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Abstract

We propose a new generalized forecast error variance decomposition with the prop-

erty that the proportions of the impact accounted for by innovations in each vari-

able sum to unity. Our decomposition is based on the well-established concept of

the generalized impulse response function. The use of the new decomposition is

illustrated with an empirical application to U.S. output growth and interest rate

spread data.
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1 Introduction

Impulse response and forecast error variance decomposition analysis are the promi-

nent tools in interpreting estimated linear and nonlinear multivariate time series

models. To facilitate such analyses in a reduced-form linear vector autoregressive

(VAR) model, identifying restrictions are typically imposed to obtain a struc-

tural model with economically meaningful uncorrelated shocks. However, when it

is difficult to find credible identification restrictions, so-called generalized impulse

response functions (GIRF) and generalized forecast error variance decompositions

(GFEVD) are analyzed instead. With nonlinear models, this is virtually always

the case.

The main difference between the impulse response function (IRF) and forecast

error variance decomposition (FEVD) and their generalized counterparts is the in-

terpretation of the shocks: in the former case, they are uncorrelated and carry an

economic meaning, while in the latter case, each of them is just a shock to a given

equation of the model. Moreover, because the shocks are not necessarily uncorre-

lated in the generalized case, the interpretation of the GFEVD as the proportions

of the impact accounted for by innovations in each of the variables of the total

impact of all innovations after h periods (h = 0, 1, 2, . . .) is somewhat nebulous, as

these ’proportions’ may not sum to unity.

Our contributions are twofold. First, we propose a simple modification of the

GFEVD in linear multivariate models due to Pesaran and Shin (1998) that, by

construction, yields the relative contributions to the h-period impacts of the shocks

summing to unity, and hence, facilitating convenient interpretation. Second, we

generalize this modification to obtain a GFEVD in nonlinear models that, to the

best of our knowledge, has not been entertained in the previous literature. Overall,

impulse response analysis in nonlinear models has not been frequently considered

in the previous literature albeit it has recently awoken increased interest (see, e.g.,

Karamé, 2012, and Hubrich and Teräsvirta, 2013, 313–315), who discuss GIRFs
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in Markov-switching and threshold and smooth transition vector autoregressive

models, respectively).

The paper is organized as follows. The new GFEVD and its relation to the

orthogonalized FEVD and GIRF are introduced in Section 2. In Section 3, we

illustrate the GFEVD in an empirical application to U.S. output growth and the

spread between long-term and short-term interest rates. Section 4 concludes.

2 A New Generalized FEVD

Let us start out by considering a K-dimensional VAR(p) model

yt =

p∑
i=1

Φiyt−i + εt (1)

where εt is an independent and identically distributed (iid) error term with zero

mean and covariance matrix Σ. Assuming weak stationarity, yt obtains the infinite-

order moving-average representation

yt =
∞∑
j=0

Ajεt−j, (2)

and if suitable identification restrictions are available such that Σ can be written

as PP
′
, ξt = P−1εt is the orthogonalized error with identity covariance matrix.

The orthogonalized impulse response function on yj,t+l of a unit shock to the ith

equation is then (see, e.g., Lütkepohl, 2005, Section 2.3)

IRFij(l) =
∂yj,t+l

∂ξit
= [AlP]ji, l = 0, 1, 2, . . . , (3)

and the corresponding FEVD component for horizon h equals

γij(h) =

∑h
l=0 IRF

2
ij(l)∑K

i=1

∑h
l=0 IRF

2
ij(l)

, i, j = 1, . . . , K, (4)

with
∑K

i=1 γij(h) = 1 for a given j.

For the case where sufficient restrictions cannot be found to identify the struc-

tural error ξt, Pesaran and Shin (1998) have proposed an approach originally put
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forth by Koop et al. (1996). For generality, consider a K-dimensional nonlinear

multivariate model (with the linear VAR as a special case),

yt = G(yt−1, . . . ,yt−p ;θ) + εt, (5)

where G(·) is a nonlinear function depending on the parameter vector θ and εt is

an iid error term. Following Pesaran and Shin (1998), we concentrate on shocks

hitting only one equation at a time, and define the GIRF of yt to the shock δit at

horizon l as

GI(l, δit,ωt−1) = E(yt+l|εit = δit,ωt−1)− E(yt+l|ωt−1), l = 0, 1, 2, . . . , (6)

where ωt−1 and δit are the history and the shock to the ith equation that the

expectations are conditioned on, respectively. The GIRF (6) can be interpreted as

the time profile at time t+h of the effect of the shock δit hitting at time t, obtained

as the difference between the expectations conditional on the shock and the history

ωt−1, and the expectations conditioned only on the history ωt−1. Each history

ωt−1 consists of the matrix of initial values needed to compute the conditional

expectations (forecasts) in (6) which are typically obtained by simulation. In the

linear VAR model, the GIRF is history and shock invariant and is obtained by the

formulas of Pesaran and Shin (1998, 19).

Based on (6) for i = 1, . . . , K, Pesaran and Shin (1998) suggested a GFEVD

for linear models that has the shortcoming that the contributions of the shocks to

the forecast error variance of a given variable at horizon l do not sum to unity if

the covariance matrix of the error εt is not a diagonal matrix. This makes their

interpretation problematic. In contrast, we define the GFEVD of shock i, variable

j, horizon h and history ωt−1 by replacing the IRF in (4) by the GIRF:

λij,ωt−1(h) =

∑h
l=0GI(l, δit,ωt−1)

2
j∑K

i=1

∑h
l=0GI(l, δit,ωt−1)2j

, i, j = 1, . . . , K. (7)

The denominator measures the aggregate cumulative effect of all the shocks, while

the numerator is the cumulative effect of the ith shock. By construction, as in (4),
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λij,ωt−1(h) lies between 0 and 1, measuring the relative contribution of a shock

to the ith equation to the total impact of all K shocks after h periods on the

jth variable in yt, and these contributions sum to unity. Our GFEVD is thus

easily interpretable and applicable in any nonlinear model for which the conditional

expectations in (6) can be computed.

In the linear VAR model with history and shock invariant GIRFs, (7) can be

computed by just plugging in the GIRFs computed by the formulas of Pesaran

and Shin (1998). In contrast, in a nonlinear model, the effects of a shock typically

depend on its size and sign as well as the history, and, in the same way as shown

by Koop et al. (1996) for the GIRF, (7) is readily generalized by averaging over

the relevant shocks and histories.

In practice, we recommend computing the GFEVD as the average of λij,ωt−1(h)

over shocks obtained by bootstrapping from the residuals of the estimated model,

and over all the histories. This should yield the GFEVD characteristic of the data

at hand, and naturally it solves the problem of selecting the size of shocks to each

equation in a multivariate model. If the interest concentrates on only a subset

of the histories, averaging can be restricted to the relevant histories, with shocks

bootstrapped from among the residuals related to these histories only. For instance,

we might be interested in finding the GFEVDs of positive and negative shocks to

the ith equation separately.

3 Empirical Illustration

We illustrate the different generalized FEVDs in the bivariate linear and nonlinear

autoregressive leading indicator models of Anderson et al. (2007) for the U.S.

GDP growth rate and term spread between the long-term (10-year) and short-

term (3-month) interest rates. The term spread reflects the stance (direction) of

monetary policy, and it typically decreases (increases) prior to recessions (during

recessions), suggesting that it might be a leading indicator of output growth. The
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estimates of the restricted fifth-order VAR and logistic smooth-transition vector

autoregressive (LSTVAR) models on quarterly data from 1961Q1 to 1999Q4 are

reported in Anderson et al. (2007, Appendix B).

The GFEVDs of the VAR and LSTVAR models are presented in Tables 1 and

2, respectively. In accordance with the discussion in Section 2, the GFEVDs of

Pesaran and Shin (1998) do not sum to unity for all h (see the left panel in Table

1 and, in particular, the decomposition for the term spread), whereas this problem

does not arise with our GFEVDs, facilitating interpretation.

The GFEVDs based on the VAR and LSTVAR models appear somewhat dif-

ferent. Especially at short forecast horizons, the shock to the term spread has a

larger relative contribution to the forecast error variance of output growth in the

LSTVAR model compared with the VAR model. This is in line with the impor-

tance of nonlinearity found by Galbraith and Tkacz (2000) and Anderson et al.

(2007), among others, suggesting that as a leading indicator of output, the predic-

tive information of the term spread is not fully exploited in a linear model. As to

the term spread itself, it is dominated by its own shock in the VAR model while the

contribution of the shock to output growth is far more important in the LSTVAR

model. Finally, the results for the low growth regime (consisting of histories with

lagged output growth rate less than 0.32%, see Anderson et al. (2007)) reported

in the right panel of Table 2, suggest that the term spread shock plays a slightly

more important role for output growth than implied by the results based on all

histories.

4 Conclusions

We propose a new generalized forecast error variance decomposition for multi-

variate linear and, in particular, nonlinear models. In the linear VAR model, the

proposed GFEVD encompasses the usual orthogonalized case, and it has a con-

venient interpretation also when the shocks are non-orthogonal. An empirical ap-
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plication to U.S. output growth and term spread highlights the advantages of the

new GFEVD in interpreting estimated linear and nonlinear multivariate models.
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Table 1: GFEVDs of the linear VAR model.

Pesaran and Shin (1998) GFEVD (7)

Variable: Growth Spread Growth Spread

Shock to: Growth Spread Growth Spread Growth Spread Growth Spread

h

1 1.00 0.01 0.04 1.00 1.00 0.01 0.00 1.00

2 0.98 0.01 0.10 0.99 0.96 0.04 0.01 0.99

3 0.96 0.02 0.16 0.97 0.92 0.08 0.01 0.99

4 0.94 0.03 0.20 0.96 0.88 0.12 0.02 0.98

8 0.91 0.05 0.59 0.80 0.82 0.18 0.11 0.89

16 0.91 0.05 0.66 0.77 0.82 0.18 0.13 0.87

20 0.91 0.05 0.67 0.77 0.82 0.18 0.13 0.87

Notes: The GFEVDs for different forecast horizons (quarters) h are based on the Pesaran and

Shin (1998) approach and the new formulation (7) in the left and right panels, respectively. The

latter are given by expression (3) assuming P = IK .
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Table 2: GFEVDs (7) of the LSTVAR model.

LSTVAR LSTVAR, Low Growth Regime

Variable: Growth Spread Growth Spread

Shock to: Growth Spread Growth Spread Growth Spread Growth Spread

h

1 1.00 0.00 0.27 0.73 1.00 0.00 0.21 0.79

2 0.82 0.18 0.35 0.65 0.80 0.20 0.31 0.69

3 0.81 0.19 0.39 0.61 0.78 0.22 0.36 0.64

4 0.81 0.19 0.42 0.58 0.78 0.22 0.40 0.60

8 0.80 0.20 0.53 0.47 0.77 0.23 0.52 0.48

16 0.79 0.21 0.54 0.46 0.77 0.23 0.53 0.47

20 0.79 0.21 0.54 0.46 0.77 0.23 0.53 0.47

Notes: The GFEVDs are based on 1000 shocks bootstrapped from among the residuals of the

estimated LSTVAR model. For each pair of shocks the GIRF is computed for each of the 154

histories (consisting of five consecutive observations), yielding, in total, 154000 GIRFs, over

which (7) is averaged. The conditional expectations in (6) are computed based on 1000 simulated

realizations of the model. In the right panel, the low growth regime applies when the GDP growth

rate is less than 0.32%
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