε), where a = 4, σ2ε = 3.

5. Markov switching model with iid regimes (MS): yt ∼ iid N(µ0, σ
2
0) if st = 0

and yt ∼ iid N(µ1, σ
2
1) if st = 1, with state transition probabilities p01 = p10.

µ0 = −µ1 = 1, σ20 = σ21 = 1, p01 = p10 = 0.001.

6. Markov switching model with GARCH regimes (MS-GARCH): yt = log r2t with
rt =

√
htεt, ht = ω0 + ω1st + αr2t−1 + βht−1,and εt ∼ iid N(0, σ2ε), st = 0, 1. The

transition probabilities are p10 = p01. ω0 = 1, ω1 = 2, α = 0.4, β = 0.3, σ2ε = 1,
and p10 = p01 = .001.

To make comparisons with previous tests analyzed in the literature the calibra-
tion of the model specifications above are as in Qu(2011). We denote this set of
experiments as experiment A. The configurations chosen result in mean values of
the estimated long memory parameters of around 0.25-0.30 for the RLS-NS model,
the range [0.20-0.60] for the RLS-S model, around [0.12-0.17] for the MONO model,
around 0.33 for the NON-MONO model, [0.15-0.60] for the MS model, and finally
[0.12-0.20] for the MS-GARCH model. These are Monte Carlo averages of local Whit-
tle estimates. Because the estimated memory parameter appears to be relatively low
for several of the models in the experiments of Qu(2011) we conducted a second set
of experiments, experiment B, which essentially corresponds to experiment A, but
where each model was calibrated to have a larger mean value of d̂, typically in the

5See also Bos, Franses and Ooms (1998), Chen and Tiao (1990), Lu and Perron (2010), Li and
Perron (2013), Qu and Perron (2013), and Xu and Perron (2014) for examples of these models
generating apparent long memory in financial and inflation time series.
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range [0.35-0.45], i.e. a value that is often found in empirical applications6. In a final
set of experiments, experiment C, we modified the calibration of experiment A by
introducing an AR component in εt to check the influence of a slightly persistent ele-
ment governing the series. The AR coeffi cient selected was 0.8 and the variance was
chosen to make the unconditional variance of the εt term identical across experiments
A and C, i.e. the εt was scaled by its theoretical standard deviation (1− 0.82)−1/2.
Tables 2, 3, and 4 report the results for experiments A, B, and C, respectively. For

each model the W (J,δj) test was calculated with bandwidth parameter m = [T 0.65 ]
and test rejection frequencies were estimated using 2000 replications. The sample
size studied are as reported in Qu(2011) and varies between 500 and 9000. Different
combinations of Hermite rank J were considered in combination with the target
differencing parameter δJ selected in accordance with the previous suggestions. For
experiment A we compare with other tests and additionally report the power results
for the Qu (2011) test (QU), the Ohanissian, Russell, and Tsay (2008) test, (ORT),
the split-sample (S-SPLIT) and the difference (S-DIFF) tests of Shimotsu (2006).
Finally, the mean-td test (PQ) of Perron and Qu (2010) is compared with. The
rejection frequencies reported for these competing tests are taken from Qu (2011).
With respect to experiments B and C the powers of the QU test are included for
comparison.
In experiment A the Qu (2011) test is generally seen to perform best amongst

most competitors, especially for the RLS-NS, RLS-S, and MS models. The different
variants of the W (J, δj) test are shown to do at least as well as several of the other
competing tests, but the performance varies depending upon the Hermite rank com-
binations J being considered. A pattern for the models mentioned above is that the
W (J, δj) test with J = 2 generally comes out as the second best in terms of power
when compared to the QU test. For the MONO model the W (J, δj) test with J = 2
has better power than the QU test but is slightly dominated by the S-DIFF test.
When testing against the MS-GARCH model the W (J, δj) test is doing especially
well when a Hermite rank of J = 4 is included in the transformations and dominates
the QU test even for small sample sizes.
When designing the models to exhibit a different memory structure (experiment

B, Table 3), the W (J, δj) test generally has larger power compared to experiment A.
Qualitatively, the conclusions from experiment A carry over to experiment B for the
RLS-NS, RLS-S, and MS models, and again the model design with J = 2 performs
best. For the MONO model the W (J, δj) test outperforms the QU test for a wide
range of J values. With respect to the MS-GARCHmodel theW (J, δj) tests involving
J = 4 have better power compared with the QU test.
The overall picture from these experiments is unaffected when the error term of

the models is modified to have AR error dynamics as in experiment C, Table 4. One

6The calibrations for experiment B are as follows. RLS-NS: p = 6/T, σ2ε = 2.5, σ
2
η = 1. RLS-S:

p = 5.5/T, σ2ε = σ2η = 1. MONO: a = 10, β = 0.1, σ
2
ε = 1. NON-MONO:

a = 25, σ2ε = 3. MS: µ0 = −µ1 = 0.6, σ20 = σ21 = 1, p01 = p10 = 10/T. MS-GARCH: ω0 = 1, ω1 = 5,
α = 0.4, β = 0.5, σ2ε = 1, and p10 = p01 = 10/T.
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modification of the conclusions is that for the MS-GARCH model the W (J, δj) test
with J = 2 dominates the other tests including the QU test. In fact, the preferred
test design across all model structures is the one with J = 2.
To conclude, theW (J, δj) test is shown to be consistent and has power comparable

with competing tests for several designs of the alternative hypothesis. The QU test
generally seems to perform best, especially against the class of stationary and non-
stationary random level shift models as well as the Markov switching model with iid
regimes. However, for the specific design where J = 2 the W (J, δj) test still has
excellent power and for practical applications the advice points towards using the
W (2, 0.225) test together with the QU test.

Tables 2-4 about here

8.2. Time varying parameter models. The (spurious) long memory models
considered in section 8.1 are a reference class of models in the literature. However,
many other models will have spurious (non-fractional) long memory features. Here
we will consider an extended class of models that exhibit stochastic shifts but as
opposed to the previous models we let the switching or transition probabilities be
time varying. Basically we consider time varying parameter versions of the RLS-NS,
RLS-S, and MS-GARCH models. Variants of these models have also been considered
in Xu and Perron (2014), building on Lu and Perron (2010), and have been shown
to be empirically relevant. See also Diebold et al. (1994) and Kim et al. (2008) for
further references. For these models the jump or switching probabilities are made
dependent on some covariate variable and allows a more comprehensive and realistic
structure for the level shift model. The design is in the spirit of the "news impact
curve" motivated by Engle and Ng (1993).
We specify the jump probability to be pt = f(p, rt−1) where p is a constant

probability and rt−1 is a covariate variable (e.g. the lagged returns series). f(·)
is a function that ensures pt ∈ [0, 1] and here we choose the standard normal cdf Φ(·).
More specifically we let

f(p, rt−1) =

{
Φ(Φ−1(p) + γ1I(rt−1 < 0) + γ2I(rt−1 < 0)|rt−1|) for |rt−1| > c0.01
Φ(p) otherwise

(16)
where I(rt−1 < 0) is the indicator variable and c0.01 is a preselected threshold which
we choose to be the bottom say 1% of the sample distribution of returns. The main
idea is that the break probability is largely increased when we have an extremely
negative outcome of rt in the previous period and hence capturing the leverage effect
that is well documented in many empirical studies.
We define the models RLS-NS-TVP and RLS-S-TVP which are both variants of

the RLS models presented in section 8.1 but now with the break probability modelled
as in (16). We also expand the models to allow (weak) dependence and conditional
heteroscedasticity. More specifically we let εt = φεt−1 + ut with φ = 0.2 and ut ∼ iid
N(0, 1). The innovations are scaled by the inverse of the standard deviation to ensure a
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unit variance. The returns series rt is generated according to a standard GARCH(1,1)

model rt = h
1
2
t εt, ht = ω0 + αr2t−1 + βht−1 where we set ω0 = 1, α = 0.1 and β = 0.85.

Given the sequence of returns rt the 1%-quantile denoted c0.01 can be found. This
provides the input for calculating the probabilities (16) where we set p = 6.1/T as in
experiment A, while γ1 = 2 and γ2 = 0.3. πt is then simulated from a Bernouilli(1, pt)
distribution. Finally, the random level shift processes are generated with πt and εt
as for the previous RLS models where we set σ2ε = 0.752 and σ2η = 0.42.
In a similar fashion we can define a MS-GARCH-TVP model with time varying

transition probabilities. The important feature of this model is that it allows for a
higher probability to switch from a low (st = 0) to a high volatility regime (st = 1)
when past returns are extremely negative and thereby stressing the leverage effect.
Importantly, after such a break we wish to switch back to a low volatility regime
with a similarly high probability. Hence volatility shifts and jumps are possible. The
MS-GARCH-TVP model has time varying switching probabilities p01,t generated as
in (16) with p = p01. Moreover, we let p10,t = 1 − p01,t to ensure that the process is
likely to switch back to the low volatility regime (st = 0). The parameters are set as
follows: ω0 = 1, ω1 = 25, α = 0.4, β = 0.3, p01 = p10 = 0.001.

Table 5 about here

As can be seen from Table 5 the three processes have varying pseudo memory es-
timates with the RLS-NS-TVP model being relatively more persistent for the present
experimental design. For this model theW (J, δj) test is doing very well with excellent
power, especially for J = (2, (2, 3), (2, 4), (2, 5)). The QU test has also high power.
Turning to the RLS-S-TVP model the same pattern is revealed for the W (J, δj) test.
However, in this case the test is clearly outperforming the QU test almost regardless
the choice of J , i.e. for 9 out of 10 tests. Finally, for the MS-GARCH-TVP model 6
out of 10 W (J, δj) tests have superior power compared with to the QU test. For all
three TVP models especially the test with J = 2 has excellent power.
To conclude the power analysis it is seen that no test is uniformly most superior

compared to other tests and the actual test performance depends upon the actual
model being considered under the alternative. In the choice of an appropriate test
design there is a general pattern however that the W (J, δj) test with J = 2 is per-
forming well for a broad range of models under the alternative. Hence we suggest to
use this test in practical applications together with other tests with good power, the
Qu (2011) test in particular.

9. Empirical illustration
To illustrate, we analyze three log realized volatility series and three inflation series
displayed in Figure 10. The log realized volatility series are for the DJIA, FTSE-100
and SP stock index series using daily observations from January 3, 2000 to June 25,
2013, which yields a total of T = 3413 observations. The three US inflation series
are CPI (Consumer Price Index for all Urban Consumers: all items), PPI (Producer
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Price Index: finished goods), and PCE (Personal Consumption Expenditures). The
inflation series are recorded monthly and are seasonally adjusted. CPI and PPI cover
the period 1947-2014 yielding 807 and 804 observations respectively, whilst the PCE
series covers the period 1959-2014, (662 observations).
For the realized volatility series the unfiltered local Whittle estimates of d are

in the range [0.64-0.68] whilst the inflation series have estimates in the range [0.40-
0.55]. When implementing the W (J, δj) test the realized volatility series needed
ARFIMA and GARCH pre-filtering. The inflation series were only GARCH filtered
as the selected lag lengths for the ARMA component were (0,0). The decision to
GARCH pre-filter the data was based on the Lagrange Multiplier tests for ARCH
effects up to 12 lags and these tests strongly rejected the null of no ARCH effects.
The filtered volatility series have estimates of d in the range [0.39 − 0.48] whilst
the GARCH-filtered inflation series have d estimates in the interval [0.27 − 0.47].
The filtered series appear to be approximately symmetrically distributed with some
degree of excess kurtosis (in comparison to the normal distribution) in case of realized
volatilities.
In Table 6 the test values for the Qu(0.02) and theW (2, 0.225) tests are reported.

The two tests provide rather contradicting evidence for the realized volatility series.
Whilst the Qu test accepts the null for all the volatility series, the W (2, 0.225) test
rejects the null at a 1% level for the DJIA and SP indices and at a 5% level for the
FTSE index. The evidence for the inflation series is more in line for the two tests:
Both tests reject the null for the CPI series (at 1% and 5% levels, respectively), and
cannot reject the null for the PPI series. The two tests are in conflict regarding the
PCE series.

Figure 10 about here
Table 6 about here

10. Conclusion and extensions
A new procedure to discriminate between Gaussian fractional long memory and spuri-
ous long memory processes has been suggested. The testing procedure is based on the
feature that non-linear transformations of (stationary) Gaussian fractional processes
will reduce the memory when the Hermite rank of the transformation exceeds one. By
appropriate difference filtering combined with a nonlinear transformation, the series
can thus be made short memory. This property is used as a framework to test that
an appropriately designed vector time series is short memory under the null hypoth-
esis and we suggest using the Wald test of Shimotsu (2007). The test has a limiting
χ2 distribution under the null and by appropriate choice of tuning parameters the
test is shown to have good empirical size properties. After appropriate pre-filtering
the test is shown to be robust to the presence of serial correlation and conditional
heteroscedasticity. The test is formulated such that, as opposed to competing tests
in the literature, even non-stationary fractional processes are permitted under the
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null. The suggested test has good power against a variety of spurious long memory
models that have been previously analyzed in the literature including stationary and
non-stationary random level shift and Markov switching GARCH processes. Even
though the power is comparable and outperforms competing tests in the literature,
the test of Qu (2011) appears to be superior in many cases. However, if the regime
switching or transition probabilities are allowed to be time varying the test is shown
to have really good power and outperforms the Qu (2011) test in most cases. For
practical applications our suggestion to use our new test in combination with the Qu
(2011) test.
In principle, our testing approach can be extended to cover the case of multiple

series in a straightforward manner. For instance, if one wants to test the null hy-
pothesis of true (non-)stationary fractional integration for more than one single time
series, then a multivariate testing framework is desirable. Our approach allows to
consider multiple series in a simple way: If we would consider two series x(1)t and x(2)t
and the Hermite rank J = 2, the resulting Wald statistic W (2, δ) would be build
from the time series vector Yt = (∆d̂1x

(1)
t ,∆d̂2x

(2)
t , H2(y

(1),2
t , δ), H2(y

(2),2
t , δ)). Impor-

tantly, the same target values δ can still be used. A possible situation where such
a setup is of interest is for instance the relation between international stock market
volatilities. The bivariate test can be extended to a K-variate time series vector
along the same lines. The number of zero-restrictions to be tested is then 2K and the
limiting distribution of the corresponding Wald test is χ2(2K). Thus, critical values
from a standard distribution also applies in the multivariate setting. The originally
proposed test by Qu (2011) is univariate. Obviously, a multivariate extension of Qu’s
test can be achieved by considering a multivariate local Whittle likelihood function
and by deriving a similar statistic. The exact from of the test statistic is, however,
more complicated to obtain and the limiting distribution will be non-standard (as in
the univariate case). Estimation of the memory parameter can carried out via the
Shimotsu (2007) estimator.
Recently there has been some focus on making inference on the long memory index

whilst simultaneously allowing for zero frequency contamination of the process in the
form of structural breaks or shifts, see e.g. McCloskey and Perron (2013) and Delle
Monache et al. (2013) for nonparametric and parametric approaches, respectively. It
should be noted that the class of models considered in the present paper does not
allow for the joint presence of fractional long memory and a break or structural change
component. It is not clear how one should proceed in this situation but a possible
approach would be to first model possible break or level shift components if the
test for fractional long memory initially rejects the null, and then test for remaining
(fractional) long memory accounting for breaks, level shifts, etc. It remains for future
research to further analyze such extensions.
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Figure 1: Plot of the function dJ = max{0, (d−0.5)J + 0.5} for transformations with
Hermite ranks J = 1, 2, 3, 4, 5.
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Figure 2: Mean values of local Whittle estimates of FI(d) processes, x-axis, and the
estimate of d(J), y-axis, for Hermite ranks 2-5 and T=500. The curves are based on
2000 MC replications.
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Figure 3: Mean values of local Whittle estimates of FI(d) processes, x-axis, and the
estimate of d(J), y-axis, for Hermite ranks 2-5 and T=3000. The curves are based on
2000 MC replications.



Discriminating between fractional integration and spurious long memory34

●
●

●

●

●

Hermite rank 2

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ●
●

●

●

●

●

●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

T = 3000
T = 500

● ●
●

●
● ●

●

●

●

Hermite rank 3

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ● ● ● ●

● ●

●

●

●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

T = 3000
T = 500

● ● ● ● ●
●

●
●

●

●

●

Hermite rank 4

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ● ● ● ● ● ●
●

●

●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

T = 3000
T = 500

● ● ● ● ●
●

●

●

●

●

●

Hermite rank 5

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ● ● ● ● ● ● ●
●

●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

T = 3000
T = 500

Figure 4: Size of W (δJ , J) test as a function of δ for Hermite ranks J=2,3,4,5. The
sample sizes are T=500 and T=3000. xt is FI(d) with d=0.40. Sizes for errors being
NID(0,1) are displayed.
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Figure 5: Size of W (δJ , J) test as a function of δ for pairwise Hermite rank combi-
nations of J=2,3,4,5. The sample sizes are T=500 and T=3000. xt is FI(d) with
d=0.40. Sizes for errors being NID(0,1) are displayed.
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Figure 6: Size of W (δJ , J) test as a function of δ for Hermite ranks J=2,3,4,5. The
sample size is T=500. xt is FI(d) with d=0.40. Sizes for errors being NID, AR(1),
MA(1) and GARCH(1,1) are displayed.



Discriminating between fractional integration and spurious long memory37

●
●

●

●

●

Hermite rank 2

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

●
●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

IID
AR
MA
GARCH

● ●
●

●
● ●

●

●

●

Hermite rank 3

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ●
●

●
●

●

●

●

●

● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ● ●
●

●

●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

IID
AR
MA
GARCH

● ● ● ● ●
●

●
●

●

●

●

Hermite rank 4

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ● ●
● ●

●
●

●

●

●

● ● ● ●
● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

IID
AR
MA
GARCH

● ● ● ● ●
●

●

●

●

●

●

Hermite rank 5

Target differencing parameter (delta)

E
m

pi
ric

al
 s

iz
e

● ● ● ● ● ●
● ●

●

●

●

● ● ● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ● ● ●
● ●

0.15 0.2 0.25 0.3 0.35 0.4

0.
00

0.
05

0.
10

0.
15

IID
AR
MA
GARCH

Figure 7: Size of W (δJ , J) test as a function of δ for Hermite ranks J=2,3,4,5. The
sample size is T=3000. xt is FI(d) with d=0.40. Sizes for errors being NID, AR(1),
MA(1) and GARCH(1,1) are displayed.
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Figure 8: Size of W (δJ , J) test as a function of δ for pairwise Hermite rank combi-
nations of J=2,3,4,5. The sample size is T=500. xt is FI(d) with d=0.40. Sizes for
errors being NID, AR(1), MA(1) and GARCH(1,1) are displayed.
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Figure 9: Size of W (δJ , J) test as a function of δ for pairwise Hermite rank combi-
nations of J=2,3,4,5. The sample size is T=3000. xt is FI(d) with d=0.40. Sizes for
errors being NID, AR(1), MA(1) and GARCH(1,1) are displayed.
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Figure 10: Log realized volatility series for DJIA, FTSE-100 and SP stock index
series using daily observations from January 3, 2000 to June 25, 2013. The three
US inflation series are CPI (Consumer Price Index for all Urban Consumers: all
items), PPI (Producer Price Index: finished goods), and PCE (Personal Consumption
Expenditures). The inflation series are recorded monthly and are seasonally adjusted.
CPI and PPI cover the period 1947-2014. The PCE series covers the period 1959-
2014.
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